CN114956844A - 一种三维碳纤维增韧陶瓷基复合材料及其制备方法 - Google Patents

一种三维碳纤维增韧陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN114956844A
CN114956844A CN202210672363.4A CN202210672363A CN114956844A CN 114956844 A CN114956844 A CN 114956844A CN 202210672363 A CN202210672363 A CN 202210672363A CN 114956844 A CN114956844 A CN 114956844A
Authority
CN
China
Prior art keywords
ceramic
carbon fiber
dimensional carbon
matrix composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210672363.4A
Other languages
English (en)
Inventor
张美红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210672363.4A priority Critical patent/CN114956844A/zh
Publication of CN114956844A publication Critical patent/CN114956844A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种三维碳纤维增韧陶瓷基复合材料及其制备方法,属于陶瓷材料技术领域,所述的三维碳纤维增韧陶瓷基复合材料的制备方法,包括以下步骤:将混合陶瓷粉体、分散剂、粘结剂、有机溶剂球磨混合均匀,得到陶瓷浆料;将三维碳纤维预制体加入到陶瓷浆料中,放置于振动台上,控制振动功率和时间使陶瓷浆料在三维碳纤维预制体内完成渗透,振动至质量不再增加,真空干燥,得到陶瓷坯体;将陶瓷坯体置于模具中,放入放电等离子烧结炉内,烧结,得到三维碳纤维增韧陶瓷基复合材料。所述的陶瓷基复合材料孔隙率低,致密度高,弯曲强度、断裂功高,能够广泛的应用于航空航天,舰船等高端装备领域。

Description

一种三维碳纤维增韧陶瓷基复合材料及其制备方法
技术领域
本发明涉及陶瓷材料技术领域,具体涉及一种三维碳纤维增韧陶瓷基复合材料及其制备方法。
背景技术
纤维增韧陶瓷基复合材料同时具备碳纤维的强韧性和陶瓷材料的耐高温/抗氧化特性,广泛应用于极端环境结构材料领域。
碳纤维主要包含短切碳纤维、二维碳纤维布及三维碳纤维预制体。短切碳纤维增韧超高温陶瓷复合材料主要采用热压烧结或放电等离子烧结等方式制备,材料致密度高且纤维含量可控,但受限于纤维拔出长度和纤维桥联程度的限制,对陶瓷材料的断裂韧性提升幅度有限;二维碳纤维增韧陶瓷基复合材料在面内方向具备较高的断裂韧性和断裂功,但层间方向纤维含量低而导致剪切强度较低,材料表现出各向异性;三维碳纤维预制体在面内和层间具备优异的力学性能,能大幅度提升陶瓷材料的断裂韧性和断裂功,是目前最有效的增韧相。
目前三维碳纤维增韧陶瓷基复合材料的主流制备方法为先驱体浸渍裂解和反应熔渗法。传统先驱体浸渍裂解法的成本相对较低但难以制备高致密度的复合材料,同时制备周期也相对较长。反应熔渗法制备温度高,易导致碳纤维损伤而丧失强韧化效应,同时残留的熔渗合金易降低陶瓷材料力学性能。因此,亟需发展一种工艺简单、制备周期短且低成本的三维碳纤维增韧陶瓷基复合材料的制备工艺。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种三维碳纤维增韧陶瓷基复合材料及其制备方法,所述的陶瓷基复合材料孔隙率低,致密度高,弯曲强度、断裂功高。
为实现上述目的,本发明采取的技术方案为:
一种三维碳纤维增韧陶瓷基复合材料的制备方法,包括以下步骤:
将混合陶瓷粉体、分散剂、粘结剂、有机溶剂球磨混合均匀,得到陶瓷浆料;
将三维碳纤维预制体加入到陶瓷浆料中,放置于振动台上,控制振动功率和时间及真空抽滤时间使陶瓷浆料在三维碳纤维预制体内完成渗透,振动至质量不再增加,真空干燥,得到陶瓷坯体;
将陶瓷坯体置于模具中,放入放电等离子烧结炉内,烧结,得到三维碳纤维增韧陶瓷基复合材料。
现有技术中(CN106866151A)公开了浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法,其通过浆料注射成型的方式制备得到了碳纤维增韧硼化锆-碳化硅复合材料,但其制备得到的复合材料孔隙率仍然大于5%,弯曲强度仍然低于270MPa,断裂韧性仍然较低,限制了其在航空航天,舰船等高端装备领域中的应用。
本发明的发明人在大量的研究中发现,通过将混合陶瓷粉体、分散剂、粘结剂、有机溶剂球磨混合,再将三维碳纤维预制体加入到陶瓷浆料中,通过振动辅助浆料渗透技术实现混合陶瓷粉体在三维碳纤维束内和束间的高含量均匀分布,混合陶瓷粉体在三维碳纤维预制体内部的引入量大大提高,达到30vol.%~35vol.%,远高于传统浆料浸渍工艺陶瓷引入量(<20vol.%),再通过放电等离子烧结,实现了三维碳纤维增韧陶瓷基复合材料的快速烧结致密化,制备得到的陶瓷基复合材料孔隙率低于5%,弯曲强度高于280MPa,断裂功高达1000J/m2以上,能够广泛的应用于航空航天,舰船等高端装备领域。
需要说明的是,本领域技术人员需要利用容器将陶瓷浆料放入放置于振动台上,从而进行振动操作。本领域技术人员可以根据实际需求,选择具体的容器,只要达到盛放效果即可。
需要说明的是,所述的陶瓷坯体放置的模具,本领域技术人员可以根据实际需要选择具体的模具,例如模具包括但不限于石墨模具。
作为本发明的优选实施方案,所述分散剂与混合陶瓷粉体的质量比为0.009~0.02:1;
所述粘结剂与混合陶瓷粉体的质量比0.004~0.01:1;
所述有机溶剂与混合陶瓷粉体的质量比为0.25~0.8:1。
作为本发明的优选实施方案,所述混合陶瓷粉体包括硼化物陶瓷粉体或碳化物混合陶瓷粉体。例如所述硼化物陶瓷粉体为ZrB2-SiC或ZrB2-ZrSi2,例如所述的碳化物陶瓷粉体ZrC-SiC或ZrC-ZrSi2
其中ZrB2-SiC中的ZrB2、SiC的比例可以是任意比,本发明不做限定。
其中ZrB2-ZrSi2中的ZrB2、ZrSi2的比例可以是任意比,本发明不做限定。
其中ZrC-SiC中的ZrC、SiC的比例可以是任意比,本发明不做限定。
其中ZrC-ZrSi2中的ZrC、ZrSi2的比例可以是任意比,本发明不做限定。
作为本发明的优选实施方案,所述有机溶剂为无水乙醇、乙醇、丙酮中的至少一种;
作为本发明的优选实施方案,所述粘结剂为聚乙烯醇缩丁醛
作为本发明的优选实施方案,所述分散剂为聚乙烯亚胺。
作为本发明的优选实施方案,所述球磨转速为200rpm~300rpm,球磨时间为5h~10h。
作为本发明的优选实施方案,所述三维碳纤维预制体的密度为0.15g/cm3~0.3g/cm3,孔隙率为83%~91.5%。通过选用上述密度和孔隙率的三维碳纤维预制体,利于三维碳纤维束内和束间的高含量均匀分布。
作为本发明的优选实施方案,所述三维碳纤维预制体与陶瓷浆料的质量比为0.06~0.16:1。
通过控制三维碳纤维预制体与陶瓷浆料的质量比,可以有效的使混合陶瓷粉体在三维碳纤维预制体内部的引入量大大提高,达到30vol.%~35vol.%,促进混合陶瓷粉体在三维碳纤维束内和束间的高含量均匀分布。
作为本发明的优选实施方案,所述振动功率为50Hz~10Hz,振动时间为0.5h~1h。通过控制振动功率和时间,使陶瓷浆料在三维碳纤维预制体内完成渗透。
作为本发明的优选实施方案,所述真空干燥的温度为25℃~30℃。
作为本发明的优选实施方案,所述放电等离子烧结的烧结温度为1500℃~1700℃,烧结压力为35MPa~45MPa,烧结时间为25min~30min。
通过利用上述放电等离子烧结的烧结工艺条件,使所述的三维碳纤维增韧陶瓷基复合材料的快速烧结致密化。
本发明还提供了一种三维碳纤维增韧陶瓷基复合材料,采用上述所述的三维碳纤维增韧陶瓷基复合材料制备方法制备而成。
本发明的有益效果在于:(1)本发明通过将混合陶瓷粉体、分散剂、粘结剂、有机溶剂球磨混合,再将三维碳纤维预制体加入到陶瓷浆料中,通过振动辅助浆料渗透技术实现混合陶瓷粉体在三维碳纤维束内和束间的高含量均匀分布,混合陶瓷粉体在三维碳纤维预制体内部的引入量大大提高,再通过放电等离子烧结,实现了三维碳纤维增韧陶瓷基复合材料的快速烧结致密化。(2)本发明制备得到的陶瓷基复合材料孔隙率低于5%,弯曲强度高于280MPa,断裂功高达1000J/m2以上,能够广泛的应用于航空航天,舰船等高端装备领域。(3)本发明所述的陶瓷基复合材料的制备方法制备周期短且成本低,具有广泛的市场前景。
附图说明
图1为实施例1制备得到的3D Cf/ZrB2-SiC陶瓷坯体的微观形貌图。
图2为实施例1制备得到的3D Cf/ZrB2-SiC复合材料的微观形貌图。
图3为实施例1制备得到的3D Cf/ZrB2-SiC复合材料的断面元素面分布图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种三维碳纤维增韧陶瓷基复合材料的制备方法(3D Cf/ZrB2-SiC复合材料),包括以下步骤:
(1)将56.02g ZrB2粉体、7.38g第二相SiC粉体混合均匀后加入到36.34g无水乙醇中,并加入1.26g聚乙烯亚胺分散剂和0.63g聚乙烯醇缩丁醛粘结剂,以200rpm转速湿法球磨10h,获得固含量为20%的均匀分散ZrB2-SiC陶瓷浆料;
(2)将密度为0.15g/cm3且孔隙率为91.5%的三维碳纤维预制体(尺寸为Φ40×10mm3)放入步骤一制备的ZrB2-SiC陶瓷浆料容器中,并将容器放置在振动频率为60Hz的振动台并配合真空抽滤处理1h,取出带陶瓷浆料的三维碳纤维预制体并进行25℃真空干燥处理24h,获得陶瓷粉体均匀填充的3D Cf/ZrB2-SiC陶瓷坯体。3D Cf/ZrB2-SiC陶瓷坯体的致密度59.6%,其中ZrB2-SiC陶瓷粉体的引入量为30.6%。3D Cf/ZrB2-SiC陶瓷坯体的微观形貌图如图1,陶瓷粉体均匀填充于纤维束内和纤维束间,实现了陶瓷粉体与三维碳纤维的均匀化复合;
(3)将3D Cf/ZrB2-SiC陶瓷坯体装入石墨模具中,再在1500℃烧结温度和40MPa烧结压力下放电等离子烧结30min,最终获得3D Cf/ZrB2-SiC复合材料。其中3D Cf/ZrB2-SiC复合材料的致密度为95.6%,孔隙率为4.4%,弯曲强度为287±16MPa,断裂韧性为6.47±0.23MPa·m1/2,断裂功为1364J/m2
3D Cf/ZrB2-SiC复合材料的微观形貌图如图2,3D Cf/ZrB2-SiC复合材料的碳纤维结构完整,碳纤维从陶瓷基体中呈现大幅度拔出现象,改变了陶瓷材料的脆性断裂模式,提升了陶瓷材料的断裂功。
3D Cf/ZrB2-SiC复合材料的断面元素面分布图,C、Zr和Si元素分布均匀,未出现陶瓷颗粒聚集的现象,验证了振动辅助浆料渗透工艺制备均匀分布三维碳纤维增韧陶瓷基复合材料的可行性。
实施例2
一种三维碳纤维增韧陶瓷基复合材料的制备方法(3D Cf/ZrB2-ZrSi2复合材料),包括以下步骤:
(1)将56.02g ZrB2粉体、10.49g第二相ZrSi2粉体混合均匀后加入到36.34g无水乙醇中,并加入1.33g聚乙烯亚胺分散剂和0.67g聚乙烯醇缩丁醛粘结剂,以200rpm转速湿法球磨10h,获得固含量为20%的均匀分散ZrB2-SiC陶瓷浆料;
(2)将密度为0.15g/cm3且孔隙率为91.5%的三维碳纤维预制体(尺寸为φ40×10mm3)放入步骤一制备的ZrB2-ZrSi2陶瓷浆料容器中,并将容器放置在振动频率为60Hz的振动台并配合真空抽滤处理1h,取出带陶瓷浆料的三维碳纤维预制体并进行25℃真空干燥处理24h,获得陶瓷粉体均匀填充的3D Cf/ZrB2-ZrSi2陶瓷坯体。
(3)将3D Cf/ZrB2-ZrSi2陶瓷坯体装入石墨模具中,再在1500℃烧结温度和40MPa烧结压力下放电等离子烧结30min,最终获得3D Cf/ZrB2-ZrSi2复合材料。其中3D Cf/ZrB2-ZrSi2复合材料的致密度为96.1%,孔隙率为3.9%,弯曲强度为302±21MPa,断裂韧性为6.32±0.22MPa·m1/2,断裂功为1215J/m2
实施例3
一种三维碳纤维增韧陶瓷基复合材料的制备方法(3D Cf/ZrC-SiC复合材料),包括以下步骤:
(1)将59.98g ZrC粉体、10.16g第二相SiC粉体混合均匀后加入到20.54g无水乙醇中,并加入0.67g聚乙烯亚胺分散剂和0.34g聚乙烯醇缩丁醛粘结剂,以300rpm转速湿法球磨5h,获得固含量为30%的均匀分散ZrC-SiC陶瓷浆料;
(2)将密度为0.2g/cm3且孔隙率为88.6%的三维碳纤维预制体(尺寸为φ40×10mm3)放入步骤一制备的ZrC-SiC陶瓷浆料容器中,并将容器放置在振动频率为100Hz的振动台并配合真空抽滤处理0.5h,取出带陶瓷浆料的三维碳纤维预制体并进行30℃真空干燥处理18h,获得陶瓷粉体均匀填充的3DCf/ZrC-SiC陶瓷坯体。
(3)将3D Cf/ZrC-SiC陶瓷坯体装入石墨模具中,再在1700℃烧结温度和40MPa烧结压力下放电等离子烧结30min,最终获得3D Cf/ZrC-SiC复合材料。其中3D Cf/ZrC-SiC复合材料的致密度为96.4%,孔隙率为3.6%,弯曲强度为317±22MPa,断裂韧性为6.16±0.21MPa·m1/2,断裂功为1143J/m2
实施例4
一种三维碳纤维增韧陶瓷基复合材料的制备方法(3D Cf/ZrC-ZrSi2复合材料),包括以下步骤:
(1)将59.98g ZrC粉体、10.16g第二相ZrSi2粉体混合均匀后加入到20.54g无水乙醇中,并加入0.7g聚乙烯亚胺分散剂和0.35g聚乙烯醇缩丁醛粘结剂,以300rpm转速湿法球磨5h,获得固含量为30%的均匀分散ZrC-ZrSi2陶瓷浆料;
(2)将密度为0.2g/cm3且孔隙率为88.6%的三维碳纤维预制体(尺寸为φ40×10mm3)放入步骤一制备的ZrC-ZrSi2陶瓷浆料容器中,并将容器放置在振动频率为100Hz的振动台并配合真空抽滤处理0.5h,取出带陶瓷浆料的三维碳纤维预制体并进行30℃真空干燥处理18h,获得陶瓷粉体均匀填充的3DCf/ZrC-ZrSi2陶瓷坯体。
(3)将3D Cf/ZrC-ZrSi2陶瓷坯体装入石墨模具中,再在1700℃烧结温度和40MPa烧结压力下放电等离子烧结30min,最终获得3D Cf/ZrC-ZrSi2复合材料。其中3D Cf/ZrC-SiC复合材料的致密度为96.7%,孔隙率为3.3%,弯曲强度为335±24MPa,断裂韧性为6.04±0.18MPa·m1/2,断裂功为1082J/m2
实施例1~4所述的复合材料的性能如表1所示。
表1
Figure BDA0003693215030000071
Figure BDA0003693215030000081
从表1中可看出,本发明所述的陶瓷基复合材料孔隙率低,致密度高,弯曲强度、断裂功高。
振动辅助浆料渗透工艺实现了陶瓷粉体在三维碳纤维预制体内的高含量引入与均匀分布,放电等离子烧结实现了三维碳纤维增韧陶瓷基复合材料的快速烧结致密化,制备陶瓷复合材料性能优越,陶瓷粉体的引入量为30vol.%以上,复合材料的孔隙率低于6%,弯曲强度高于280MPa,断裂韧性高于6MPa·m1/2,断裂功高达1080J/m2以上,在航空航天和舰船等高端装备领域具有广阔的应用前景。
最直接的将本发明实施例1制备的3D Cf/ZrB2-SiC复合材料与CN106866151A最优实施例1制备得到的复合材料相比,无论是致密度还是弯曲强度以及断裂韧性和断裂功均取得了显著的进步。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种三维碳纤维增韧陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
将混合陶瓷粉体、分散剂、粘结剂、有机溶剂球磨混合均匀,得到陶瓷浆料;
将三维碳纤维预制体加入到陶瓷浆料中,放置于振动台上,控制振动功率和时间及真空抽滤时间使陶瓷浆料在三维碳纤维预制体内完成渗透,振动至质量不再增加,真空干燥,得到陶瓷坯体;
将陶瓷坯体置于模具中,放入放电等离子烧结炉内,烧结,得到三维碳纤维增韧陶瓷基复合材料。
2.根据权利要求1所述的三维碳纤维增韧陶瓷基复合材料,其特征在于,所述分散剂与混合陶瓷粉体的质量比为0.009~0.02:1;
所述粘结剂与混合陶瓷粉体的质量比0.004~0.01:1;
所述有机溶剂与混合陶瓷粉体的质量比为0.25~0.8:1。
3.根据权利要求2所述的三维碳纤维增韧陶瓷基复合材料,其特征在于,如下(a)~(d)中的至少一种:
(a)所述混合陶瓷粉体包括硼化物陶瓷粉体或碳化物陶瓷粉体;
(b)所述有机溶剂为无水乙醇、乙醇、丙酮中的至少一种;
(c)所述粘结剂为聚乙烯醇缩丁醛;
(d)所述分散剂为聚乙烯亚胺。
4.根据权利要求1所述的三维碳纤维增韧陶瓷基复合材料,其特征在于,所述球磨转速为200rpm~300rpm,球磨时间为5h~10h。
5.根据权利要求1所述的三维碳纤维增韧陶瓷基复合材料,其特征在于,所述三维碳纤维预制体的密度为0.15g/cm3~0.3g/cm3,孔隙率为83%~91.5%。
6.根据权利要求5所述的三维纤维增韧陶瓷基复合材料,其特征在于,所述三维碳纤维预制体与陶瓷浆料的质量比为0.06~0.16:1。
7.根据权利要求1所述的三维纤维增韧陶瓷基复合材料,其特征在于,所述振动功率为50Hz~10Hz,振动时间为0.5h~1h。
8.根据权利要求1所述的三维纤维增韧陶瓷基复合材料,其特征在于,所述真空干燥的温度为25℃~30℃。
9.根据权利要求1所述的三维纤维增韧陶瓷基复合材料,其特征在于,所述放电等离子烧结的烧结温度为1500℃~1700℃,烧结压力为35MPa~45MPa,烧结时间为25min~30min。
10.一种三维碳纤维增韧陶瓷基复合材料,其特征在于,采用权利要求1~9任一所述的三维碳纤维增韧陶瓷基复合材料制备方法制备而成。
CN202210672363.4A 2022-06-14 2022-06-14 一种三维碳纤维增韧陶瓷基复合材料及其制备方法 Pending CN114956844A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210672363.4A CN114956844A (zh) 2022-06-14 2022-06-14 一种三维碳纤维增韧陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210672363.4A CN114956844A (zh) 2022-06-14 2022-06-14 一种三维碳纤维增韧陶瓷基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114956844A true CN114956844A (zh) 2022-08-30

Family

ID=82963614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210672363.4A Pending CN114956844A (zh) 2022-06-14 2022-06-14 一种三维碳纤维增韧陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114956844A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120080A (zh) * 2023-02-21 2023-05-16 无锡博智复合材料有限公司 一种ZrB2-ZrC-SiC改性碳/碳复合材料及其制备方法和应用
CN117383949A (zh) * 2023-11-10 2024-01-12 江苏君耀耐磨耐火材料有限公司 一种碳纳米纤维增韧耐火材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218455A (zh) * 2018-01-12 2018-06-29 哈尔滨工业大学 超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218455A (zh) * 2018-01-12 2018-06-29 哈尔滨工业大学 超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张厚安等: "《二硅化钼及其复合材料的制备与性能》", 3 June 2007 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120080A (zh) * 2023-02-21 2023-05-16 无锡博智复合材料有限公司 一种ZrB2-ZrC-SiC改性碳/碳复合材料及其制备方法和应用
CN116120080B (zh) * 2023-02-21 2023-11-21 无锡博智复合材料有限公司 一种ZrB2-ZrC-SiC改性碳/碳复合材料及其制备方法和应用
CN117383949A (zh) * 2023-11-10 2024-01-12 江苏君耀耐磨耐火材料有限公司 一种碳纳米纤维增韧耐火材料的制备方法
CN117383949B (zh) * 2023-11-10 2024-04-02 江苏君耀耐磨耐火材料有限公司 一种碳纳米纤维增韧耐火材料的制备方法

Similar Documents

Publication Publication Date Title
CN114956844A (zh) 一种三维碳纤维增韧陶瓷基复合材料及其制备方法
CN109384470B (zh) 一种c/c复合材料的快速制备方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
CN111662091B (zh) 一种短碳纤维增强Csf/SiC陶瓷基复合材料及其制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
US7404922B2 (en) Method for producing SiC fiber-reinforced SiC composite material by means of hot press
CN113666764B (zh) 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN109020588B (zh) 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN114315394B (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN112279650A (zh) 一种高致密度的碳化硅陶瓷复合材料的制备方法
KR101101244B1 (ko) 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN112479691B (zh) 一种耐高温增强增韧氧化铝纤维增强氧化铝基体复合材料的制备方法
Mallick et al. Synthesis and consolidation of ZrC based ceramics: a review
CN116693311A (zh) 高导热基体与涂层一体化设计及耐烧蚀复合材料的制备和应用
CN115124360B (zh) 一种碳纤维增韧陶瓷材料及其制备方法
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
KR101956683B1 (ko) 금속탄화물 필러 함유 섬유강화 세라믹 복합소재 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830