CN106882974B - 一种高HfC含量C/HfC-SiC复合材料的制备方法 - Google Patents

一种高HfC含量C/HfC-SiC复合材料的制备方法 Download PDF

Info

Publication number
CN106882974B
CN106882974B CN201510939868.2A CN201510939868A CN106882974B CN 106882974 B CN106882974 B CN 106882974B CN 201510939868 A CN201510939868 A CN 201510939868A CN 106882974 B CN106882974 B CN 106882974B
Authority
CN
China
Prior art keywords
hfc
composite material
silicon
content
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510939868.2A
Other languages
English (en)
Other versions
CN106882974A (zh
Inventor
于新民
孙同臣
王涛
裴雨辰
冯超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN201510939868.2A priority Critical patent/CN106882974B/zh
Publication of CN106882974A publication Critical patent/CN106882974A/zh
Application granted granted Critical
Publication of CN106882974B publication Critical patent/CN106882974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Abstract

本发明提出一种高HfC含量C/HfC‑SiC复合材料的制备方法,采用真空压力浸渍在C/C复合材料预制体中引入硅铪合金粉和碳先驱体,真空高温裂解后结合反应熔渗法,使熔融硅铪合金与碳反应,原位生成SiC和HfC,得到的复合材料基体中HfC的含量较高,具有良好的力学性能和超高温抗氧化性能。

Description

一种高HfC含量C/HfC-SiC复合材料的制备方法
技术领域
本发明涉及一种高HfC含量C/HfC-SiC复合材料的制备方法,属于超高温陶瓷基复合材料技术领域。
背景技术
C/SiC复合材料具有耐高温、抗氧化、高比强、高比模、抗热震等优点,是理想的高温结构复合材料,广泛应用于航空、航天领域。然而,随着新型超高马赫数飞行器的发展,对高温部位材料构件提出了更高温度的抗氧化耐烧蚀要求。采用难熔金属碳化物或硼化物对C/SiC复合材料基体进行改性制备所得的碳纤维增韧的超高温陶瓷基复合材料具有优良的超高温抗氧化性能,特别是HfC改性的C/SiC复合材料抗氧化温度可达到2200℃以上,抗氧化温度与基体中HfC含量有关,含量越高抗氧化温度越高。
采用HfC改性C/SiC复合材料的难度较大,目前主要通过化学气相渗透CVI和反应熔渗RMI两种手段。文献“Brain Reed,Jane Cochrane,Oxidation Resistant HfC-TaCRocket Thruster for Higher Performance Propellants,NAS3-27272.”研究了采用CVI方法制备C/HfC-TaC复合材料,并对其抗氧性能进行了测试,然而采用CVI进行HfC、TaC基体的致密化速率极慢,且HfC、TaC两相的共沉积难度较大,制备所得复合材料致密度较低,抗氧化性能不高。专利CN 103979974 A报道了采用RMI制备C/SiC-HfB2-HfC复合材料的方法。反应熔渗RMI都是后续引入硅铪合金粉,熔渗时多在复合材料表面,很难在复合材料内容形成HfC。因此,通过上述两种方法制备的复合材料中HfC、HfB2的含量都不高,一般不超过复合材料 体积分数的16%,复合材料的抗氧化耐烧蚀温度难以满足未来高性能航天飞行器的发展需求。
发明内容
本发明的目的在于克服现有技术不足,提供了一种能有效提高复合材料中超高温耐烧蚀组元HfC的高HfC含量的C/HfC-SiC复合材料的制备方法。
本发明的技术解决方案:一种高HfC含量C/HfC-SiC复合材料的制备方法,通过以下步骤实现:
第一步,复合材料预制体制备,
对碳纤维织物进行致密化,得到气孔率为30~50vol%的复合材料预制体;
本步骤为本领域公知技术,本领域技术人员可以需要采用化学气相渗透(CVI)方法或其他致密化方法,只要能保证致密化后复合材料预制体的气孔率为30~50vol%即可。限定为30~50vol%的气孔率是为了后续能更易将富含硅铪合金粉的碳先驱体溶液引入复合材料预制体中,气孔率太小,富含硅铪合金粉的碳先驱体溶液引入困难,最终得到的制品HfC含量低,达不到要求;气孔率太大,则在一次浸渍进入的料浆料过大,会在固化裂解过程中产生较大的热应力,导致纤维受损,材料力学性能变差。而气孔率在30~50vol%范围内变化时,同等条件下,气孔率越高,最终制品的HfC含量越高。
本发明采用的碳纤维织物没有特殊要求,可以是针刺结构、缝合结构或三维编织结构。
第二步,料浆制备,
A1.1、将碳先驱体和聚乙二醇溶解在溶剂中,得到混合溶液,所述的碳先驱体与聚乙二醇的质量比为25~35:1;
本发明对碳先驱体的种类没有特殊限制,只要是可以通过裂解工艺控制产生 具有多孔结构碳基体的树脂即可,常用的为呋喃树脂或酚醛树脂等。
本发明采用聚乙二醇作为分散剂,使硅铪合金粉在料浆中的均匀分散,碳先驱体与聚乙二醇的质量比为25~35:1时,对硅铪合金粉在料浆中的分散效果最佳,比例在上述范围内变化时,对最终制品的性能没有明显影响。
本发明的溶剂,起到将碳先驱体和聚乙二醇溶解混合均匀的作用,其含量和种类不做限制,只要能达到溶解碳先驱体和聚乙二醇目的即可,如采用常用的无水乙醇作为溶剂。
A1.2、在混合溶液中加入硅铪合金粉并球磨12~24小时得到料浆,所述碳先驱体与硅铪合金粉的质量比为1.5~2:1;
采用球磨方式在碳先驱体/聚乙二醇混合溶液中添加硅铪合金粉,球磨12~24小时,使浸渍料浆中硅铪合金粉分散较为均匀,从而保证固化裂解后基体中较为均匀地分布一定量的硅铪合金。
所述碳先驱体与硅铪合金粉的质量比为1.5~2:1,硅铪合金粉添加量太少,则碳基体中合金太少,熔渗后基体均匀性差;硅铪合金粉添加量太多,不利于浸渍液的浸渍和合金的均匀分散。相同条件下,在上述要求保护范围内,硅铪合金粉含量越高,最终制品中的HfC含量越高。
所述硅铪合金粉末采用市售产品,其粒径为100nm-1μm,硅铪合金粉末要求合金中硅的质量分数为1~6%,铪的质量分数为94~99%。
通过添加溶剂,将料浆粘度调节为100~200mP.s;料浆在合适的粘度保证了在后续浸渍中,料浆能充分浸渍到复合材料预制体中,使最终制品中的HfC含量高且分布均匀。料浆粘度在上述要求范围内变化时,对最终制品中HfC含量影响很小,工程中可忽略不计。
第三步,真空压力浸渍,
采用先真空浸渍后压力浸渍的方法,将第一步致密化的复合材料预制体浸渍在第二步制备的料浆中,使料浆中的硅铪合金粉和碳先驱体浸渍到预制体中;
本步骤为本领域公知技术,可以采用如下工艺,也可根据实际选择合适的工艺。真空浸渍压力为-0.09~-0.1MPa,时间1~3小时;压力浸渍压力为2.0~2.5MPa,时间1~3小时。
第四步,固化裂解,
将第三步浸渍了料浆的复合材料预制体,固化后在惰性气体保护下裂解,得到裂解后的预制体;
固化工艺为本领域公知技术,本领域技术人员可根据实际情况进行选择,也可采用如下优选固化工艺进行,加压固化的固化效果更好,固化和裂解后密度更高。
具体固化工艺如下:
将浸渍浆料后的复合材料预制体在1.5~2.5MPa压力下,80±5℃固化1~2小时,120±5℃固化1~2小时,180±5℃固化1~2小时,自然降温到室温。
所述的裂解工艺为:
A4.1、以(100±5)℃/h的速率升温到200±10℃,保温0.5~1小时;
A4.2、以(25~50)℃/h的速率升温到400±10℃,保温1~2小时;
A4.3、以(25~50)℃/h的速率升温到600±10℃,保温1~2小时;
A4.4、以(50~100)℃的速率升温到900±10℃,保温2~3小时后,自然降温到室温。
采用本步骤的裂解工艺,使预制体中的碳先驱体裂解后获得具有较多裂纹的碳基体,较多的裂纹的碳基体中自含一定量的硅铪合金,使基体碳与熔融合金的接触面积更大,熔渗后有更多的碳基体转换为HfC、SiC,保证了最终中高含量 的HfC。
第五步,重复第三、四步,直到裂解后的复合材料密度达到1.3~1.5g/cm3
密度太高,在后续反应熔渗过程中,硅铪合金难以进入复合材料内部,最终制品中HfC分布不均匀且含量较低;密度太低,会严重影响最终制品的力学性能。密度在上述要求范围内变化时,同等条件下,密度越低,最终制品中的HfC含量越高。
第六步,反应熔渗RMI,
在高于硅铪合金熔点50~100℃的真空条件下,将第五步得到的复合材料进行硅铪合金熔渗,得到高HfC含量C/HfC-SiC复合材料。反应熔渗RMI为本领域公知技术,本领域技术人员可以根据具体需求进行工艺参数的确定。
在本步骤中,硅铪合金熔渗到复合材料中,使熔渗的硅铪合金以及原复合材料内部的硅铪合金与预制体中的碳反应,原位生成SiC、HfC,得到C/HfC-SiC复合材料。通过内外同时反应熔渗,有效地提高了复合材料中的HfC含量。
本发明与现有技术相比的有益效果:
(1)本发明采用高孔隙率的预制体,使用真空压力浸渍方法,在预制体中引入碳先驱体的同时引入一定量的锆铪合金粉,在后续反应熔渗中,内外同时硅铪合金反应熔渗,有效地提高了复合材料中的HfC含量,HfC含量约为复合材料体积分数的27-45%;
(2)本发明采用特定的裂解工艺使预制体中的碳先驱体裂解后获得具有较多裂纹的碳基体,较多的裂纹碳基体中自含一定量的硅铪合金使基体碳与熔融合金的接触面积更大,熔渗后有更多的碳基体转换为HfC、SiC;
(3)本发明采用聚乙二醇做分散剂并结合球磨的方法,使浸渍料浆中金属合金粉分散较为均匀,从而保证固化裂解后基体中较为均匀地分布一定量的硅铪合金;
(4)本发明能够适用于高致密、快速、低成本制备超高温陶瓷基复合材料, 基体中高的HfC含量和均匀的分布,有效提升了复合材料的超高温抗氧化性能和力学性能。
附图说明
图1为本发明制备流程图。
具体实施方式
本发明的方法如图1所示,采用真空压力浸渍在C/C复合材料预制体中引入硅铪合金粉和碳先驱体,真空高温裂解后结合反应熔渗法,使熔融硅铪合金与碳反应,原位生成SiC和HfC,得到的复合材料基体中HfC的含量较高,具有良好的力学性能和超高温抗氧化性能。
以下结合附图和具体实例对本发明进行详细说明。
实施例1
针刺结构C/HfC-SiC复合材料的制备
1、复合材料预制体制备:采用化学气相渗透(CVI)方法对针刺碳纤维织物进行致密化,得到气孔率为50vol%的复合材料预制体。
2、料浆制备
将呋喃树脂、聚乙二醇溶解在无水乙醇中,加入硅铪合金粉并球磨24小时得到浆料。呋喃树脂与聚乙二醇的质量比为25:1,呋喃树脂与硅铪合金粉的质量比为1.5:1;通过无水乙醇含量调节浆料粘度为150mP.s。
3、真空压力浸渍
采用先真空浸渍后压力浸渍的方法,将预制体浸渍在浆料中,使浆料中的硅铪合金粉和呋喃树脂浸渍到预制体中。真空浸渍压力为-0.09~-0.1MPa,时间1小时;压力浸渍压力为2.0~2.5MPa,时间1小时。
4、固化裂解
将浸渍浆料后的预制体在1.5~2.5MPa压力下,80±5℃固化1小时,120±5℃固化1小时,180±5℃固化1小时,然后在氩气保护气氛下热处理,裂解获得预制体。具体裂解过程如下:以1小时100±5℃的速率升温到200℃,保温0.5小时后,以1小时25℃的速率升温到400℃,保温1小时后,以1小时25℃的速率升温到600℃,保温1小时后,以1小时50℃的速率升温到900℃,保温2小时后自然降温到室温。
5、重复进行步骤3和4,直至复合材料密度达到1.3g/cm3
6、反应熔渗RMI
在高于硅铪合金熔点100℃真空条件,将硅铪合金熔渗到步骤5所得的预制体中。所用硅铪合金中硅的质量分数为1.5%,铪的质量分数为98.5%,硅铪合金粉末的粒径分布范围为100nm~1μm。
最终制品中HfC含量~45%,2500K电弧风洞600秒后线烧蚀量0.2mm,常温弯曲强度345MPa。
实施例2
缝合结构C/HfC-SiC复合材料的制备
1、复合材料预制体制备:采用化学气相渗透(CVI)方法对缝合碳纤维织物进行致密化,得到气孔率为40vol%的复合材料预制体。
2、料浆制备:将氨酚醛树脂、聚乙二醇溶解在无水乙醇中,加入硅铪合金粉并球磨12小时得到浆料。氨酚醛树脂与聚乙二醇的质量比为30:1,碳先驱体与硅铪合金粉的质量比为1.5:1;通过无水乙醇含量调节浆料粘度为200mP.s。
3、真空压力浸渍:采用先真空浸渍后压力浸渍的方法,将预制体浸渍在浆料中,使浆料中的硅铪合金粉和碳先驱体浸渍到预制体中。真空浸渍压力为-0.09~-0.1MPa,时间1小时;压力浸渍压力为2.0~2.5MPa,时间1小时。
4、固化裂解:将浸渍浆料后的预制体在1.5~2.5MPa压力下,80±5℃固化1小时,120±5℃固化1小时,180±5℃固化1小时,然后在氩气保护气氛下热处理,裂解获得预制体。具体热处理裂解过程如下:以1小时100±5℃的速率升温到200℃,保温0.5小时后,以1小时40±5℃的速率升温到400℃,保温1小时后,以1小时35±5℃的速率升温到600℃,保温1小时后,以1小时75±5℃的速率升温到900℃,保温3小时后自然降温到室温。
5、重复进行步骤3和4,直至复合材料密度达到1.4g/cm3
6、反应熔渗RMI
在高于硅铪合金熔点100℃真空条件,将硅铪合金熔渗到步骤5所得的预制体中,反应熔渗RMI工艺同实施例1。所用硅铪合金中硅的质量分数为1%,铪的质量分数为99%,粉末的粒径分布范围为100nm~1μm。
最终制品中HfC含量~36%,2500K电弧风洞600秒后线烧蚀量0.27mm,常温弯曲强度333MPa。
实施例3
三维编织结构C/HfC-SiC复合材料的制备
1、复合材料预制体制备:采用化学气相渗透(CVI)方法对三维编织碳纤维织物进行致密化,得到气孔率为30vol%的复合材料预制体。
2、料浆制备:将硼酚醛树脂、聚乙二醇溶解在无水乙醇中,加入硅铪合金粉并球磨24小时得到浆料。硼酚醛树脂与聚乙二醇的质量比为35:1,碳先驱体与硅铪合金粉的质量比为1.5:1;通过无水乙醇含量调节浆料粘度为100mP.s。
3、真空压力浸渍:采用先真空浸渍后压力浸渍的方法,将预制体浸渍在浆料中,使浆料中的硅铪合金粉和碳先驱体浸渍到预制体中。真空浸渍压力为-0.09~-0.1MPa,时间1小时;压力浸渍压力为2.0~2.5MPa,时间1小时。
4、固化裂解:将浸渍浆料后的预制体在1.5-2.5MPa压力下,80±5℃固化1小时,120±5℃固化1小时,180±5℃固化1小时,然后在氩气保护气氛下热处理,裂解获得预制体。具体裂解过程如下:以1小时100±5℃的速率升温到200℃,保温0.5小时后,以1小时50℃的速率升温到400℃,保温1小时后,以1小时50℃的速率升温到600℃,保温1小时后,以1小时100℃的速率升温到900℃,保温2小时后自然降温到室温。
步骤5、重复进行步骤3和4,直到复合材料密度达到1.5g/cm3
步骤6、反应熔渗RMI
在高于硅铪合金熔点100℃真空条件,将硅铪合金熔渗到步骤5所得的复合材料中,反应熔渗RMI工艺同实施例1。所用硅铪合金中硅的质量分数为6%,铪的质量分数为94%,粉末的粒径为100nm~1μm。
最终制品中HfC含量~27%,2500K电弧风洞600秒后线烧蚀量0.32mm,常温弯曲强度290MPa。
实施例4
与实施例1相比,呋喃树脂与硅铪合金粉的质量比为2:1,其余与实施例1一致。
最终制品中HfC含量~40%,2500K电弧风洞600秒后线烧蚀量0.23mm,常温弯曲强度319MPa。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (5)

1.一种高HfC含量C/HfC-SiC复合材料的制备方法,其特征在于包括以下步骤:
第一步,复合材料预制体制备,
对碳纤维预制体进行致密化,得到气孔率为30~50vol%的复合材料预制体;
第二步,料浆制备,
A1.1、将碳先驱体和聚乙二醇溶解在溶剂中,得到混合溶液;
A1.2、在混合溶液中加入硅铪合金粉并球磨均匀后得到料浆,所述碳先驱体与硅铪合金粉的质量比为1.5~2:1;
第三步,真空压力浸渍,
采用先真空浸渍后压力浸渍的方法,将第一步致密化的复合材料预制体浸渍在第二步制备的料浆中;
第四步,固化裂解;
第五步,重复第三、四步,直到裂解后的复合材料密度达到1.3~1.5g/cm3
第六步,反应熔渗RMI,
在高于硅铪合金熔点50~100℃的真空条件下,将第五步得到的复合材料进行硅铪合金熔渗,得到高HfC含量C/HfC-SiC复合材料。
2.根据权利要求1所述的一种高HfC含量C/HfC-SiC复合材料的制备方法,其特征在于:所述第四步中裂解工艺为:
A4.1、以(100±5)℃/h的速率升温到200±10℃,保温0.5~1小时;
A4.2、以(25~50)℃/h的速率升温到400±10℃,保温1~2小时;
A4.3、以(25~50)℃/h的速率升温到600±10℃,保温1~2小时;
A4.4、以(50~100)℃的速率升温到900±10℃,保温2~3小时后,自然降温到室温。
3.根据权利要求1所述的一种高HfC含量C/HfC-SiC复合材料的制备方法,其特征在于:所述步骤A1.1中碳先驱体与聚乙二醇的质量比为25~35:1。
4.根据权利要求1所述的一种高HfC含量C/HfC-SiC复合材料的制备方法,其特征在于:所述碳先驱体为呋喃树脂或酚醛树脂。
5.根据权利要求1所述的一种高HfC含量C/HfC-SiC复合材料的制备方法,其特征在于:所述A1.2中料浆粘度为100~200mP.s。
CN201510939868.2A 2015-12-15 2015-12-15 一种高HfC含量C/HfC-SiC复合材料的制备方法 Active CN106882974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510939868.2A CN106882974B (zh) 2015-12-15 2015-12-15 一种高HfC含量C/HfC-SiC复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510939868.2A CN106882974B (zh) 2015-12-15 2015-12-15 一种高HfC含量C/HfC-SiC复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106882974A CN106882974A (zh) 2017-06-23
CN106882974B true CN106882974B (zh) 2020-06-16

Family

ID=59175230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510939868.2A Active CN106882974B (zh) 2015-12-15 2015-12-15 一种高HfC含量C/HfC-SiC复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106882974B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727049B (zh) * 2017-04-21 2021-03-19 中国科学院上海硅酸盐研究所 一种Cf/SiC-HfC超高温陶瓷基复合材料及其制备方法
CN109748595B (zh) * 2017-11-01 2021-10-22 航天特种材料及工艺技术研究所 一种混合渗剂、用途及反应熔渗制备方法
CN110028330B (zh) * 2018-01-11 2021-10-29 航天特种材料及工艺技术研究所 一种陶瓷基复合材料及其制备方法
CN108083832B (zh) * 2018-01-17 2020-11-10 长沙理工大学 一种C/C-HfC复合材料的高效低成本近净成形制备方法
CN110066185B (zh) * 2018-01-22 2022-03-04 航天特种材料及工艺技术研究所 一种C/C-SiC-Al复合材料及制备方法
CN111996473B (zh) * 2020-08-07 2021-05-28 航天特种材料及工艺技术研究所 一种变结构超高温陶瓷基复合材料及其制备方法
CN112374901B (zh) * 2020-11-19 2022-08-05 航天特种材料及工艺技术研究所 一种耐烧蚀改性C/SiC复合材料及其制备方法
CN112592194A (zh) * 2020-12-22 2021-04-02 西北工业大学 一种C/HfC-ZrC-SiC超高温陶瓷基复合材料及制备方法
CN115716760B (zh) * 2022-11-25 2023-09-26 航天特种材料及工艺技术研究所 一种C/SiC-HfC陶瓷基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708999A (zh) * 2009-12-11 2010-05-19 中国人民解放军国防科学技术大学 C/ZrC陶瓷基复合材料及其制备方法
CN102515870A (zh) * 2011-12-10 2012-06-27 西北工业大学 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN103058711A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708999A (zh) * 2009-12-11 2010-05-19 中国人民解放军国防科学技术大学 C/ZrC陶瓷基复合材料及其制备方法
CN102515870A (zh) * 2011-12-10 2012-06-27 西北工业大学 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN103058711A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法

Also Published As

Publication number Publication date
CN106882974A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN111099911B (zh) 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
CN109251052B (zh) 一种c/c复合材料及其制备方法
CN110028330B (zh) 一种陶瓷基复合材料及其制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
CN106882976B (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
CN111018537A (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
CN102976756B (zh) 连续碳纤维增强的C-SiC双元基复合材料及其制备方法
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN110627517B (zh) 一种梯度超高温陶瓷基复合材料及其制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN108892523B (zh) 一种基于单向带工艺的碳陶复合材料制备方法
CN112645723B (zh) 一种颗粒增强超高温陶瓷基复合材料的制备方法
CN110627514A (zh) 一种C/SiC-HfB2复合材料及其制备方法
CN110642634A (zh) 一种C/SiC-ZrB2复合材料及其制备方法
CN111662091A (zh) 一种短碳纤维增强Csf/SiC陶瓷基复合材料及其制备方法
CN104529499A (zh) 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
CN110963799A (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN108727049B (zh) 一种Cf/SiC-HfC超高温陶瓷基复合材料及其制备方法
CN112299865A (zh) 一种改性C/SiC复合材料及其制备方法
CN109851382A (zh) 一种C/C-TiC陶瓷基复合材料及原位反应法制备该陶瓷基复合材料的方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant