CN110498685A - 一种碳纤维增强陶瓷基复合材料制备方法 - Google Patents

一种碳纤维增强陶瓷基复合材料制备方法 Download PDF

Info

Publication number
CN110498685A
CN110498685A CN201910715202.7A CN201910715202A CN110498685A CN 110498685 A CN110498685 A CN 110498685A CN 201910715202 A CN201910715202 A CN 201910715202A CN 110498685 A CN110498685 A CN 110498685A
Authority
CN
China
Prior art keywords
fibre reinforced
based composites
carbon fibre
ceramics based
reinforced ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910715202.7A
Other languages
English (en)
Other versions
CN110498685B (zh
Inventor
杨金华
艾莹珺
姜卓钰
周怡然
焦健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201910715202.7A priority Critical patent/CN110498685B/zh
Publication of CN110498685A publication Critical patent/CN110498685A/zh
Application granted granted Critical
Publication of CN110498685B publication Critical patent/CN110498685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明是一种碳纤维增强陶瓷基复合材料的制备方法,该方法以碳纤维作为增强体,通过在高残炭树脂中加入可膨胀石墨,实现对孔隙结构的调整,进而经过热压成型、碳化及熔融渗硅制备出高性能陶瓷基复合材料。本发明的碳纤维增强陶瓷基复合材料制备工艺简单、成本低、周期短,制备的复合材料基体中碳化硅与硅分布均匀。

