CN111892402A - 一种碳纤维布增强碳化硼复合材料及其制备方法和应用 - Google Patents

一种碳纤维布增强碳化硼复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN111892402A
CN111892402A CN201910368830.2A CN201910368830A CN111892402A CN 111892402 A CN111892402 A CN 111892402A CN 201910368830 A CN201910368830 A CN 201910368830A CN 111892402 A CN111892402 A CN 111892402A
Authority
CN
China
Prior art keywords
carbon fiber
fiber cloth
boron carbide
composite material
carbide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910368830.2A
Other languages
English (en)
Inventor
曾凡浩
古一
陈欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910368830.2A priority Critical patent/CN111892402A/zh
Publication of CN111892402A publication Critical patent/CN111892402A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种碳化硼复合材料及其制备方法和应用,特别是指一种碳纤维布增强碳化硼复合材料及其制备方法和应用,属于纤维增强陶瓷复合材料技术领域。所述复合材料包括下述组分按体积百分比组成:碳化硼90‑99vt.%,碳纤维布1‑10vt.%;其制备方法包括:先将碳纤维布按照模具尺寸剪成设定形状,然后进行脱胶处理;接着将脱胶后碳纤维布和碳化硼交替放入石墨模具中,然后将模具放入放电等离子烧结炉中烧结,得到碳纤维布增强碳化硼复合材料。本发明制备工艺简单,制得样品密实度高,在保留一定强度的基础上同时又对韧性有一定的提升,此外还能够更好地提升复合材料的吸中子性能。

Description

一种碳纤维布增强碳化硼复合材料及其制备方法和应用
技术领域
本发明涉及一种碳化硼复合材料及其制备方法和应用,特别是指一种碳纤维布增强碳化硼复合材料及其制备方法和应用,属于纤维增强陶瓷复合材料技术领域。
背景技术
碳化硼(B4C)密度轻(2.5g/cm3),熔点高(>2400℃),维氏硬度大(>27GPa),化学性能稳定,膨胀系数低(5.7×10-6/℃),中子吸收截面高,吸收能谱宽,没有二次辐射污染,而且耐腐蚀和热稳定性好,因此广泛作为中子防护用材。反应堆普遍采用不同10B富集度的热压烧结碳化硼芯块作为中子吸收体材料,这是因为10B同位素的中子吸收截面高,吸收能谱宽,成本较低,吸收中子后不产生强的二次辐射,易于后处理。
但是碳化硼的突出缺点,一是烧结温度高,致密化困难,由于共价键结合,热压烧结温度达到熔点90%,仍然只有95%以上致密度;二是断裂韧性低,脆性大,常温下断裂韧性约为2-4MPa·m1/2,且碳化硼在核反应堆中的使用过程中,由于碳化硼中的B10会和释放出的热中子反应放出气体,导致碳化硼发生气涨,从而使其更容易发生脆性破坏而失去使用价值。因此克服碳化硼的上述两个缺点,增韧补强,提高其致密度目前国内外防护用碳化硼研究的热点和难点。
碳化硼增韧的可采用自增韧(相变增韧、弥散析出增韧)和复合增韧两类方法。自增韧是利用烧结和热处理工艺得到内部自生的增韧相,但由于第二相元素的选择复杂,增韧潜力有限。复合增韧包括纤维或晶须、颗粒和金属增韧。
颗粒增韧常采用粉末烧结方法制备样品,有C、Ti、ZrO2、SiC、TiB2、Si等,增韧效果有限,如专利CN1582264A-碳化硼质烧结体及其制造方法报道的含TiB2的B4C陶瓷,其断裂韧性只有2.8MPa·m1/2
金属增韧是采用溶渗法在碳化硼骨架里引入高含量连续韧性金属。制备过程较为复杂,对设备要求较高,连续增韧金属只能采用熔点较低的金属,因此不能在高温条件下使用,大幅降低中子防护性能。
发明内容
本发明的一个目的正是针对目前碳化硼在中子防护应用的局限性,提出一种具有断裂韧性好,强度保持较高的碳纤维布增强碳化硼复合材料。
本发明的另一目的是提供碳化硼复合材料的快速简单制备工艺。该复合材料密度低,断裂韧性好,强度较纯碳化硼保持度高,吸中子性能好。
本发明一种碳纤维布增强碳化硼复合材料,包括下述组分按质量百分比组成:
碳化硼90-99vt.%,
碳纤维布1-10vt.%。
所述碳纤维布与碳化硼呈交替分布方式存在于所述碳纤维布增强碳化硼复合材料中。
作为优选方案,本发明一种碳纤维布增强碳化硼复合材料,所述复合材料包括下述组分按体积百分比组成:
碳化硼95-98vt.%,
碳纤维布2-5vt.%。
作为优选方案,本发明一种碳纤维布增强碳化硼复合材料,所述复合材料中,含有n层碳纤维布;任意相邻的碳纤维布层之间的间距小于等于1mm。
作为优选方案,本发明一种碳纤维布增强碳化硼复合材料,所述复合材料中,任意一层碳纤维布的厚度为30-100微米。
作为优选方案,本发明一种碳纤维布增强碳化硼复合材料,生成碳化硼所用的原料为碳化硼粉;所述碳化硼粉的平均粒度在1-5μm。
作为优选方案,本发明一种碳纤维布增强碳化硼复合材料,碳纤维布型号为T300型,碳纤维直径为7μm。碳纤维布为碳纤维束编织而成,每束有1000根纤维。
本发明一种碳纤维布增强碳化硼复合材料的制备方法,包括下述步骤:
第一步:处理碳纤维布
将碳纤维布按照模具的尺寸剪切成设定形状,然后进行脱脂处理;得到脱脂处理后的碳纤维布;
第二步:制作坯料
按一层碳化硼粉末、一层脱脂处理后的碳纤维布的方式将碳化硼粉末、脱脂处理后的碳纤维布交替铺设于石墨模具中,得到坯料;所述坯料的底层和顶层均为碳化硼层;
第三步:烧结
对带有坯料的石墨模具进行放电等离子烧结,得到成品;所述放电等离子烧结的参数为:
真空度1-10Pa,对模具中的粉末施加30-50MPa压力,以80-120℃/分钟的升温速率升温至1800-2100℃,保温10-30min后,以80-120℃/分钟的速率降温至500-800℃后,随炉冷却至室温,得到成品。
当石墨模具的内径为40时,将碳纤维布剪成直径为40的圆片。所述脱脂处理为:将按照模具尺寸裁剪成而成的纤维碳纤维布放入真空炉中于800-950、优选为900℃下烧结1-3、优选为2小时,用超声清洗去除纤维表面残留物,再将纤维碳纤维布用去离子水洗净后放入干燥箱中干燥;即得到脱胶后的碳纤维布。
本发明一种碳纤维布增强碳化硼复合材料的制备方法,第二步中,每一层碳化硼质量根据碳纤维所含体积分数不同,称取质量不同。每次放入碳化硼粉末需将粉末压实压平。为了提升产品的质量,每层纤维碳纤维布的厚度控制在30-100微米。优选为45-65微米;进一步优选为50-62微米、更进一步优选为59-61微米。同时为了进一步提升产品的质量,所设计的碳纤维布增强碳化硼复合材料中,碳纤维布的体积百分含量为3-5vt.%。
本发明一种碳纤维布增强碳化硼复合材料的制备方法,第三步中,放电等离子设备升温及保温阶段,施加的电流320-4000A,电压4-7V,电流参数on-off选自9ms-1ms、8ms-2ms、6ms-4ms、5ms-5ms中的一种。
本发明一种碳纤维布增强碳化硼复合材料的制备方法,第三步中,优化的烧结工艺参数为:
真空度1-6Pa,对模具中的粉末施加40-50MPa压力,以90-110℃/分钟的升温速率升温至1900-2000℃,保温15-25mim后,以90-110℃/分钟的速率降温至500-600℃。
本发明所开发和制备的碳纤维布增强碳化硼复合材料;可用于中子屏蔽。如作为核反应堆中吸收热中子的屏蔽层使用。
本发明制备含碳纤维布增强碳化硼复合材料的方法工作原理:
本发明采用适量的碳纤维层作为增韧增强材料,其既能承载强度,又可阻碍裂纹的扩展,通过纤维桥联、裂纹偏转、纤维拔出机制消耗能量,增加材料韧性,同时在制备过程中,适量的碳化硼还能促进适量短碳纤维进行适量的石墨化转变,石墨化的碳材具有较高的中子反射截面和较低的热中子吸收截面,是优良的核反射材料。本发明将碳纤维布加入碳化硼中,使得碳纤维布部分石墨化,既能促进碳化硼韧性,还能促进热中子和碳化硼的碰撞次数,提高碳化硼的吸中子效率。
本发明采用放电等离子技术烧结成型碳化硼/碳纤维复合材料,由于碳纤维和碳化硼粉末之间润湿性较差,所以复合材料成型主要靠碳化硼粉末之间的相互粘接,烧结过程集放电等离子活化、电阻加热为一体,在碳化硼粉末颗粒间产生大的脉冲电流(103-104A),并有效利用了粉末颗粒间放电产生的自发热作用。使难以烧结的碳化硼粉末快速粘接在一起形成了碳化硼/碳纤维复合材料。
综上所述,本发明制备工艺简单,制备的复合材料密度低,硬度高,断裂韧性好,可以作为核反应堆中吸收热中子的屏蔽层。
附图说明:
附图1为本发明实施例2制备的碳化硼/碳纤维布复合材料的磨抛后形貌照片。
从附图1中的SEM断口形貌照片,可以看出碳纤维布在碳化硼相中呈层状分布在碳化硼相中,并且在内置图中可以看出碳纤维和碳化硼界面结合紧密,可以很好的提高碳化硼的韧性,并保持一定强度。
具体实施方式:
下面结合附图和实施例对本发明进一步说明:
在本发明的实施例中,碳纤维布圆片的制备方法为:
当石墨模具的内径为40时,将碳纤维布剪成直径为40的圆片。然后将按照模具尺寸裁剪成而成的纤维碳纤维布放入真空炉中于900℃下烧结2小时,用超声清洗去除纤维表面残留物,再将纤维碳纤维布用去离子水洗净后放入干燥箱中干燥;即得到脱胶后的碳纤维布,即实施例中使用的碳纤维布圆片。
实施例1:
称取3.1g碳化硼粉末导入直径40的石墨模具中,压实压平后放入一片碳纤维布圆片(厚度为50微米),然后交替放入碳化硼粉末和纤维布,层层叠加,共有5层碳纤维和6层碳化硼粉末,制得碳纤维体积分数为2.5%的复合材料坯料,其中碳化硼粉末的纯度大于99%,含有微量Fe或石墨碳;碳纤维布为T300型,直径为7μm,碳纤维布内每束有1000根纤维。
将Φ40mm的石墨模具送入放电等离子烧结设备(FCT D25/3)中烧结,在真空度1Pa、预压8MPa、电流参数on-off为8ms-2ms的条件下,继续加压至45MPa,以100℃/min的升温速度升温至2000℃。保温20min后,以100℃/min的冷却速度冷至500℃后炉冷至室温;
将模具从放电等离子烧结炉中取出,退去模具取出样品后加工得到碳化硼/碳纤维布复合材料。
采用排水法测定复合材料的密度和孔隙率。采用三点弯曲实验评价试样的弯曲强度,采用陶瓷材料单刃缺口梁弯曲法(SENB)测试复合材料的断裂韧度,主要性能结果见表1。
实施例2:
称取1.6g碳化硼粉末导入直径40的石墨模具中,压实压平后放入一片碳纤维布圆片(厚度为60微米),然后交替放入碳化硼粉末和纤维布,层层叠加,共有10层碳纤维和11层碳化硼粉末,制得碳纤维体积分数为5.0%的复合材料坯料,其中碳化硼粉末的纯度大于99%,含有微量Fe或石墨碳;碳纤维布为T300型,直径为7μm,碳纤维布内每束有1000根纤维。
将Φ40mm的石墨模具送入放电等离子烧结设备(FCT D25/3)中烧结,在真空度1Pa、预压8MPa、电流参数on-off为8ms-2ms的条件下,继续加压至45MPa,以100℃/min的升温速度升温至2000℃。保温20min后,以100℃/min的冷却速度冷至500℃后炉冷至室温;
将模具从放电等离子烧结炉中取出,退去模具取出样品后加工得到碳化硼/碳纤维布复合材料。
采用排水法测定复合材料的密度和孔隙率。采用三点弯曲实验评价试样的弯曲强度,采用陶瓷材料单刃缺口梁弯曲法(SENB)测试复合材料的断裂韧度,主要性能结果见表1。
实施例3:
称取1.1g碳化硼粉末导入直径40的石墨模具中,压实压平后放入一片碳纤维布圆片(厚度为80微米),然后交替放入碳化硼粉末和纤维布,然后层层叠加,共有15层碳纤维和16层碳化硼粉末,制得碳纤维体积分数为7.5%的复合材料坯料,其中碳化硼粉末的纯度大于99%,含有微量Fe或石墨碳;碳纤维布为T300型,直径为7μm,碳纤维布内每束有1000根纤维。
将Φ40mm的石墨模具送入放电等离子烧结设备(FCT D25/3)中烧结,在真空度1Pa、预压8MPa、电流参数on-off为8ms-2ms的条件下,继续加压至45MPa,以100℃/min的升温速度升温至2000℃。保温20min后,以100℃/min的冷却速度冷至500℃后炉冷至室温;
将模具从放电等离子烧结炉中取出,退去模具取出样品后加工得到碳化硼/碳纤维布复合材料。
采用排水法测定复合材料的密度和孔隙率。采用三点弯曲实验评价试样的弯曲强度,采用陶瓷材料单刃缺口梁弯曲法(SENB)测试复合材料的断裂韧度,主要性能结果见表1。
表1
Figure BDA0002049162190000061
Figure BDA0002049162190000071
从表1的数据可以看出,本发明制备的碳化硼/碳纤维布复合材料,随着碳纤维体积分数的提高,其强度会有所下降,断裂韧性是先升高后下降,最高达到5.46MPa·m1/2。致密度也会随着纤维含量增加而减小。对于碳纤维体积分数为5%的复合材料,其断裂韧性大幅提高,且相对于纯碳化硼保留有一定的抗弯强度,可以满足作为核反应堆中屏蔽层的使用。

Claims (10)

1.一种碳纤维布增强碳化硼复合材料,其特征在于:所述复合材料包括下述组分按体积百分比组成:
碳化硼 90-99vt.%,
碳纤维布 1-10vt.%;
所述碳纤维布与碳化硼呈交替分布方式存在于所述碳纤维布增强碳化硼复合材料中。
2.根据权利要求1所述的一种碳纤维布增强碳化硼复合材料,其特征在于:所述复合材料包括下述组分按体积百分比组成:
碳化硼 95-98vt.%,
碳纤维布 2-5vt.%。
3.根据权利要求1所述的一种碳纤维布增强碳化硼复合材料,其特征在于:所述复合材料中,含有n层碳纤维布;任意相邻的碳纤维布层之间的间距小于等于1mm。
4.根据权利要求1所述的一种碳纤维布增强碳化硼复合材料,其特征在于:所述复合材料中,任意一层碳纤维布的厚度为30-100微米。
5.根据权利要求1所述的一种碳纤维布增强碳化硼复合材料,其特征在于:生成碳化硼所用的原料为碳化硼粉;所述碳化硼粉的平均粒度在1-5μm;所述碳纤维布内每束有1000根碳纤维。
6.根据权利要求5所述的一种碳纤维布增强碳化硼复合材料,其特征在于:碳化硼粉的纯度在98-99.999%,碳纤维布型号为T300,单根碳纤维的直径为7μm。
7.一种碳纤维布增强碳化硼复合材料的制备方法,包括下述步骤:
第一步:处理碳纤维布
将碳纤维布按照模具的尺寸剪切成设定形状,然后进行脱脂处理;得到脱脂处理后的碳纤维布;
第二步:制作坯料
按一层碳化硼粉末、一层脱脂处理后的碳纤维布的方式将碳化硼粉末、脱脂处理后的碳纤维布交替铺设于石墨模具中,得到坯料;所述坯料的底层和顶层均为碳化硼层;
第三步:烧结
对带有坯料的石墨模具进行放电等离子烧结,得到成品;所述放电等离子烧结的参数为:
真空度1-10Pa,对模具中的粉末施加30-50MPa压力,以80-120℃/分钟的升温速率升温至1800-2100℃,保温10-30min后,以80-120℃/分钟的速率降温至500-800℃后,随炉冷却至室温,得到成品。
8.根据权利要求6所述的一种碳纤维布增强碳化硼复合材料的制备方法,其特征在于:每铺设一层碳化硼粉末均要压实;任意一层脱脂处理后的碳纤维布的厚度为30-100微米。
9.根据权利要求6所述的一种碳纤维布增强碳化硼复合材料的制备方法,其特征在于:放电等离子设备升温及保温阶段,施加的电流320-4000A,电压4-7V,电流参数on–off选自9ms-1ms、8ms-2ms、6ms-4ms、5ms-5ms中的一种。
10.一种如权利要求1-6任意一项所述碳纤维布增强碳化硼复合材料的应用;其特征在于:包括将其用于中子屏蔽。
CN201910368830.2A 2019-05-05 2019-05-05 一种碳纤维布增强碳化硼复合材料及其制备方法和应用 Pending CN111892402A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910368830.2A CN111892402A (zh) 2019-05-05 2019-05-05 一种碳纤维布增强碳化硼复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910368830.2A CN111892402A (zh) 2019-05-05 2019-05-05 一种碳纤维布增强碳化硼复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111892402A true CN111892402A (zh) 2020-11-06

Family

ID=73169214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910368830.2A Pending CN111892402A (zh) 2019-05-05 2019-05-05 一种碳纤维布增强碳化硼复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111892402A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390649A (zh) * 2020-11-09 2021-02-23 镇江华核装备有限公司 一种复合纤维增强碳化硼陶瓷板制备方法
CN113896552A (zh) * 2021-09-24 2022-01-07 北京安达维尔航空设备有限公司 一种碳化硼陶瓷及其制备方法和应用
CN114716258A (zh) * 2022-04-22 2022-07-08 哈尔滨工业大学 一种碳纤维增强碳化硼复合材料的制备方法
CN115180968A (zh) * 2022-08-02 2022-10-14 宜兴市海森陶瓷科技有限公司 一种新型纤维增韧氧化铝陶瓷及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498431A1 (en) * 1991-02-08 1992-08-12 Sumitomo Electric Industries, Ltd. Coated carbon-fiber-reinforced composite material
JPH04295055A (ja) * 1991-03-26 1992-10-20 Sumitomo Electric Ind Ltd 炭素繊維強化複合材
CN101234901A (zh) * 2007-12-11 2008-08-06 北京航空航天大学 一种复合防弹陶瓷材料及其制备方法
CN101830703A (zh) * 2010-04-06 2010-09-15 中南大学 一种炭纤维增强碳化硼复合材料及其制备方法
CN103058698A (zh) * 2013-01-31 2013-04-24 常熟华融太阳能新型材料科技有限公司 一种壳-核结构的碳化硼/碳纤维复合陶瓷及其制备方法
CN103073318A (zh) * 2013-01-31 2013-05-01 常熟华融太阳能新型材料科技有限公司 一种碳化硼/碳纤维复合陶瓷及其制备方法
CN103342572A (zh) * 2012-08-15 2013-10-09 山东伟基炭科技有限公司 一种制备c/c复合材料的方法
CN103449818A (zh) * 2013-08-06 2013-12-18 西安科技大学 一种碳纤维/碳化硅梯度层状复合材料的制备方法
US20140109756A1 (en) * 2000-07-21 2014-04-24 Michael K. Aghjanian Composite materials and methods for making same
CN106032326A (zh) * 2015-03-20 2016-10-19 深圳光启高等理工研究院 多层复合陶瓷板及其制备方法
CN107266075A (zh) * 2017-07-03 2017-10-20 湖南工业大学 一种C/C‑SiC复合材料及其制备方法和应用
CN108101568A (zh) * 2017-11-29 2018-06-01 航天材料及工艺研究所 一种高导热碳/碳复合材料及其制备方法
CN109487180A (zh) * 2018-12-27 2019-03-19 太原理工大学 一种层状碳纤维增强铝基碳化硼中子吸收板的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498431A1 (en) * 1991-02-08 1992-08-12 Sumitomo Electric Industries, Ltd. Coated carbon-fiber-reinforced composite material
JPH04295055A (ja) * 1991-03-26 1992-10-20 Sumitomo Electric Ind Ltd 炭素繊維強化複合材
US20140109756A1 (en) * 2000-07-21 2014-04-24 Michael K. Aghjanian Composite materials and methods for making same
CN101234901A (zh) * 2007-12-11 2008-08-06 北京航空航天大学 一种复合防弹陶瓷材料及其制备方法
CN101830703A (zh) * 2010-04-06 2010-09-15 中南大学 一种炭纤维增强碳化硼复合材料及其制备方法
CN103342572A (zh) * 2012-08-15 2013-10-09 山东伟基炭科技有限公司 一种制备c/c复合材料的方法
CN103073318A (zh) * 2013-01-31 2013-05-01 常熟华融太阳能新型材料科技有限公司 一种碳化硼/碳纤维复合陶瓷及其制备方法
CN103058698A (zh) * 2013-01-31 2013-04-24 常熟华融太阳能新型材料科技有限公司 一种壳-核结构的碳化硼/碳纤维复合陶瓷及其制备方法
CN103449818A (zh) * 2013-08-06 2013-12-18 西安科技大学 一种碳纤维/碳化硅梯度层状复合材料的制备方法
CN106032326A (zh) * 2015-03-20 2016-10-19 深圳光启高等理工研究院 多层复合陶瓷板及其制备方法
CN107266075A (zh) * 2017-07-03 2017-10-20 湖南工业大学 一种C/C‑SiC复合材料及其制备方法和应用
CN108101568A (zh) * 2017-11-29 2018-06-01 航天材料及工艺研究所 一种高导热碳/碳复合材料及其制备方法
CN109487180A (zh) * 2018-12-27 2019-03-19 太原理工大学 一种层状碳纤维增强铝基碳化硼中子吸收板的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐婕等: "《环保陶瓷生产与应用》", 31 January 2018, 中国建材工业出版社 *
徐荣等: "《机械工程材料》", 28 February 2018, 中国矿业大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390649A (zh) * 2020-11-09 2021-02-23 镇江华核装备有限公司 一种复合纤维增强碳化硼陶瓷板制备方法
CN113896552A (zh) * 2021-09-24 2022-01-07 北京安达维尔航空设备有限公司 一种碳化硼陶瓷及其制备方法和应用
CN114716258A (zh) * 2022-04-22 2022-07-08 哈尔滨工业大学 一种碳纤维增强碳化硼复合材料的制备方法
CN115180968A (zh) * 2022-08-02 2022-10-14 宜兴市海森陶瓷科技有限公司 一种新型纤维增韧氧化铝陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN111892402A (zh) 一种碳纤维布增强碳化硼复合材料及其制备方法和应用
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
WO2022183527A1 (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
CN102924106B (zh) 一种碳-碳化硅复合材料的制备方法
CN102173844B (zh) 一种碳纤维增强氮化硼复合材料及其制备方法
JP4536950B2 (ja) SiC繊維強化型SiC複合材料のホットプレス製造方法
CN106904984A (zh) 一种SiC短纤维复合材料及复合包壳管及其制备方法
CN109680177B (zh) 一种镀W金刚石/W-Cu梯度复合材料的制备方法
CN110078516A (zh) 高体积分数短纤维增强准各向同性SiCf/SiC复合材料的制备方法
CN105503227A (zh) 一种立体织物增强碳化硅-金刚石复合材料的制备方法
CN109467450A (zh) 一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法
CN113149686B (zh) 一种具有复合陶瓷层的炭/炭复合材料坩埚及其制备方法
CN109608218B (zh) 一种自愈合陶瓷基复合材料及其低温快速制备方法
CN113045325B (zh) 一种高强度碳/碳-碳化硅复合材料的制备方法
CN114315394B (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN108069726B (zh) 一种C/C-TiC碳陶复合材料的制备方法
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
CN103232255A (zh) 表面带有碳化物涂层的炭/炭复合材料平板的制备方法
CN111892414A (zh) 一种短碳纤维增强碳化硼复合材料及其制备方法
CN113416087B (zh) 一种高强度组合式炭/炭热压模具的制备方法
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
CN108048685B (zh) 一种TiC/SiC/Al复合材料
CN109095929B (zh) 一种碳陶刹车盘制备方法
KR20000009035A (ko) 세라믹 함유 탄소/탄소 복합재료 및 그의 제조 방법
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination