CN114560702B - 一种无压烧结挤出碳化硅陶瓷工艺 - Google Patents

一种无压烧结挤出碳化硅陶瓷工艺 Download PDF

Info

Publication number
CN114560702B
CN114560702B CN202210299867.6A CN202210299867A CN114560702B CN 114560702 B CN114560702 B CN 114560702B CN 202210299867 A CN202210299867 A CN 202210299867A CN 114560702 B CN114560702 B CN 114560702B
Authority
CN
China
Prior art keywords
silicon carbide
temperature
parts
carbide ceramic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210299867.6A
Other languages
English (en)
Other versions
CN114560702A (zh
Inventor
李文杰
刘欢
栾秀静
朱晓雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Baichuan Intelligent Technology Co ltd
Original Assignee
Shandong Baichuan Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Baichuan Intelligent Technology Co ltd filed Critical Shandong Baichuan Intelligent Technology Co ltd
Priority to CN202210299867.6A priority Critical patent/CN114560702B/zh
Publication of CN114560702A publication Critical patent/CN114560702A/zh
Application granted granted Critical
Publication of CN114560702B publication Critical patent/CN114560702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种无压烧结挤出碳化硅陶瓷工艺,属于陶瓷制备技术领域,所述碳化硅陶瓷的组成包括碳化硅、二硼化钛、炭黑、碳化硼、聚乙二醇、玉米淀粉、羧甲基纤维素钠、环氧树脂、乙醇胺、改性稳定剂、植酸、乳化脂肪酸、去离子水;所述工艺包括混料,炼泥,陈腐,挤出成型,高频电磁震荡处理,干燥,烧结;该工艺设备投资小、低能耗、低成本、工艺简单、可实现超长管材、板材、棒材一次性净尺寸成型,制备的产品具有热导率高、耐腐蚀、耐磨损、耐高温、抗热震性好、热膨胀系数低的特性,可广泛用于换热器、冶金、电力、化工、等行业。

Description

一种无压烧结挤出碳化硅陶瓷工艺
技术领域
本发明涉及一种无压烧结挤出碳化硅陶瓷工艺,属于陶瓷制备技术领域。
背景技术
碳化硅陶瓷是被广泛应用的碳化物陶瓷之一,以其高硬度、高强度、耐高温、耐腐蚀及良好的化学稳定性等优势成为人们研究的热点之一,尤其是在高温工程领域有着广泛的应用。因反应烧结碳化硅陶瓷中游离硅的存在,造成反应烧结的性能指标的降低,如今,无压烧结碳化硅陶瓷因烧结方式的不同,生产的产品具有组织结构更均匀、热导率高、耐腐蚀、耐磨损、耐高温、抗热震性好、热膨胀系数低的特性。
目前,碳化硅陶瓷行业中无压烧结碳化硅制品的主流生产工艺只有干压成型工艺是可以规模化量产。干压工艺前期设备投资高昂,并且只能压制简单形状的产品,无法实现超长管材、棒材、板材的规模量产。为此,寻找一种可以实现超长管件、棒材、板材的生产工艺就是当下需要急需解决的一个问题。
发明内容
针对上述不足,本发明提供一种无压烧结挤出碳化硅陶瓷工艺,该工艺设备投资小、低能耗、低成本、工艺简单、可实现超长管材、板材、棒材一次性净尺寸成型,制备的产品具有热导率高、耐腐蚀、耐磨损、耐高温、抗热震性好、热膨胀系数低的特性,可广泛用于换热器、冶金、电力、化工、等行业。
为解决以上技术问题,本发明采取的技术方案如下:
一种无压烧结挤出碳化硅陶瓷工艺,所述碳化硅陶瓷的组成,按重量份计,包括:碳化硅55-60份、二硼化钛1-1.5份、炭黑4-4.5份、碳化硼8-8.5份、聚乙二醇0.5-1份、玉米淀粉0.5-1份、羧甲基纤维素钠0.5-1份、环氧树脂0.5-1份、乙醇胺1-1.5份、改性稳定剂2-2.5份、植酸0.2-0.5份、乳化脂肪酸1.5-2份、去离子水25-30份。
所述碳化硅的中位径为0.45-0.5μm。
所述二硼化钛的中位径为10-15nm。
所述炭黑的中位径为1.5-2nm。
所述碳化硼的中位径为3.5-4μm。
所述改性稳定剂的制备方法,将稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌加入球磨机中进行球磨,控制球磨机的球料比为5-8:1,转速为500-600rpm,球磨温度为50-60℃,球磨时间为40-50min,球磨结束后得到初级稳定剂,将初级稳定剂置于80-90℃下静置20-30min,得到改性稳定剂。
其中,稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌的质量比为30-35:20-25:3-5:2-3:1-3:2-4。
所述阴离子聚丙烯酰胺的离子度为20-30wt.%,聚合度为10-12万。
所述乳化脂肪酸的制备方法,将月硅酸,硬脂酸,脂肪醇聚氧乙烯醚,三聚磷酸钠,去离子水混合均匀后进行超声震荡,控制超声震荡的频率为40-50kHz,超声震荡的时间为25-35min,超声震荡结束,得到乳化脂肪酸。
一种无压烧结挤出碳化硅陶瓷工艺,包括混料,炼泥,陈腐,挤出成型,高频电磁震荡处理,干燥,烧结。
所述混料,将碳化硅微粉、二硼化钛、炭黑、碳化硼、聚乙二醇、淀粉、羧甲基纤维素钠、树脂、聚羧酸盐、乙醇胺、非离子乳化脂肪酸、去离子水混合搅拌,控制搅拌速度为800-850rpm,在温度为20-25℃,相对湿度为30-35%的环境下运行1-1.5h,得到混好的泥料。
所述炼泥,在室温20-25℃下将混好的泥料于真空炼泥机中炼制1.5-2h,控制真空度为0.01-0.03MPa,得到炼制后的泥料。
所述陈腐,将炼制后的泥料静止密封存放进行陈腐,陈腐时间为1-1.5天,温度为20-25℃,相对湿度为30-35%,得到陈腐后的泥料。
所述挤出成型,在室温25-30℃下将陈腐后的泥料放入真空挤出机中进行挤出成型得到坯体,挤出压力为15-20MPa,真空度为0.01-0.03MPa。
所述高频电磁震荡处理,对坯体进行高频电磁震荡处理,控制高频电磁震荡的频率为12-15MHz,最大电流密度为15-18A/cm2,时间为5-10min,处理结束得到高频电磁震荡处理后的坯体。
所述干燥,将高频电磁震荡处理后的坯体放入烘箱内,升温至50-55℃烘干24-30h,得到烘干后的坯体。
所述烧结,将烘干后的胚体置于真空度为10-30Pa的真空状态下进行升温,控制升温温度为5-5.5℃/min;待升温至300-320℃,保温10-15min,然后继续升温并将升温速度调整至3-3.5℃/min;待升温至1800-1820℃,保温30-35min,然后通入氩气到一个大气压后继续升温并将升温速度调整至5-5.5℃/min;待升温至2020-2050℃,保温30-35min后自然冷却至室温,得到无压烧结挤出碳化硅陶瓷。
与现有技术相比,本发明的有益效果为:
(1)本发明的无压烧结挤出碳化硅陶瓷工艺,通过将碳化硅,二硼化钛,炭黑,碳化硼,粘合剂,有机溶剂,去离子水,采用混料机,真空练泥机,真空挤出机,烘箱,真空烧结炉中进行混料,炼泥,陈腐,挤出成型,干燥,烧结,制得的碳化硅陶瓷具有组织结构均匀,热导率高,耐腐蚀,耐磨损,耐高温,抗热震性好,热膨胀系数低的特性,可以连续化生产;
(2)本发明的无压烧结挤出碳化硅陶瓷工艺,可以批量产出长管、板材,效率高、成本低,制得的碳化硅陶瓷,密度、硬度、强度、热导率等性能优异,制备出的碳化硅陶瓷体积密度在3.010-3.022g/cm3,维氏硬度Hv1600-1650,断裂韧性为9.69-9.81MPa·m1/2,抗弯强度350-363MPa,在1500℃,氯气气氛环境中进行腐蚀性能实验,140h 腐蚀增重为0.35-0.41mg/dm2
(3)本发明的无压烧结挤出碳化硅陶瓷工艺,通过降低烧结温度能够更好的促进烧结;二硼化钛有很高的硬度和耐腐蚀作用,能够进一步提升产品致密度,提高产品整体性能;炭黑在烧结过程中可以还原碳化硅原粉表面的氧化硅促进烧结;有机溶剂起到润滑泥料防止颗粒凝结团聚促进泥料均匀;粘结剂起到的作用主要是粘结物料的作用,同时在烧结过程中形成碳元素更好的还原碳化硅表面的氧化硅;去离子水起到润滑混合物料的作用,便于下一步的挤出成型;
(4)本发明的无压烧结挤出碳化硅陶瓷工艺,制备的碳化硅陶瓷的热导率能够达到120-128w/m.k,热膨胀系数能够降低至(3.0-3.4)*10-6/℃,经50次1300-1750℃快速循环热震(180℃/min)后相对密度达到98.89-98.98%,能够耐1800-1850℃的高温。
具体实施方式
下面结合实施例对本发明作进一步限定,但不限于此。
实施例1
一种无压烧结挤出碳化硅陶瓷工艺,所述碳化硅陶瓷的组成,按重量份计,包括:碳化硅55份、二硼化钛1份、炭黑4份、碳化硼8份、聚乙二醇0.5份、玉米淀粉0.5份、羧甲基纤维素钠0.5份、环氧树脂0.5份、乙醇胺1份、改性稳定剂2份、植酸0.2份、乳化脂肪酸1.5份、去离子水25份。
所述碳化硅的中位径为0.45μm;
所述二硼化钛的中位径为10nm;
所述炭黑的中位径为1.5nm;
所述碳化硼的中位径为3.5μm。
所述改性稳定剂的制备方法,具体为:将稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌加入球磨机中进行球磨,控制球磨机的球料比为5:1,转速为500rpm,球磨温度为50℃,球磨时间为40min,球磨结束后得到初级稳定剂,将初级稳定剂置于80℃下静置20min,得到改性稳定剂。
其中,稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌的质量比为30:20:3:2:1:2。
所述阴离子聚丙烯酰胺的离子度为20wt.%,聚合度为10万。
所述乳化脂肪酸的制备方法,具体为:将月硅酸,硬脂酸,脂肪醇聚氧乙烯醚,三聚磷酸钠,去离子水混合均匀后进行超声震荡,控制超声震荡的频率为40-50kHz,超声震荡的时间为25-35min,超声震荡结束,得到乳化脂肪酸。
一种无压烧结挤出碳化硅陶瓷工艺,具体如下:
1.混料:将碳化硅微粉、二硼化钛、炭黑、碳化硼、聚乙二醇、淀粉、羧甲基纤维素钠、树脂、聚羧酸盐、乙醇胺、非离子乳化脂肪酸、去离子水混合搅拌,控制搅拌速度为800rpm,在温度为20℃,相对湿度为30%的环境下运行1h,得到混好的泥料;
2.炼泥:在室温20℃下将混好的泥料于真空炼泥机中炼制1.5h,控制真空度为0.01MPa,得到炼制后的泥料;
3.陈腐:将炼制后的泥料静止密封存放进行陈腐,陈腐时间为1天,温度为20℃,相对湿度为30%,得到陈腐后的泥料;
4.挤出成型:在室温25℃下将陈腐后的泥料放入真空挤出机中进行挤出成型得到坯体,挤出压力为15MPa,真空度为0.01MPa;
5.高频电磁震荡处理:对坯体进行高频电磁震荡处理,控制高频电磁震荡的频率为12MHz,最大电流密度为15A/cm2,时间为5min,处理结束得到高频电磁震荡处理后的坯体;
6.干燥:将高频电磁震荡处理后的坯体放入烘箱内,升温至50℃烘干24h,得到烘干后的坯体;
7.烧结:将烘干后的胚体置于真空度为10Pa的真空状态下进行升温,控制升温温度为5℃/min;待升温至300℃,保温10min,然后继续升温并将升温速度调整至3℃/min;待升温至1800℃,保温30min,然后通入氩气到一个大气压后继续升温并将升温速度调整至5℃/min;待升温至2020℃,保温30min后自然冷却至室温,得到无压烧结挤出碳化硅陶瓷。
制备的无压烧结挤出碳化硅陶瓷的体积密度为3.010g/cm3,维氏硬度为HV1600,抗弯强度为350MPa,热导率为120 W·m-2·K-1,断裂韧性为9.69MPa·m1/2,热膨胀系数为3.0*10-6/℃,经50次1300-1750℃快速循环热震(180℃/min)后相对密度达到98.89%,在1500℃,氯气气氛环境中进行腐蚀性能实验,140h 腐蚀增重为0.41mg/dm2,能够耐1800℃的高温。
实施例2
一种无压烧结挤出碳化硅陶瓷工艺,所述碳化硅陶瓷的组成,按重量份计,包括:碳化硅57份、二硼化钛1.2份、炭黑4.2份、碳化硼8.2份、聚乙二醇0.7份、玉米淀粉0.7份、羧甲基纤维素钠0.7份、环氧树脂0.7份、乙醇胺1.2份、改性稳定剂2.2份、植酸0.3份、乳化脂肪酸1.7份、去离子水27份。
所述碳化硅的中位径为0.47μm;
所述二硼化钛的中位径为12nm;
所述炭黑的中位径为1.7nm;
所述碳化硼的中位径为3.7μm。
所述改性稳定剂的制备方法,具体为:将稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌加入球磨机中进行球磨,控制球磨机的球料比为7:1,转速为550rpm,球磨温度为55℃,球磨时间为45min,球磨结束后得到初级稳定剂,将初级稳定剂置于85℃下静置25min,得到改性稳定剂。
其中,稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌的质量比为32:22:4:2.5:2:3。
所述阴离子聚丙烯酰胺的离子度为25wt.%,聚合度为11万。
所述乳化脂肪酸的制备方法,具体为:将月硅酸,硬脂酸,脂肪醇聚氧乙烯醚,三聚磷酸钠,去离子水混合均匀后进行超声震荡,控制超声震荡的频率为45kHz,超声震荡的时间为30min,超声震荡结束,得到乳化脂肪酸。
一种无压烧结挤出碳化硅陶瓷工艺,具体如下:
1.混料:将碳化硅微粉、二硼化钛、炭黑、碳化硼、聚乙二醇、淀粉、羧甲基纤维素钠、树脂、聚羧酸盐、乙醇胺、非离子乳化脂肪酸、去离子水混合搅拌,控制搅拌速度为820rpm,在温度为22℃,相对湿度为32%的环境下运行1.2h,得到混好的泥料;
2.炼泥:在室温22℃下将混好的泥料于真空炼泥机中炼制1.7h,控制真空度为0.02MPa,得到炼制后的泥料;
3.陈腐:将炼制后的泥料静止密封存放进行陈腐,陈腐时间为1.2天,温度为22℃,相对湿度为32%,得到陈腐后的泥料;
4.挤出成型:在室温27℃下将陈腐后的泥料放入真空挤出机中进行挤出成型得到坯体,挤出压力为17MPa,真空度为0.02MPa;
5.高频电磁震荡处理:对坯体进行高频电磁震荡处理,控制高频电磁震荡的频率为14MHz,最大电流密度为16A/cm2,时间为7min,处理结束得到高频电磁震荡处理后的坯体;
6.干燥:将高频电磁震荡处理后的坯体放入烘箱内,升温至52℃烘干25h,得到烘干后的坯体;
7.烧结:将烘干后的胚体置于真空度为20Pa的真空状态下进行升温,控制升温温度为5.2℃/min;待升温至310℃,保温12min,然后继续升温并将升温速度调整至3.2℃/min;待升温至1810℃,保温32min,然后通入氩气到一个大气压后继续升温并将升温速度调整至5.2℃/min;待升温至2030℃,保温32min后自然冷却至室温,得到无压烧结挤出碳化硅陶瓷。
制备的无压烧结挤出碳化硅陶瓷的体积密度为3.017g/cm3,维氏硬度为HV1640,抗弯强度为358MPa,热导率为125 W·m-2·K-1,断裂韧性为9.78MPa·m1/2,热膨胀系数为3.2*10-6/℃,经50次1300-1750℃快速循环热震(180℃/min)后相对密度达到98.92%,在1500℃,氯气气氛环境中进行腐蚀性能实验,140h 腐蚀增重为0.38mg/dm2,能够耐1820℃的高温。
实施例3
一种无压烧结挤出碳化硅陶瓷工艺,所述碳化硅陶瓷的组成,按重量份计,包括:碳化硅60份、二硼化钛1.5份、炭黑4.5份、碳化硼8.5份、聚乙二醇1份、玉米淀粉1份、羧甲基纤维素钠1份、环氧树脂1份、乙醇胺1.5份、改性稳定剂2.5份、植酸0.5份、乳化脂肪酸2份、去离子水30份。
所述碳化硅的中位径为0.5μm;
所述二硼化钛的中位径为15nm;
所述炭黑的中位径为2nm;
所述碳化硼的中位径为4μm。
所述改性稳定剂的制备方法,具体为:将稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌加入球磨机中进行球磨,控制球磨机的球料比为8:1,转速为600rpm,球磨温度为60℃,球磨时间为50min,球磨结束后得到初级稳定剂,将初级稳定剂置于90℃下静置30min,得到改性稳定剂。
其中,稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌的质量比为35:25:5:3:3:4。
所述阴离子聚丙烯酰胺的离子度为30wt.%,聚合度为12万。
所述乳化脂肪酸的制备方法,具体为:将月硅酸,硬脂酸,脂肪醇聚氧乙烯醚,三聚磷酸钠,去离子水混合均匀后进行超声震荡,控制超声震荡的频率为50kHz,超声震荡的时间为35min,超声震荡结束,得到乳化脂肪酸。
一种无压烧结挤出碳化硅陶瓷工艺,具体如下:
1.混料:将碳化硅微粉、二硼化钛、炭黑、碳化硼、聚乙二醇、淀粉、羧甲基纤维素钠、树脂、聚羧酸盐、乙醇胺、非离子乳化脂肪酸、去离子水混合搅拌,控制搅拌速度为850rpm,在温度为25℃,相对湿度为35%的环境下运行1.5h,得到混好的泥料;
2.炼泥:在室温25℃下将混好的泥料于真空炼泥机中炼制2h,控制真空度为0.03MPa,得到炼制后的泥料;
3.陈腐:将炼制后的泥料静止密封存放进行陈腐,陈腐时间为1.5天,温度为25℃,相对湿度为35%,得到陈腐后的泥料;
4.挤出成型:在室温30℃下将陈腐后的泥料放入真空挤出机中进行挤出成型得到坯体,挤出压力为20MPa,真空度为0.03MPa;
5.高频电磁震荡处理:对坯体进行高频电磁震荡处理,控制高频电磁震荡的频率为15MHz,最大电流密度为18A/cm2,时间为10min,处理结束得到高频电磁震荡处理后的坯体;
6.干燥:将高频电磁震荡处理后的坯体放入烘箱内,升温至55℃烘干30h,得到烘干后的坯体;
7.烧结:将烘干后的胚体置于真空度为30Pa的真空状态下进行升温,控制升温温度为5.5℃/min;待升温至320℃,保温15min,然后继续升温并将升温速度调整至3.5℃/min;待升温至1820℃,保温35min,然后通入氩气到一个大气压后继续升温并将升温速度调整至5.5℃/min;待升温至2050℃,保温35min后自然冷却至室温,得到无压烧结挤出碳化硅陶瓷。
制备的无压烧结挤出碳化硅陶瓷的体积密度为3.022g/cm3,维氏硬度为HV1650,抗弯强度为363MPa,热导率为128W·m-2·K-1,断裂韧性为9.81MPa·m1/2,热膨胀系数为3.4*10-6/℃,经50次1300-1750℃快速循环热震(180℃/min)后相对密度达到98.98%,在1500℃,氯气气氛环境中进行腐蚀性能实验,140h 腐蚀增重为0.35mg/dm2,能够耐1850℃的高温。
除非另有说明,本发明中所采用的百分数均为质量百分数。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种无压烧结挤出碳化硅陶瓷工艺,其特征在于,所述碳化硅陶瓷的组成,按重量份计,包括:碳化硅55-60份、二硼化钛1-1.5份、炭黑4-4.5份、碳化硼8-8.5份、聚乙二醇0.5-1份、玉米淀粉0.5-1份、羧甲基纤维素钠0.5-1份、环氧树脂0.5-1份、乙醇胺1-1.5份、改性稳定剂2-2.5份、植酸0.2-0.5份、乳化脂肪酸1.5-2份、去离子水25-30份;
所述碳化硅的中位径为0.45-0.5μm;所述二硼化钛的中位径为10-15nm;所述炭黑的中位径为1.5-2nm;所述碳化硼的中位径为3.5-4μm;
所述改性稳定剂的制备方法,将稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌加入球磨机中进行球磨,控制球磨机的球料比为5-8:1,转速为500-600rpm,球磨温度为50-60℃,球磨时间为40-50min,球磨结束后得到初级稳定剂,将初级稳定剂置于80-90℃下静置20-30min,得到改性稳定剂;
稀土,沸石粉,阴离子聚丙烯酰胺,轻质碳酸镁,磷酸钙,硬脂酸锌的质量比为30-35:20-25:3-5:2-3:1-3:2-4;
所述阴离子聚丙烯酰胺的离子度为20-30wt.%,聚合度为10-12万;
所述乳化脂肪酸的制备方法,将月硅酸,硬脂酸,脂肪醇聚氧乙烯醚,三聚磷酸钠,去离子水混合均匀后进行超声震荡,控制超声震荡的频率为40-50kHz,超声震荡的时间为25-35min,超声震荡结束,得到乳化脂肪酸;
所述无压烧结挤出碳化硅陶瓷工艺,包括混料,炼泥,陈腐,挤出成型,高频电磁震荡处理,干燥,烧结;
所述高频电磁震荡处理,对坯体进行高频电磁震荡处理,控制高频电磁震荡的频率为12-15MHz,最大电流密度为15-18A/cm2,时间为5-10min,处理结束得到高频电磁震荡处理后的坯体;
所述烧结,将烘干后的坯体置于真空度为10-30Pa的真空状态下进行升温,控制升温温度为5-5.5℃/min;待升温至300-320℃,保温10-15min,然后继续升温并将升温速度调整至3-3.5℃/min;待升温至1800-1820℃,保温30-35min,然后通入氩气到一个大气压后继续升温并将升温速度调整至5-5.5℃/min;待升温至2020-2050℃,保温30-35min后自然冷却至室温,得到无压烧结挤出碳化硅陶瓷。
2.根据权利要求1所述的无压烧结挤出碳化硅陶瓷工艺,其特征在于,所述陈腐,将炼制后的泥料静止密封存放进行陈腐,陈腐时间为1-1.5天,温度为20-25℃,相对湿度为30-35%,得到陈腐后的泥料。
CN202210299867.6A 2022-03-25 2022-03-25 一种无压烧结挤出碳化硅陶瓷工艺 Active CN114560702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210299867.6A CN114560702B (zh) 2022-03-25 2022-03-25 一种无压烧结挤出碳化硅陶瓷工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210299867.6A CN114560702B (zh) 2022-03-25 2022-03-25 一种无压烧结挤出碳化硅陶瓷工艺

Publications (2)

Publication Number Publication Date
CN114560702A CN114560702A (zh) 2022-05-31
CN114560702B true CN114560702B (zh) 2023-03-31

Family

ID=81719153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210299867.6A Active CN114560702B (zh) 2022-03-25 2022-03-25 一种无压烧结挤出碳化硅陶瓷工艺

Country Status (1)

Country Link
CN (1) CN114560702B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180952A (zh) * 2022-06-01 2022-10-14 山东百川智能科技有限公司 一种高耐热震性无压烧结碳化硅归集口及其加工方法
CN115073178A (zh) * 2022-06-01 2022-09-20 山东百川智能科技有限公司 一种高耐热震性无压烧结碳化硅归集口及其加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803732B1 (en) * 2006-05-09 2010-09-28 BAE Systems Advanced Ceramics, Inc. Compositions for improved ceramic armor
JP2007197320A (ja) * 2007-03-22 2007-08-09 Kyocera Corp 耐食性セラミックス及びその製造方法
US9353011B2 (en) * 2010-11-08 2016-05-31 Dow Global Technologies Llc Composition for extrusion-molded bodies comprising a methyl cellulose
JP2016508167A (ja) * 2012-12-21 2016-03-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
CN106431414A (zh) * 2016-09-29 2017-02-22 连云港东渡碳化硅有限公司 一种无压烧结碳化硅陶瓷的制备方法
CN109265152B (zh) * 2018-08-24 2021-04-06 清华大学 陶瓷空心球的制备方法
CN109320251B (zh) * 2018-09-25 2021-02-05 宁波东联密封件有限公司 一种高性能无压烧结碳化硅复合陶瓷的制备方法
CN109320252A (zh) * 2018-09-27 2019-02-12 安徽青花坊瓷业股份有限公司 一种耐磨多孔陶瓷材料及其制备方法
CN113831136B (zh) * 2021-11-04 2023-03-03 南通三责精密陶瓷有限公司 一种固相烧结碳化硅制品及其制备方法

Also Published As

Publication number Publication date
CN114560702A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN114560702B (zh) 一种无压烧结挤出碳化硅陶瓷工艺
WO2020253040A1 (zh) 一种高熵稀土增韧钽酸盐陶瓷及其制备方法
CN105541389B (zh) 一种钛酸钡泡沫陶瓷/热固性树脂复合材料及其制备方法
CN101638324A (zh) 一种轻质多孔隔热耐火材料及其制备方法和应用
CN105174905A (zh) 一种轻质隔热陶瓷制品及其制作方法
CN113321494B (zh) 一种抗氧化、长寿命吸储热一体的刚玉-莫来石陶瓷及其制备方法
CN105712727A (zh) 一种高抗热震碳化硅复合陶瓷换热器管及其制备方法
CN111018507A (zh) 一种高温电炉隔热保温多孔陶瓷内衬的制备方法
CN103011781A (zh) 一种电真空器件用陶瓷及其制备方法
JPH029763A (ja) 窒化硼素常圧焼結体
KR101323109B1 (ko) 다공성 경량 세라믹스의 제조방법
CN114560703B (zh) 一种凝胶注模反应烧结碳化硅陶瓷工艺
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
CN113213905B (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法
CN112408959B (zh) 一种刚玉基储热陶瓷及其制备方法
CN103693939A (zh) 增韧/导热低膨胀紫砂煲材料的制备工艺
CN112852389A (zh) 一种5g通讯用高强度导热材料及其制备方法
CN110922205A (zh) 一种多孔堇青石及其制备方法
CN116730731B (zh) 一种碳化硅基陶瓷蓄热体及其制备方法
CN113880604B (zh) 一种采用煤矸石制备陶瓷蓄热材料的制备方法
CN114751726B (zh) 一种陶瓷用环保加工工艺
CN117886625B (zh) 高强度多孔堇青石陶瓷材料的制备方法
CN115745623B (zh) 氮化铝复合材料、制备方法及其应用
CN106747560A (zh) 一种多孔保温复合陶瓷材料
CN105461293A (zh) 一种低热导率氧化铝陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant