CN109320251B - 一种高性能无压烧结碳化硅复合陶瓷的制备方法 - Google Patents

一种高性能无压烧结碳化硅复合陶瓷的制备方法 Download PDF

Info

Publication number
CN109320251B
CN109320251B CN201811120256.0A CN201811120256A CN109320251B CN 109320251 B CN109320251 B CN 109320251B CN 201811120256 A CN201811120256 A CN 201811120256A CN 109320251 B CN109320251 B CN 109320251B
Authority
CN
China
Prior art keywords
parts
silicon carbide
sintering
water
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811120256.0A
Other languages
English (en)
Other versions
CN109320251A (zh
Inventor
李友宝
励永平
叶传剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Donglian Mechanical Seal Co ltd
Original Assignee
Ningbo Donglian Mechanical Seal Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Donglian Mechanical Seal Co ltd filed Critical Ningbo Donglian Mechanical Seal Co ltd
Priority to CN201811120256.0A priority Critical patent/CN109320251B/zh
Publication of CN109320251A publication Critical patent/CN109320251A/zh
Application granted granted Critical
Publication of CN109320251B publication Critical patent/CN109320251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于碳化硅陶瓷领域,涉及一种无压烧结碳化硅复合陶瓷的制备方法。制备方法包括以下步骤:按照原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、分散剂以及40‑60%的水混合球磨4‑8h;静置1‑5h后,入蒸汽干燥箱中干燥;加入酚醛树脂以及剩余40‑60%的水,继续球磨1‑3h;加入聚乙烯和聚乙烯醇,球磨1‑3h,得浆液;将浆液喷雾干燥造粒;造粒料过50‑100目筛,加入脱模剂,采用压制成型工艺制得生坯;将生批放入高温真空烧结炉内,采用无压烧结工艺进行烧结。

