CN110028320A - 一种碳化硼陶瓷材料及其制备方法 - Google Patents

一种碳化硼陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110028320A
CN110028320A CN201910271200.3A CN201910271200A CN110028320A CN 110028320 A CN110028320 A CN 110028320A CN 201910271200 A CN201910271200 A CN 201910271200A CN 110028320 A CN110028320 A CN 110028320A
Authority
CN
China
Prior art keywords
powder
boron carbide
carbide ceramics
sintering
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910271200.3A
Other languages
English (en)
Inventor
司道行
文梓达
殷增斌
蒋耀东
徐春雨
刘经纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910271200.3A priority Critical patent/CN110028320A/zh
Publication of CN110028320A publication Critical patent/CN110028320A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于放电等离子烧结材料技术领域,具体为一种碳化硼陶瓷材料及其制备方法。材料包含如下组分:B4C75%‑82%、SiC15%、Al 3%‑10%,上述组分以重量百分数计。方法包括如下步骤:按比例称取B4C、SiC、Al粉末;将步骤1的粉料混合,以无水乙醇为介质,在超声震荡机上震荡2小时;将震荡后的混合粉料进行干燥,然后研磨并过筛;将混合粉体装入模具;预压成型;氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1625‑1925℃,保温3‑5min,随后随炉冷却,制得碳化硼陶瓷材料。本申请通过添加低熔点金属Al,利用高温时液态金属Al的活化作用,提高碳化硼陶瓷晶界和晶格的体积扩散速率,提高其力学性能;利用放电等离烧结实现高性能碳化硼陶瓷的高效制备。

Description

一种碳化硼陶瓷材料及其制备方法
技术领域
本发明属于放电等离子烧结材料技术领域,具体为一种碳化硼陶瓷材料及其制备方法。
背景技术
碳化硼是自然界中的重要的超硬材料,硬度仅次于金刚石和立方氮化硼,它还具有低密度、高弹性模量、耐磨、耐腐蚀、吸收中子和高温半导体特性,是一种综合性能优异的新型陶瓷材料,被用作密封材料、中子吸收材料、防弹材料、发动机喷嘴、硬质材料的抛光和精研磨料、防弹装甲材料、核辐射防护等,在核能、国防和机械等领域得到广泛应用。
碳化硼陶瓷的结构中共价键极强,共价键分数在90%以上,自扩散系数非常低,内部气孔的消除、晶界和体积扩散都需要非常高的温度,纯碳化硼陶瓷的烧结极其困难,一般很难达到致密。目前,制备高性能碳化硼陶瓷实现产业化的方法有热压烧结法和无压烧结法。热压烧结是指在极高的温度下,对碳化硼在烧结过程中施加几十兆帕的压力来促进碳化硼烧结体的快速致密化,但热压烧结工艺烧结碳化硼密度在98%需要高于2000℃的高温,保温时间至少1小时,因此热压烧结碳化硼陶瓷的价格昂贵。无压烧结法烧结碳化硼多添加一种或几种助烧剂,利用助烧剂在高温下使其达到致密化。无压烧结产能高,适合于批量化生产,但无压烧结烧结温度高,保温时间长且致密困难,所以综合成本较高。高的烧结温度使无压和热压烧结碳化硼陶瓷时消耗大量的电能,制备周期长,生产成本高,使得碳化硼抗弹陶瓷难以大批量应用于武器装备。另外,在如此高的温度下烧结,晶粒会快速粗化与长大,气孔难以排出,造成大量气孔残留在材料内,烧结后晶粒粗大(无压烧结粒径约50μm,热压烧结粒径3~5μm)、致密度不高,这就造成碳化硼陶瓷强度和韧性较低。因此,现阶段碳化硼陶瓷制备方式难以实现高的力学性能和低的生产成本之间的平衡。
放电等离子烧结是新一代烧结技术,它是利用外加脉冲强电流形成的点成净化材料,提高粉末表面的扩散能力,再在较低的机械压力下利用强电流短时加热粉体进行烧结致密。其消耗的电能仅为传统烧结工艺(无压烧结、热压烧结、热等静压烧结)的1/5~1/3,烧结温度降低200~300℃,保温时间只需3~10min,烧结体致密度高、晶粒小,特殊的烧结机理赋予材料新结构和高性能。
发明内容
本发明所解决的技术问题在于提供一种碳化硼陶瓷材料及其制备方法。
实现本发明目的的技术解决方案为:
一种碳化硼陶瓷材料,包含如下组分:B4C75%-82%、SiC15%、Al 3%-10%,上述组分以重量百分数计。
优选的,包含如下组分:B4C82%、SiC15%、Al3%,上述组分以重量百分数计。
一种制备上述的材料的方法,其特征在于,包括如下步骤:
(1)按比例称取B4C、SiC、Al粉末;
(2)将步骤1的粉料混合,以无水乙醇为介质,在超声震荡机上震荡2小时;
(3)将震荡后的混合粉料进行干燥,然后研磨并过筛;
(4)将混合粉体装入模具;
(5)预压成型;
(6)氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1625-1925℃,保温3-5min,随后随炉冷却,制得碳化硼陶瓷材料。
步骤(4)中,所述模具为石墨模具,混合粉末与石墨模具内壁之间设置有碳纸,所述混合粉末与上、下压头之间设置有碳纸。
将碳纸紧贴于石墨模具内壁,碳纸与模具内壁接触面,碳纸与上、下压头接触面涂有氮化硼。
所述步骤5中,预压时间为5min,压力10MPa。
本发明与现有技术相比,其显著优点如下:
(1)通过添加低熔点金属Al,利用高温时液态金属Al的活化作用,提高碳化硼陶瓷晶界和晶格的体积扩散速率,同时Al与碳化硼、碳化硅易发生化学反应,从而促进碳化硼陶瓷的致密化进程,提高其力学性能;
(2)利用放电等离子能量利用率高和环境友好的特性,在低温快速烧结条件下,以更低的成本和更少的环境污染,实现高性能碳化硼陶瓷的高效制备。
附图说明
图1为实施例4制得的碳化硼陶瓷材料的断裂面SEM图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
实施例1
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C85%、SiC15%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1925℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为96.24±0.26%。
实施例2
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C 85%、SiC15%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1950℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100±0.18%。
实施例3
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C82%、SiC15%、Al3%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1800℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为95.16±0.10%,维氏硬度为28.81±0.12GPa,断裂韧性为4.21±0.09MPa.m1/2。
实施例4
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C 82%、SiC15%、Al3%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1850℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100±0.14%,维氏硬度为28.86±0.14GPa,断裂韧性为5.10±0.21MPa.m1/2。
实施例5
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80%、SiC15%、Al5%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1725℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为99.17±0.23%,维氏硬度为23.34±0.06GPa,断裂韧性为5.40±0.16MPa.m1/2。
实施例6
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80%、SiC15%、Al5%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1775℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100±0.17%,维氏硬度为26.24±0.16GPa,断裂韧性为5.42±0.25MPa.m1/2。
实施例7
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78%、SiC15%、Al7%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1700℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为99.87±0.15%,维氏硬度为24.62±0.08GPa,断裂韧性为5.66±0.22MPa.m1/2。
实施例8
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78%、SiC15%、Al7%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1725℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100±0.26%,维氏硬度为23.52±0.09GPa,断裂韧性为.52±0.07MPa.m1/2。
实施例9
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C75%、SiC15%、Al10%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1625℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为92.61±0.29%。
实施例10
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C75%、SiC15%、Al10%进行配料,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨模具内壁,将过筛后的粉料压于石墨模具中,预压10MPa,保压5分钟,将装有粉末的石墨模具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30MPa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1650℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100±0.06%,维氏硬度为23.02±0.18GPa,断裂韧性为7.54±0.24MPa.m1/2。
实施例1-10的组分含量、烧结工艺和力学性能如表1所示,由表1可知,当不添加金属Al时,B4C陶瓷材料达到完全致密的烧结温度高达1950℃,但由于性能太差,无法测量得到硬度和断裂韧度。随着金属Al含量增加,致密度达到100%的烧结温度降低,同时硬度降低,断裂韧度升高。当Al的含量达到10%,烧结温度为1625℃时,材料不能致密,烧结温度升高到1650℃时,,硬度最低,韧度最高。因此,金属Al含量不是越多越好,当金属相含量为3%、烧结温度为1850℃时(实施例4),碳化硼陶瓷的综合力学性能最好,致密度为100±0.14%,维氏硬度为28.86±0.14GPa,断裂韧性为5.10±0.21MPa.m1/2。
表1不同Al含量和不同烧结温度对B4C/SiC/Al陶瓷力学性能的影响

Claims (6)

1.一种碳化硼陶瓷材料,其特征在于,包含如下组分:B4C75%-82%、SiC15%、Al3%-10%,上述组分以重量百分数计。
2.根据权利要求1所述的材料,其特征在于,包含如下组分:B4C82%、SiC15%、Al3%,上述组分以重量百分数计。
3.一种制备权利要求1-2任一项所述的材料的方法,其特征在于,包括如下步骤:
(1)按比例称取B4C、SiC、Al粉末;
(2)将步骤1的粉料混合,以无水乙醇为介质,在超声震荡机上震荡2小时;
(3)将震荡后的混合粉料进行干燥,然后研磨并过筛;
(4)将混合粉体装入模具;
(5)预压成型;
(6)氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1625-1925℃,保温3-5min,随后随炉冷却,制得碳化硼陶瓷材料。
4.根据权利要求3所述的方法,其特征在于,步骤(4)中,所述模具为石墨模具,混合粉末与石墨模具内壁之间设置有碳纸,所述混合粉末与上、下压头之间设置有碳纸。
5.根据权利要求4所述的方法,其特征在于,将碳纸紧贴于石墨模具内壁,碳纸与模具内壁接触面,碳纸与上、下压头接触面涂有氮化硼。
6.根据权利要求3所述的方法,其特征在于,所述步骤5中,预压时间为5min,压力10MPa。
CN201910271200.3A 2019-04-04 2019-04-04 一种碳化硼陶瓷材料及其制备方法 Pending CN110028320A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910271200.3A CN110028320A (zh) 2019-04-04 2019-04-04 一种碳化硼陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910271200.3A CN110028320A (zh) 2019-04-04 2019-04-04 一种碳化硼陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110028320A true CN110028320A (zh) 2019-07-19

Family

ID=67237536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910271200.3A Pending CN110028320A (zh) 2019-04-04 2019-04-04 一种碳化硼陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110028320A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059157A (zh) * 2021-03-09 2021-07-02 南京理工大学 一种sps有压烧结超细晶wc基硬质合金异形刀具的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402441A (zh) * 2014-10-28 2015-03-11 东华大学 一种低温快速烧结制备碳化硼陶瓷材料的方法
CN105861904A (zh) * 2016-06-27 2016-08-17 哈尔滨工业大学 一种B4C/Al复合材料的制备方法
CN105924176A (zh) * 2016-04-25 2016-09-07 北京理工大学 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN108516832A (zh) * 2018-04-12 2018-09-11 南京理工大学 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
CN108794013A (zh) * 2018-07-26 2018-11-13 北京理工大学 一种b4c陶瓷块体及其快速制备方法
CN109336607A (zh) * 2018-11-12 2019-02-15 东莞理工学院 一种碳化硼制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402441A (zh) * 2014-10-28 2015-03-11 东华大学 一种低温快速烧结制备碳化硼陶瓷材料的方法
CN105924176A (zh) * 2016-04-25 2016-09-07 北京理工大学 碳化硼基复相陶瓷及其放电等离子烧结制备方法
CN105861904A (zh) * 2016-06-27 2016-08-17 哈尔滨工业大学 一种B4C/Al复合材料的制备方法
CN108516832A (zh) * 2018-04-12 2018-09-11 南京理工大学 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
CN108794013A (zh) * 2018-07-26 2018-11-13 北京理工大学 一种b4c陶瓷块体及其快速制备方法
CN109336607A (zh) * 2018-11-12 2019-02-15 东莞理工学院 一种碳化硼制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059157A (zh) * 2021-03-09 2021-07-02 南京理工大学 一种sps有压烧结超细晶wc基硬质合金异形刀具的方法

Similar Documents

Publication Publication Date Title
CN108179302B (zh) 一种高导热金刚石/铜复合材料的制备方法
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
WO1988005032A1 (en) Silicon carbide sintering
CN109928756B (zh) 一种碳化硅增强碳基复合材料及制备方法
US20040238794A1 (en) Microwave processing of composite bodies made by an infiltration route
CN101967059B (zh) 一种碳化硅防弹陶瓷的制备方法
CN108516832A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺
CN101323536A (zh) 氮化硼多孔陶瓷保温材料、制备方法及其应用
CN105294084A (zh) 一种高硬高强韧氧化铝陶瓷复合材料及其制备方法
CN109336607A (zh) 一种碳化硼制备方法
CN104030686B (zh) 一种高韧性碳化硅陶瓷及其制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN110395988A (zh) 一种高强度氮化硼陶瓷及其制备方法
KR20080007244A (ko) 탄화붕소 부재 및 이것의 제조 방법
CN112456989A (zh) 一种二氧化硅靶坯的制备方法
US5294382A (en) Method for control of resistivity in electroconsolidation of a preformed particulate workpiece
CN102219519A (zh) 一种碳化硅防弹陶瓷材料及其制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN110028320A (zh) 一种碳化硼陶瓷材料及其制备方法
Yoshizawa et al. Preparation of high fracture toughness alumina sintered bodies from bayer aluminum hydroxide
CN108314455B (zh) 碳化硅陶瓷及其制备方法和应用
CN108774065B (zh) 一种SiC/MCMBs复合材料及其制备方法和应用
CN106478112A (zh) 一种高硬度高韧性b4c‑w2b5复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190719

RJ01 Rejection of invention patent application after publication