WO2022183527A1 - 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 - Google Patents

一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 Download PDF

Info

Publication number
WO2022183527A1
WO2022183527A1 PCT/CN2021/081044 CN2021081044W WO2022183527A1 WO 2022183527 A1 WO2022183527 A1 WO 2022183527A1 CN 2021081044 W CN2021081044 W CN 2021081044W WO 2022183527 A1 WO2022183527 A1 WO 2022183527A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
preparation
powder
sio
carbon fiber
Prior art date
Application number
PCT/CN2021/081044
Other languages
English (en)
French (fr)
Inventor
李晨辉
邹阳
胡梁
吴伟健
刘江安
史玉升
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022183527A1 publication Critical patent/WO2022183527A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of reaction sintered silicon carbide preparation, and more particularly relates to a complex-structure carbon fiber-SiC whisker reinforced SiSiC composite material and a preparation method.
  • SiC ceramic matrix composites are expected to be successfully applied in the above fields due to their excellent properties such as low density, high thermal conductivity, ablation erosion resistance and wear resistance.
  • SiC ceramics have high brittleness and high crack sensitivity, and their inherent difficulty in machining restricts the formation of this material into complex structural parts, which greatly limits its application range.
  • traditional processing methods have the problems of complex processes and high manufacturing costs.
  • the molding process of obtaining the green body by molding or cold isostatic pressing, and then processing it into the desired shape with the aid of numerical control machine equipment (CNC) relies heavily on the processing capacity of CNC.
  • CNC numerical control machine equipment
  • honeycomb structure The components of honeycomb structure) are expensive to process, and sometimes it is even difficult to meet the design requirements.
  • ceramic wet molding techniques including grouting, gel injection molding, and direct solidification molding, which have been widely used in recent years, can be used to prepare complex structures, these methods all require the help of molds, which are costly for small batch production. High, not suitable for personalization.
  • the ceramic wet molding technology needs to prepare a slurry with high solid content and good fluidity first, and the actual solid content of the slurry is difficult to exceed 70wt%, so it is difficult to avoid certain conditions in the later curing, degreasing and sintering stages of the green body.
  • the degree of shrinkage, the geometric accuracy of the sample is relatively low.
  • 3D printing additive manufacturing
  • SLS selective laser sintering
  • 3DP printing are represented by powder bed based additive manufacturing.
  • Material manufacturing technology has brought new possibilities for the rapid and efficient formation of large and complex ceramic composites.
  • technologies such as SLS and 3DP are suitable for the rapid manufacture of composite materials with complex structures and special shapes, and can meet the rapid prototyping manufacturing requirements of various ceramic parts such as whole and separate parts; Setting the support structure simplifies the post-processing procedure of the formed parts, which is expected to solve the difficult problems faced in the preparation of SiC ceramic matrix composites with complex structures.
  • CN200510020015.5 discloses a preparation method of laser sintering rapid prototyping SiC ceramics.
  • the complex-shaped SiC ceramic is obtained by processing, but the SiC powder used in this method needs to be sprayed and granulated to ensure good fluidity, which makes the cost of raw materials required by this method high and the preparation process is cumbersome.
  • the present invention provides a complex structure carbon fiber-SiC whisker reinforced SiSiC composite material and a preparation method.
  • a complex-shaped SiC-C f green body is formed by using a 3D printing technology, uniformly distributed SiC whiskers are generated inside the body by means of an in-situ synthesis technology, and densification is realized by combining a silicon infiltration process.
  • the SiSiC material obtained by this method contains two reinforcing phases, C f and SiC w , so it has excellent mechanical properties, and is especially suitable for high-end composite materials such as hypersonic aircraft thermal protection systems, aero-engine hot-end components, and high-performance brake pads. manufacturing.
  • a preparation method of a complex structure carbon fiber-SiC whisker reinforced SiSiC composite material comprising the steps:
  • the particle size distribution of SiC in the SiC-C f mixed powder described in step (a) is as follows: the particle size of 0.1-10 ⁇ m accounts for 0-2wt% of the total SiC powder, and the particle size of 10-25 ⁇ m accounts for the total SiC powder 22-35wt% of the SiC powder, and the particle size of 25-150 ⁇ m accounts for 63-78wt% of the total SiC powder.
  • 3D printing is performed in step (b) to form one of laser selective area sintering and 3DP.
  • the preparation method of the SiO 2 -C slurry described in step (c) is as follows: selecting amorphous silica, using nano carbon black as raw material, using water or ethanol as dispersion liquid, and using wet ball milling to make it fully mixed , after drying, grinding and crushing to obtain SiO 2 -C composite powder, and then mixing the SiO 2 -C composite powder with an organic solvent to obtain SiO 2 -C slurry.
  • the method of infiltrating the SiO 2 -C slurry in step (c) is vacuum infiltration or pressure infiltration.
  • the conditions for the first heat treatment in step (c) are vacuum or argon atmosphere or helium atmosphere, the temperature is 1300°C to 1600°C, and the temperature is kept for 3 to 6 hours.
  • the polycarbosilane infiltration in step (d) is vacuum infiltration or pressure infiltration.
  • the conditions for the second heat treatment in step (d) are an inert atmosphere or a reducing atmosphere
  • the inert atmosphere is an argon atmosphere or a helium atmosphere
  • the temperature is 1100°C to 1400°C
  • the temperature is kept for 1 to 4 hours.
  • the silicon infiltration process in step (e) is as follows: laying metal silicon particles on the bottom of the second green body, heating to 1500°C to 1700°C while vacuuming, holding for 1 to 6 hours, and cooling down.
  • a complex-structure carbon fiber-SiC whisker-reinforced SiSiC composite material is also protected, which is prepared by the aforementioned preparation method.
  • the preparation method of a complex structure carbon fiber-SiC whisker reinforced SiSiC composite material proposed by the present invention is vacuum-impregnated with SiO 2 -C slurry obtained by 3D printing and forming,
  • the in-situ synthesis technology enables the formation of uniformly distributed SiC whiskers in the material.
  • a complex structure carbon fiber-SiC whisker-reinforced SiSiC composite material is obtained by liquid-phase silicon infiltration.
  • the in-situ synthesis technology is used to generate SiC whiskers in the material to avoid It solves the problem that the direct introduction of SiC whiskers/fibers is difficult to disperse uniformly, and the mechanical mixing leads to the damage of the SiC whisker/fiber structure;
  • the chopped carbon fibers of the present invention and the SiC whiskers generated in situ form nano-micron cross-scale synergistic toughening, which is better than the toughening effect of single carbon fibers or SiC fibers as a reinforcing phase, and can greatly improve the material. brittleness.
  • the carbon fiber-SiC whisker-reinforced SiSiC composite material prepared based on the method provided by the present invention has excellent mechanical properties, and is suitable for high-end high-end such as hypersonic aircraft thermal protection systems, aero-engine hot-end components, and high-performance brake pads. It has broad application prospects in the field of equipment.
  • FIG. 1 is a morphological diagram of the complex-shaped carbon fiber-SiC whisker-reinforced SiSiC composite prepared in Example 1.
  • FIG. 1 is a morphological diagram of the complex-shaped carbon fiber-SiC whisker-reinforced SiSiC composite prepared in Example 1.
  • Figure 2 is based on the SEM test images of SiCw -SiC- Cf containing SiCw whiskers after step (c) of Example 1 and Comparative Example 1, wherein (a), (b), (c) in Figure 2 It is the test chart under the scale of 400 microns, 50 microns and 40 microns of Example 1; (d), (e) and (f) in Figure 2 are the scales of 400 microns, 50 microns and 40 microns of Comparative Example 1. test chart.
  • FIG. 3 is the XRD diffraction pattern of the SiSiC composite material prepared in Example 1.
  • the SiO 2 -C slurry is prepared by the following method:
  • Amorphous silica and nano carbon black are selected as raw materials, water or ethanol is used as dispersion liquid, wet ball milling is used to make them fully mixed, and after drying, they are ground and crushed to obtain SiO 2 -C composite powder, and then SiO 2 -C The composite powder is mixed with kerosene in a mass ratio of 1:8 to obtain SiO 2 -C slurry.
  • SiC-C f mixed powder (a) using SiC, C f , and thermoplastic phenolic resin as raw materials, and fully mixing to obtain a SiC-C f mixed powder;
  • the specific characteristics of SiC in the SiC-C f mixed powder are: powder with a particle size of 10-25 ⁇ m The SiC powder accounts for 22 wt % of the total SiC powder, and the powder with a particle size of 25-150 ⁇ m accounts for 78 wt % of the total SiC powder.
  • FIG. 1 is a morphological diagram of the complex-shaped carbon fiber-SiC whisker-reinforced SiSiC composite prepared in Example 1.
  • SiC-C f mixed powder (a) Using silicon carbide (SiC), chopped carbon fiber (C f ) and thermoplastic phenolic resin as raw materials, and fully mixing to obtain a SiC-C f mixed powder; the specific characteristics of SiC in the SiC-C f mixed powder.
  • SiC silicon carbide
  • C f chopped carbon fiber
  • thermoplastic phenolic resin thermoplastic phenolic resin
  • the sample obtained in the previous step is densified by the siliconizing process, the siliconizing temperature is 1650°C, the temperature is kept for 1.5h, and the complex structure carbon fiber-SiC whisker reinforced SiSiC composite material is obtained with the cooling of the furnace.
  • SiC-C f mixed powder (a) Using silicon carbide (SiC), chopped carbon fiber (C f ) and thermoplastic phenolic resin as raw materials, and fully mixing to obtain a SiC-C f mixed powder; the specific characteristics of SiC in the SiC-C f mixed powder It is as follows: the powder with a particle size of 0.1-10 ⁇ m accounts for 1 wt% of the total SiC powder, the powder with a particle size of 10-25 ⁇ m accounts for 28 wt% of the total SiC powder, and the powder with a particle size of 25-150 ⁇ m accounts for the total SiC powder. 71 wt%.
  • the sample obtained in the previous step is densified by the silicon infiltration process, the silicon infiltration temperature is 1600 ° C, the temperature is kept for 2.0 h, and the complex structure carbon fiber-SiC whisker reinforced SiSiC composite material is obtained with the furnace cooling and cooling.
  • SiC-C f mixed powder (a) Using silicon carbide (SiC), chopped carbon fiber (C f ) and thermoplastic phenolic resin as raw materials, and fully mixing to obtain a SiC-C f mixed powder; the specific characteristics of SiC in the SiC-C f mixed powder.
  • SiC silicon carbide
  • C f chopped carbon fiber
  • thermoplastic phenolic resin thermoplastic phenolic resin
  • the sample obtained in the previous step is densified by the silicon infiltration process, the silicon infiltration temperature is 1550°C, the temperature is kept for 2.5h, and the complex structure carbon fiber-SiC whisker reinforced SiSiC composite material is obtained with the furnace cooling and cooling.
  • SiC-C f mixed powder (a) Using silicon carbide (SiC), chopped carbon fiber (C f ) and thermoplastic phenolic resin as raw materials, and fully mixing to obtain a SiC-C f mixed powder; the specific characteristics of SiC in the SiC-C f mixed powder.
  • the powders with a particle size of 0.1-10 ⁇ m account for about 2 wt% of the total SiC powder, the powder with a particle size of 10-25 ⁇ m accounts for 35 wt% of the total SiC powder, and the powder with a particle size of 25-150 ⁇ m accounts for the total SiC powder. 63wt%.
  • the sample obtained in the previous step is densified by the silicon infiltration process.
  • the silicon infiltration temperature is 1500°C, and the temperature is kept for 3.0h.
  • step (c) after cleaning the surface of the SiC-C f green body, without impregnating the SiO 2 -C slurry, it is directly placed in an oven to dry at 110°C;
  • the corundum crucible was heat-treated at 1600°C under Ar atmosphere and kept for 3h.
  • Figure 2 is a SEM test image of SiCw -SiC- Cf containing SiCw whiskers prepared in step (3) of Example 1 and Comparative Example 1, wherein (a), (b), (c) in Figure 2 is the secondary electron morphology of the obtained sample fracture at different scales in Example 1; (d), (e), (f) in Figure 2 are the ports of the sample obtained in Comparative Example 1 observed at different scales Secondary electron morphology.
  • FIG. 3 is an XRD test chart of the SiSiC composite material prepared in Example 1.
  • FIG. The test method is as follows: the SiSiC composite material obtained in Example 1 is first treated with acid to remove residual silicon, then washed with deionized water, dried, then crushed and fully ground through a 325 mesh sieve, and finally the obtained powder is subjected to powder X-ray diffraction.
  • the SiSiC composite material prepared in Example 1 contains two SiC phases, namely ⁇ -SiC (corresponding to the SiC particles added in advance in the raw material) and ⁇ -SiC (corresponding to the SiC whiskers generated in situ), It is proved that the method provided by the present invention can successfully prepare the SiSiC composite material containing SiC whiskers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法,制备方法包括如下步骤:(a)将碳化硅、短切碳纤维、热塑性酚醛树脂充分混合后得到SiC-C f混合粉体;(b)将SiC-C f混合粉体进行3D打印成形,得到SiC-C f生坯;(c)对SiC-C f生坯浸渗SiO 2-C料浆,而后第一次热处理得到含SiC晶须的SiC w-SiC-C f坯体;(d)对SiC w-SiC-C f坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;(e)采用渗硅工艺对第二坯体进行致密化。制备得到的碳纤维-SiC晶须增强的SiSiC复合材料具有优异的力学性能,适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等装备领域。

Description

一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 【技术领域】
本发明属于反应烧结碳化硅制备领域,更具体地,涉及一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法。
【背景技术】
随着航空航天、汽车、空间光学等领域科技水平的快速发展,其核心部件,如高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车系统和空间反射镜等对材料性能的要求愈发苛刻。SiC陶瓷基复合材料以其低密度、高热导、耐烧蚀冲刷和耐磨损等优异性能,有望在上述领域得到成功应用。然而,SiC陶瓷脆性大、裂纹敏感度高,其固有的难加工的特性制约了这种材料被成形为复杂结构零件,极大的限制了其应用范围。对于具有复杂结构的SiC陶瓷材料,传统的加工手段存在工艺复杂、造价高昂的问题。如采用模压或冷等静压得到素坯,再借助数控机床设备(CNC)将其加工成所需形状的成型工艺严重依赖CNC的加工能力,对于一些具有复杂拓扑优化结构(如带有夹层的蜂窝结构)的构件加工成本高昂,有时甚至难以达到设计要求。而采用包括注浆成型、凝胶注模成型以及近年较多采用的直接凝固成型等陶瓷湿法成型技术虽然可以用于制备复杂结构,但这些方法均需借助模具,对于小批量生产来说成本高,不适用于个性化定制。且陶瓷湿法成型技术均需先配制高固相含量、流动性良好的料浆,而实际料浆固相含量很难超过70wt%,因此坯体在后期的固化、脱脂及烧结阶段难以避免一定程度的收缩,样品的几何精度相对较低。
3D打印(增材制造)被列为提升国家竞争力、应对未来挑战亟需发展的先进制造技术,其中激光选区烧结(Selective Laser Sintering,SLS)和3DP打印成形等为代表的基于粉床的增材制造技术给快速高效成形大型复 杂陶瓷复合材料带来了新的可能。作为3D打印技术中的分支,SLS和3DP等技术适合于快速制造具有复杂结构和特异形状的复合材料,能满足整体、分体等各种陶瓷部件的快速成形制造要求;且成形过程中不需要设置支撑结构,简化了成形部件的后处理工序,从而有望解决复杂结构SiC陶瓷基复合材料制备所面临的难题。近年来,采用3D打印成形SiC材料已有相关报道,如CN200510020015.5公开了一种激光烧结快速成形SiC陶瓷的制备方法,其采用激光烧结技术成形SiC预制体,然后熔渗金属硅并用碱液处理得到复杂形状SiC陶瓷,但是该方法所用的SiC粉末需要经由喷雾造粒来确保较好的流动性,使得该方法所需原料成本高,制备工艺繁琐。
对于SiC陶瓷基复合材料,一个主要的缺点是材料的韧性较差,这限制了由这类材料制备的零件的可靠性。碳纤维是一种重要的一维增强材料,用于传统陶瓷基复合材料力学性能的改善取得了巨大成功。但由于纤维对粉体铺粉性能的不利影响,较少地将其直接应用于基于粉床铺设的3D打印成型。另一方面,原位合成一维陶瓷增强相实现对材料的纤维/晶须/纳米线增韧的技术在多孔陶瓷和碳复合耐火材料等领域已有一些研究,但将这一技术与3D打印结合来制造纤维/晶须增韧的复杂形状SiC陶瓷尚未引起重视。
【发明内容】
针对现有技术的上述缺点和/或改进需求,本发明提供了一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法。本发明通过采用3D打印技术成形复杂形状SiC-C f生坯,借助原位合成技术在坯体内部生成均匀分布的SiC晶须,并结合渗硅工艺实现致密化。该方法所得到的SiSiC材料内含有C f和SiC w两种增强相,因而具有优异的力学性能,尤其适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等高端复合材料的制造。
为实现上述目的,按照本发明的一个方面,提供一种复杂结构碳纤维 -SiC晶须增强的SiSiC复合材料的制备方法,包括如下步骤:
(a)将碳化硅SiC、短切碳纤维C f、热塑性酚醛树脂充分混合后得到SiC-C f混合粉体;
(b)将SiC-C f混合粉体进行3D打印成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,而后第一次热处理得到含SiC晶须SiC w的SiC w-SiC-C f坯体,所述SiO 2-C料浆为SiO 2、C和有机溶剂的混合体系;
(d)对SiC w-SiC-C f坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;
(e)采用渗硅工艺对第二坯体进行致密化,最终获得所述复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
作为优选,步骤(a)中所述SiC-C f混合粉体中SiC的粒径分布为:粒径0.1~10μm占全部SiC粉体的0~2wt%,粒径10~25μm占全部SiC粉体的22~35wt%,粒径25~150μm占全部SiC粉体的63~78wt%。
作为优选,步骤(b)中进行3D打印成形为激光选区烧结、3DP中的一种。
作为优选,步骤(c)中所述SiO 2-C料浆的制备方法为:选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO 2-C复合粉体,然后将SiO 2-C复合粉体与有机溶剂混合,即得到SiO 2-C料浆。
作为优选,步骤(c)中浸渗SiO 2-C料浆的方法为真空浸渗或压力浸渗。
作为优选,步骤(c)中所述第一次热处理的条件为真空或氩气气氛或氦气气氛,温度1300℃~1600℃,保温3~6h。
作为优选,步骤(d)中渗聚碳硅烷为真空浸渗或压力浸渗。
作为优选,步骤(d)中所述第二次热处理的条件为惰性气氛或还原性气氛,所述惰性气氛为氩气气氛或氦气气氛,温度1100℃~1400℃,保温 1~4h。
作为优选,步骤(e)中所述渗硅工艺为:将第二坯体底部平铺金属硅颗粒,边抽真空边加热至1500℃~1700℃,保温1~6h,冷却降温即可。
按照本发明的另一方面,还保护一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,利用前面所述的制备方法制备而成。
本发明的有益效果有:
1.本发明所提出的一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料的制备方法与已有技术相比,通过对3D打印成形得到的坯体真空浸渗SiO 2-C料浆,并原位合成技术使得材料内生成均匀分布的SiC晶须,最后借助液相渗硅得到复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,采用原位合成技术在材料内生成SiC晶须,避免了直接引入SiC晶须/纤维存在的难以分散均匀,机械混合导致SiC晶须/纤维结构破坏的问题;
2.本发明短切碳纤维和原位生成的SiC晶须形成纳米-微米跨尺度协同增韧,相较单一的采用碳纤维或者SiC纤维作为增强相的增韧效果更佳,可以较大幅度改善材料的脆性。
3.基于本发明提供的方法制备得到的含碳纤维-SiC晶须增强的SiSiC复合材料由于具有优异的力学性能,适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等高端装备领域,具有广阔的应用前景。
附图说明
图1为实施例1制备得到的复杂形状碳纤维-SiC晶须增强的SiSiC复合材料形貌图。
图2基于实施例1和对比实施例1步骤(c)处理后含SiCw晶须的SiC w-SiC-C f的SEM测试图,其中图2中的(a)、(b)、(c)是实施例1的400微米、50微米、40微米尺度下的测试图;图2中的(d)、(e)、(f)是对比实施例1的400微米、50微米、40微米尺度下的测试图。
图3是实施例1制备的SiSiC复合材料的XRD衍射图谱。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。
实施例
本实施例中,SiO 2-C料浆通过以下方法制备而成:
选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO 2-C复合粉体,然后将SiO 2-C复合粉体与煤油按照1∶8质量比混合,即得到SiO 2-C料浆。
实施例1
(a)以SiC、C f、热塑性酚醛树脂为原料,充分混合后得到SiC-C f混合粉体;所述SiC-C f混合粉体中SiC的具体特征为:粒径10~25μm的粉体占全部SiC粉体的22wt%,粒径25~150μm的粉体占全部SiC粉体的78wt%。
(b)利用上述SiC-C f混合粉体进行激光选区烧结成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,生坯干燥后放置于刚玉坩埚内在Ar气氛下于1600℃热处理,保温3h,得到SiC w-SiC-C f试样。
(d)对SiC w-SiC-C f试样浸渗聚碳硅烷(PCS)的有机溶液,然后在Ar气氛下1400℃加热并保温1h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1700℃,保温1h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。图1为实施例1制备得到的复杂形状碳纤维-SiC晶须增强的SiSiC复合材料形貌图。
实施例2
(a)以碳化硅(SiC)、短切碳纤维(C f)、热塑性酚醛树脂为原料,充分混合后得到SiC-C f混合粉体;所述SiC-C f混合粉体中SiC的具体特征为:粒径10~25μm的粉体占全部SiC粉体的25wt%,粒径25~150μm的粉 体占全部SiC粉体的75wt%。
(b)利用上述SiC-C f混合粉体进行3DP成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,干燥后放置于刚玉坩埚内在真空条件下于1500℃热处理,保温4h,得到SiC w-SiC-C f试样。
(d)对SiC w-SiC-C f试样浸渗聚碳硅烷(PCS)的有机溶液,然后CO气氛下1300℃加热并保温2h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1650℃,保温1.5h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例3
(a)以碳化硅(SiC)、短切碳纤维(C f)、热塑性酚醛树脂为原料,充分混合后得到SiC-C f混合粉体;所述SiC-C f混合粉体中SiC的具体特征为:粒径0.1~10μm的粉体占全部SiC粉体的1wt%,粒径10~25μm的粉体占全部SiC粉体的28wt%,粒径25~150μm的粉体占全部SiC粉体的71wt%。
(b)利用上述SiC-C f混合粉体进行激光选区烧结成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,干燥后放置于刚玉坩埚内在真空条件下于1400℃热处理,保温5h,得到SiC w-SiC-C f试样。
(d)对SiC w-SiC-C f试样浸渗聚碳硅烷(PCS)的有机溶液,然后Ar气氛下1200℃加热并保温3h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1600℃,保温2.0h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例4
(a)以碳化硅(SiC)、短切碳纤维(C f)、热塑性酚醛树脂为原料,充分混合后得到SiC-C f混合粉体;所述SiC-C f混合粉体中SiC的具体特征 为:粒径10~25μm的粉体占全部SiC粉体的32wt%,粒径25~150μm的粉体占全部SiC粉体的68wt%。
(b)利用上述SiC-C f混合粉体进行3DP成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,干燥后放置于刚玉坩埚内在Ar气氛条件下于1300℃热处理,保温6h,得到SiC w-SiC-C f试样。
(d)对SiC w-SiC-C f试样浸渗聚碳硅烷(PCS)的有机溶液,然后Ar气氛下1100℃加热并保温4h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1550℃,保温2.5h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例5
(a)以碳化硅(SiC)、短切碳纤维(C f)、热塑性酚醛树脂为原料,充分混合后得到SiC-C f混合粉体;所述SiC-C f混合粉体中SiC的具体特征为:粒径0.1~10μm的粉体占全部SiC粉体的约2wt%,粒径10~25μm的粉体占全部SiC粉体的35wt%,粒径25~150μm的粉体占全部SiC粉体的63wt%。
(b)利用上述SiC-C f混合粉体进行激光选区烧结成形,得到SiC-C f生坯;
(c)对SiC-C f生坯浸渗SiO 2-C料浆,干燥后放置于刚玉坩埚内在Ar气氛条件下于1450℃热处理,保温4.5h,得到SiC w-SiC-C f试样。
(d)对SiC w-SiC-C f试样浸渗聚碳硅烷(PCS)的有机溶液,然后CO气氛下1350℃加热并保温2.5h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1500℃,保温3.0h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
对比实施例
对比实施例1
本实施例与实施例1不同之处在于,步骤(c)为将SiC-C f生坯表面清粉后,不浸渗SiO 2-C料浆,直接置于烘箱110℃干燥;而后放置于刚玉坩埚内在Ar气氛下于1600℃热处理并保温3h。
对比实施例2
本实施例与实施例1不同之处在于,无步骤(d)。
测试实施例
1.力学性能测试。分别针对实施例1、2和对比实施例1、2所得的试样,测试了材料的力学性能,结果如表1所示。其中抗弯强度的测试依据ASTM C1161-18标准采用三点弯曲法测定,断裂韧性的测试依据ASTM C1421-18标准采用单边切口梁法测定。
表1 实施例力学性能测试结果表
实施例 抗弯强度/MPa 断裂韧性/MPa·m 0.5
实施例1 260 3.5
实施例2 245 3.8
对比实施例1 189 2.3
对比实施例2 195 2.5
通过表1可知:本发明提供的实施例1和实施例2相较对比实施例1和对比实施例2所制备的SiSiC复合材料的抗弯强度和断裂韧性具有较明显提高,证明了本发明提供的方法可以制备出力学性能更优的SiSiC复合材料。
2.SEM测试。
图2是实施例1和对比实施例1步骤(3)制备的含SiCw晶须的SiC w-SiC-C f的SEM测试图,其中图2中的(a)、(b)、(c)是实施例1 的所得样品断口在不同尺度下的二次电子形貌;图2中的(d)、(e)、(f)是对比实施例1所得样品的端口在不同尺度下观测到的二次电子形貌。
由图2可知,由于对比实施例1中对“将SiC-C f生坯表面清粉后,不浸渗SiO 2-C料浆,直接置于烘箱110℃干燥;而后放置于刚玉坩埚内在Ar气氛下于1600℃热处理并保温3h”,试样内部没有生成SiC晶须。而实施例1中由于预先对SiC-C f生坯浸渗SiO 2-C料浆,使得充分接触的SiO 2-C复合粉体进入坯体材料内部。1600℃热处理过程中,SiO 2-C复合粉体周围局部形成饱和SiO x蒸汽,进而在坯体内部孔隙内反应生成SiC晶须。
这一结果证明了本发明提供的方法是使得材料内部原位生成大量SiC晶须的必要条件。
3.XRD测试。
图3是实施例1制备的SiSiC复合材料XRD测试图。测试方法为将实施例1得到的SiSiC复合材料先经酸处理去除残硅,再经去离子水清洗、干燥,然后破碎并充分研磨过325目筛,最后得到的粉体进行粉末x射线衍射。
由图3可知,实施例1制备的SiSiC复合材料内包含两种SiC相,分别为α-SiC(对应原料中预先加入的SiC颗粒)和β-SiC(对应原位生成的SiC晶须),证明了本发明提供的方法可以成功制备出包含SiC晶须的SiSiC复合材料。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料的制备方法,其特征在于,包括如下步骤:
    (a)将碳化硅SiC、短切碳纤维C f、热塑性酚醛树脂充分混合后得到SiC-C f混合粉体;
    (b)将SiC-C f混合粉体进行3D打印成形,得到SiC-C f生坯;
    (c)对SiC-C f生坯浸渗SiO 2-C料浆,而后第一次热处理得到含SiC晶须SiC w的SiC w-SiC-C f坯体,所述SiO 2-C料浆为SiO 2、C和有机溶剂的混合体系;
    (d)对SiC w-SiC-C f坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;
    (e)采用渗硅工艺对第二坯体进行致密化,最终获得所述复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(a)中所述SiC-C f混合粉体中SiC的粒径分布为:粒径0.1~10μm占全部SiC粉体的0~2wt%,粒径10~25μm占全部SiC粉体的22~35wt%,粒径25~150μm占全部SiC粉体的63~78wt%。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(b)中进行3D打印成形为激光选区烧结、3DP中的一种。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(c)中所述SiO 2-C料浆的制备方法为:选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO 2-C复合粉体,然后将SiO 2-C复合粉体与有机溶剂混合,即得到SiO 2-C料浆。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(c)中浸渗 SiO 2-C料浆的方法为真空浸渗或压力浸渗。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(c)中所述第一次热处理的条件为真空或氩气气氛或氦气气氛,温度1300℃~1600℃,保温3~6h。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(d)中渗聚碳硅烷为真空浸渗或压力浸渗。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤(d)中所述第二次热处理的条件为惰性气氛或还原性气氛,所述惰性气氛为氩气气氛或氦气气氛,温度1100℃~1400℃,保温1~4h。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤(e)中所述渗硅工艺为:将第二坯体底部平铺金属硅颗粒,边抽真空边加热至1500℃~1700℃,保温1~6h,冷却降温即可。
  10. 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,其特征在于,根据权利要求1~9任一项所述的制备方法制备而成。
PCT/CN2021/081044 2021-03-05 2021-03-16 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 WO2022183527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110245735.0 2021-03-05
CN202110245735.0A CN113061036A (zh) 2021-03-05 2021-03-05 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Publications (1)

Publication Number Publication Date
WO2022183527A1 true WO2022183527A1 (zh) 2022-09-09

Family

ID=76559951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081044 WO2022183527A1 (zh) 2021-03-05 2021-03-16 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Country Status (2)

Country Link
CN (1) CN113061036A (zh)
WO (1) WO2022183527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354729A (zh) * 2023-04-12 2023-06-30 嘉庚(江苏)特材有限责任公司 一种SiC陶瓷零部件及其制备方法与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666764B (zh) * 2021-09-15 2022-05-20 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114230356A (zh) * 2022-01-21 2022-03-25 辽宁科技大学 玻璃纤维催化转化碳化硅纤维增强碳化硅陶瓷的制备方法
CN114409408A (zh) * 2022-02-28 2022-04-29 南京航空航天大学 一种激光3d打印用碳化硅复合粉体及其制备方法
CN114671696B (zh) * 2022-03-07 2023-04-07 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114874020B (zh) * 2022-05-13 2022-12-06 厦门大学 一种碳纤维增强碳化硅陶瓷基多孔复合材料及其制备方法
CN116730736B (zh) * 2023-06-09 2024-04-12 中国科学院上海硅酸盐研究所 一种基于激光打印与真空-压力辅助原位浸渗树脂预增密的SiC复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149284A (zh) * 1994-03-15 1997-05-07 不列颠哥伦比亚大学 含碳化硅的复合陶瓷粉料的原位生产
WO2001009407A1 (fr) * 1999-08-02 2001-02-08 Tokyo Electron Limited Materiau au carbure de silice, equipement de traitement de semi-conducteurs, et procede d'elaboration de materiau au carbure de silice
GB2475233A (en) * 2009-11-09 2011-05-18 Julio Joseph Faria Process for forming carbon fibre reinforced ceramic composite
CN102951919A (zh) * 2012-11-09 2013-03-06 航天材料及工艺研究所 一种在C/SiC复合材料中原位生长β-SiC纳米纤维的方法
CN110357648A (zh) * 2019-07-09 2019-10-22 中国航发北京航空材料研究院 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951454A (zh) * 2013-07-23 2014-07-30 太仓派欧技术咨询服务有限公司 一种SiC晶须增强的陶瓷基复合材料
CN104086203B (zh) * 2014-07-14 2015-07-01 西北工业大学 晶须和纤维协同强化陶瓷基复合材料的制备方法
CN104478461B (zh) * 2014-12-24 2016-05-11 中南大学 一种晶须改性碳/碳复合材料的制备方法
CN108424160A (zh) * 2018-03-28 2018-08-21 中国航发北京航空材料研究院 一种短周期碳化硅纤维增强碳化硅复合材料的制备方法
CN110304933B (zh) * 2019-06-28 2020-10-27 西安交通大学 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149284A (zh) * 1994-03-15 1997-05-07 不列颠哥伦比亚大学 含碳化硅的复合陶瓷粉料的原位生产
WO2001009407A1 (fr) * 1999-08-02 2001-02-08 Tokyo Electron Limited Materiau au carbure de silice, equipement de traitement de semi-conducteurs, et procede d'elaboration de materiau au carbure de silice
US20060011131A1 (en) * 1999-08-02 2006-01-19 Hayashi Otsuki SiC material, semiconductor device fabricating system and SiC material forming method
GB2475233A (en) * 2009-11-09 2011-05-18 Julio Joseph Faria Process for forming carbon fibre reinforced ceramic composite
CN102951919A (zh) * 2012-11-09 2013-03-06 航天材料及工艺研究所 一种在C/SiC复合材料中原位生长β-SiC纳米纤维的方法
CN110357648A (zh) * 2019-07-09 2019-10-22 中国航发北京航空材料研究院 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354729A (zh) * 2023-04-12 2023-06-30 嘉庚(江苏)特材有限责任公司 一种SiC陶瓷零部件及其制备方法与应用
CN116354729B (zh) * 2023-04-12 2023-12-01 嘉庚(江苏)特材有限责任公司 一种SiC陶瓷零部件及其制备方法与应用

Also Published As

Publication number Publication date
CN113061036A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022183527A1 (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
WO2021120636A1 (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
Liu et al. Laser additive manufacturing and homogeneous densification of complicated shape SiC ceramic parts
Song et al. Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
WO2018188436A1 (zh) 一种C/C-SiC复合材料零件的制备方法及其产品
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
Zou et al. Effects of short carbon fiber on the macro-properties, mechanical performance and microstructure of SiSiC composite fabricated by selective laser sintering
CN112624777B (zh) 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法
CN108484173B (zh) SiCf/SiC复合材料及其制备方法
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
Chen et al. A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures
CN111892402A (zh) 一种碳纤维布增强碳化硼复合材料及其制备方法和应用
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
JP3127371B2 (ja) セラミック含有炭素/炭素複合材料及びその製造方法
Yu et al. Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
Liu et al. Effects of SiC content on the microstructure and mechanical performance of stereolithography-based SiC ceramics
CN117658641A (zh) 一种基于选区激光3D打印和两步烧结制备高致密SiC陶瓷的方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
Liu et al. Additive manufacturing of continuous carbon fiber–reinforced silicon carbide ceramic composites
CN116573952A (zh) 一种粘结剂喷射打印碳化硅-铝复合材料及其制备方法
CN114874019B (zh) 一种立方氮化硼相变增强的氮化铝/氮化硼复合陶瓷及其制备方法
CN114605156B (zh) 一种TiB2基装甲复合陶瓷材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928608

Country of ref document: EP

Kind code of ref document: A1