CN107879743B - 一种超高温陶瓷的低温烧结方法 - Google Patents

一种超高温陶瓷的低温烧结方法 Download PDF

Info

Publication number
CN107879743B
CN107879743B CN201710900047.7A CN201710900047A CN107879743B CN 107879743 B CN107879743 B CN 107879743B CN 201710900047 A CN201710900047 A CN 201710900047A CN 107879743 B CN107879743 B CN 107879743B
Authority
CN
China
Prior art keywords
temperature
sintering
ceramic
organic precursor
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710900047.7A
Other languages
English (en)
Other versions
CN107879743A (zh
Inventor
李秉洋
王鹏飞
张雁
曹莹泽
王博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201710900047.7A priority Critical patent/CN107879743B/zh
Publication of CN107879743A publication Critical patent/CN107879743A/zh
Application granted granted Critical
Publication of CN107879743B publication Critical patent/CN107879743B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

本发明涉及一种超高温陶瓷的低温烧结方法,属于致密陶瓷制备技术领域,所述的超高温陶瓷是指高温环境下(2000℃以上)能够保持化学稳定性的一种材料,主要包括硼化物、碳化物在内的一些高熔点过渡金属化合物,所述的低温烧结是指在1650‑1750℃温度下进行烧结。使用本发明的方法制备的超高温陶瓷的致密度高。

Description

一种超高温陶瓷的低温烧结方法
技术领域
本发明涉及一种超高温陶瓷的低温烧结方法,属于致密陶瓷制备技术领域,所述的超高温陶瓷是指高温环境下(2000℃以上)能够保持化学稳定性的一种材料,主要包括硼化物、碳化物在内的一些高熔点过渡金属化合物,所述的低温烧结是指在1650-1750℃温度下进行烧结。
背景技术
由于在耐高温、力学、摩擦学、电学、传热等方面具有优异的性能,超高温陶瓷(Ultra-high Temperature Ceramics,UHTCs)无论是作为高温结构材料还是功能材料都得到了广泛的关注。与传统氧化物陶瓷的本质区别在于超高温陶瓷(非氧化物陶瓷)具有很强的共价键,这一特性使其具有以上优异性能的同时也为其烧结制备带来了巨大的困难。以ZrB2为例,在无压状态下ZrB2是无法烧结致密的,而热压烧结ZrB2的理论烧结温度也在1950℃以上,由于烧结温度过高,能量消耗巨大,致密度达不到实际使用需求(95%以上),严重限制了超高温陶瓷材料的应用。因此,为了在较低的温度下获得高致密度超高温陶瓷材料,烧结助剂是必不可少的。
比较典型的是添加在较低温度下能够形成液相的氧化物作为烧结助剂,但是存在于晶界的氧化物必将降低材料的高温力学性能、电学性能及传热特性,难以满足对非氧化物陶瓷高性能的要求,因而逐渐被另一类烧结助剂-非氧化物所取代。非氧化物烧结助剂主要通过与主晶相形成固溶体,或反应活化,或形成低共融点,产生液相。目前非氧化物烧结助剂主要是以晶体粉末的形式添加,两者都属于高共价键非氧化物,原子自扩散系数低,这类烧结助剂在1900℃以上才能发挥作用实现致密化,为了提高烧结助剂的活性,往往采用超细粉体,对于非氧化物粉体来说,超细粉体制备困难,且易带入氧等杂质。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种超高温陶瓷的低温烧结方法,该烧结方法基于有机前驱体裂解引入非晶相非氧化物烧结助剂,突破了传统非氧化物烧结助剂以晶体形式添加的方式,提高了非氧化物烧结助剂的助烧能力。有机前驱体溶液在低温发生裂解,裂解产物为SiBCN四元非晶体系,其作为烧结助剂在整个烧结过程中基本保持非晶相状态。利用非晶结构化学组成相容性大,原子堆积密度小,存在大量的原子尺度空隙等特点,在较低的温度下促进陶瓷颗粒迁移、重排,降低了烧结温度,并最终获得高致密度陶瓷体。
一种超高温陶瓷的低温烧结方法,该方法的步骤包括:
(1)将有机前驱体加入到有机溶剂中,得到有机前驱体溶液;
(2)将陶瓷粉体与步骤(1)中得到的有机前驱体溶液进行混合,得到混合浆料,对混合浆料进行球磨,然后室温静置1-1.5h,得到混合物;静置后的混合物在有利于排除混合大颗粒间宏观气孔;
(3)将步骤(2)得到的静置后的混合物装入石墨模具中,然后在40-45MPa下冷压10-15min,然后再在热压烧结炉中进行烧结;
所述的步骤(1)中,有机前驱体为聚硼硅氮烷,由三氯化硼、甲基乙烯二氯、甲基二氯硅烷、六甲基二硅氮烷共聚反应制得,常温下为淡黄色粘稠状液体;
所述的步骤(1)中,有机溶剂为正己烷;
所述的步骤(1)中,有机前驱体与正己烷的体积比为1:3-5;
所述的步骤(2)中,陶瓷粉体为亚微米级超高温陶瓷粉体,如ZrB2,SiC等,平均颗粒粒径为0.7μm,所述的有机前驱体与陶瓷粉体的质量比1:3-4;
所述的步骤(3)中,石墨模具为
Figure BDA0001422961980000021
圆柱形石墨模具;
所述的步骤(3)中,进行烧结时的温度程序为:首先以18-20℃/min的升温速率升至800-1000℃,保温0.5-1h;再以3-5℃/min的升温速率升至1650-1750℃,并分别在1200℃、1350℃、最高温保温1-1.5h,之后随炉冷却;进行烧结时的压力程序为:当温度达到400-450℃时开始加压,且压力在10-15min之内达到设定压力40-45MPa,并保压至烧结结束;
所述的步骤(3)中,烧结炉中带有轴向位移计,可实时测量压头位移,进而获得陶瓷烧结体在烧结过程中的轴向收缩位移量。
有益效果
(1)本发明将烧结助剂以其前驱体的形式直接与陶瓷粉体混合,烧结过程伴随着有机前驱体的裂解,减少了烧结工序、降低了引入氧杂质的可能性。
(2)由于有机前驱体裂解是一个缓慢的过程,本发明涉及到的烧结助剂的添加方式实现了裂解过程与烧结过程同步,有效延长了烧结助剂的助烧时间,降低能耗。
(3)低温阶段设置多步保温程序可充分发挥烧结助剂SiBCN在1600℃以下非晶态的结构特性,相比较晶体粉末作为烧结助剂,在这一烧结温度范围内(<1600℃)添加非晶态烧结助剂其烧结致密性大幅度提升。
(4)将聚硼硅氮烷溶于正己烷溶剂,再与陶瓷粉体混合,球磨30-35min,使得浓稠的聚硼硅氮烷被正己烷溶剂稀释后均匀包裹在陶瓷颗粒表面。置于室温环境下静置1-1.5h后,正己烷充分挥发,将混合粉料在40-45MPa下冷压10-15min有利于排除混合大颗粒间宏观气孔。炉温以18-20℃/min的升温速率升至800-1000℃,保温0.5-1h,这一过程中有机前驱体发生固化反应,伴随着有机-无机转化过程,有机前驱体逐渐发生裂解得到SiBCN四元非晶体系,同时会产生大量的H2,CH4等气体,保温过程中气体逐渐被排出。再以3-5℃/min的升温速率升至1650-1750℃,并分别在1200℃、1350℃、最高温保温1-1.5h,在此温度范围内,SiBCN非晶体系内大量的不饱和活性基团发生不规则运动,并伴随着旧键的断裂和新键的生成,这一传质过程作为驱动力有效地促进了ZrB2陶瓷颗粒迁移、重排,设置保温程序以保证该温度下的传质过程充分进行。SiBCN非晶体系在1600℃开始逐渐析出纳米晶体SiC,在烧结末期,纳米尺寸晶体SiC以及裂解产生的自由碳有效抑制了陶瓷粉体颗粒粗化,促进晶界扩散,带来了进一步的致密化,并最终获得结构致密、晶粒尺寸均匀的超高温陶瓷烧结体。
附图说明
图1为本发明ZrB2超高温陶瓷热压烧结方法温度/压力-时间曲线。
图2为本发明ZrB2超高温陶瓷热压烧结方法1000℃保温后的累计烧结收缩-温度曲线。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
实施例1
(1)将20ml聚硼硅氮烷加入到60ml正己烷溶剂中,然后与过筛的ZrB2陶瓷粉体按质量比1:4混合(即聚硼硅氮烷与陶瓷粉体的质量比为1:4),得到混合浆料,然后将混合浆料放入球磨机内,球磨35min,球磨转速为80r/min;
(2)步骤(1)完成后,取出混合浆料置于培养皿中,再用正己烷溶剂把残留在ZrO2磨球上的混合浆料冲洗下来,置于室温环境下静置1h后将混合粉料取出装入热压石墨模具中,石墨模具内壁涂覆BN,并用石墨纸将混合粉料和石墨模具内壁隔离,以防混合粉料与石墨模具内壁在高温下反应,用冷压机将混合粉料在40MPa下冷压10min;
(3)步骤(2)完成后,将石墨模具装入热压烧结炉中,炉温以20℃/min的升温速率升至1000℃,保温0.5h,再以5℃/min的升温速率升至1750℃,并分别在1200℃、1350℃、1750℃保温1.5h,之后随炉冷却到室温。400℃时开始施加压力,并在10min之内达到设定压力40MPa并保压至烧结结束,最终获得致密度高、颗粒尺寸均匀的超高温陶瓷烧结体。
本实施方式的有益效果是:本实施方式ZrB2超高温陶瓷的烧结方法与传统的烧结方法相比,将烧结温度由1950℃降低到了1750℃,降低了200℃,烧结致密度达到97.1%,满足超高温领域对陶瓷材料的致密度需求。
实施例2
(1)将聚硼硅氮烷加入到正己烷溶剂中,然后与过筛的SiC陶瓷粉体按质量比1:4混合,然后将混合浆料放入球磨机内,球磨30min,球磨转速控制在100r/min;
(2)步骤(1)完成后,取出混合浆料置于培养皿中,再用正己烷溶剂把残留在ZrO2磨球上的混合浆料冲洗下来,置于室温环境下静止1h后将略有湿度的混合粉料取出装入热压石墨模具中,石墨模具内壁涂覆BN,并用石墨纸将粉料和模具内壁隔离,以防粉料与模具内壁在高温下反应,用冷压机将混合浆料在40MPa下冷压10min;
(3)步骤(2)完成后,将石墨模具装入热压烧结炉中,炉温以20℃/min的升温速率升至1000℃,保温0.5h。再以3℃/min的升温速率升至1750℃,并分别在1200℃、1350℃、1750℃保温1h,之后随炉冷却到室温。450℃时开始施加压力,并在15min之内达到设定压力并保压至烧结结束,最终获得致密度高、颗粒尺寸均匀的超高温陶瓷烧结体。
本实施方式的有益效果是:本实施方式SiC超高温陶瓷的烧结方法与传统的烧结方法相比,将烧结温度由2000℃降低到了1750℃,降低了250℃,烧结致密度达到96.8%,满足超高温领域对陶瓷材料的致密度需求。
图1给出了ZrB2陶瓷粉体的热压烧结方法中温度、压力制度,SiBCN非晶体系在1000℃完全生成,通过传质作用促进陶瓷颗粒迁移、重排,图2给出了1000℃之后ZrB2陶瓷烧结体的烧结收缩位移曲线。
致密度(相对密度)测量方法:
采用阿基米德(Archimede)排水法测量材料的实际密度(体密度)。将样品在无水乙醇中超声清洗5min,再在去离子水中超声清洗5min,之后将样品取出在烘箱烘干。样品的干重用精度为0.0001g的分析天平测出,样品的表观密度可由下式计算出:
Figure BDA0001422961980000061
其中ρv为样品的实际密度(g/cm3);
m1为干燥样品的质量(g);
m2为样品在去离子水中称量的质量(g);
ρ为室温下去离子水的密度(25℃时约为0.9970739g/cm3)。
本实验中需计算出样品的相对密度,计算方法如下:
Figure BDA0001422961980000062
其中ρR为相对密度;
ρv为实际密度(g/cm3);
ρT为理论密度(g/cm3)。

Claims (1)

1.一种超高温陶瓷的低温烧结方法,其特征在于该方法的步骤包括:
(1)将有机前驱体加入到有机溶剂中,得到有机前驱体溶液;
(2)将陶瓷粉体与步骤(1)中得到的有机前驱体溶液进行混合,得到混合浆料,然后对混合浆料进行球磨,室温静置1-1.5h,得到混合物;
(3)将步骤(2)得到的静置后的混合物装入石墨模具中,然后在40-45MPa下冷压10-15min,然后再在热压烧结炉中进行烧结;
所述的步骤(1)中,有机前驱体为聚硼硅氮烷;
所述的步骤(1)中,有机溶剂为正己烷;
所述的步骤(1)中,有机前驱体与正己烷的体积比为1:3-5;
所述的步骤(2)中,陶瓷粉体为亚微米级超高温陶瓷粉体,平均颗粒粒径为0.7μm,所述的有机前驱体与陶瓷粉体的质量比1:3-4;
亚微米级超高温陶瓷粉体为ZrB2或SiC;
所述的步骤(3)中,石墨模具为
Figure FDA0002410911670000011
圆柱形石墨模具;
所述的步骤(3)中,进行烧结时的温度程序为:首先以18-20℃/min的升温速率升至800-1000℃,保温0.5-1h;再以3-5℃/min的升温速率升至1650-1750℃,并分别在1200℃、1350℃、最高温保温1-1.5h,之后随炉冷却;进行烧结时的压力程序为:当温度达到400-450℃时开始加压,且压力在10-15min之内达到设定压力40-45MPa,并保压至烧结结束;
所述的步骤(3)中,烧结炉中带有轴向位移计,实时测量压头位移,进而获得陶瓷烧结体在烧结过程中的轴向收缩位移量。
CN201710900047.7A 2017-09-28 2017-09-28 一种超高温陶瓷的低温烧结方法 Expired - Fee Related CN107879743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710900047.7A CN107879743B (zh) 2017-09-28 2017-09-28 一种超高温陶瓷的低温烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710900047.7A CN107879743B (zh) 2017-09-28 2017-09-28 一种超高温陶瓷的低温烧结方法

Publications (2)

Publication Number Publication Date
CN107879743A CN107879743A (zh) 2018-04-06
CN107879743B true CN107879743B (zh) 2020-06-09

Family

ID=61780937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710900047.7A Expired - Fee Related CN107879743B (zh) 2017-09-28 2017-09-28 一种超高温陶瓷的低温烧结方法

Country Status (1)

Country Link
CN (1) CN107879743B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732437A (zh) * 2020-07-08 2020-10-02 淄博星澳新材料研究院有限公司 超高温复相陶瓷粉体的制备方法及其致密化工艺
CN114031408A (zh) * 2021-12-22 2022-02-11 中山大学 一种SiBCN纳米颗粒的制备
CN114804862B (zh) * 2022-05-07 2023-05-05 中山大学 一种SiBCNMO纳米颗粒及其制备方法
CN117206988B (zh) * 2023-11-06 2024-02-27 苏州芯合半导体材料有限公司 一种劈刀及其表面粗化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807347A (zh) * 2006-01-26 2006-07-26 中国科学院上海硅酸盐研究所 硼化物—碳化硅复相陶瓷及其制备方法
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN101468918A (zh) * 2007-12-28 2009-07-01 北京有色金属研究总院 高纯硼化锆/硼化铪粉体及其超高温陶瓷靶材的制备方法
CN102964114A (zh) * 2012-11-09 2013-03-13 航天材料及工艺研究所 一种利用陶瓷前驱体制备复相陶瓷材料的方法
CN103288456A (zh) * 2013-05-17 2013-09-11 西安交通大学 一种无金属离子添加的高纯硅氮氧陶瓷的低温制备方法
CN103342559A (zh) * 2013-06-19 2013-10-09 东华大学 一种SiBN(C)陶瓷纤维先驱体的制备方法
CN104311090A (zh) * 2014-08-27 2015-01-28 航天材料及工艺研究所 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC 超高温陶瓷复合材料的方法
CN104529499A (zh) * 2014-12-19 2015-04-22 东华大学 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
CN105399452A (zh) * 2015-10-29 2016-03-16 西北工业大学 一种陶瓷基复合材料快速制备方法
CN106518087A (zh) * 2016-11-16 2017-03-22 哈尔滨工业大学 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060084566A1 (en) * 2004-10-19 2006-04-20 General Electric Company Multiphase ceramic nanocomposites and method of making them

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807347A (zh) * 2006-01-26 2006-07-26 中国科学院上海硅酸盐研究所 硼化物—碳化硅复相陶瓷及其制备方法
CN101468918A (zh) * 2007-12-28 2009-07-01 北京有色金属研究总院 高纯硼化锆/硼化铪粉体及其超高温陶瓷靶材的制备方法
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN102964114A (zh) * 2012-11-09 2013-03-13 航天材料及工艺研究所 一种利用陶瓷前驱体制备复相陶瓷材料的方法
CN103288456A (zh) * 2013-05-17 2013-09-11 西安交通大学 一种无金属离子添加的高纯硅氮氧陶瓷的低温制备方法
CN103342559A (zh) * 2013-06-19 2013-10-09 东华大学 一种SiBN(C)陶瓷纤维先驱体的制备方法
CN104311090A (zh) * 2014-08-27 2015-01-28 航天材料及工艺研究所 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC 超高温陶瓷复合材料的方法
CN104529499A (zh) * 2014-12-19 2015-04-22 东华大学 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
CN105399452A (zh) * 2015-10-29 2016-03-16 西北工业大学 一种陶瓷基复合材料快速制备方法
CN106518087A (zh) * 2016-11-16 2017-03-22 哈尔滨工业大学 一种以聚硅硼氮烷为添加剂的硅硼碳氮陶瓷的制备方法
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics;Biao Lu et al;《Ceramics International》;20150320;第41卷;第8543页第2节实验部分 *
有机物裂解SiBCN助烧剂引入方式对ZrB2陶瓷低温致密化的影响;封波等;《第十九届全国高技术陶瓷学术年会摘要集》;20161011;第48页 *

Also Published As

Publication number Publication date
CN107879743A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107879743B (zh) 一种超高温陶瓷的低温烧结方法
CN103724014B (zh) 一种高热导金刚石掺杂SiC陶瓷的制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
WO2016023200A1 (zh) 一种高致密度六方氮化硼陶瓷材料的制备方法
CN107082651B (zh) 一种碳化硅涂层及其制备方法
CN106938934B (zh) 一种超高温陶瓷基气凝胶材料及其制备方法
CN101323536A (zh) 氮化硼多孔陶瓷保温材料、制备方法及其应用
CN102746013A (zh) 一种轻质高强氮化硅结合碳化硅耐火材料及其制备方法
CN105272328B (zh) 一种SiC晶须增韧莫来石抗氧化涂层的制备方法
CN103011827A (zh) 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN104045350A (zh) 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法
CN108675772A (zh) 一种氧化铝/石墨烯核壳结构复合材料的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN103466646B (zh) 一种陶瓷硅酸镱粉体的固相反应制备方法
CN100488917C (zh) 逆反应烧结制备氮化硅碳化硅复合材料的方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN112110740B (zh) 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
CN110950664A (zh) 一种轻质高强碳化硅节能窑具及其制备方法
CN109748589A (zh) 一种高性能碳化硼陶瓷复合材料及制备方法
JPH05201765A (ja) 焼結炭化ケイ素モノリスの調製用バインダーとしてのボロシラザン
CN107778011A (zh) 一种石墨烯复合SiC木质陶瓷材料的制备方法
CN103803986B (zh) 一种Si-Al-O-N-B复相陶瓷材料及其制备方法
CN110156446A (zh) 用于铸造空心涡轮叶片的陶瓷模具的制作方法
CN104177090A (zh) 硼化锆-氮化硼二元导电陶瓷蒸发舟的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200609

Termination date: 20200928

CF01 Termination of patent right due to non-payment of annual fee