Description

一种碳纤维增强陶瓷基复合材料制备方法
技术领域
本发明是一种碳陶复合材料的制备方法,属于复合材料制备技术领域。
背景技术
碳纤维增强陶瓷基复合材料具有密度低、耐高温、耐摩擦性能好等优势而被应用于航空、航天、密封环、高温炉及刹车盘等领域。该材料的主要制备工艺包括化学气相沉积法、前驱体浸渍裂解法、反应熔渗法及热压烧结法。其中化学气相沉积法是通过高温下前驱体的裂解、反应在纤维表面实现沉积,进而实现致密化;前驱体浸渍裂解法是通过纤维编织体在液态前驱体中反复浸渍-裂解,从而实现致密化;反应熔渗法是将纤维与高残炭树脂结合,经裂解形成多孔结构,进而通过熔渗反应实现致密化;热压烧结通常采用纤维与粉体相结合,经过高温热压烧结形成碳纤维增强陶瓷基复合材料。其中,反应熔渗法由于具备原材料成本低、生产周期短、适于批量化生产等特点而被广泛商业化应用。
专利CN102128225A介绍了一种碳陶刹车盘的制备方法,该方法先制备出碳纤维坯体,通过化学气相沉积增密、石墨化处理、加工、制孔、然后熔渗等步骤制备出碳陶刹车盘。该工艺需结合化学气相沉积工艺与熔渗工艺实现复合材料的致密化,其中化学气相沉积增密步骤耗时长、成本高,不利于材料的批量化制备。专利CN106565262A介绍了一种碳纤维增强陶瓷基复合材料的制备方法,首先将纤维编织成预制体,然后将料浆注入预制体中,进而经过碳化、熔渗得到碳纤维增强陶瓷基复合材料。采用该工艺料浆注入过程中难以保证其在预制体内均匀分布,容易造成局部富硅。专利CN103553695A介绍了一种碳化硅短纤维增韧碳化硅陶瓷及其制备的方法,将改性碳纤维、硅粉、粘结剂、无水乙醇混合均匀,经热压成型、碳化、致密化及渗硅制备得到碳陶复合材料。该工艺采用短纤维进行增强,材料的强度较长纤维低,并且采用热压工艺通常只能制备形状较为简单的零件。
发明内容
本发明正是针对上述现有技术中存在的问题提供了一种长碳纤维增强的陶瓷基复合材料制备方法,其目的是直接通过高残炭树脂与碳纤维进行复合,进而经过定型、碳化及熔渗实现复合材料的制备,并且通过在高残炭树脂中引入可膨胀石墨,从而可以填充树脂裂解过程中产生的裂纹及孔隙,从而降低材料中的自由硅含量,提高材料的耐高温及抗腐蚀性能。
本发明的目的是通过以下技术方案来实现的:
该种碳纤维增强陶瓷基复合材料制备方法,其特征在于:该方法首先将可膨胀石墨分散到酚醛树脂中,得到可膨胀石墨料浆,再将可膨胀石墨料浆与碳纤维进行复合,制备成预浸料,之后将预浸料在模具中铺层并固化定型,再经碳化和熔融渗硅,得到碳纤维增强陶瓷基复合材料。
在一种实施中,所述可膨胀石墨料浆的配制过程是将酚醛树脂溶解于乙醇溶剂中,再加可膨胀石墨,拌至均匀。
进一步,酚醛树脂与乙醇溶剂的重量比为1∶0.5~3。
在一种实施中,可膨胀石墨为酚醛树脂重量的0.5~5%。
在一种实施中,预浸料制备完成后,置于室温下干燥5~48小时。
在一种实施中,所述固化定型方式为压机或热压罐成型,成型温度为100~300℃,成型压力为0.5~10MPa。
在一种实施中,所述炭化处理的炭化温度为800~1200℃之间,保温时间为0.2-2h。
在一种实施中,所述熔融渗硅采用硅粉或硅合金粉,熔渗温度为1450~1550℃,气氛为真空气氛。
在一种实施中,所述的酚醛树脂为液态树脂或固态粉末状树脂,液态树脂能够不需溶解而直接使用。
本发明的优点和特点:
1.可膨胀石墨是由天然鳞片石墨经插层、水洗、干燥而成,该材料在800~1200℃之间加热时可以体积膨胀150~300倍,而制备碳纤维增强陶瓷基复合材料时,需用到高残炭树脂来提供碳源,高残炭树脂通常在900~1200℃之间进行碳化,以去除小分子,在碳化过程中树脂将发生收缩,从而在基体中产生大量裂纹与孔隙,这些大裂纹在熔渗反应结束后会富余大量的硅。基体中含硅量高影响材料的高温性能及耐腐蚀性能,尽管目前有多种有效去除残余硅的方法,但均提高了材料的成本、增加了材料制备工序,并且去除硅后,原来硅所占据的体积将成为孔隙。本发明利用可膨胀石墨加热后体积胀大的优点来填补树脂加热后体积收缩产生的裂纹与孔隙,而膨胀石墨的丰富孔隙结构不影响硅的渗入,因而从源头上解决碳纤维增强陶瓷基复合材料中的富余硅问题;
2.本发明制备碳纤维增强陶瓷基复合材料,原材料容易获得,制备流程短,工艺简单,生产成本较低,适宜于批量化生产制备陶瓷基复合材料零件;
3.本发明制备的碳纤维增强陶瓷基复合材料,耐高温、耐腐蚀性能好,可应用于航空、航天、刹车系统及密封环等领域。
具体实施方式
以下将结合具体实例例对本发明技术方案作进一步详述:
实施例1
采用本发明方法制备碳纤维增强陶瓷基复合材料的步骤如下:
步骤一、分散可膨胀石墨
将1000g酚醛树脂溶解于1500g乙醇溶剂中,充分溶解后,加入30g的可膨胀石墨,继续充分搅拌至均匀;
步骤二、将分散有可膨胀石墨的树脂溶液手工涂刷至正交编织的碳纤维布表面,制备成预浸料,并置于室温下干燥24小时;
步骤三、将步骤二得到的预浸料按照模具形状进行裁剪,并置于模具中铺层,并采用热压机进行成型,成型温度为200℃,成型压力为0.6MPa,制备得到预制体;
步骤四、将步骤三得到的预制体置于高温炉中进行炭化,炭化温度为1000℃,保温时间2h,得到碳纤维增强的多孔体;
步骤五、将得到的多孔体置于石墨坩埚中,采用硅粉或硅合金粉对其进行熔渗,熔渗温度为1550℃,气氛为真空气氛,得到碳纤维增强陶瓷基复合材料。
实施例2
采用本发明方法制备碳纤维增强陶瓷基复合材料的步骤如下:
步骤一、分散可膨胀石墨
将1000g酚醛树脂溶解于2000g乙醇溶剂中,充分溶解后,加入30g的可膨胀石墨,继续充分搅拌至均匀;
步骤二、将分散有可膨胀石墨的树脂溶液手工涂刷至正交编织的碳纤维布表面,制备成预浸料,并置于室温下干燥24小时;
步骤三、将步骤二得到的预浸料按照模具形状进行裁剪,并置于模具中铺层,打真空袋,并采用热压罐工艺进行成型,成型温度为200℃,成型压力为5MPa,制备得到预制体;
步骤四、将步骤三得到的预制体置于高温炉中进行炭化,炭化温度为1000℃,保温时间2h,得到碳纤维增强的多孔体;
步骤五、将得到的多孔体置于石墨坩埚中,采用硅粉或硅合金粉对其进行熔渗,熔渗温度为1500℃,气氛为真空气氛,得到碳纤维增强陶瓷基复合材料。
实施例3
采用本发明方法制备碳纤维增强陶瓷基复合材料的步骤如下:
步骤一、分散可膨胀石墨
将1000g酚醛树脂溶解于2000g乙醇溶剂中,充分溶解后,加入10g的可膨胀石墨,继续充分搅拌至均匀;
步骤二、将分散有可膨胀石墨的树脂溶液采用湿法预浸技术与碳纤维结合,形成单向带,并置于室温下干燥24小时;
步骤三、将步骤二得到的单向带剪裁成200*200mm尺寸大小,采用0°与90°交叉铺层,并置于模具中,并采用热压机进行成型,成型温度为200℃,成型压力为5MPa,制备得到预制体;
步骤四、将步骤三得到的预制体置于高温炉中进行炭化,炭化温度为1100℃,保温时间1h,得到碳纤维增强的多孔体;
步骤五、将得到的多孔体置于石墨坩埚中,采用硅粉或硅合金粉对其进行熔渗,熔渗温度为1500℃,气氛为真空气氛,得到碳纤维增强陶瓷基复合材料。
采用本发明制备的碳纤维增强陶瓷基复合材料,基体中残余硅含量低,耐高温、耐腐蚀性能好,并且具有成本低的优势。

Claims (9)

1.一种碳纤维增强陶瓷基复合材料制备方法,其特征在于:该方法首先将可膨胀石墨分散到酚醛树脂中,得到可膨胀石墨料浆,再将可膨胀石墨料浆与碳纤维进行复合,制备成预浸料,之后将预浸料在模具中铺层并固化定型,再经碳化和熔融渗硅,得到碳纤维增强陶瓷基复合材料。
2.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:所述可膨胀石墨料浆的配制过程是将酚醛树脂溶解于乙醇溶剂中,再加可膨胀石墨,拌至均匀。
3.根据权利要求2所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:酚醛树脂与乙醇溶剂的重量比为1∶0.5~3。
4.根据权利要求1或2所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:可膨胀石墨为酚醛树脂重量的0.5~5%。
5.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:预浸料制备完成后,置于室温下干燥5~48小时。
6.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:所述固化定型方式为压机或热压罐成型,成型温度为100~300℃,成型压力为0.5~10MPa。
7.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:所述炭化处理的炭化温度为800~1200℃之间,保温时间为0.2-2h。
8.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:所述熔融渗硅采用硅粉或硅合金粉,熔渗温度为1450~1550℃,气氛为真空气氛。
9.根据权利要求1所述的碳纤维增强陶瓷基复合材料制备方法,其特征在于:所述的酚醛树脂为液态树脂或固态粉末状树脂,液态树脂能够不需溶解而直接使用。
CN201910715202.7A 2019-08-02 2019-08-02 一种碳纤维增强陶瓷基复合材料制备方法 Active CN110498685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910715202.7A CN110498685B (zh) 2019-08-02 2019-08-02 一种碳纤维增强陶瓷基复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910715202.7A CN110498685B (zh) 2019-08-02 2019-08-02 一种碳纤维增强陶瓷基复合材料制备方法

Publications (2)

Publication Number Publication Date
CN110498685A true CN110498685A (zh) 2019-11-26
CN110498685B CN110498685B (zh) 2021-12-03

Family

ID=68587770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910715202.7A Active CN110498685B (zh) 2019-08-02 2019-08-02 一种碳纤维增强陶瓷基复合材料制备方法

Country Status (1)

Country Link
CN (1) CN110498685B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138170A (zh) * 2020-01-15 2020-05-12 唐山市丰华陶瓷有限公司 一种用于大尺寸制品的ffc泥浆及其制备方法
CN111233503A (zh) * 2020-02-26 2020-06-05 中南大学 一种纤维增韧陶瓷基复合材料的制备方法
CN111805687A (zh) * 2020-07-07 2020-10-23 南京理工大学 一种陶瓷基复合材料3d打印成型装置和打印成型方法
CN113387713A (zh) * 2021-05-10 2021-09-14 中国电力科学研究院有限公司 一种原位聚合法制备柔性石墨接地导体材料的方法
CN113773094A (zh) * 2021-09-30 2021-12-10 中国航发北京航空材料研究院 一种熔融渗硅用硅粉的处理方法
CN116283326A (zh) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 一种碳纤维增强陶瓷封装石墨导热板及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198342A (ja) * 1988-02-03 1989-08-09 Hitachi Chem Co Ltd 断熱材の製造法
JPH03208808A (ja) * 1990-01-12 1991-09-12 Hitachi Chem Co Ltd 膨張黒鉛複合炭素材及びその製造法
CN1205681A (zh) * 1995-11-14 1999-01-20 航空发动机的结构和研究公司 将熔融硅组合物渗入多孔基体内的方法
CN101077776A (zh) * 2007-03-26 2007-11-28 武汉工程大学 用膨胀石墨或柔性石墨纸制备碳化硅制品的方法
CN103332943A (zh) * 2013-06-04 2013-10-02 大连理工大学 基于液硅熔渗法制备碳陶基复合材料的微结构设计及性能控制方法
CN105060913A (zh) * 2015-08-13 2015-11-18 中国科学院光电技术研究所 一种低热膨胀系数C/C-SiC复合材料的制备方法
CN106410155A (zh) * 2016-10-28 2017-02-15 林天安 一种石墨烯硅氧碳负极材料的制备方法
CN106543978A (zh) * 2016-10-31 2017-03-29 清华大学深圳研究生院 压缩膨胀石墨导热复合材料及其制备方法
CN108675790A (zh) * 2018-06-20 2018-10-19 三峡大学 一种石墨/碳化硅隔热背衬及其制备方法
CN109133723A (zh) * 2018-09-20 2019-01-04 黄勇 一种高温抗压隔热碳纤维布的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198342A (ja) * 1988-02-03 1989-08-09 Hitachi Chem Co Ltd 断熱材の製造法
JPH03208808A (ja) * 1990-01-12 1991-09-12 Hitachi Chem Co Ltd 膨張黒鉛複合炭素材及びその製造法
CN1205681A (zh) * 1995-11-14 1999-01-20 航空发动机的结构和研究公司 将熔融硅组合物渗入多孔基体内的方法
CN101077776A (zh) * 2007-03-26 2007-11-28 武汉工程大学 用膨胀石墨或柔性石墨纸制备碳化硅制品的方法
CN103332943A (zh) * 2013-06-04 2013-10-02 大连理工大学 基于液硅熔渗法制备碳陶基复合材料的微结构设计及性能控制方法
CN105060913A (zh) * 2015-08-13 2015-11-18 中国科学院光电技术研究所 一种低热膨胀系数C/C-SiC复合材料的制备方法
CN106410155A (zh) * 2016-10-28 2017-02-15 林天安 一种石墨烯硅氧碳负极材料的制备方法
CN106543978A (zh) * 2016-10-31 2017-03-29 清华大学深圳研究生院 压缩膨胀石墨导热复合材料及其制备方法
CN108675790A (zh) * 2018-06-20 2018-10-19 三峡大学 一种石墨/碳化硅隔热背衬及其制备方法
CN109133723A (zh) * 2018-09-20 2019-01-04 黄勇 一种高温抗压隔热碳纤维布的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MUN, SO YOUN等: "Thermal and electrical properties of epoxy composite with expanded graphite-ceramic core-shell hybrids", 《MATERIALS RESEARCH BULLETIN》 *
张成雨: "环氧树脂基复合材料的导热性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
陈希: "膨胀石墨基多孔炭/炭复合材料的制备及吸附性能", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138170A (zh) * 2020-01-15 2020-05-12 唐山市丰华陶瓷有限公司 一种用于大尺寸制品的ffc泥浆及其制备方法
CN111233503A (zh) * 2020-02-26 2020-06-05 中南大学 一种纤维增韧陶瓷基复合材料的制备方法
CN111805687A (zh) * 2020-07-07 2020-10-23 南京理工大学 一种陶瓷基复合材料3d打印成型装置和打印成型方法
CN113387713A (zh) * 2021-05-10 2021-09-14 中国电力科学研究院有限公司 一种原位聚合法制备柔性石墨接地导体材料的方法
CN113387713B (zh) * 2021-05-10 2023-01-31 中国电力科学研究院有限公司 一种原位聚合法制备柔性石墨接地导体材料的方法
CN113773094A (zh) * 2021-09-30 2021-12-10 中国航发北京航空材料研究院 一种熔融渗硅用硅粉的处理方法
CN113773094B (zh) * 2021-09-30 2023-12-22 中国航发北京航空材料研究院 一种熔融渗硅用硅粉的处理方法
CN116283326A (zh) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 一种碳纤维增强陶瓷封装石墨导热板及其制备方法
CN116283326B (zh) * 2023-02-22 2024-04-16 陕西天策新材料科技有限公司 一种碳纤维增强陶瓷封装石墨导热板及其制备方法

Also Published As

Publication number Publication date
CN110498685B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN110498685A (zh) 一种碳纤维增强陶瓷基复合材料制备方法
EP3549926B1 (en) Method for preparing c/c-sic composite material part
CN109721377B (zh) 碳纤维增强碳化硅陶瓷基复合材料及其制备方法
CN103086731B (zh) 高强度纤维增强陶瓷基复合材料的微区原位反应制备方法
US6231791B1 (en) Silicon carbide articles reinforced with short graphite fibers
CN105924199B (zh) 一种低成本碳/碳复合材料的快速制备方法
JP3096716B1 (ja) 繊維強化炭化ケイ素複合材の製造方法
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
CN108395266A (zh) 一种纤维增强复相陶瓷基复合材料的制备方法
EP1626036A2 (en) Processing of sic/sic ceramic matrix composites by use of colloidal carbon black
CN110357648A (zh) 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
CN109437956A (zh) 适用于热压法快速制备的碳碳复合材料平板及其制备方法
CN108892523B (zh) 一种基于单向带工艺的碳陶复合材料制备方法
CN104058776B (zh) 一种由炭纤维球制成的硬质炭纤维保温材料的制备方法
CN108947556B (zh) 一种基于单向带工艺的碳碳复合材料制备方法
CN115872744B (zh) 一种固相增密制备高性能无粘结剂炭石墨材料的方法
CN111170754B (zh) 一种具有Si-Y-C三元陶瓷基体复合材料及制备方法
JP4484004B2 (ja) セラミックス基複合部材の製造方法
CN108101543A (zh) 一种碳化硅基碳陶摩擦材料及其模压制备方法
CN110963798B (zh) 一种木炭增强碳化硅基复合材料的制备方法
CN112194497A (zh) 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
JPH069270A (ja) メソフェーズ粉体を使用する炭素/炭素複合材料部品の製造方法
KR20220137842A (ko) 확장가능한 무침투 세라믹 매트릭스 복합재의 방법 및 조성물
US10723660B2 (en) Carbon yielding resin for melt infiltration
CN108585874A (zh) 一种利用聚碳硅烷和木粉制备碳化硅木陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant