CN104529499A - 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法 - Google Patents

一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法 Download PDF

Info

Publication number
CN104529499A
CN104529499A CN201410817764.XA CN201410817764A CN104529499A CN 104529499 A CN104529499 A CN 104529499A CN 201410817764 A CN201410817764 A CN 201410817764A CN 104529499 A CN104529499 A CN 104529499A
Authority
CN
China
Prior art keywords
carbon composite
self
silicon
preparation
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410817764.XA
Other languages
English (en)
Other versions
CN104529499B (zh
Inventor
余木火
张晨宇
刘勇
柯盛包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201410817764.XA priority Critical patent/CN104529499B/zh
Publication of CN104529499A publication Critical patent/CN104529499A/zh
Application granted granted Critical
Publication of CN104529499B publication Critical patent/CN104529499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,包括:(1)制备聚硅硼氮烷PBSZ前驱体;将PBSZ前驱体在N2保护下溶解于甲苯溶液中,得到PBSZ甲苯溶液;随后转移至管式炉中,在N2保护下进行交联处理,经研磨和网筛得到SiBNC前驱体粉末;(2)将SiC纤维制成预制件,随后将SiBNC前驱体粉末和SiC纤维预制件进行热压处理,冷却后脱模,得到复合材料;转移至N2氛围保护的管式炉中陶瓷化,最后进行烧结,即得。本发明工艺相对简单,易操作,成本低,制备的碳化硅纤维增强硅硼氮碳复合材料均匀致密、高温稳定性好、抗氧化性能优异,尤其具有自愈合性能。

Description

一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
技术领域
本发明属于硅硼氮碳复合材料领域,特别涉及了一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法。
背景技术
随着近年来航空航天技术的跨越式进步,对高温陶瓷复合材料的性能提出更高的要求。其中,高温陶瓷基复合材料的有效使用时间是在航空航天高温氧化环境下服役的重要指标。航天器的损坏通常由其关键材料的细小裂纹开始,这些裂纹一般出现在材料表面下方,位置隐蔽、尺寸较小,无法直接观测。裂缝形成后在载荷作用下会不断生长,将大大削弱材料的承受能力,直至最终失效,极大的限制了陶瓷复合材料的应用,阻碍了航天器向更高速、更长寿命方向发展。因此,自愈合的陶瓷基复合材料是科研人员研究的热点之一。
中国专利CN101863665A(公开日为2010年10月20日)公开了一种自愈合抗氧化功能纤维增强陶瓷基复合材料的制备方法,该方法是采用浆料浸渍法向材料中引入硼粉作为活性填料,热处理过程中硼粉与有机前驱体产物以及保护气氛发生反应生成含硼化合物,最后再在复合材料表面施加抗氧化涂层。该方法的优点是重复性强、成本低。缺点是要借助引入硼粉做活性填料才能生成含硼化合物,硼含量、硼粉颗粒大小以及反应条件都需严格控制,操作复杂,过程繁琐。
中国专利CN102701771(公开日为2012年5月28号)公开了一种硅硼氮碳短纤增强硅硼氮碳(SiBNCf/SiBNC)复合材料的制备方法,该方法是采用热压成型技术制备以SiBNC陶瓷粉末为基体,SiBNC陶瓷纤维为增强纤维的陶瓷基复合材料。该方法的优点是制备工艺简单,周期短。缺点是制备的陶瓷基复合材料没有自愈合性,在较强的交变热载荷作用下,材料易产生裂纹不能得到及时修复而断裂,使用寿命较低。且由于SiBNC纤维制备困难,成本较高,不易成型预制件,采用SiBNC短纤维作为增强相,不能有效解决作为热结构件的强韧性和可靠性问题。
发明内容
本发明提供了一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,该方法工艺相对简单,易操作,成本低,制备的碳化硅纤维增强硅硼氮碳复合材料均匀致密、高温稳定性好、抗氧化性能优异,尤其具有自愈合性能。
本发明的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,包括:
(1)以三甲基硅、三氯化硼、甲胺反应得到聚硅硼氮烷PBSZ前驱体;将PBSZ前驱体在N2保护下溶解于甲苯溶液中,得到PBSZ甲苯溶液;随后转移至管式炉中,在N2保护下进行交联处理,经研磨和网筛得到SiBNC前驱体粉末;
(2)将SiC纤维制成预制件,随后将SiBNC前驱体粉末和SiC纤维预制件放置在模具中进行热压处理,冷却后脱模,得到碳化硅纤维增强硅硼氮碳复合材料;转移至N2氛围保护的管式炉中陶瓷化,最后进行烧结,即得自愈合碳化硅纤维增强硅硼氮碳复合材料。
所述步骤(1)中的PBSZ甲苯溶液的浓度为70-100%。
所述步骤(1)中的管式炉升温速度为1-10℃/min,交联温度为150-230℃,交联时间为1-3h。
所述步骤(1)中的SiBNC前驱体粉末粒径为100-300μm。
所述步骤(2)中的SiC纤维制成2.5维机织或者3维编织预制件,纤维体积分数为35%~55%。
所述步骤(2)中的热压温度为200-230℃,热压时间为2-3h。
所述步骤(2)中的陶瓷化具体为在1400-1600℃下裂解2-5h,升温速度为1-10℃/min。
所述步骤(2)中的烧结温度为1300-1500℃,烧结时间为1-3h。
SiBNC陶瓷具有高温稳定性好,抗结晶温度高、热膨胀系数小等优异特性,可满足多种特殊要求,是高温抗氧化陶瓷基复合材料理想的基体材料之一。SiC纤维高温力学性能优良、制备工艺成熟、获取方便、成本较低,与SiBNC陶瓷热膨胀系数相匹配,两者能很好的结合。SiC连续纤维增韧补强SiBNC陶瓷基复合材料能最大限度抑制陶瓷缺陷的体积效应,有效偏折裂纹和最终纤维拔出来消耗断裂能,从而发挥纤维的增韧和补强作用。且经高温抗氧化处理后的碳化硅纤维增强硅硼氮碳复合材料具有优异的自愈合性,高温环境中材料表面产生的裂纹和空隙能得到及时填补,实现材料孔洞和裂纹的自愈合,材料寿命得到提高。自愈合碳化硅纤维增强硅硼氮碳复合材料力学性能优良、对裂纹不敏感、不发生灾难性损坏、寿命更长久、应用更广泛。
本发明制备的自愈合碳化硅纤维增强硅硼氮碳复合材料均匀致密、力学性能优异、对裂纹不敏感、不易发生灾难性损坏。特别的,高温热处理后的碳化硅纤维增强硅硼氮碳复合材料具有优异的自愈合性,高温环境中材料表面产生的裂纹和空隙能及时得到填补,实现材料孔洞和裂纹的自愈合,材料致密性、强度、寿命都得到提高,在航空航天领域的应用前景更广阔。
有益效果
(1)本发明的制备工艺简单,无特殊设备要求,可实施性强;
(2)本发明制备的自愈合碳化硅纤维增强硅硼氮碳复合材料成分均匀、高温稳定性好、高温抗氧化性能优异,尤其具有自愈合性。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
配制浓度为70%的聚硅硼氮烷无水甲苯溶液,将配置好的溶液转移至氮气保护的高温管式炉中,炉内温度从室温以1℃/min的速率升温至150℃并恒温加热1h进行交联处理。将交联后SiBNC陶瓷前驱体经研磨和60目筛网得到粒径为100μm的SiBNC陶瓷粉末,SiC预制件类型为2.5维机织,纤维体积分数控制为40%;将研磨后的SiBNC陶瓷粉末与SiC纤维预制件放置在模具中,200℃下在热压设备中热压2h,冷却后脱模,得到碳化硅纤维增强硅硼氮碳复合材料。将复合材料在氮气流下以1℃/min的速率升温至1400℃保温2h裂解陶瓷化,再将陶瓷化的碳化硅纤维增强硅硼氮碳复合材料在温度为1300℃的空气中烧结1h,得到自愈合碳化硅纤维增强硅硼氮碳复合材料。经处理后的复合材料,密度从1.55g/cm3提高到1.78g/cm3,气孔率下降44%。
实施例2
配制浓度为85%的聚硅硼氮烷无水甲苯溶液,将配置好的溶液转移至氮气保护的高温管式炉中,炉内温度从室温以5℃/min的速率升温至190℃并恒温加热2h进行交联处理。将交联后SiBNC陶瓷前驱体经研磨和60目筛网得到粒径为200μm的SiBNC陶瓷粉末,SiC纤维预制件类型为3维编织,纤维体积分数控制为45%;将研磨后的SiBNC陶瓷粉末与SiC纤维预制件放置在模具中,215℃下在热压设备中热压2.5h,冷却后脱模,得到碳化硅纤维增强硅硼氮碳复合材料。将复合材料在氮气流下以5℃/min的速率升温至1500℃保温3.5h裂解陶瓷化,再将陶瓷化的碳化硅纤维增强硅硼氮碳复合材料在温度为1400℃的空气中烧结2h,得到自愈合碳化硅纤维增强硅硼氮碳复合材料。经处理后的复合材料,密度从1.55g/cm3提高到1.80g/cm3,气孔率下降44%。
实施例3
配制浓度为100%的聚硅硼氮烷无水甲苯溶液,将配置好的溶液转移至氮气保护的高温管式炉中,炉内温度从室温以10℃/min的速率升温至230℃并恒温加热3h进行交联处理。将交联后SiBNC陶瓷前驱体经研磨和60目筛网得到粒径为300μm的SiBNC陶瓷粉末,SiC纤维预制件类型为3维编织,纤维体积分数控制为52%;将研磨后的SiBNC陶瓷粉末与SiC纤维预制件放置在模具中,230℃下在热压设备中热压3h,冷却后脱模,得到碳化硅纤维增强硅硼氮碳复合材料。将复合材料在氮气流下以10℃/min的速率升温至1600℃保温5h裂解陶瓷化,再将陶瓷化的碳化硅纤维增强硅硼氮碳复合材料在温度为1500℃的空气中烧结3h,得到自愈合碳化硅纤维增强硅硼氮碳复合材料。经处理后的复合材料,密度从1.55g/cm3提高到1.82g/cm3,气孔率下降44%。

Claims (8)

1.一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,包括:
(1)以三甲基硅、三氯化硼、甲胺反应得到聚硅硼氮烷PBSZ前驱体;将PBSZ前驱体在N2保护下溶解于甲苯溶液中,得到PBSZ甲苯溶液;随后转移至管式炉中,在N2保护下进行交联处理,经研磨和网筛得到SiBNC前驱体粉末;
(2)将SiC纤维制成预制件,随后将SiBNC前驱体粉末和SiC纤维预制件放置在模具中进行热压处理,冷却后脱模,得到碳化硅纤维增强硅硼氮碳复合材料;转移至N2氛围保护的管式炉中陶瓷化,最后进行烧结,即得自愈合碳化硅纤维增强硅硼氮碳复合材料。
2.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(1)中的PBSZ甲苯溶液的浓度为70-100%。
3.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(1)中的管式炉升温速度为1-10℃/min,交联温度为150-230℃,交联时间为1-3h。
4.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(1)中的SiBNC前驱体粉末粒径为100-300μm。
5.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(2)中的SiC纤维制成2.5维机织或者3维编织预制件,纤维体积分数为35%~55%。
6.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(2)中的热压温度为200-230℃,热压时间为2-3h。
7.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(2)中的陶瓷化具体为在1400-1600℃下裂解2-5h,升温速度为1-10℃/min。
8.根据权利要求1所述的一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法,其特征在于:所述步骤(2)中的烧结温度为1300-1500℃,烧结时间为1-3h。
CN201410817764.XA 2014-12-19 2014-12-19 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法 Expired - Fee Related CN104529499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410817764.XA CN104529499B (zh) 2014-12-19 2014-12-19 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410817764.XA CN104529499B (zh) 2014-12-19 2014-12-19 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104529499A true CN104529499A (zh) 2015-04-22
CN104529499B CN104529499B (zh) 2016-09-07

Family

ID=52845186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410817764.XA Expired - Fee Related CN104529499B (zh) 2014-12-19 2014-12-19 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104529499B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152670A (zh) * 2015-07-01 2015-12-16 西北工业大学 一种SiC纳米线增强SiBCN陶瓷的制备方法
CN105399452A (zh) * 2015-10-29 2016-03-16 西北工业大学 一种陶瓷基复合材料快速制备方法
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法
CN107879743A (zh) * 2017-09-28 2018-04-06 中国空间技术研究院 一种超高温陶瓷的低温烧结方法
CN108947538A (zh) * 2018-07-27 2018-12-07 成都成维精密机械制造有限公司 一种SiC纤维增强陶瓷基复合材料的制备方法
CN112851359A (zh) * 2021-01-22 2021-05-28 哈尔滨工业大学 吸波型SiBCN纳米纤维及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945062A (en) * 1992-03-17 1999-08-31 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
CN101863665A (zh) * 2009-04-15 2010-10-20 中国科学院上海硅酸盐研究所 自愈合抗氧化功能纤维增强陶瓷基复合材料的制备方法
CN102701771A (zh) * 2012-05-28 2012-10-03 东华大学 一种SiBNC纤维/SiBNC复合材料的制备方法
CN102910927A (zh) * 2012-11-16 2013-02-06 中国航空工业集团公司北京航空制造工程研究所 一种自愈合碳化硅陶瓷基复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945062A (en) * 1992-03-17 1999-08-31 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
CN101863665A (zh) * 2009-04-15 2010-10-20 中国科学院上海硅酸盐研究所 自愈合抗氧化功能纤维增强陶瓷基复合材料的制备方法
CN102701771A (zh) * 2012-05-28 2012-10-03 东华大学 一种SiBNC纤维/SiBNC复合材料的制备方法
CN102910927A (zh) * 2012-11-16 2013-02-06 中国航空工业集团公司北京航空制造工程研究所 一种自愈合碳化硅陶瓷基复合材料的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152670A (zh) * 2015-07-01 2015-12-16 西北工业大学 一种SiC纳米线增强SiBCN陶瓷的制备方法
CN105399452A (zh) * 2015-10-29 2016-03-16 西北工业大学 一种陶瓷基复合材料快速制备方法
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法
CN106966748B (zh) * 2016-11-23 2018-04-03 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法
CN107879743A (zh) * 2017-09-28 2018-04-06 中国空间技术研究院 一种超高温陶瓷的低温烧结方法
CN107879743B (zh) * 2017-09-28 2020-06-09 中国空间技术研究院 一种超高温陶瓷的低温烧结方法
CN108947538A (zh) * 2018-07-27 2018-12-07 成都成维精密机械制造有限公司 一种SiC纤维增强陶瓷基复合材料的制备方法
CN112851359A (zh) * 2021-01-22 2021-05-28 哈尔滨工业大学 吸波型SiBCN纳米纤维及其制备方法

Also Published As

Publication number Publication date
CN104529499B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN104529499A (zh) 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
EP3549926B1 (en) Method for preparing c/c-sic composite material part
CN102976756B (zh) 连续碳纤维增强的C-SiC双元基复合材料及其制备方法
CN103553616B (zh) 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
CN106946582B (zh) 一种大尺寸异型碳基复合材料构件及其制备方法
CN106977217B (zh) 一种高强高韧性碳化硅纤维增强碳化硅陶瓷基复合材料的制备方法
CN109251052B (zh) 一种c/c复合材料及其制备方法
CN109055874B (zh) 一种界面层增强铝合金-碳化硅双基纤维复合材料及其制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
CN107141004B (zh) 一种碳化硼复合材料及其制备方法
CN102924106B (zh) 一种碳-碳化硅复合材料的制备方法
CN106342033B (zh) 碳纤维增强超高温陶瓷基复合材料的制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN105016759A (zh) 一种C/SiC复合材料的快速制备方法
CN111099911A (zh) 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN108101566B (zh) Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法
CN102173813A (zh) 一种含硼化锆复相陶瓷材料的制备方法
CN106747555B (zh) 一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法
CN108484173B (zh) SiCf/SiC复合材料及其制备方法
CN104926346B (zh) 一种含界面相的氧化铝纤维织物增强碳化硅陶瓷及其制备方法
CN105294084A (zh) 一种高硬高强韧氧化铝陶瓷复合材料及其制备方法
CN114315394A (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160907

Termination date: 20181219

CF01 Termination of patent right due to non-payment of annual fee