CN108516832A - 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺 - Google Patents

一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺 Download PDF

Info

Publication number
CN108516832A
CN108516832A CN201810336620.0A CN201810336620A CN108516832A CN 108516832 A CN108516832 A CN 108516832A CN 201810336620 A CN201810336620 A CN 201810336620A CN 108516832 A CN108516832 A CN 108516832A
Authority
CN
China
Prior art keywords
boron carbide
carbide ceramics
ceramics material
powder
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810336620.0A
Other languages
English (en)
Inventor
殷增斌
陈明丹
徐伟伟
袁军堂
汪振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810336620.0A priority Critical patent/CN108516832A/zh
Publication of CN108516832A publication Critical patent/CN108516832A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺。本发明的碳化硼陶瓷材料。以重量百分数计,包含如下组分:B4C 75%‑82%、SiC 15%、Al 3%‑10%、石墨烯0.5%‑3%。本发明的碳化硼陶瓷材料是在氩气气氛保护下,通过优化组分配比、烧结温度、保温时间等工艺参数,采用放电等离子技术,以较快的升温速率制备得到。本发明制备出的陶瓷材料不但具备高的致密度,同时还具备较高的硬度和较好的韧性,综合性能最高的密度为2.625g/cm3,致密度达到100%,硬度达到30.09±0.39GPa,断裂韧性达到5.88±0.49MPa.m1/2

Description

一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
技术领域
本发明属于放电等离子烧结材料技术领域,涉及碳化硼陶瓷材料及其放电等离子烧结制备工艺。
背景技术
碳化硼是自然界中的重要的超硬材料,硬度仅次于金刚石和立方氮化硼,它还具有低密度、高弹性模量、耐磨、耐腐蚀、吸收中子和高温半导体特性,是一种综合性能优异的新型陶瓷材料,被用作密封材料、中子吸收材料、防弹材料、发动机喷嘴、硬质材料的抛光和精研磨料、防弹装甲材料、核辐射防护等,在核能、国防和机械等领域得到广泛应用。
碳化硼陶瓷的结构中共价键极强,共价键分数在90%以上,自扩散系数非常低,内部气孔的消除、晶界和体积扩散都需要非常高的温度,纯碳化硼陶瓷的烧结极其困难,一般很难达到致密。目前,制备高性能碳化硼陶瓷实现产业化的方法有热压烧结法和无压烧结法。热压烧结是指在极高的温度下,对碳化硼在烧结过程中施加几十兆帕的压力来促进碳化硼烧结体的快速致密化,但热压烧结工艺烧结碳化硼密度在98%需要高于2000℃的高温,保温时间至少1小时,且热压烧结单炉产量有限,形状单一,尺寸较小等缺点,因此热压烧结碳化硼陶瓷的价格昂贵。无压烧结法烧结碳化硼多添加一种或几种助烧剂,利用助烧剂在高温下使其达到致密化。无压烧结产能高,适合于批量化生产,但无压烧结烧结温度高,保温时间长且致密困难,所以综合成本较高。高的烧结温度使无压和热压烧结碳化硼陶瓷时消耗大量的电能,制备周期长,生产成本高,使得碳化硼抗弹陶瓷难以大批量应用于武器装备。另外,在如此高的温度下烧结,晶粒会快速粗化与长大,气孔难以排出,造成大量气孔残留在材料内,烧结后晶粒粗大(无压烧结粒径约50μm,热压烧结粒径3~5μm)、致密度不高,这就造成碳化硼陶瓷强度和韧性较低。虽然无压烧结碳化硼陶瓷比热压产品价格有所降低,但相比其他碳化物结构陶瓷价格仍然昂贵。
放电等离子烧结(SPS)是新一代烧结技术,它是利用外加脉冲强电流形成的点成净化材料,提高粉末表面的扩散能力,再在较低的机械压力下利用强电流短时加热粉体进行烧结致密。其消耗的电能仅为传统烧结工艺(无压烧结、热压烧结、热等静压烧结)的1/5~1/3,烧结温度降低200~300℃,保温时间只需3~10min,烧结体致密度高、晶粒小,特殊的烧结机理赋予材料新结构和高性能。
本发明旨在利用放电热效应(快速整体加热)和等离子活化效应(增强扩散、加速致密),在技术层面上制备出全致密的高性能碳化硼陶瓷;从生产角度出发,利用放电等离子能量利用率高和环境友好的特性,在低温快速烧结条件下,以更低的成本和更少的环境污染,实现低成本碳化硼陶瓷规模化生产。
碳化硼陶瓷烧结温度高,致密化困难,硬度高但韧性差,用放电等离子低温快速烧结工艺优化助烧剂含量,对提高碳化硼陶瓷材料力学性能以及促进其产业化具有重大意义。
发明内容
本发明的目的在于提供一种碳化硼陶瓷材料,该陶瓷材料是在碳化硼基体中添加了适量的助烧剂,并优化了各助烧剂组分的比例关系,在降低原料成本的同时,提高了材料的综合力学性能,具有高致密度、高硬度和高韧性。
实现上述目的的技术方案如下:
一种碳化硼陶瓷材料,以重量百分数计,包含如下组分:B4C 75%-82%、SiC15%、Al 3%-10%、石墨烯0.5%-3%。
进一步地,本发明还提供上述碳化硼陶瓷材料放电等离子烧结制备工艺,采用高效放电等离子烧结技术,通过优化烧结温度、保温时间等工艺参数,实现在短时间内制备出具有较高综合力学性能的碳化硼陶瓷材料,包括如下步骤:
步骤1,按比例称取B4C、SiC、Al、石墨烯粉末;
步骤2,将步骤1的混合粉料倒入锥形瓶中,以无水乙醇为介质,在超声震荡机上震荡2小时;
步骤3,将震荡后的混合粉料进行干燥,然后研磨并过筛;
步骤4,将混合粉体装入模具,粉体与石墨模具内壁,上、下压头及粉体之间用碳纸隔开;
步骤5,石墨磨具中的粉体预压成型;
步骤6,氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1650-1850℃,保温3-5min,随后随炉冷却,制得碳化硼陶瓷材料。
步骤4中,将碳纸紧贴于石墨磨具内壁,模具内壁碳纸及上下压头处的碳纸都需涂上六方氮化硼。
步骤5中,预压时间5min,压力10Mpa。
本发明与现有技术相比,其显著优点是:
(1)利用放电等离子能量利用率高和环境友好的特性,在低温快速烧结条件下,以更低的成本和更少的环境污染,实现B4C高致密化和优良的力学性能;
(2)通过助烧剂的协同作用,采用了放电等离子烧结技术制备出的碳化硼陶瓷具有优良力学性能及微观组织结构,其中综合性能最高的样品的密度为2.625g/cm3,致密度达到100%,硬度达到30.09±0.39GPa,断裂韧性达到5.88±0.49MPa.m1/2
附图说明
图1为实施例3制得的碳化硼陶瓷材料的断裂面SEM图。
图2为实施例4制得的碳化硼陶瓷材料的断裂面SEM图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
实施例1
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C81.5%、SiC15%、Al3%、石墨烯0.5%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1850℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.637g/cm3,致密度为100%,维氏硬度为27.49±0.25GPa,断裂韧性为5.08±0.41MPa.m1/2
实施例2
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C81%、SiC15%、Al3%、石墨烯1%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1825℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.632g/cm3,致密度为100%,维氏硬度为27.66±0.36GPa,断裂韧性为5.63±0.34MPa.m1/2
实施例3
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80.5%、SiC15%、Al3%、石墨烯1.5%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1825℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.625g/cm3,致密度为100%,维氏硬度为30.09±0.39GPa,断裂韧性为5.88±0.49MPa.m1/2
实施例4
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80%、SiC15%、Al3%、石墨烯2%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1850℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.6037g/cm3,致密度为100%,维氏硬度为26.88±0.39GPa,断裂韧性为5.41±0.21MPa.m1/2
实施例5
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C79%、SiC15%、Al3%、石墨烯3%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1775℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.541g/cm3,致密度为97.67%,维氏硬度为25.12±0.33GPa,断裂韧性为4.48±0.81MPa.m1/2
从图1可以看出碳化硼陶瓷在放电等离子烧结中添加石墨烯可以起到增韧的效果,石墨烯的嵌入和拔出需要消耗大量的断裂能,阻止裂纹的进一步扩展。图2可以看出加入过多的石墨烯会出现团聚现象,导致韧性相对下降,两幅图对比会发现石墨烯含量对碳化硼陶瓷的力学性能会有影响,石墨烯含量不宜过高。
对比例1
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80.5%、SiC15%、Al3%、石墨烯1.5%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1825℃,保温3min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.623g/cm3,致密度为100%,维氏硬度为30.79±0.44GPa,断裂韧性为5.74±0.23MPa.m1/2
此对比例说明保温时间对材料性能影响不大,随着保温时间增加,材料力学性能变化不大。
对比例2
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C75%、SiC15%、Al10%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1650℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.630g/cm3,致密度为100%,维氏硬度为23.02±0.18GPa,断裂韧性为7.54±0.24MPa.m1 /2
此对比例说明随着铝含量的增加,断裂韧性明显增大,维氏硬度明显减小,最后材料力学性能也处于较低水平。
对比例3
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C82%、SiC15%、Al3%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1825℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的密度为2.622g/cm3,致密度为100%,维氏硬度为30.33±0.23GPa,断裂韧性为4.68±0.04MPa.m1 /2
此对比例说明不加石墨烯,材料的断裂韧性明显下降,维氏硬度变化不大,最后材料力学性能也较低。

Claims (6)

1.一种碳化硼陶瓷材料,其特征在于,以重量百分数计,包含如下组分:B4C 75%-82%、SiC 5%-20%、Al 3%-10%、石墨烯0.5%-3%。
2.根据权利要求1所述的碳化硼陶瓷材料,其特征在于,以重量百分数计,包含如下组分:B4C 80.5%、SiC15%、Al3%、石墨烯1.5%。
3.一种基于权利要求1-2所述的碳化硼陶瓷材料的放电等离子烧结制备工艺,其特征在于,包括如下步骤:
(1)按比例称取B4C、SiC、Al、石墨烯粉末;
(2)将步骤1的粉料混合,以无水乙醇为介质,在超声震荡机上震荡2小时;
(3)将震荡后的混合粉料进行干燥,然后研磨并过筛;
(4)将混合粉体装入模具,粉体与石墨模具内壁,上、下压头及粉体之间用碳纸隔开;
(5)石墨磨具中的粉体预压成型;
(6)氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1650-1850℃,保温3-5min,随后随炉冷却,制得碳化硼陶瓷材料。
4.根据权利要求3所述的碳化硼陶瓷材料的放电等离子烧结制备工艺,其特征在于,过筛采用100目筛。
5.根据权利要求3所述的碳化硼陶瓷材料的放电等离子烧结制备工艺,其特征在于,步骤4中,将碳纸紧贴于石墨磨具内壁,模具内壁碳纸及上下压头处的碳纸都需涂上六方氮化硼。
6.根据权利要求3所述的碳化硼陶瓷材料的放电等离子烧结制备工艺,其特征在于,步骤5中,预压时间5min,压力10Mpa。
CN201810336620.0A 2018-04-12 2018-04-12 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺 Pending CN108516832A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810336620.0A CN108516832A (zh) 2018-04-12 2018-04-12 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810336620.0A CN108516832A (zh) 2018-04-12 2018-04-12 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺

Publications (1)

Publication Number Publication Date
CN108516832A true CN108516832A (zh) 2018-09-11

Family

ID=63429304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810336620.0A Pending CN108516832A (zh) 2018-04-12 2018-04-12 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺

Country Status (1)

Country Link
CN (1) CN108516832A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336607A (zh) * 2018-11-12 2019-02-15 东莞理工学院 一种碳化硼制备方法
CN110028320A (zh) * 2019-04-04 2019-07-19 南京理工大学 一种碳化硼陶瓷材料及其制备方法
CN111499385A (zh) * 2020-03-19 2020-08-07 武汉理工大学 一种碳化硼-石墨烯微叠层复合材料及其制备方法
CN112209718A (zh) * 2020-09-03 2021-01-12 沈阳中钛装备制造有限公司 一种碳化硼基复相陶瓷及其制备方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337816A (zh) * 2008-08-29 2009-01-07 牡丹江金刚钻碳化硼有限公司 一种碳化硼基复合材料及其制备方法
CN102531604A (zh) * 2011-12-26 2012-07-04 迁安市乐达特种陶瓷制品有限公司 一种β-SiC增韧B4C陶瓷烧结技术
CN105016733A (zh) * 2015-07-23 2015-11-04 中国工程物理研究院流体物理研究所 石墨烯复合b4c超硬材料的制备方法
CN107840661A (zh) * 2017-10-27 2018-03-27 浙江立泰复合材料股份有限公司 一种碳化硼陶瓷片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337816A (zh) * 2008-08-29 2009-01-07 牡丹江金刚钻碳化硼有限公司 一种碳化硼基复合材料及其制备方法
CN102531604A (zh) * 2011-12-26 2012-07-04 迁安市乐达特种陶瓷制品有限公司 一种β-SiC增韧B4C陶瓷烧结技术
CN105016733A (zh) * 2015-07-23 2015-11-04 中国工程物理研究院流体物理研究所 石墨烯复合b4c超硬材料的制备方法
CN107840661A (zh) * 2017-10-27 2018-03-27 浙江立泰复合材料股份有限公司 一种碳化硼陶瓷片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张朝阳等: "《放电等离子烧结技术及其在钛基合金材料制备中的应用》", 31 March 2018, 国防工业出版社 *
苑世剑等: "《精密热加工新技术》", 31 May 2016, 国防工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336607A (zh) * 2018-11-12 2019-02-15 东莞理工学院 一种碳化硼制备方法
CN110028320A (zh) * 2019-04-04 2019-07-19 南京理工大学 一种碳化硼陶瓷材料及其制备方法
CN111499385A (zh) * 2020-03-19 2020-08-07 武汉理工大学 一种碳化硼-石墨烯微叠层复合材料及其制备方法
CN111499385B (zh) * 2020-03-19 2021-03-16 武汉理工大学 一种碳化硼-石墨烯微叠层复合材料及其制备方法
CN112209718A (zh) * 2020-09-03 2021-01-12 沈阳中钛装备制造有限公司 一种碳化硼基复相陶瓷及其制备方法与装置
CN112209718B (zh) * 2020-09-03 2022-07-08 沈阳中钛装备制造有限公司 一种碳化硼基复相陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN108516832A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN103613389B (zh) 碳化硼陶瓷烧结制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN108640687B (zh) 一种碳化硼/碳化硅复相陶瓷及其制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN101967059B (zh) 一种碳化硅防弹陶瓷的制备方法
CN107141004B (zh) 一种碳化硼复合材料及其制备方法
CN109336607A (zh) 一种碳化硼制备方法
CN103145422A (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN103508734B (zh) 一种防弹碳化硼/碳化硅复合陶瓷制备方法
CN104030686B (zh) 一种高韧性碳化硅陶瓷及其制备方法
CN103572087A (zh) 碳化硼颗粒增强铝基复合材料的制备方法
CN110484795B (zh) 一种碳化硅基复合防弹陶瓷及其制备工艺
CN110903091B (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
CN103833403A (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN111423233A (zh) 一种碳化硅增强碳化硼基陶瓷材料及其制备方法
CN106116582A (zh) 一种无钴碳化钨的烧结方法
CN109504869A (zh) 一种具有仿生多级结构的金属基纳米复合材料及其制备方法
CN107988541A (zh) 微波烧结制备纳米晶硬质合金的方法
CN109136713A (zh) 一种制备高强度高韧性WC-Co硬质合金的方法
CN108911754A (zh) 一种干法常压烧结制备碳化硼陶瓷的方法
CN102219519A (zh) 一种碳化硅防弹陶瓷材料及其制备方法
CN104329988B (zh) 一种防弹陶瓷片及其制备方法
CN110183231B (zh) 一种高强高韧碳化硼基陶瓷材料的制备方法及其陶瓷材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180911