CN106116582A - 一种无钴碳化钨的烧结方法 - Google Patents

一种无钴碳化钨的烧结方法 Download PDF

Info

Publication number
CN106116582A
CN106116582A CN201610476445.6A CN201610476445A CN106116582A CN 106116582 A CN106116582 A CN 106116582A CN 201610476445 A CN201610476445 A CN 201610476445A CN 106116582 A CN106116582 A CN 106116582A
Authority
CN
China
Prior art keywords
sintering
tungsten carbide
graphene
nanometer
cobalt tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610476445.6A
Other languages
English (en)
Other versions
CN106116582B (zh
Inventor
赵煊
束晨阳
董丽华
尹衍升
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201610476445.6A priority Critical patent/CN106116582B/zh
Publication of CN106116582A publication Critical patent/CN106116582A/zh
Application granted granted Critical
Publication of CN106116582B publication Critical patent/CN106116582B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种无钴碳化钨的烧结方法,其包含以下步骤:步骤1,分别称取石墨烯和纳米WC粉,均匀混合并烘干;步骤2,将烘干的石墨烯和纳米WC粉的混合物置于石墨模具中压实,采用放电等离子烧结装置烧结,烧结温度1500‑1700℃,保温5分钟,降温过后取出试样。本发明提供的烧结方法,利用石墨烯的高韧性,高断裂强度,以增强试样的断裂韧性;并且石墨烯导电,可以在使用放电等离子烧结时改变烧结性能。采用本本发明的方法,烧结温度大幅降低,烧结时间短,保温时间短,获得的碳化钨具有超细结构。

Description

一种无钴碳化钨的烧结方法
技术领域
本发明属于硬质合金粉末烧结领域,涉及一种碳化钨的烧结工艺,具体来说,涉及一种无钴碳化钨的烧结方法,以纳米碳化钨(WC)和石墨烯为主要原料,采用放电等离子烧结(SPS)。
背景技术
碳化钨(WC)是最常用的硬质合金材料。由于WC的熔点高达2870°C,通常以WC-Co的方式进行烧结,Co作为烧结助剂。然而,Co等粘结相的添加降低了材料的硬度,耐腐蚀性和耐氧化性,并且由于与WC的热膨胀系数的差异而容易引起热应力。
由于无粘结相硬质合金在烧结过程中的烧结温度非常高(常常高达2000℃),为使合金体获得致密度很高的块体用制备普通合金的烧结方法很难获得。传统的烧结方式如真空烧结、热压、气压、热等静压等,需要高的烧结温度和长的保温时间,容易使得晶粒快速长大,很难获得超细结构。
放电等离子烧结(SPS)技术可以解决这一难题,它是利用脉冲直流电在粉末颗粒之间产生火花放电现象,产生局部高温场、放电冲击压力、表面净化作用、电厂扩散等效果来实现快速烧结,其特点是烧结过程升温、降温速率快,保温时间短,烧结温度低,从而有效抑制晶粒长大,在烧结过程中加压,可实现高致密度、超细结构材料的快速制备。
经对现有技术文献的检索发现,公开号为CN102628138A的中国专利公开了一种放电等离子烧结低钴碳化钨的方法,该方法的不足在于烧结助剂Co的加入使得烧结所得试样的硬度较低,在2300-2600HV,低Co又使得试样的韧性不高,在7-8MPa·m1/2。经文献检索还发现,罗锴等在《材料研究与应用》(2010年12月,第4期,第534-537)发表了“放电等离子烧结制备超细碳化钨材料”,具体方法为:采用真空烧结(真空度约15Pa),模具为高强石墨,其直径为20mm,内衬石墨纸防止烧结粘连,然后分段加压,开始时对试样施加约10-20MPa预压力,升温到试样呈现收缩时,迅速加压到50MPa。升温速度为100℃/min,最后在烧结温度分别为1700℃,1800℃和1900℃下,保温5min。其方法所使用的烧结温度过高,1700℃下材料已经致密,再升高烧结温度对材料致密化已无太大意义;在1800℃和1900℃下晶粒开始长大,对烧结性能有所影响。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种无Co纳米碳化钨的烧结方法,采用SPS技术烧结,通过加入石墨烯及控制烧结工艺,克服了随着Co含量的增加,WC的硬度逐渐减小的缺点,又保证了有钴烧结时的韧性优点,形成一种性能优越的硬质合金材料的制备方法。
为达到上述目的,本发明提供了一种无钴碳化钨的烧结方法,其包含以下步骤:
步骤1,分别称取石墨烯和纳米WC粉,均匀混合并烘干;
步骤2,将烘干的石墨烯和纳米WC粉的混合物置于石墨模具中压实,采用放电等离子烧结装置烧结,烧结温度1500-1700℃(优选1500-1590℃),保温5分钟,降温过后取出试样。
上述的无钴碳化钨的烧结方法,其中,石墨烯在石墨烯和纳米WC粉的混合物中的比例以质量百分数计为0.2-0.6%。
上述的无钴碳化钨的烧结方法,其中,所述的石墨烯厚度为0.55-1.2nm,直径为0.5-3μm,层数1-5层。
上述的无钴碳化钨的烧结方法,其中,所述的纳米WC粉粒度为20nm-50nm。
上述的无钴碳化钨的烧结方法,其中,所述的混合方法为球磨。
上述的无钴碳化钨的烧结方法,其中,步骤2中的烧结工艺,还包含:先抽真空,目的是为了防止在高温烧结时氧气与粉体接触生成杂质,影响试样性能;然后,以200-250℃/min的速度升温以达到烧结温度,并加压,轴向压力45-50MPa,轴向加压的目的是为了使其结构更加致密;这个轴是SPS烧结装置中的机械轴,其作用是在竖直方向对石墨模具加压。
上述的无钴碳化钨的烧结方法,其中,该方法还包含步骤3:对出炉后的产品进行打磨清理,去除表面碳渣,得到成品。
石墨烯是由碳原子组成的只有一层原子厚度的二维晶体,是除硼烯外最薄的,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时,石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,石墨烯的加入可以改变材料的导电性,在采用SPS烧结时能更好的连通上下电极,改变烧结性能。
本发明的关键在于将石墨烯加入WC。由于WC中Co含量的增加会导致其硬度逐渐减小,采用无钴烧结时加入石墨烯能在提升WC硬度的前提下又增加了其韧性,石墨烯的加入还可以改变粉体的导电性,改变烧结性能。加入石墨烯的另一个目的是在烧结过程中进行配碳,因为WC烧结时可能会生成W2C,W2C的各项性能都不如WC,加入石墨烯可对粉体进行配碳,使其W2C的含量减少。本发明的另一个关键在于放电等离子烧结技术的有效利用,它利用脉冲能、放电冲压力和焦耳热会在局部瞬间产生几千度甚至上万度的高温,晶粒表面在高温作用下发生蒸发和熔化,使颗粒表面发生活化,从而加剧了体积扩散和晶界扩散。由于升、降温速度快,烧结时间短,有效阻止了晶粒生长,大大缩短了生产周期,节约能源,是成功烧结WC的决定性因素之一。
本发明提供的烧结方法中,烧结温度较现有技术大幅降低,烧结时间短、保温时间短、操作简便,且获得了碳化钨具有超细结构,致密度高,硬度高去,断裂韧性强。
附图说明
图1为本发明的实施例1制备的具有超细结构的碳化钨的电镜照片。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。
实施例1:
(1)配料:配制石墨烯含量为0.2w%的WC粉。将49.9g纳米WC粉和0.1g石墨烯装入球磨机,加入适量酒精,设置转速为400 rad/min,48小时后取出浆料放入烘箱,90℃烘24小时,过100目筛网。
(2)烧制:将上述烘干后的粉体取适量放入内经20mm的石墨模具中压实后,连同模具一起置于SPS装置的上下电极之间,抽取真空(使真空度达到6Pa)后通电以200℃/min的速度升温并加压,达到烧结温度1700℃,轴向压力50MPa后保温5分钟,断电冷却后将试样取出。
(3)清理:对出炉后的产品进行打磨清理,去除表面碳纸渣(因为在烧结的过程中是由石墨纸包着粉体再放入石墨模具烧结的,所以最后试样外会有一层碳纸渣,要对其进行打磨清理),得到成品。
经测定,该试样的相对密度为99.3%,硬度约为2717HV,断裂韧性约为10.23MPa·m1/2。由图1的电镜照片,可知,粒度小于1微米(0.3~0.6μm),也就是亚微米级。
实施例2:
(1)配料:配制石墨烯含量为0.4w%的WC粉。将49.8g纳米WC粉和0.2g石墨烯装入球磨机,加入适量酒精,设置转速为400 rad/min,48小时后取出浆料放入烘箱,90℃烘24小时,过100目筛网。
(2)烧制:将上述烘干后的粉体取适量放入内经20mm的石墨模具中压实后,连同模具一起置于SPS装置的上下电极之间,抽取真空(使真空度达到6Pa)后通电以200℃/min的速度升温并加压,达到烧结温度1590℃,轴向压力50MPa后保温5分钟,断电冷却后将试样取出。
(3)清理:对出炉后的产品进行打磨清理,去除表面碳纸渣,得到成品。
经测定,该试样的相对密度为99.1%,硬度约为2687HV,断裂韧性约为10.36MPa·m1/2;粒度为0.3~0.6μm,具有超细结构。
实施例3:
(1)配料:配制石墨烯含量为0.6w%的WC粉。将49.7g纳米WC粉和0.3g石墨烯装入球磨机,加入适量酒精,设置转速为400 rad/min,48小时后取出浆料放入烘箱,90℃烘24小时,过100目筛网。
(2)烧制:将上述烘干后的粉体取适量放入内经20mm的石墨模具中压实后,连同模具一起置于SPS装置的上下电极之间,抽取真空(使真空度达到6Pa)后通电以200℃/min的速度升温并加压,达到烧结温度1500℃,轴向压力50MPa后保温5分钟,断电冷却后将试样取出。
(3)清理:对出炉后的产品进行打磨清理,去除表面碳纸渣,得到成品。
经测定,该试样的相对密度为98.7%,硬度约为2669HV,断裂韧性约为10.51MPa·m1/2;粒度为0.3~0.6μm,具有超细结构。
本发明利用石墨烯的高韧性,高断裂强度及良好的导电性,通过石墨烯的加入,采用放电等离子烧结技术,获得了超细结构的碳化钨,其致密度高,硬度高去,断裂韧性强,且烧结温度较现有技术大幅降低,烧结时间短、保温时间短、操作简便。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (8)

1.一种无钴碳化钨的烧结方法,其特征在于,该方法包含以下步骤:
步骤1,分别称取石墨烯和纳米WC粉,均匀混合并烘干;
步骤2,将烘干的石墨烯和纳米WC粉的混合物置于石墨模具中压实,采用放电等离子烧结装置烧结,烧结温度1500-1700℃,保温5分钟,降温过后取出试样。
2.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,石墨烯在石墨烯和纳米WC粉的混合物中的比例以质量百分数计为0.2-0.6%。
3.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,所述的石墨烯厚度为0.55-1.2nm,直径为0.5-3μm,层数1-5层。
4.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,所述的纳米WC粉粒度为20nm-50nm。
5.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,所述的混合方法为球磨。
6.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,步骤2中的烧结工艺,烧结温度1500-1590℃。
7.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,步骤2中的烧结工艺,还包含:先抽真空,然后,以200-250℃/min的速度升温以达到烧结温度,并加压,轴向压力45-50MPa。
8.如权利要求1所述的无钴碳化钨的烧结方法,其特征在于,该方法还包含步骤3:对出炉后的产品进行打磨清理,去除表面碳纸渣,得到成品。
CN201610476445.6A 2016-06-27 2016-06-27 一种无钴碳化钨的烧结方法 Expired - Fee Related CN106116582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610476445.6A CN106116582B (zh) 2016-06-27 2016-06-27 一种无钴碳化钨的烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610476445.6A CN106116582B (zh) 2016-06-27 2016-06-27 一种无钴碳化钨的烧结方法

Publications (2)

Publication Number Publication Date
CN106116582A true CN106116582A (zh) 2016-11-16
CN106116582B CN106116582B (zh) 2017-06-16

Family

ID=57267246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610476445.6A Expired - Fee Related CN106116582B (zh) 2016-06-27 2016-06-27 一种无钴碳化钨的烧结方法

Country Status (1)

Country Link
CN (1) CN106116582B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810260A (zh) * 2017-01-13 2017-06-09 台州学院 一种碳化钨基无粘结相硬质合金的制备方法
CN107089654A (zh) * 2017-05-31 2017-08-25 天津炜润达新材料科技有限公司 一种新型石墨烯制造机
CN107116222A (zh) * 2017-04-18 2017-09-01 济南大学 一种新型抛丸机叶片镶嵌材料及其制备方法
CN107866578A (zh) * 2017-11-07 2018-04-03 盾构及掘进技术国家重点实验室 一种提高盾构刀具硬质合金性能的方法及系统
CN108276001A (zh) * 2018-01-09 2018-07-13 中国海洋石油集团有限公司 一种超耐磨碳化钨硬质合金放电等离子体烧结方法
CN109987954A (zh) * 2019-03-15 2019-07-09 西安交通大学 一种碳化钨增强石墨基复合材料及制备方法
KR20200102288A (ko) * 2019-02-21 2020-08-31 전북대학교산학협력단 나노결정질 초경재료 및 그의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609053A (zh) * 2004-11-11 2005-04-27 上海交通大学 无粘结相超细纯碳化钨的烧结方法
CN103276269A (zh) * 2013-05-13 2013-09-04 东华大学 一种碳纳米管-碳化钨复合材料的制备方法
US20140272415A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Production of near-stoichiometric spherical tungsten carbide particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609053A (zh) * 2004-11-11 2005-04-27 上海交通大学 无粘结相超细纯碳化钨的烧结方法
US20140272415A1 (en) * 2013-03-15 2014-09-18 Kennametal Inc. Production of near-stoichiometric spherical tungsten carbide particles
CN103276269A (zh) * 2013-05-13 2013-09-04 东华大学 一种碳纳米管-碳化钨复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张国珍等: "配碳量对放电等离子烧结无粘结剂纳米WC硬质合金的影响", 《稀有金属与硬质合金》 *
黄斌等: "放电等离子烧结的超细纯碳化钨的组织与性能", 《上海有色金属》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810260A (zh) * 2017-01-13 2017-06-09 台州学院 一种碳化钨基无粘结相硬质合金的制备方法
CN106810260B (zh) * 2017-01-13 2020-04-24 台州学院 一种碳化钨基无粘结相硬质合金的制备方法
CN107116222A (zh) * 2017-04-18 2017-09-01 济南大学 一种新型抛丸机叶片镶嵌材料及其制备方法
CN107089654A (zh) * 2017-05-31 2017-08-25 天津炜润达新材料科技有限公司 一种新型石墨烯制造机
CN107866578A (zh) * 2017-11-07 2018-04-03 盾构及掘进技术国家重点实验室 一种提高盾构刀具硬质合金性能的方法及系统
CN108276001A (zh) * 2018-01-09 2018-07-13 中国海洋石油集团有限公司 一种超耐磨碳化钨硬质合金放电等离子体烧结方法
KR20200102288A (ko) * 2019-02-21 2020-08-31 전북대학교산학협력단 나노결정질 초경재료 및 그의 제조방법
CN109987954A (zh) * 2019-03-15 2019-07-09 西安交通大学 一种碳化钨增强石墨基复合材料及制备方法
CN109987954B (zh) * 2019-03-15 2020-10-27 西安交通大学 一种碳化钨增强石墨基复合材料及制备方法

Also Published As

Publication number Publication date
CN106116582B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN106116582B (zh) 一种无钴碳化钨的烧结方法
Liu et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering
Huang et al. VC, Cr3C2 and NbC doped WC–Co cemented carbides prepared by pulsed electric current sintering
Taha et al. Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying
Zhao et al. Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet
CN104294072B (zh) 一种梯度硬质合金/金属陶瓷的快速制备方法
CN107739950A (zh) 一种WC‑Co‑cBN复合硬质合金及其制备方法
CN102071346B (zh) 致密、小晶粒尺寸纳米晶WC-Co硬质合金块体材料的制备方法
Zhang et al. The effect of submicron-sized initial tungsten powders on microstructure and properties of infiltrated W-25 wt.% Cu alloys
CN103182506B (zh) 一种TiCp/M2高速钢复合材料及其SPS制备方法
CN105272260B (zh) 一种无粘结相碳化钨复合材料及其制备方法
CN101747039B (zh) 一种高强高密各向同性炭滑板的制备方法
Kim et al. Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating
Wang et al. Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit
JP5863329B2 (ja) 超硬合金及びその製造方法
Zhu et al. Preparation of nanocrystalline WC-10Co-0.8 VC by spark plasma sintering.
Zhou et al. High performance tungsten synthesized by microwave sintering method
CN107857592A (zh) 一种高致密度超高温Ta4HfC5陶瓷块材的制备方法
Zhou et al. Densification and microstructure evolution of W-TiC-Y2O3 during spark plasma sintering
Zou et al. Flash spark plasma sintering of HfB2 ceramics without pre-sintering
CN112921227A (zh) 碳化钨-钴硬质合金及其制备方法
Qi et al. The adjustment of microstructure and properties of TiC/NiCr composites by Mo addition applied for intermediate-temperature solid oxide fuel cell interconnects
Yin et al. Improvement in microstructure and mechanical properties of Ti (C, N) cermet prepared by two-step spark plasma sintering
Xingqing et al. Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering
CN106116617B (zh) 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170616

Termination date: 20200627