Description

一种高性能无压烧结碳化硅复合陶瓷的制备方法
技术领域
本发明属于碳化硅陶瓷领域,涉及一种无压烧结碳化硅复合陶瓷的制备方法。
背景技术
烧结过程根据有无加压分为热压烧结和无压烧结,热压烧结是在烧结过程中同时施加一定的外力,使材料加速流动、重排和致密化。而无压烧结是指在常压下,通过对制品加热而烧结的一种方法。在碳化硅烧结中,由于SiC共价键比例较高,自扩散系数很小,从而导致碳化硅很难烧结。相对于无压烧结,碳化硅陶瓷采用热压烧结虽然更容易获得细晶粒的组织,实现晶体的趋向效应和控制含有高蒸气压成分系统的组成变化,因而容易得到良好机械性能的产品,但是热压烧结仅适合形状简单的制品,对于形状复杂的制品,后期还需要金刚石切割机的再次加工,很难规模生产;而无压烧结制备的SiC陶瓷不仅具备烧结助剂含量低,不会在晶界处残留低熔点的物质,可使SiC陶瓷材料拥有良好的高温稳定性的优点,而且,对于降低烧结成本和制备形状复杂且厚度较大的产品,常压烧结具有比较突出的优势。但常压烧结过程中碳化硅样品容易产生孔隙,其致密化程度较热压烧结有所欠缺,得到的碳化硅密度在3.1g/cm3左右,弯曲强度在400MPa左右,维氏硬度0.5约2400-2500kgF/mm2,无法满足复杂工况下对耐冲击、耐颠震的性能要求,因此如何利用无压烧结获得高性能的碳化硅复合陶瓷以达到复杂工况下的使用要求是十分必要的。
发明内容
本发明的目的是针对目前碳化硅陶瓷无压烧结的缺陷,引入SiC-TiB2-B4C复合相,以增强陶瓷材料的弯曲强度、硬度等性能,再通过聚酰亚胺在粘合剂添加之前覆盖在SiC、TiB2、B4C表面,以降低烧结过程中的孔隙率,提高烧结致密度,进一步提高材料的性能。
为了达到上述发明目的,本发明采用以下技术方案:一种高性能无压烧结碳化硅复合陶瓷的制备方法,所述碳化硅复合陶瓷的制备原料包括以下重量份成分:
SiC:70-80份,TiB2:13-18份,B4C:5-12份,分散剂:0.3-0.5份,酚醛树脂:5-8份,聚乙烯:1-2份,聚乙烯醇:4-6份,脱模剂:2-5份,聚酰亚胺:5-7份,水150-300份。
作为优选,所述制备方法包括以下步骤:
(1)按照权利要求1的原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、分散剂以及40-60%的水混合球磨4-8h;
(2)静置1-5h后,入蒸汽干燥箱中干燥;
(3)加入酚醛树脂以及剩余40-60%的水,继续球磨1-3h;
(4)加入聚乙烯和聚乙烯醇,球磨1-3h,得浆液;
(5)将浆液喷雾干燥造粒;
(6)造粒料过50-100目筛,加入脱模剂,采用压制成型工艺制得生坯;
(7)将生批放入高温真空烧结炉内,采用无压烧结工艺进行烧结。
作为优选,所述球磨机转速为50~500转/分钟,步骤(1)球磨后的粒度0.1-2μm。
作为优选,所述喷雾干燥造粒大小为50-100μm,含水率0.5-1.5%。
作为优选,所述成型压力为300-500MPa。
作为优选,所述无压烧结工艺为:以10-15℃/min的速度升温至1200-1400℃,然后通入惰性气体,随后以≥50℃/min的速度加热至2000-2200℃,保温烧结2-4h。
作为优选,所述分散剂为六偏磷酸钠、聚丙烯酸铵、柠檬酸铵、十二烷基硫酸钠、四甲基氢氧化铵中的一种或多种。
作为优选,所述脱模剂为微晶石蜡、聚乙烯蜡、氮化硼、硬脂酸盐类、滑石粉、白粘土、云母中的一种或多种。
本发明与现有技术相比,有益效果体现在:
本发明在SiC的基础上,引入TiB2和B4C,形成SiC-TiB2-B4C复合相,增强陶瓷材料的弯曲强度、硬度等性能。并加入聚酰亚胺干燥固定在SiC、TiB2、B4C颗粒表面,通过烧结过程中的缓慢升温,降低材料的孔隙度并建立起共格晶界,提高烧结致密度,进一步提高材料的性能。本发明所获得的复合陶瓷性能选超无压烧结碳化硅,满足复杂工况下,耐冲击、耐颠震等性能要求。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
本发明的一个实施例中,碳化硅复合陶瓷的制备原料包括以下重量份成分:SiC:70-80份,TiB2:13-18份,B4C:5-12份,分散剂:0.3-0.5份,酚醛树脂:5-8份,聚乙烯:1-2份,聚乙烯醇:4-6份,脱模剂:2-5份,聚酰亚胺:5-7份,水150-300份。
B4C是硬度很大的材料,将其作为增强相分散在SiC基体中可以极大提高材料的硬度。TiB2在碳化硅和碳化硼表面形成,碳化硅和碳化硼成为附着二硼化钛的基体,因此颗粒小的二硼化钛颗粒包围在碳化硅和碳化硼周围,防止二硼化钛颗粒成团聚集,并利用陶瓷中的二硼化钛颗粒使得部件承受弯曲的能力加大:在高温下,TiB2可以与碳化硅表面的残留Si形成固溶体,固溶强化体提高材料的弯曲强度。且TiB2能够润湿SiC和B4C,形成SiC-TiB2-B4C复合相,三者具有良好的界面相容性,以促进烧结,提高材料的力学性能。
酚醛树脂作为碳源,在烧结过程中,使碳化硅表面的二氧化硅形成碳化硅,从而增加碳化硅的表面能,促进烧结,烧结过后产品内部没有残留的硅,提高产品的耐腐蚀性。聚乙烯以及聚乙烯醇作为粘结剂,将碳化硅等颗粒粘结在一起,无压烧结中增加致密度,粘结剂的含量需要控制合理,粘结剂含量越多,干燥后形成的网络越密实,粘结力也越强,但是粘结剂含量过多会降低碳化硅复合陶瓷的密度。
本发明的一个实施例中,碳化硅复合陶瓷的制备方法包括以下步骤:
(1)按照原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、分散剂以及40-60%的水混合球磨4-8h,湿法球磨不仅能均匀分散粉体,还可以细化陶瓷颗粒粒径,获得晶粒细化的均匀分散体系。
(2)静置1-5h后,入蒸汽干燥箱中干燥;
(3)加入酚醛树脂以及剩余40-60%的水,继续球磨1-3h。
(4)加入聚乙烯和聚乙烯醇,球磨1-3h,得浆液。
(5)将浆液喷雾干燥造粒。将混合好的浆料直接喷雾到热空气中,在非常短的时间内干燥,得到形状规则的球状粉粒。压制成型前的造粒可以避免各组分的再团聚和沉降分离,保持浆料原有的均匀性,得到的粉体粒度分布均匀,流动性好。
(6)造粒料过50-100目筛,加入脱模剂,采用压制成型工艺制得生坯;
(7)将生批放入高温真空烧结炉内,采用无压烧结工艺进行烧结。
本实施例中,先将聚酰亚胺与SiC、TiB2、B4C颗粒混合球磨,静置过程中,聚酰亚胺吸附在颗粒表面,通过干燥将颗粒表面的聚酰亚胺固定住。粘结剂聚乙烯和聚乙烯醇在后续球磨中形成在聚酰亚胺外周围,由此SiC、TiB2和B4C颗粒从内到外形成聚酰亚胺层和粘结剂层。粘结剂层的热分解速度低于聚酰亚胺,在烧结过程中,粘结剂层最先热分解挥发,形成的孔隙由聚酰亚胺填充,随后聚酰亚胺再热分解,SiC、TiB2、B4C颗粒相互粘结,从而降低无压烧结过程中的孔隙,提高致密度。
在本发明的一个实施例中,所述球磨机转速为50~500转/分钟,步骤(1)球磨后的粒度为0.1-2μm。复合陶瓷由SiC、TiB2、B4C粉末制成,粉末大小决定烧结部件中的晶粒大小,从而影响陶瓷性能,将SiC、TiB2、B4C粉末的粒度控制在0.1-2μm,有助于获得合适粒径的晶粒。
在本发明的一个实施例中,所述喷雾干燥造粒大小为50-100μm,含水率0.5-1.5%。造粒料中的水分含量对烧结具有很大影响,残余的水分在烧结过程中形成水蒸气,而水蒸气与碳化硅在高温下反应强烈,会生成硅、碳或二氧化硅,影响颗粒间的粘结,降低材料致密度。
在本发明的一个实施例中,所述成型压力为300-500MPa。
在本发明的一个实施例中,所述无压烧结工艺为:以10-15℃/min的速度升温至1200-1400℃,然后通入惰性气体,随后以≥50℃/min的速度加热至2000-2200℃,保温烧结2-4h。
烧结过程中,在温度升至1200-1400℃之前,以10-15℃/min的速度的温度升温,可以延长粘结层和聚酰亚胺层的热分解间隔时间,使得聚酰亚胺层由足够的时间填充粘结层分解留下的孔隙。烧结过程中的高温段再充入惰性气体进行保护。
以下实施例中,聚酰亚胺具体选自杜邦Vespel,聚乙烯醇采用日本可乐丽PVA-217,聚乙烯蜡为泰国SCG化工的LP0020P,聚乙烯为中国石油化工的3300F,酚醛树脂购自河南滨海实业有限责任公司,型号为2130。
实施例1
本实施例的碳化硅复合陶瓷制备方法中,原料为以下重量份成分:SiC:75份,TiB2:15份,B4C:10份,六偏磷酸钠:0.4份,酚醛树脂:6份,聚乙烯:1.5份,聚乙烯醇:5份,聚乙烯蜡:3份,聚酰亚胺:6份,水200份。
按照上述原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、六偏磷酸钠以及60%的水混合球磨6h,球磨机转速为100r/min,球磨后粒度为1μm左右;静置3h后,入蒸汽干燥箱中干燥;然后加入酚醛树脂以及剩余40%的水,继续球磨2h;加入聚乙烯和聚乙烯醇,球磨2h,得浆液;将浆液喷雾干燥造粒,造粒大小为80μm左右,含水率1.0%左右;造粒料过60目筛,加入聚乙烯蜡,在400MPa下压制成生坯;将生批放入高温真空烧结炉内,先以11℃/min左右的速度升温至1300℃,然后通入氩气,随后以70℃/min的速度加热至2100℃,保温烧结3h,得无压烧结碳化硅复合陶瓷。
实施例2
本实施例的碳化硅复合陶瓷制备方法中,原料为以下重量份成分:SiC:75份,TiB2:15份,B4C:10份,六偏磷酸钠:0.4份,酚醛树脂:6份,聚乙烯:1.5份,聚乙烯醇:5份,聚乙烯蜡:3份,聚酰亚胺:6份,水200份。
按照上述原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、六偏磷酸钠以及60%的水混合球磨6h,球磨机转速为100r/min,球磨后粒度为5μm左右;静置3h后,入蒸汽干燥箱中干燥;然后加入酚醛树脂以及剩余40%的水,继续球磨2h;加入聚乙烯和聚乙烯醇,球磨2h,得浆液;将浆液喷雾干燥造粒,造粒大小为80μm左右,含水率1.0%左右;造粒料过60目筛,加入聚乙烯蜡,在400MPa下压制成生坯;将生批放入高温真空烧结炉内,先以11℃/min左右的速度升温至1300℃,然后通入氩气,随后以70℃/min的速度加热至2100℃,保温烧结3h,得无压烧结碳化硅复合陶瓷。
实施例3
本实施例的碳化硅复合陶瓷制备方法中,原料为以下重量份成分:SiC:75份,TiB2:15份,B4C:10份,六偏磷酸钠:0.4份,酚醛树脂:6份,聚乙烯:1.5份,聚乙烯醇:5份,聚乙烯蜡:3份,聚酰亚胺:6份,水200份。
按照上述原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、六偏磷酸钠以及60%的水混合球磨6h,球磨机转速为100r/min,球磨后粒度为1μm左右;静置3h后,入蒸汽干燥箱中干燥;然后加入酚醛树脂以及剩余40%的水,继续球磨2h;加入聚乙烯和聚乙烯醇,球磨2h,得浆液;将浆液喷雾干燥造粒,造粒大小为200μm左右,含水率1.0%左右;造粒料过60目筛,加入聚乙烯蜡,在400MPa下压制成生坯;将生批放入高温真空烧结炉内,先以11℃/min左右的速度升温至1300℃,然后通入氩气,随后以70℃/min的速度加热至2100℃,保温烧结3h,得无压烧结碳化硅复合陶瓷。
实施例4
本实施例的碳化硅复合陶瓷制备方法中,原料为以下重量份成分:SiC:70份,TiB2:13份,B4C:6份,柠檬酸铵:0.3份,酚醛树脂:5份,聚乙烯:1份,聚乙烯醇:4份,微晶石蜡:2份,聚酰亚胺:5份,水150份。
按照上述原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、柠檬酸铵以及50%的水混合球磨5h,球磨机转速为200r/min,球磨后粒度为1μm左右;静置2h后,入蒸汽干燥箱中干燥;然后加入酚醛树脂以及剩余50%的水,继续球磨1h;加入聚乙烯和聚乙烯醇,球磨3h,得浆液;将浆液喷雾干燥造粒,造粒大小为50μm左右,含水率0.5%左右;造粒料过80目筛,加入微晶石蜡,在300MPa下压制成生坯;将生批放入高温真空烧结炉内,先以15℃/min左右的速度升温至1200℃,然后通入氩气,随后以60℃/min的速度加热至2000℃,保温烧结2h,得无压烧结碳化硅复合陶瓷。
实施例5
本实施例的碳化硅复合陶瓷制备方法中,原料为以下重量份成分:SiC:80份,TiB2:18份,B4C:10份,十二烷基硫酸钠:0.3份,酚醛树脂:8份,聚乙烯:2,聚乙烯醇:6份,硬脂酸盐锌:4份,聚酰亚胺:7份,水300。
按照上述原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、十二烷基硫酸钠以及60%的水混合球磨7h,球磨机转速为100r/min,球磨后粒度为1.2μm左右;静置4h后,入蒸汽干燥箱中干燥;然后加入酚醛树脂以及剩余40%的水,继续球磨3h;加入聚乙烯和聚乙烯醇,球磨2h,得浆液;将浆液喷雾干燥造粒,造粒大小为100μm左右,含水率1.5%左右;造粒料过60目筛,加入硬脂酸盐锌,在400MPa下压制成生坯;将生批放入高温真空烧结炉内,先以10℃/min左右的速度升温至1400℃,然后通入氩气,随后以90℃/min的速度加热至2200℃,保温烧结3h,得无压烧结碳化硅复合陶瓷。
对比例1
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料中没有包含聚酰亚胺,其它与实施例1相同。
对比例2
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料中聚酰亚胺与聚乙烯以及聚乙烯醇一起添加,其它与实施例1相同。
对比例3
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料中没有包含TiB2,其它与实施例1相同。
对比例4
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料中没有包含B4C,其它与实施例1相同。
对比例5
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料中没有包含TiB2和B4C,其它与实施例1相同。
对比例6
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料的无压烧结工艺为:以5℃/min左右的速度升温至1300℃,其它与实施例1相同。
对比例7
对比例1与实施例1的区别在于,对比例1的碳化硅陶瓷复合材料的无压烧结工艺为:以30℃/min左右的速度升温至1300℃,其它与实施例1相同。
将实施例1-5以及对比例1-7的碳化硅复合陶瓷进行性能测试,结果如表1所示。
表1
Figure BDA0001810882120000081
Figure BDA0001810882120000091
从表1可以看出,对比例1-7的密度和性能都要低于实施例1-5的碳化硅复合陶瓷,尤其是对比例1,因其复合材料中没有包括聚酰亚胺,呈现的性能显著低于实施例1-5,对比例3、对比例4和对比例5分别缺少TiB2、B4C以及TiB2和B4C成分,形成的陶瓷中无法形成SiC-TiB2-B4C复合相,弯曲强度、硬度等性能低于实施例1-5。而实施例1选用本发明实施例的较优参数,相对实施例2-5具有最优的性能。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (7)

1.一种高性能无压烧结碳化硅复合陶瓷的制备方法,其特征在于,所述碳化硅复合陶瓷的制备原料包括以下重量份成分:
SiC:70-80份,TiB2:13-18份,B4C:5-12份,分散剂:0.3-0.5份,酚醛树脂:5-8份,聚乙烯:1-2份,聚乙烯醇:4-6份,脱模剂:2-5份,聚酰亚胺:5-7份,水150-300份;所述制备方法包括以下步骤:
(1)按照原料配比称取各成分,将SiC、TiB2、B4C、聚酰亚胺、分散剂以及40-60%的水混合球磨4-8h;
(2)静置1-5h后,入蒸汽干燥箱中干燥;
(3)加入酚醛树脂以及剩余40-60%的水,继续球磨1-3h;
(4)加入聚乙烯和聚乙烯醇,球磨1-3h,得浆液;
(5)将浆液喷雾干燥造粒;
(6)造粒料过50-100目筛,加入脱模剂,采用压制成型工艺制得生坯;
(7)将生坯放入高温真空烧结炉内,采用无压烧结工艺进行烧结。
2.根据权利要求1所述的制备方法,其特征在于,球磨机转速为50~500转/分钟,步骤(1)球磨后的粒度为0.1-2μm。
3.根据权利要求1所述的制备方法,其特征在于,所述喷雾干燥造粒大小为50-100μm,含水率0.5-1.5%。
4.根据权利要求1所述的制备方法,其特征在于,所述成型压力为300-500MPa。
5.根据权利要求1所述的制备方法,其特征在于,所述无压烧结工艺为:以10-15℃/min的速度升温至1200-1400℃,然后通入惰性气体,随后以≥50℃/min的速度加热至2000-2200℃,保温烧结2-4h。
6.根据权利要求1所述的制备方法,其特征在于,所述分散剂为六偏磷酸钠、聚丙烯酸铵、柠檬酸铵、十二烷基硫酸钠、四甲基氢氧化铵中的一种或多种。
7.根据权利要求1所述的制备方法,其特征在于,所述脱模剂为微晶石蜡、聚乙烯蜡、氮化硼、硬脂酸盐类、滑石粉、白粘土、云母中的一种或多种。
CN201811120256.0A 2018-09-25 2018-09-25 一种高性能无压烧结碳化硅复合陶瓷的制备方法 Active CN109320251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811120256.0A CN109320251B (zh) 2018-09-25 2018-09-25 一种高性能无压烧结碳化硅复合陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811120256.0A CN109320251B (zh) 2018-09-25 2018-09-25 一种高性能无压烧结碳化硅复合陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109320251A CN109320251A (zh) 2019-02-12
CN109320251B true CN109320251B (zh) 2021-02-05

Family

ID=65265845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811120256.0A Active CN109320251B (zh) 2018-09-25 2018-09-25 一种高性能无压烧结碳化硅复合陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109320251B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627504A (zh) * 2019-09-26 2019-12-31 宁波东联密封件有限公司 碳化硼复合材料的无压烧结制备方法
CN111499386A (zh) * 2020-04-27 2020-08-07 山西省玻璃陶瓷科学研究所(有限公司) 一种复合陶瓷材料及其制备方法
CN114315327B (zh) * 2022-01-11 2022-09-30 无锡特科精细陶瓷有限公司 一种陶瓷的抗变形制备方法
CN114560702B (zh) * 2022-03-25 2023-03-31 山东百川智能科技有限公司 一种无压烧结挤出碳化硅陶瓷工艺
CN114907126B (zh) * 2022-04-29 2022-12-02 南京工程学院 一种多维纳米碳序构TiB2-SiC-B4C结构功能一体化复合材料和制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036931A1 (en) * 2003-08-12 2005-02-17 Carlos Garcia High temperature SiCN and SiC-type nanostructured ceramic material from block copolymer mesophases
CN1962548A (zh) * 2006-11-28 2007-05-16 东南大学 一种可应用于陶瓷材料高温连接的树脂型高温粘结剂
CN105198434A (zh) * 2014-05-28 2015-12-30 扬州三山工业陶瓷有限公司 一种高性能无压烧结碳化硅防弹陶瓷及其制备方法
US20170081495A1 (en) * 2012-08-10 2017-03-23 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
CN106966762A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 一种航空发动机热端构件用环境障涂层的制备方法
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN107043259A (zh) * 2017-03-17 2017-08-15 宁波伏尔肯陶瓷科技有限公司 一种反应烧结碳化硅陶瓷激光选区烧结成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036931A1 (en) * 2003-08-12 2005-02-17 Carlos Garcia High temperature SiCN and SiC-type nanostructured ceramic material from block copolymer mesophases
CN1962548A (zh) * 2006-11-28 2007-05-16 东南大学 一种可应用于陶瓷材料高温连接的树脂型高温粘结剂
US20170081495A1 (en) * 2012-08-10 2017-03-23 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
CN105198434A (zh) * 2014-05-28 2015-12-30 扬州三山工业陶瓷有限公司 一种高性能无压烧结碳化硅防弹陶瓷及其制备方法
CN106966762A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 一种航空发动机热端构件用环境障涂层的制备方法
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN107043259A (zh) * 2017-03-17 2017-08-15 宁波伏尔肯陶瓷科技有限公司 一种反应烧结碳化硅陶瓷激光选区烧结成型方法

Also Published As

Publication number Publication date
CN109320251A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN109320251B (zh) 一种高性能无压烧结碳化硅复合陶瓷的制备方法
US11795112B2 (en) 3-D printing of a ceramic component
CN101544851B (zh) 一种金属结合剂空心球形超硬复合材料及其制造方法
CN109553419B (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
CN104630664B (zh) 一种碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
CN102180674B (zh) 一种反应烧结SiC陶瓷的制备方法
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
CN101070395B (zh) 炭/炭-碳化硅复合材料刹车闸瓦闸片的制造方法
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN101434488B (zh) 一种以磷酸盐为烧结助剂的氮化硅基复合陶瓷及制备方法
CN104525949B (zh) 一种高耐磨铜基摩擦复合材料及其制备方法
CN107937792B (zh) 一种梯度复合陶瓷刀具材料及其制备方法
CN108249924B (zh) 一种碳化硅陶瓷及其制备方法和Al-SiC复合材料
CN108947495A (zh) 一种氧化铝高性能复合陶瓷刀具材料及其制备方法
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN107573075B (zh) 利用碳纤维预浸带制备C/SiC材料刹车盘的方法
CN104591738A (zh) 一种高韧性碳化硼陶瓷及其制备方法
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN108257880A (zh) 一种真空熔渗法制备金刚石/Si(Al)复合材料的工艺方法
CN108048685B (zh) 一种TiC/SiC/Al复合材料
CN117658641A (zh) 一种基于选区激光3D打印和两步烧结制备高致密SiC陶瓷的方法
CN113548896A (zh) 一种陶瓷复合材料的制造方法及其制品
CN112645713B (zh) 一种高强韧陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190212

Assignee: Ningbo Chuangwei Machinery Co.,Ltd.

Assignor: NINGBO DONGLIAN MECHANICAL SEAL Co.,Ltd.

Contract record no.: X2023980053451

Denomination of invention: A preparation method for high-performance pressureless sintered silicon carbide composite ceramics

Granted publication date: 20210205

License type: Common License

Record date: 20231221