CN117567139B - 一种基于光固化3d打印制备高韧性陶瓷材料的方法 - Google Patents

一种基于光固化3d打印制备高韧性陶瓷材料的方法 Download PDF

Info

Publication number
CN117567139B
CN117567139B CN202410064879.XA CN202410064879A CN117567139B CN 117567139 B CN117567139 B CN 117567139B CN 202410064879 A CN202410064879 A CN 202410064879A CN 117567139 B CN117567139 B CN 117567139B
Authority
CN
China
Prior art keywords
photo
curing
ceramic powder
flaky
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410064879.XA
Other languages
English (en)
Other versions
CN117567139A (zh
Inventor
何泰君
阳海棠
黄鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202410064879.XA priority Critical patent/CN117567139B/zh
Publication of CN117567139A publication Critical patent/CN117567139A/zh
Application granted granted Critical
Publication of CN117567139B publication Critical patent/CN117567139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请公开了一种基于光固化3D打印制备高韧性陶瓷材料的方法,涉及陶瓷材料制备技术领域。包括以下步骤:在片状陶瓷粉体表面修饰石墨烯和带电荷的高分子链,诱导片状陶瓷粉体水平取向,得到修饰后的片状陶瓷粉体;将修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀,得到光固化浆料;将光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚;对初胚进行脱脂处理,再进行烧结处理,得到目标陶瓷材料。经过修饰的片状陶瓷粉体实现了在水平方向的定向构筑,使得制备出的陶瓷材料具有仿珍珠贝的类似“砖层”交替结构,可以有效抑制裂纹的生长和传递,使陶瓷材料显示出高强度和高韧性。

Description

一种基于光固化3D打印制备高韧性陶瓷材料的方法
技术领域
本申请涉及陶瓷材料制备技术领域,特别涉及一种基于光固化3D打印制备高韧性陶瓷材料的方法。
背景技术
陶瓷具有高强度、高硬度,耐高温、耐腐蚀、化学稳定性良好、耐磨损、密度小、质量轻等优点,已广泛应用于国防军工、航空航天、医疗、汽车发动机、机械电子、冶金、化工、光学等领域。但陶瓷的传统成型方法如灌浆、铸造、凝胶成型和压制成型等,存在着尺寸精度低、周期长、模具成本高等问题,逐渐不能支持具有复杂结构的新一代高性能陶瓷零件的快速制造。近年来,新兴的增材制造(3D打印)技术基于离散堆积原理,利用自动控制将材料逐层堆积,进而实现了复杂零件的快速制造,具有结构设计灵活、加工成型一体化、制备精度高、制备周期短等优点,为制备具有复杂结构的高性能陶瓷零件提供了新的途径。其中,光固化3D打印成型技术对原料需求量低、后处理工艺较少,可以大大降低生产成本,为氧化铝陶瓷的研制和批量生产提供了一条快速的途径。但是,与陶瓷传统的成型方法相同,基于光固化3D打印成型所制备的陶瓷仍具有高脆性和均匀性差等致命弱点,会影响陶瓷零部件的工作可靠性和使用安全性。因此,本申请提出一种新的基于光固化3D打印制备陶瓷材料的方法以同时满足陶瓷材料的高韧性和复杂结构灵活快速试制的需求。
发明内容
本申请的主要目的是提供一种基于光固化3D打印制备高韧性陶瓷材料的方法,旨在解决现有的陶瓷材料韧性差的技术问题。
为实现上述目的,本申请提出了一种基于光固化3D打印制备高韧性陶瓷材料的方法,包括以下步骤:
在片状陶瓷粉体表面接枝硅烷偶联剂后,加入到分散均匀的氧化石墨烯溶液中反应,使氧化石墨烯接枝到所述片状陶瓷粉体表面;
再将接枝所述氧化石墨烯后的片状陶瓷粉体与硅烷偶联剂反应,在接枝所述氧化石墨烯后的片状陶瓷粉体表面引入乙烯基后,加入到含有离子聚合物单体的溶液中进行自由基共聚合,使所述片状陶瓷粉体表面引入大量离子聚合物;
再将引入大量所述离子聚合物后的片状陶瓷粉体表面的氧化石墨烯还原为石墨烯,并使用酸性溶液或碱性溶液使所述离子聚合物产生解离,形成带正电荷或负电荷的聚电解质,得到修饰后的片状陶瓷粉体;
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀,得到光固化浆料;
将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚;
对所述初胚进行脱脂处理,再进行烧结处理,得到目标陶瓷材料。
可选地,所述离子聚合物包括聚丙烯酸、聚乙烯亚胺、聚赖氨酸、聚乙烯胺、聚磷腈和聚醋酸乙烯中的一种。
可选地,所述片状陶瓷粉体的厚度为10nm-1000nm,所述片状陶瓷粉体的粒径为5μm-100μm,所述片状陶瓷粉体的体积分数为10vol%-70vol%。
可选地,所述烧结助剂包括氧化铝、氧化镁、氧化钛、氧化锆和氧化硅中的至少一种。
可选地,所述分散剂包括碱性的聚丙烯酰胺、中性的聚乙烯吡咯烷酮、酸性的聚丙烯酸、油酸和KOS110中的一种。
可选地,所述光固化树脂单体包括1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯。
可选地,所述光引发剂包括二苯基(2,4,6-三甲基苯甲酰基)氧化膦。
可选地,所述将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀的步骤,包括:
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂先机械搅拌1.5h-2.5h,再超声分散1.5h-2.5h,再球磨共混5.5h-6.5h。
可选地,所述将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚的步骤,包括:
将所述光固化浆料置于3D打印设备的浆料池中,并通过所述3D打印设备的铺料装置对所述光固化浆料添加震动场和预挤压,再根据数模开始打印,打印结束后,使用溶剂清洗以去除多余的所述光固化浆料,再经过紫外灯光照后进行固化处理,得到初胚。
可选地,所述对所述初胚进行脱脂处理的步骤,包括:
将所述初胚置于脱脂炉中,施加沿水平方向的温度场,升温至550℃-650℃并保温1.5h-2.5h,再升温至950℃-1050℃并保温1.5h-2.5h,再自然冷却。
可选地,所述进行烧结处理的步骤,包括:
将脱脂处理后的初胚置于烧结炉中,升温至1500℃-1700℃并保温1.5h-2.5h。
本申请为在陶瓷构件中构建仿珍珠贝的类似“砖层”交替结构,采用光固化3D打印来制备陶瓷材料,由于陶瓷浆料在光固化3D打印的过程中会经历浆料铺平过程,在此过程中浆料受到剪切作用力可能使浆料中的陶瓷原料(尤其是二维片状结构原料)沿水平方向取向,为进一步增强陶瓷原料沿水平方向定向排布,本申请选择具有二维片状结构的片状陶瓷粉体,并在片状陶瓷粉体表面修饰石墨烯,利用石墨烯在电场极化作用下沿电场方向定向排列的特点,诱导片状陶瓷粉体水平取向,而石墨烯本身也可以作为增强相来提升陶瓷材料的强度和韧性,再在片状陶瓷粉体表面修饰带电荷的高分子链,使片状陶瓷粉体表面带电荷,基于剪切变稀和电荷排斥原理,在电场辅助下可诱导片状陶瓷粉体在铺料阶段进一步水平滑移取向,经过修饰后的片状陶瓷粉体实现了片层状陶瓷粉体在水平方向的定向构筑,使得经过打印、脱脂和烧结后,制备出的陶瓷材料具有仿珍珠贝的类似“砖层”交替结构,经过实验验证,该陶瓷材料可以有效抑制裂纹的生长和传递,使陶瓷材料显示出高强度和高韧性。且本申请的制备方法具有成型精度高、加工时间短等优点,可满足陶瓷材料高韧性和复杂结构灵活快速试制的需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例所述的在片状陶瓷粉体表面修饰石墨烯和带电荷的高分子链的流程示意图;
图2为本申请实施例所述的光固化浆料在光固化后沿水平方向取向的示意图;其中,图2A为光固化浆料在光固化后沿水平方向取向的模型示意图;图2B为光固化浆料在光固化后沿水平方向取向的截面SEM图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
陶瓷的传统成型方法如灌浆、铸造、凝胶成型和压制成型等,存在着尺寸精度低、周期长、模具成本高等问题,逐渐不能支持具有复杂结构的新一代高性能陶瓷零件的快速制造。光固化3D打印成型技术对原料需求量低、后处理工艺较少,可以大大降低生产成本,为氧化铝陶瓷的研制和批量生产提供了一条快速的途径。但是,与陶瓷传统的成型方法相同,基于光固化3D打印成型所制备的陶瓷仍具有高脆性和均匀性差等致命弱点,会影响陶瓷零部件的工作可靠性和使用安全性。
由于被称为文石的微观矿物“砖层”交替地堆叠在软性有机化合物层上组成的珍珠质是自然界中集坚固及弹性于一身的材料之一。基于此,若能通过某种定向构筑策略,在陶瓷构件中构建仿珍珠贝的类似“砖层”交替结构,将能从理论上大幅提升陶瓷的韧性。
针对现有的陶瓷材料所存在的技术问题,本申请的实施例提供了一种基于光固化3D打印制备高韧性陶瓷材料的方法,包括以下步骤:
在片状陶瓷粉体表面修饰石墨烯和带电荷的高分子链,诱导所述片状陶瓷粉体水平取向,得到修饰后的片状陶瓷粉体;
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀,得到光固化浆料;
将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚;
对所述初胚进行脱脂处理,再进行烧结处理,得到目标陶瓷材料。
本申请为在陶瓷构件中构建仿珍珠贝的类似“砖层”交替结构,采用光固化3D打印来制备陶瓷材料,由于陶瓷浆料在光固化3D打印的过程中会经历浆料铺平过程,在此过程中浆料受到剪切作用力可能使浆料中的陶瓷原料(尤其是二维片状结构原料)沿水平方向取向,为进一步增强陶瓷原料沿水平方向定向排布,本申请选择具有二维片状结构的片状陶瓷粉体,并在片状陶瓷粉体表面修饰石墨烯,利用石墨烯在电场极化作用下沿电场方向定向排列的特点,诱导片状陶瓷粉体水平取向,而石墨烯本身也可以作为增强相来提升陶瓷材料的强度和韧性,再在片状陶瓷粉体表面修饰带电荷的高分子链,使片状陶瓷粉体表面带电荷,基于剪切变稀和电荷排斥原理,在电场辅助下可诱导片状陶瓷粉体在铺料阶段进一步水平滑移取向,经过修饰后的片状陶瓷粉体实现了片层状陶瓷粉体在水平方向的定向构筑,使得经过打印、脱脂和烧结后,制备出的陶瓷材料具有仿珍珠贝的类似“砖层”交替结构,经过实验验证,该陶瓷材料可以有效抑制裂纹的生长和传递,使陶瓷材料显示出高强度和高韧性。且本申请的制备方法具有成型精度高、加工时间短等优点,可满足陶瓷材料高韧性和复杂结构灵活快速试制的需求。
具体的,以上提式打印机为例,电场固定在光固化3D打印机浆料池中,在光固化前会有刮刀将浆料刮为薄层状,此时施加水平于浆料的电场,在电场作用下,导电石墨烯会产生感应电流并根据电场方向在片层两端分别富集正负电荷,在电场诱导电荷的作用下,石墨烯片层会沿着电场方向偏移,从而形成水平取向的结构,因此可利用石墨烯在电场极化作用下沿电场方向定向排列的特点,来诱导片状陶瓷粉体水平取向。
剪切变稀是由于刮刀在铺平浆料时,会使浆料受到水平方向的剪切力,迫使浆料中的分子链和片状陶瓷按受力方向取向,此时分子链和片状陶瓷之间均按同一方向整齐排列,理论上的自由体积增大,从而在宏观上表现出粘度变稀的现象;电荷排斥原理是指陶瓷粉体表面修饰的离子聚合物由于带相同电荷,会出现同性相斥作用,使两陶瓷片层之间的自由体积进一步增大,从而有利于陶瓷片层的偏转移动。
作为本申请的一种可实施方式,所述在片状陶瓷粉体表面修饰石墨烯和带电荷的高分子链,诱导所述片状陶瓷粉体水平取向,得到修饰后的片状陶瓷粉体的步骤,包括:
将硅烷偶联剂KH550接枝到片状陶瓷粉体FC表面,使KH550与FC表面的羟基进行缩合反应,并使用超声溶剂清洗以去除未接枝的KH550,再将接枝KH550后的FC加入到分散均匀的氧化石墨烯溶液中反应,使氧化石墨烯接枝到FC表面,得到接枝了氧化石墨烯后的片状陶瓷粉体FC-G;
再将FC-G与硅烷偶联剂KH570反应,在FC-G表面引入可反应的乙烯基后,加入到含有醋酸乙烯的溶液中进行自由基共聚合,使FC-G表面引入大量聚醋酸乙烯,得到引入大量离子聚合物后的片状陶瓷粉体FC-G-PA;
再将FC-G-PA表面的氧化石墨烯还原为石墨烯,并使用酸性溶液或碱性溶液使所述离子聚合物产生解离,形成带正电荷或负电荷的聚电解质,得到修饰后的片状陶瓷粉体FC-G-PA-
如图1所示,为实现陶瓷原料在水平方向的定向构筑,本申请选择更易在剪切力作用下沿水平方向取向的具有二维片状结构的片状陶瓷粉体原料,并通过在片状陶瓷粉体表面修饰石墨烯和带电荷的高分子链,诱导片状陶瓷粉体原料在铺料阶段水平滑移取向,后续再经过光固化3D打印过程中的浆料铺平时,会促使浆料收到剪切力作用后进一步沿水平方向取向。
作为本申请的一种可实施方式,所述离子聚合物包括聚丙烯酸、聚乙烯亚胺、聚赖氨酸、聚乙烯胺、聚磷腈和聚醋酸乙烯中的一种。
离子聚合物解离后,会形成带正电荷或负电荷的聚电解质,使经过修饰后的片状陶瓷粉体表面带电荷,进而在电场辅助下诱导片状陶瓷粉体原料在铺料阶段水平滑移取向,优选的,离子聚合物为聚丙烯酸,则离子聚合物单体为丙烯酸。
作为本申请的一种可实施方式,所述片状陶瓷粉体的厚度为10nm-1000nm,所述片状陶瓷粉体的粒径为5μm-100μm,所述片状陶瓷粉体的体积分数为10vol%-70vol%。
具体的,片状陶瓷粉体可选择片状氧化铝、片状碳化硅、片状氮化硼、片状氧化硅和片状氧化锆等,从而满足氧化铝、碳化硅、氮化硼、氧化硅和氧化锆等陶瓷高韧性和复杂结构灵活快速试制的需求。
作为本申请的一种可实施方式,所述烧结助剂包括氧化铝、氧化镁、氧化钛、氧化锆和氧化硅中的至少一种。优选的,烧结助剂选择纳米片状氧化铝、纳米片状氧化镁、纳米片状氧化钛、纳米片状氧化锆和纳米片状氧化硅。
作为本申请的一种可实施方式,所述分散剂包括碱性的聚丙烯酰胺、中性的聚乙烯吡咯烷酮、酸性的聚丙烯酸、油酸和KOS110中的一种。
由于碱性的聚丙烯酰胺、中性的聚乙烯吡咯烷酮、酸性的聚丙烯酸、油酸和KOS110均为电荷性分散剂,通过纳米片状结构的烧结助剂与电荷性分散剂的作用,可提升粒子之间的自由体积和运动能力,再基于剪切变稀原理,在后续光固化过程中的剪切力作用下,可促使片状陶瓷粉体原料进一步水平滑移取向。
作为本申请的一种可实施方式,所述光固化树脂单体包括1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯。
光固化树脂单体能在紫外光照射下由光引发剂引发聚合反应,生成不溶的涂膜,1,6-己二醇二丙烯酸酯具有固化速度快、耐化学溶剂性能好的特点,1,1,1-三羟甲基丙烷三丙烯酸酯具有柔韧性好、耐磨等特点,将1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯复合作为光固化树脂单体,可增强陶瓷材料的柔韧性和稳定性。优选的,1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯以4:1的摩尔比混合。
作为本申请的一种可实施方式,所述光引发剂包括二苯基(2,4,6-三甲基苯甲酰基)氧化膦。
二苯基(2,4,6-三甲基苯甲酰基)氧化膦可诱导光固化树脂单体聚合形成聚合物交联网络,以固定陶瓷颗粒或前驱体,并在3D打印设备上逐层固化成型最终得到三维陶瓷初胚。
作为本申请的一种可实施方式,所述将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀的步骤,包括:
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂先机械搅拌1.5h-2.5h,再超声分散1.5h-2.5h,再球磨共混5.5h-6.5h。
为将修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂充分混合均匀,本申请依次通过机械搅拌、超声分散和球磨共混的方式,促使所有原料混匀,得到可用于光固化3D打印的浆料。
作为本申请的一种可实施方式,所述将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚的步骤,包括:
将所述光固化浆料置于3D打印设备的浆料池中,并通过所述3D打印设备的铺料装置对所述光固化浆料添加震动场和预挤压,再根据数模开始打印,打印结束后,使用溶剂清洗以去除多余的所述光固化浆料,再经过紫外灯光照后进行固化处理,得到初胚。
具体的,3D打印设备为立体光刻(SLA)或数字光刻(DLP)3D打印设备,通过3D打印设备的铺料装置为光固化浆料添加震动场和预挤压,可进一步增大光固化浆料中片状氧化粉体原料的水平取向程度,由于片状陶瓷为较为典型的二维结构,受力特征使其二维水平方向倾向垂直于重力方向。因此,添加震动场是在动力学条件上加速片状陶瓷的平铺速率;添加预挤压则是在重力方向上继续增加外力,使更多片状陶瓷平铺,从而增加水平取向程度,光固化浆料在光固化后沿水平方向取向的截面SEM图如图2所示。
作为本申请的一种可实施方式,所述对所述初胚进行脱脂处理的步骤,包括:
将所述初胚置于脱脂炉中,施加沿水平方向的温度场,升温至550℃-650℃并保温1.5h-2.5h,再升温至950℃-1050℃并保温1.5h-2.5h,再自然冷却。
经过脱脂处理,可去除辅助初胚成型的离子聚合物,同时施加沿水平方向的温度场,促使初胚在水平方向上的定向构筑更加紧密,形成仿珍珠贝的类似“砖层”交替结构。
作为本申请的一种可实施方式,所述进行烧结处理的步骤,包括:
将脱脂处理后的初胚置于烧结炉中,升温至1500℃-1700℃并保温1.5h-2.5h。
对脱脂处理后的初胚进行烧结,可进一步辅助陶瓷材料更加紧密的堆积,使陶瓷材料的类似“砖层”交替结构更加稳定,从而大幅提升陶瓷材料的强度和韧性。
下面结合具体实施例对本申请上述技术方案进行详细说明。
实施例1
一种基于光固化3D打印制备高韧性陶瓷材料的方法,包括以下步骤:
采用硅烷偶联剂(KH550)与片状氧化铝(FC)表面的羟基进行缩合反应,并使用超声溶剂清洗以去除未接枝的KH550,再将接枝KH550后的FC加入到分散均匀的氧化石墨烯溶液中反应,使氧化石墨烯接枝到FC表面,得到接枝了氧化石墨烯后的片状氧化铝(FC-G);
再将FC-G与硅烷偶联剂(KH570)反应,在FC-G表面引入可反应的乙烯基后,加入到含有醋酸乙烯的溶液中进行自由基共聚合,使FC-G表面引入大量聚醋酸乙烯,得到引入大量离子聚合物后的片状氧化铝(FC-G-PA);
再将FC-G-PA表面的氧化石墨烯还原为石墨烯,并使用碱性溶液使聚醋酸乙烯电离为聚醋酸乙烯酸钠,得到修饰后的片状氧化铝(FC-G-PA-);
将所述修饰后的片状氧化铝、烧结助剂、分散剂、光固化树脂单体和光引发剂先机械搅拌2h,再超声分散2h,再球磨共混6h,磨珠选择直径分别为5mm/10mm/15mm的三种,质量比分别为5/3/2,得到光固化浆料;
其中,片状氧化铝的体积分数为50vol%;烧结助剂为片状氧化铝、片状氧化镁、纳米片状氧化钛、纳米片状氧化锆和纳米片状氧化硅按1:1:1:1:1的质量比混合;分散剂为KOS110,为片状氧化铝质量的2wt%;光固化树脂单体为1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯按4:1的体积比混合;光引发剂为二苯基(2,4,6-三甲基苯甲酰基)氧化膦,为单体质量的1wt%;
采用立体光刻3D打印设备,紫外线波长为405nm,通过Materialise Magics软件绘图得到要打印的模型,然后用Cura软件进行切片。在打印之前,需对浆料进行可打印性测试,以确定适当曝光时间和切片厚度,将所述光固化浆料置于3D打印设备的浆料池中,并通过所述3D打印设备的铺料装置对所述光固化浆料添加震动场和预挤压,再根据数模开始打印,打印结束后,通过超声波清洗去除附着的光固化浆料,再经过紫外灯光照后进行固化处理,得到Al2O3初胚;
将Al2O3初胚置于脱脂炉中,施加沿水平方向的温度场,以0.5℃/min的速度升温至600℃并保温2h,再以2℃/min的速度升温至1000℃并保温2h,再自然冷却,得到Al2O3棕体,再将Al2O3棕体置于烧结炉中,以4℃/min的速度升温至1600℃并保温2h,得到目标氧化铝陶瓷。
实验例
将实施例1制备的氧化铝陶瓷与传统氧化铝陶瓷、编织连续纤维增韧氧化铝陶瓷进行对比,分别测试弯曲强度和断裂韧性。测试结果如下表1所示。
表1
由表1可见,由于本申请所制备的氧化铝陶瓷具备仿珍珠贝的类似“砖层”交替结构,可以有效抑制裂纹的生长和传递,其韧性相较传统方法制备的氧化铝陶瓷具有十分显著的提升,并略高于编织连续纤维增韧氧化铝陶瓷的韧性。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

1.一种基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,包括以下步骤:
在片状陶瓷粉体表面接枝硅烷偶联剂后,加入到分散均匀的氧化石墨烯溶液中反应,使氧化石墨烯接枝到所述片状陶瓷粉体表面;
再将接枝所述氧化石墨烯后的片状陶瓷粉体与硅烷偶联剂反应,在接枝所述氧化石墨烯后的片状陶瓷粉体表面引入乙烯基后,加入到含有离子聚合物单体的溶液中进行自由基共聚合,使所述片状陶瓷粉体表面引入大量离子聚合物;
再将引入大量所述离子聚合物后的片状陶瓷粉体表面的氧化石墨烯还原为石墨烯,并使用酸性溶液或碱性溶液使所述离子聚合物产生解离,形成带正电荷或负电荷的聚电解质,得到修饰后的片状陶瓷粉体;
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀,得到光固化浆料;
将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚;
对所述初胚进行脱脂处理,再进行烧结处理,得到目标陶瓷材料。
2.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述离子聚合物包括聚丙烯酸、聚乙烯亚胺、聚赖氨酸、聚乙烯胺、聚磷腈和聚醋酸乙烯中的一种。
3.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述片状陶瓷粉体的厚度为10nm-1000nm,所述片状陶瓷粉体的粒径为5μm-100μm,所述片状陶瓷粉体的体积分数为10vol%-70vol%。
4.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述烧结助剂包括氧化铝、氧化镁、氧化钛、氧化锆和氧化硅中的至少一种。
5.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述分散剂包括碱性的聚丙烯酰胺、中性的聚乙烯吡咯烷酮、酸性的聚丙烯酸、油酸和KOS110中的一种。
6.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述光固化树脂单体包括1,6-己二醇二丙烯酸酯和1,1,1-三羟甲基丙烷三丙烯酸酯。
7.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述光引发剂包括二苯基(2,4,6-三甲基苯甲酰基)氧化膦。
8.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂混合均匀的步骤,包括:
将所述修饰后的片状陶瓷粉体、烧结助剂、分散剂、光固化树脂单体和光引发剂先机械搅拌1.5h-2.5h,再超声分散1.5h-2.5h,再球磨共混5.5h-6.5h。
9.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述将所述光固化浆料置于3D打印设备中进行打印,再经过紫外灯光照后进行固化处理,得到初胚的步骤,包括:
将所述光固化浆料置于3D打印设备的浆料池中,并通过所述3D打印设备的铺料装置对所述光固化浆料添加震动场和预挤压,再根据数模开始打印,打印结束后,使用溶剂清洗以去除多余的所述光固化浆料,再经过紫外灯光照后进行固化处理,得到初胚。
10.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述对所述初胚进行脱脂处理的步骤,包括:
将所述初胚置于脱脂炉中,施加沿水平方向的温度场,升温至550℃-650℃并保温1.5h-2.5h,再升温至950℃-1050℃并保温1.5h-2.5h,再自然冷却。
11.根据权利要求1所述的基于光固化3D打印制备高韧性陶瓷材料的方法,其特征在于,所述进行烧结处理的步骤,包括:
将脱脂处理后的初胚置于烧结炉中,升温至1500℃-1700℃并保温1.5h-2.5h。
CN202410064879.XA 2024-01-17 2024-01-17 一种基于光固化3d打印制备高韧性陶瓷材料的方法 Active CN117567139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410064879.XA CN117567139B (zh) 2024-01-17 2024-01-17 一种基于光固化3d打印制备高韧性陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410064879.XA CN117567139B (zh) 2024-01-17 2024-01-17 一种基于光固化3d打印制备高韧性陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN117567139A CN117567139A (zh) 2024-02-20
CN117567139B true CN117567139B (zh) 2024-05-14

Family

ID=89888554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410064879.XA Active CN117567139B (zh) 2024-01-17 2024-01-17 一种基于光固化3d打印制备高韧性陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN117567139B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157745A (zh) * 2007-09-11 2008-04-09 浙江大学 一种无机材料表面接枝聚合物的方法
CN105218103A (zh) * 2015-10-26 2016-01-06 哈尔滨工业大学 一种石墨烯/陶瓷层状材料的制备方法
DE102015203873A1 (de) * 2015-03-04 2016-09-08 Airbus Operation GmbH 3D-Druckverfahren und Pulvermischung zum 3D-Drucken
CN108192352A (zh) * 2018-02-01 2018-06-22 天津沃尔提莫新材料技术股份有限公司 一种具有取向交错排列碳纳米管的导热片及其制备方法
CN108976682A (zh) * 2018-07-13 2018-12-11 启东祥瑞建设有限公司 一种氧化石墨烯/聚丙烯酸仿贝壳珍珠母层状复合材料的制备方法
CN111072382A (zh) * 2018-10-18 2020-04-28 苏州鼎安科技有限公司 一种全瓷义齿用氧化锆瓷块及其制备工艺
CN111349258A (zh) * 2020-05-09 2020-06-30 吕梁学院 一种氧化石墨烯涂覆膜及其制备方法和应用
CN111548120A (zh) * 2020-05-14 2020-08-18 福建省德化同鑫陶瓷有限公司 3d打印火山坑状肌理陶瓷及其加工方法
CN112635909A (zh) * 2020-12-18 2021-04-09 汕头市广油美联新材料研究院有限公司 一种原位合成水性陶瓷浆料的制备方法
CN112707734A (zh) * 2021-01-07 2021-04-27 青岛理工大学 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
KR102527351B1 (ko) * 2023-01-20 2023-05-03 황현수 수평 및 수직 절단용 칼날을 가지는 믹서기용 세라믹 커터의 제조방법
WO2023178414A1 (en) * 2022-03-22 2023-09-28 National Research Council Of Canada 3d-printable piezoelectric ceramic compositions with carbon nanomaterials

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157745A (zh) * 2007-09-11 2008-04-09 浙江大学 一种无机材料表面接枝聚合物的方法
DE102015203873A1 (de) * 2015-03-04 2016-09-08 Airbus Operation GmbH 3D-Druckverfahren und Pulvermischung zum 3D-Drucken
CN105218103A (zh) * 2015-10-26 2016-01-06 哈尔滨工业大学 一种石墨烯/陶瓷层状材料的制备方法
CN108192352A (zh) * 2018-02-01 2018-06-22 天津沃尔提莫新材料技术股份有限公司 一种具有取向交错排列碳纳米管的导热片及其制备方法
CN108976682A (zh) * 2018-07-13 2018-12-11 启东祥瑞建设有限公司 一种氧化石墨烯/聚丙烯酸仿贝壳珍珠母层状复合材料的制备方法
CN111072382A (zh) * 2018-10-18 2020-04-28 苏州鼎安科技有限公司 一种全瓷义齿用氧化锆瓷块及其制备工艺
CN111349258A (zh) * 2020-05-09 2020-06-30 吕梁学院 一种氧化石墨烯涂覆膜及其制备方法和应用
CN111548120A (zh) * 2020-05-14 2020-08-18 福建省德化同鑫陶瓷有限公司 3d打印火山坑状肌理陶瓷及其加工方法
CN112635909A (zh) * 2020-12-18 2021-04-09 汕头市广油美联新材料研究院有限公司 一种原位合成水性陶瓷浆料的制备方法
CN112707734A (zh) * 2021-01-07 2021-04-27 青岛理工大学 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
WO2023178414A1 (en) * 2022-03-22 2023-09-28 National Research Council Of Canada 3d-printable piezoelectric ceramic compositions with carbon nanomaterials
KR102527351B1 (ko) * 2023-01-20 2023-05-03 황현수 수평 및 수직 절단용 칼날을 가지는 믹서기용 세라믹 커터의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3D打印应用在骨组织工程研究中的特点与进展;武成聪;王芳;荣树;吴铮;刘涛;刘克廷;朱博;黄合飞;;中国组织工程研究;20170528(第15期);全文 *
氧化石墨烯改性陶瓷微滤膜离子截留性能研究;丁文秀;中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑;20190115;全文 *
片状氧化铝/聚合物复合材料的研究进展;姚慧超等;材料科学与工程学报;20191231;全文 *
稀土金属配合物催化极性/非极性烯烃配位聚合研究;王田田;中国博士学位论文全文数据库 工程科技Ⅰ辑;20221015;全文 *

Also Published As

Publication number Publication date
CN117567139A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
JP7255915B2 (ja) 光硬化3dプリントアイテムの製造方法およびその使用法
KR101352295B1 (ko) 초경합금체의 겔 캐스팅 방법
KR20080024537A (ko) 고체 충전제를 함유하는 중합성 조성물, 이것으로 만들어진물품 및 제조 방법
CN110683842B (zh) 一种用于高性能dlp打印的生物陶瓷浆料及其制备方法
Xiao et al. Three-dimensional printing of SiCN ceramic matrix composites from preceramic polysilazane by digital light processing
CN111116205A (zh) 光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法
CN110803915A (zh) 一种陶瓷光固化材料及其制备方法
CN114368972B (zh) 可见光3d打印光固化陶瓷浆料、制备方法及打印方法
CN105330268A (zh) 一种层状陶瓷的制备方法
CN110092873A (zh) 一种光敏树脂陶瓷及其立体光固化制备方法
CN112010641A (zh) 一种陶瓷组合物、其制品及其制备方法
CN117567139B (zh) 一种基于光固化3d打印制备高韧性陶瓷材料的方法
CN109734450A (zh) 一种用于光固化增材制造的光敏陶瓷液的制备方法
JP3706304B2 (ja) 熱可塑性ポリマーの水性ラテックス分散物から得られる固体表面材料
He et al. Digital light processing fabrication of mullite component derived from preceramic precusor using photosensitive hydroxysiloxane as the matrix and alumina nanoparticles as the filler
CN113458389B (zh) 一种聚苯乙烯包覆铝合金的复合粉体、合金浆料、制备方法和立体光刻打印方法
CN111763086A (zh) 压电陶瓷复合材料浆料体系、制备方法及3d打印方法
CN110511042A (zh) 一种光固化3d打印低收缩陶瓷浆料的制备方法
CN113307542B (zh) 高固相含量0-3型压电复合材料膏料及其制备方法和结构件的制造方法
JPH0812442A (ja) セラミック複合材スラリー及びその成形方法
Zhang et al. Preparation and properties of water-based acrylic emulsion-assisted flexible building tiles
Seo et al. Ceramic bodies without warping using epoxide–acrylate hybrid ceramic slurry for photopolymerization‐based 3D printing
JP2001278672A (ja) セラミックス材料及びその製造方法
CN114075069A (zh) 光固化3d打印用氧化铝陶瓷浆料、制备方法及氧化铝陶瓷
CN112174652A (zh) 一种光固化二氧化硅陶瓷浆料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant