CN112707734A - 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法 - Google Patents

一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法 Download PDF

Info

Publication number
CN112707734A
CN112707734A CN202110017918.7A CN202110017918A CN112707734A CN 112707734 A CN112707734 A CN 112707734A CN 202110017918 A CN202110017918 A CN 202110017918A CN 112707734 A CN112707734 A CN 112707734A
Authority
CN
China
Prior art keywords
printing
graphene
ceramic
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110017918.7A
Other languages
English (en)
Other versions
CN112707734B (zh
Inventor
张广明
宋道森
兰红波
蒋进
周欣琪
李惠怡
周雁祥
宋伊凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202110017918.7A priority Critical patent/CN112707734B/zh
Publication of CN112707734A publication Critical patent/CN112707734A/zh
Application granted granted Critical
Publication of CN112707734B publication Critical patent/CN112707734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,所述打印设备包括数字光处理模块,浆料槽,打印平台,外加电场;所述数字处理模块按照打印的模型分层切片,以光束形式穿过复合透氧膜并投射到浆料上实现固化,随着打印平台沿z轴方向逐渐上移,所述外加电场置于浆料槽内部两侧,实现了石墨烯/陶瓷前驱体复合材料的连续打印,且石墨烯片在辅助电场下有序排列。随后通过烧结步骤实现石墨烯片/陶瓷有序复合材料的制备,可以提高力学性能与电学性能以及增大了材料的抗弯强度和韧性。

Description

一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法
技术领域
本发明涉及3D打印领域,尤其涉及一种基于3D打印的石墨烯/陶瓷有序复 合材料制备方法。
背景技术
本部分的陈述仅仅是提到了与本公开相关的背景技术,并不必然构成现有 技术。
陶瓷材料具有高强度、高硬度、耐高温、耐氧化、耐腐蚀、化学性能稳定 和轻质(低密度)等突出优点,在航空航天、生物医疗、汽车、电、能源、国 防等诸多领域有着广泛的应用。然而陶瓷材料一直面临着韧性差的难题,制约 着陶瓷零件更为广泛的应用。
一直以来石墨烯作为一种二维纳米材料以其优异的光学性能、力学性能、 导热导电性能受到学术界以及工业界的广泛关注。石墨烯作为添加物被广泛应 用于各种复合材料中,但由于工艺限制目前的传统成型和一般的3D打印方法 都不能得到石墨烯按照一定规律均匀分布的复合材料,这使得石墨烯本身的性 能在材料中的体现大大折扣,也就限制了石墨烯/聚合物复合材料的应用和普 及。
针对石墨烯/陶瓷复合材料,目前主要依赖于模压成型等传统工艺。相比于 传统的陶瓷复合材料成型工艺,3D打印技术具有以下显著的优势:(1)无需 原坯和模具,生产周期短,制造成本低;(2)制造精度高;(3)可实现几乎任 意形状复杂结构成型,突破了传统工艺制造几何形状的约束;(4)适合个性化 定制和单件小批量生产;(5)成型材料种类广泛,如氧化锆、氧化铝、磷酸三 钙、碳化硅、碳硅化钛、陶瓷前驱体、陶瓷基复合材料等。此外,在微小零件 3D打印、陶瓷/金属复合材料和功能梯度材料方面,以及材料-结构-功能一体化打印方面还具有独特的优势。
为了进一步提高石墨烯/陶瓷复合材料的性能,本申请提出了一种基于3D 打印的石墨烯/陶瓷有序复合材料制备方法。
发明内容
为实现上述发明目的,本发明采用下述技术方案予以实现:
一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,所述打印设备包 括数字光处理模块,浆料槽,打印平台,高压电源;所述数字处理模块按照打印 模型分层切片形状,以光束形式穿过复合透氧膜并投射到浆料中。所述打印平台 沿z轴方向逐渐上移,所述高压电源置于浆料槽内部两侧用于提高外加电场;
步骤1:打印模型准备
首先将三维图形以STL文件格式导入至切片软件,在考虑打印时长、材料 可固化厚度、精度要求因素后,对模型进行分层切片;然后将切片所得数据制作 成视频文件并导入至数字光处理模块;
步骤2:浆料制备
将一定比例的陶瓷前驱体与甲基丙烯酸以及光敏引发剂混合,随后与石墨 烯球磨混合,再进行真空除泡,得到所需的复合材料浆料;
步骤3:电场辅助连续面曝光3D打印
首先将打印平台缓缓浸入浆料中,直至打印平台与复合富氧膜的距离略大 于成型件与打印窗口之间形成的不固化区域即“死区”厚度;然后,根据需要在 指定方向上利用高压电源施加电场;紧接着数字光处理模块将制备好的视频图 像投影到浆料上的同时打印平台以一定速度上升,此时,受到紫外光辐照后固化 的成型件随着打印平台的上升而不断上升,成型件上升留出的空隙也被四周的 浆料迅速填充,整个过程一直处于连续状态;最终视频播放完成的同时,携带着 有序排列石墨烯的复合材料成型件也被完整地从浆料中“拖”了出来。
步骤4:打印后处理
对打印后的结构进行烧结处理。
在本申请的一些实施例中,所述烧结处理在管式炉或箱式炉中用惰性气体 保护下进行。
在本申请的一些实施例中,所述复合透氧膜包括支撑层和低表面能层,支撑 层位于低表面层的下部,其选用微孔PET膜来保证支撑强度和一定的透氧性, 低表面能层选用PDMS来防止粘附,保证浆料的填充,以固化陶瓷前驱体材料。
在本申请的一些实施例中,所述数字光处理模块,投射光波长为405nm,光 源最大功率800mW。
在本申请的一些实施例中,所述复合透氧膜为PDMS/SiO2膜,所述 PDMS/SiO2膜,上层为氢氟酸溶液刻蚀掉SiO2的PDMS膜;下层为未刻蚀SiO2的PDMS/SiO2膜。
在本申请的一些实施例中,所述PDMS/SiO2膜的制备方法包括以下步骤:
①取粒径为200nm左右的球状SiO2颗粒与道康宁PDMS预混液,SiO2质量占比为10%-40%,以200r/min-300r/min搅拌2-5min;
②将上述混合溶液放入超声波清洗机中混合15-20min;
③静置冷却后加入PDMS固化剂,固化剂与PDMS预混液质量比为1/10- 1/8,以200r/min-300r/min搅拌3-5min;
④在0-8℃温度中静置12-24h,直至完全没有气泡;
⑤利用数控雕刻机,以80-100℃的底板加热、30-50Kpa的气压、320- 400km/h将混合溶液打印成膜;
⑥将打印所得膜置于干燥箱中干燥;
⑦将完全固化的SiO2/PDMS混合膜浸入装满SiO2悬浮液的容器中,其中 悬浮液中SiO2粒径为2-5μm,利用提拉机器以1-8mm/s匀速竖直向上提拉;
⑧将上述复合膜置于200-250℃中加热60-80h;
⑨用旋涂机将光刻胶SU-8基环氧树脂旋涂在复合膜表面SiO2缝隙中,转 速2500-3500r/min、旋涂时间30-60s,再用有机溶剂清洗表面残留的光刻胶;
⑩用紫外固化灯对表面的光刻胶进行固化,时间1-3min;
Figure BDA0002887635460000041
将上述复合膜置于氢氟酸溶液中蚀刻5-15min去除表面SiO2,用酒精 彻底清洗,干燥箱干燥。
最终所得的复合透明膜厚度50-100μm,并且氧气透过效率在50barrer以 上,紫外光透过率不低于80%,强度不低于20kPa。
在本申请的一些实施例中,所述陶瓷前驱体与石墨烯进行混合,优选球磨混 合,球磨参数为转速:300-500r/min;时间:10-12h,优选地,每1h暂停10min。
在本申请的一些实施例中,真空除泡的时间为2h。
在本申请的一些实施例中,所述有序复合材料中石墨烯的添加质量分数为0.1%-5%。
在本申请的一些实施例中,打印速度为10mm/h-100mm/h
在本申请的一些实施例中,利用高压电源施加直流电场,直流恒压电源 500V/cm,在微观组织层面对材料中的石墨烯片的排列进行无接触式调整。
在本申请的一些实施例中,所述石墨烯片使用工业级MLG粉末,片层直径 10~50μm、片层厚度3.4~7nm,作为增强体起增强材料导电性和抗弯强度的作 用。
在本申请的一些实施例中,陶瓷前驱体可以为现有的适合3D打印的陶瓷前 驱体种类,所述前驱体优选为正丙醇锆或聚碳硅氮烷。
在本申请的一些实施例中,为保证打印平台与浆料之间无气泡存在,可采用 多种方式放入浆料中,优选以侧置放入浆料有效保证气体的排出,或提前使用浆 料润湿打印平台,达到浆料与打印平台的更好贴合。
在本申请的一些实施例中,所述打印设备还包括控制模块,用于根据设定的 打印数据控制打印程序。
与现有技术相比,本公开的有益效果是:
1、通过陶瓷前驱体和石墨烯结合,首次实现了陶瓷/石墨烯复合材料的 3D打印;
2、通过电场辅助来引导石墨烯片定向排列,显著增强陶瓷的抗弯强度和 断裂韧性。
3、克服了非连续陶瓷打印出现的严重分层问题,同时可以做到表面无限 细腻。
4、通过对复合透氧膜进行优化选择,提高了打印精度,通过选择复合透 氧膜为PDMS/SiO2膜,创新地将SiO2混入PDMS中,改善了原先 PDMS膜的富氧性能,且不降低PDMS膜的透光性,其次可以改善 原先PDMS膜的力学性能,可以配合较大的打印窗口进行大体积产品的打印;还可以对打印时产生的“死区”厚度进行一定范围的调控, 最终可以在匹配打印浆料的粘稠性上产生一定效果;复合膜老化速度 降低,降低了成本、提高了效率,并可为打印提供充足的氧气;复合 膜上的疏水层使得浆料在复合膜上的流动性加强,即打印过程中的浆 料填充速度加快。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施 例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据 这些附图获得其他的附图。
图1是本申请的实施例中的打印装置示意图;
图2是本申请实施例中基于3D打印的石墨烯/陶瓷有序复合材料打印实验 装置图;
图3是本申请的石墨烯排列示意图;
图4是本申请的PDMS/SiO2膜的结构示意图。
其中,1、打印平台;2、浆料槽;3、复合富氧膜;4、数字光处理模块; 5、死区;6、电极片;7、浆料;8、成型件;9、刻蚀掉SiO2的PDMS膜;
10、未刻蚀SiO2的PDMS/SiO2膜;11、控制模块;12、高压电源。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全 部的实施例。
本申请的电场辅助连续面曝光3D打印石墨烯/陶瓷有序复合材料方法,结 合了连续面曝光3D打印可以改善成型件表面形貌的特点,以及施加辅助电场操 纵导电纳米材料得到有序复合材料的特点。
打印过程中,空气中的氧气分子会透过复合富氧膜进入到浆料槽中的浆料 中,并且氧含量随着与复合富氧膜的距离越来越远而越来越小;此时,靠近复合 富氧膜的浆料在吸收外界光能的时候会因为高含氧量,这个区域的浆料不会发 生固化,这个区域称为“死区”,死区的存在使得成型件与复合富氧膜不会发生 粘连,所以打印时不需要剥离操作,从而真正实现了连续打印,理论上,成型件 的表面精度可以达到无限细腻。
本申请发明人利用石墨烯较强的介电特性,在电场的作用下,石 墨烯产生极化反应,原本随机分布在前驱体基体中的石墨烯片会表现 出一种有序的排列方式,即排列方向平行于电场方向。极化后,石墨 烯可以被看成是电偶极子,此时,作用于石墨烯两端正负电荷的电场 力会构成力偶,力偶矩M为
M=qELsinθ (1)
式中,M是力偶矩,q是石墨烯极化后两端带的电荷,E是施加 电场强度,L是石墨烯的长度,θ是石墨烯轴向与电场方向的夹角。 由于二维石墨烯具有形状各向异性,所以平行于石墨烯的极化力矩远 大于垂直于石墨烯的极化力矩,这种差异会导致其在电场方向产生定 向的扭转力,使得石墨烯发生旋转,最终表现为石墨烯在电场的诱导 下会呈现出平行于电场方向的有序排列。
实施例1
一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,包括以下步骤:
步骤1:打印模型准备
首先将三维图形以STL文件格式导入至切片软件,在考虑打印时长、材料 可固化厚度、精度要求因素后,对模型进行分层切片;然后将切片所得数据制作 成视频文件并导入至数字光处理模块;
步骤2:材料浆料制备
将正丙醇锆和甲基丙烯酸按照2:1混合,并加入1wt.%的光敏引发剂,配制 成型陶瓷前驱体溶液,与石墨烯按照质量分数99:1比例进行球磨混合,球磨参 数为转速:500r/min;时间:12h,每1h暂停10min,再进行真空除泡2h,得到 所需要的的复合材料浆料;
所述前驱体复合材料的黏度为280mPs,所述石墨烯片使用工业级MLG粉 末,片层直径10~50μm、片层厚度3.4~7nm。
步骤3:电场辅助连续面曝光3D打印
首先将打印平台缓缓浸入浆料中,直至打印平台与复合富氧膜的距离略大 于成型件与打印窗口之间形成的不固化区域即“死区”厚度;
所述复合透氧膜包括支撑层和低表面能层,支撑层位于低表面层的下部,支 撑层为微孔PET膜,低表面能层为PDMS;
然后,根据需要在指定方向上利用高压电源施加直流电场,直流恒压电源 800V/cm;紧接着数字光处理模块将制备好的视频图像投影到浆料上的同时打印 平台以一定速度上升,数字光处理模块投射光波长为405nm,光源最大功率 800mW;此时,受到紫外光辐照后固化的成型件随着打印平台的上升而不断上 升,成型件上升留出的空隙也被四周的浆料迅速填充,整个过程一直处于连续状 态;最终视频播放完成的同时,携带着有序排列石墨烯的复合材料成型件也被完 整地从浆料中“拖”了出来。
步骤4:打印后处理
打印完成后,取下并清理成型件后进行烧结。
烧结全程在管式炉中进行,并采用高纯Ar气保护,以1℃/min加热到600℃ 保温1h,再以5℃/min加热到1200℃保温2h,接着自然冷却这样的烧结参数进 行烧结,得到石墨烯/ZrOC有序复合材料。
实施例2
与实施例1不同的是,所述复合透氧膜由PDMS/SiO2组成,其中
上层为表面刻蚀的PDMS膜,厚度为10μm;下层为PDMS/SiO2复合膜, 厚度为50μm。
所采用的前驱体为聚碳硅氮烷和甲基丙烯酸按照2:1混合,并加入1wt.%的 光敏引发剂,配制成型陶瓷前驱体溶液;
打印完成后,取下并清理成型件后进行烧结。烧结全程在管式炉中进行,并 采用高纯Ar气保护,以1℃/min加热到600℃保温1h,再以10℃/min加热到 1500℃保温2h,接着自然冷却这样的烧结参数进行烧结,得到石墨烯/SiCN陶 瓷涂层。
测试结果显示,实施例1和2均实现了石墨烯/陶瓷有序复合材料的连续有 序制备;经测试,具有2wt%含量的石墨烯/陶瓷有序复合材料在抗弯强度上明显 优于无序复合材料,显著改善陶瓷韧性和强度。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前 述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可 以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等 同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护 的技术方案的精神和范围。

Claims (10)

1.一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述制备方法采用的打印设备包括数字光处理模块,浆料槽,打印平台,高压电源;所述数字处理模块按照打印模型分层切片形状,以光束形式穿过复合透氧膜并投射到浆料中。所述打印平台沿z轴方向逐渐上移,所述高压电源置于浆料槽内部两侧用于提高外加电场;
步骤1:打印模型准备
首先将三维图形以STL文件格式导入至切片软件,在考虑打印时长、材料可固化厚度、精度要求因素后,对模型进行分层切片;然后将切片所得数据制作成视频文件并导入至数字光处理模块;
步骤2:浆料制备
将一定比例的陶瓷前驱体与甲基丙烯酸以及光敏引发剂混合,随后与石墨烯球磨混合,再进行真空除泡,得到所需的复合材料浆料;
步骤3:电场辅助连续面曝光3D打印
首先将打印平台缓缓浸入浆料中,直至打印平台与复合富氧膜的距离略大于成型件与打印窗口之间形成的不固化区域即“死区”厚度;然后,根据需要在指定方向上利用高压电源施加电场;紧接着数字光处理模块将制备好的视频图像投影到浆料上的同时打印平台以一定速度上升,此时,受到紫外光辐照后固化的成型件随着打印平台的上升而不断上升,成型件上升留出的空隙也被四周的浆料迅速填充,整个过程一直处于连续状态;最终视频播放完成的同时,携带着有序排列石墨烯的复合材料成型件也被完整地从浆料中“拖”了出来。
步骤4:打印后处理
对打印后的结构进行烧结处理。
2.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述数字光处理模块,投射光波长为405nm,光源最大功率800mW。
3.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述复合透氧膜包括支撑层和低表面能层,支撑层位于低表面层的下部,其选用微孔PET膜来保证支撑强度和一定的透氧性,低表面能层选用PDMS来防止粘附,保证浆料的填充,以固化陶瓷前驱体材料。
4.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述复合透氧膜为PDMS/SiO2膜,所述PDMS/SiO2膜,上层为氢氟酸溶液刻蚀掉SiO2的PDMS膜;下层为未刻蚀SiO2的PDMS/SiO2膜。
5.根据权利要求5所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,
所述PDMS/SiO2膜的制备方法包括以下步骤:
①取粒径为200nm左右的球状SiO2颗粒与道康宁PDMS预混液,SiO2质量占比为10%-40%,以200r/min-300r/min搅拌2-5min;
②将上述混合溶液放入超声波清洗机中混合15-20min;
③静置冷却后加入PDMS固化剂,固化剂与PDMS预混液质量比为1/10-1/8,以200r/min-300r/min搅拌3-5min;
④在0-8℃温度中静置12-24h,直至完全没有气泡;
⑤利用数控雕刻机,以80-100℃的底板加热、30-50Kpa的气压、320-400km/h将混合溶液打印成膜;
⑥将打印所得膜置于干燥箱中干燥;
⑦将完全固化的SiO2/PDMS混合膜浸入装满SiO2悬浮液的容器中,其中悬浮液中SiO2粒径为2-5μm,利用提拉机器以1-8mm/s匀速竖直向上提拉;
⑧将上述复合膜置于200-250℃中加热60-80h;
⑨用旋涂机将光刻胶SU-8基环氧树脂旋涂在复合膜表面SiO2缝隙中,转速2500-3500r/min、旋涂时间30-60s,再用有机溶剂清洗表面残留的光刻胶;
⑩用紫外固化灯对表面的光刻胶进行固化,时间1-3min;
Figure FDA0002887635450000031
将上述复合膜置于氢氟酸溶液中蚀刻5-15min去除表面SiO2,用酒精彻底清洗,干燥箱干燥。
最终所得的复合透明膜厚度50-100μm,并且氧气透过效率在50barrer以上,紫外光透过率不低于80%,强度不低于20kPa。
6.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述陶瓷前驱体与石墨烯进行混合,优选球磨混合,球磨参数为转速:300-500r/min;时间:10-12h,优选地,每1h暂停10min;真空除泡的时间优选为2h。
7.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述有序复合材料中石墨烯的添加质量分数为0.1%-5%。
8.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,利用高压电源施加直流电场,直流恒压电源500V/cm,在微观组织层面对材料中的石墨烯片的排列进行无接触式调整。
9.根据权利要求1所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述石墨烯片使用工业级MLG粉末,片层直径10~50μm、片层厚度3.4~7nm,作为增强体起增强材料导电性和抗弯强度的作用。
10.根据权利要求1-9所述的一种基于3D打印的石墨烯/陶瓷有序复合材料制备方法,其特征在于,所述前驱体优选为正丙醇锆或聚碳硅氮烷。
CN202110017918.7A 2021-01-07 2021-01-07 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法 Active CN112707734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110017918.7A CN112707734B (zh) 2021-01-07 2021-01-07 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110017918.7A CN112707734B (zh) 2021-01-07 2021-01-07 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法

Publications (2)

Publication Number Publication Date
CN112707734A true CN112707734A (zh) 2021-04-27
CN112707734B CN112707734B (zh) 2023-04-14

Family

ID=75548516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110017918.7A Active CN112707734B (zh) 2021-01-07 2021-01-07 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法

Country Status (1)

Country Link
CN (1) CN112707734B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230337A (zh) * 2021-12-14 2022-03-25 山东常林铸业有限公司 一种基于3d打印的铸造用陶瓷过滤器及其制备方法
CN114477967A (zh) * 2022-01-12 2022-05-13 西安理工大学 基于微流道的面曝光打印定向片晶氧化铝增强陶瓷的方法
CN116653076A (zh) * 2023-05-29 2023-08-29 深圳大学 一种基于3d打印技术的陶瓷均热板的制造方法
CN117567139A (zh) * 2024-01-17 2024-02-20 成都飞机工业(集团)有限责任公司 一种基于光固化3d打印制备高韧性陶瓷材料的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257283A (ja) * 2004-03-09 2005-09-22 Fluidware Technologies Kk マイクロチップ
KR20090067975A (ko) * 2007-12-21 2009-06-25 재단법인 포항산업과학연구원 산소부화용 카본 멤브레인 제조방법
CN103102685A (zh) * 2011-11-14 2013-05-15 吴江朗科化纤有限公司 一种硅橡胶掺杂二氧化硅共混膜的制备方法
WO2014047283A1 (en) * 2012-09-20 2014-03-27 The Penn State Research Foundation Process for production of graphene/silicon carbide ceramic composites
CN105799168A (zh) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 一种防粘减阻纳米结构槽底连续快速曝光光固化打印机
US20170115558A1 (en) * 2015-10-22 2017-04-27 Northwestern University Silica polymer pen lithography
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN109352991A (zh) * 2018-08-13 2019-02-19 北京随米新材科技有限公司 一种打印复合材料的3d打印设备以及其打印方法
US20190301709A1 (en) * 2018-04-03 2019-10-03 National Tsing Hua University Light conversion material with light reflective structure and light-emitting diode device having the same
US20200315975A1 (en) * 2019-04-03 2020-10-08 Lawrence Livermore National Security, Llc Three-dimensional printed structural siloxanes having controlled drug release
CN111780897A (zh) * 2020-08-05 2020-10-16 吉林大学 一种仿生多层电容式柔性压力传感器及其制备方法
CN112125653A (zh) * 2020-08-31 2020-12-25 江苏大学 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257283A (ja) * 2004-03-09 2005-09-22 Fluidware Technologies Kk マイクロチップ
KR20090067975A (ko) * 2007-12-21 2009-06-25 재단법인 포항산업과학연구원 산소부화용 카본 멤브레인 제조방법
CN103102685A (zh) * 2011-11-14 2013-05-15 吴江朗科化纤有限公司 一种硅橡胶掺杂二氧化硅共混膜的制备方法
WO2014047283A1 (en) * 2012-09-20 2014-03-27 The Penn State Research Foundation Process for production of graphene/silicon carbide ceramic composites
US20170115558A1 (en) * 2015-10-22 2017-04-27 Northwestern University Silica polymer pen lithography
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN105799168A (zh) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 一种防粘减阻纳米结构槽底连续快速曝光光固化打印机
US20190301709A1 (en) * 2018-04-03 2019-10-03 National Tsing Hua University Light conversion material with light reflective structure and light-emitting diode device having the same
CN109352991A (zh) * 2018-08-13 2019-02-19 北京随米新材科技有限公司 一种打印复合材料的3d打印设备以及其打印方法
US20200315975A1 (en) * 2019-04-03 2020-10-08 Lawrence Livermore National Security, Llc Three-dimensional printed structural siloxanes having controlled drug release
CN111780897A (zh) * 2020-08-05 2020-10-16 吉林大学 一种仿生多层电容式柔性压力传感器及其制备方法
CN112125653A (zh) * 2020-08-31 2020-12-25 江苏大学 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王赫等: "连续面曝光陶瓷3D打印" *
王赫等: "连续面曝光陶瓷3D打印", 《中国科学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230337A (zh) * 2021-12-14 2022-03-25 山东常林铸业有限公司 一种基于3d打印的铸造用陶瓷过滤器及其制备方法
CN114477967A (zh) * 2022-01-12 2022-05-13 西安理工大学 基于微流道的面曝光打印定向片晶氧化铝增强陶瓷的方法
CN116653076A (zh) * 2023-05-29 2023-08-29 深圳大学 一种基于3d打印技术的陶瓷均热板的制造方法
CN117567139A (zh) * 2024-01-17 2024-02-20 成都飞机工业(集团)有限责任公司 一种基于光固化3d打印制备高韧性陶瓷材料的方法
CN117567139B (zh) * 2024-01-17 2024-05-14 成都飞机工业(集团)有限责任公司 一种基于光固化3d打印制备高韧性陶瓷材料的方法

Also Published As

Publication number Publication date
CN112707734B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN112707734B (zh) 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
Farahani et al. Three‐dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications
Zhang et al. 3D printing of glass by additive manufacturing techniques: a review
Medellin et al. Vat photopolymerization 3d printing of nanocomposites: a literature review
Li et al. Additive manufacturing high performance graphene-based composites: A review
Sun et al. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography
CN104002474B (zh) 具有微纳复合结构的超疏水且粘附可调表面的制备方法及其应用
KR20160055183A (ko) 단열 유리 장치용 진공 글레이징 기둥
CN111825333B (zh) 一种玻璃浆料及其制备方法和3d打印玻璃器件的方法
CN112895441B (zh) 连续功能梯度材料和结构一体化制造的3d打印装置及方法
Wang et al. Architectured graphene and its composites: Manufacturing and structural applications
CN108136497A (zh) 用于3d打印的组合物
Zhao et al. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning
CN110650986A (zh) 辐射固化性树脂的组成及取得方式
JP2005067998A (ja) 光学的立体造形用スラリー、光学的立体造形物の製造方法及び光学的立体造形物
CN115368123B (zh) 用于连续3d打印的陶瓷浆料及其制备方法、打印方法
Carrola et al. Best of both worlds: Synergistically derived material properties via additive manufacturing of nanocomposites
Srivastava et al. Smart manufacturing process of carbon-based low-dimensional structures and fiber-reinforced polymer composites for engineering applications
CN112848304B (zh) 一种电场辅助连续面曝光3d打印有序复合材料的制备方法
CN113416450B (zh) 防伪油墨及其制备方法、防伪图层及其制备方法
Wang et al. Preparation of porous SiC ceramics skeleton with low-cost and controllable gradient based on liquid crystal display 3D printing
Wu et al. Interfacial Regulation for 3D Printing based on Slice‐Based Photopolymerization
CN109021282B (zh) 单分散三维有序多孔材料的制备方法及其制得的材料
CN109747146B (zh) 3d打印装置和制备3d打印结构的方法
CN112795044B (zh) 一种复合透明膜,其制备方法及基于其的连续光固化3d打印陶瓷方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant