CN109020588B - 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 - Google Patents
一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 Download PDFInfo
- Publication number
- CN109020588B CN109020588B CN201810851203.XA CN201810851203A CN109020588B CN 109020588 B CN109020588 B CN 109020588B CN 201810851203 A CN201810851203 A CN 201810851203A CN 109020588 B CN109020588 B CN 109020588B
- Authority
- CN
- China
- Prior art keywords
- sic
- temperature
- composite material
- powder
- ceramic matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/591—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
- C04B2235/383—Alpha silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
- C04B2235/3834—Beta silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
- C04B2235/3878—Alpha silicon nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
- C04B2235/3882—Beta silicon nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/424—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,采用SI+RMI工艺制备SiC纤维增强硅基陶瓷基复合材料,即首先通过SI工艺在SiC纤维预制体中分别引入Si3N4粉体、BN粉体、SiC粉体、或C+Si3N4混合粉体,然后经RMI工艺将硅熔体渗透至复合材料内部,分别与上述粉体结合或反应生成Si3N4‑Si基体、Si‑B‑N基体、SiC‑Si基体、或Si‑C‑N基体,制备出满足结构吸波型陶瓷基复合材料要求的电磁阻抗匹配型基体(如Si3N4‑Si、Si‑B‑N等)或电磁吸波型基体(如SiC‑Si、Si‑C‑N等),实现复合材料的快速致密化,有效缩短复合材料制备周期、提高复合材料致密度和力学/吸波性能。
Description
技术领域
本发明属于陶瓷基复合材料制备技术,涉及一种耐高温结构吸波型陶瓷基复合材料的快速制备方法。
背景技术
吸波材料是指有效吸收入射的电磁波,将电磁能转化为热能或者其他形式的能而消耗掉,或使电磁波干涉相消,从而显著降低目标回波强度的一类电磁功能材料。理想的吸波材料应具备厚度薄、质量轻、吸收频带宽、力学性能好等特点,同时为满足特殊情况使用要求,其还需具有耐高温、抗氧化等性能。有机吸波剂因受其使用温度限制,只能用于常温部位的隐身。磁损耗型吸波剂因温度高于其居里点后会失去磁性,使用温度也不宜过高。据此,高温吸波材料一般为介电损耗型陶瓷材料,连续纤维增韧陶瓷基复合材料(CFCC)具有高韧性、高比强、高比模、高温性能好等优点,进一步挖掘CFCC中纤维和基体的吸波性能,有望使其成为性能优异的耐高温结构吸波型陶瓷基复合材料。
碳化硅(SiC)纤维具有耐高温、抗氧化、高强度、高模量、电阻率可调等优点,是结构吸波型CFCC的优异增强体候选材料。氮化硼(BN)是CFCC的主要界面相材料,其具有较高的电阻率呈电磁波透过特性,可实现结构吸波型CFCC的电磁阻抗匹配。硅基陶瓷与SiC纤维模量和热膨胀匹配,是CFCC的主要基体材料,其具有良好的电磁阻抗匹配性能(如Si3N4、Si-B-N等)或电磁吸波性能(如SiC、Si-C-N等),可满足结构吸波型CFCC的力学和吸波要求。目前,制备硅基陶瓷基体的方法主要为化学气相渗透法(CVI)和聚合物浸渍裂解法(PIP)。Shi等人(Y.Shi,F.Luo,D.Ding,Y.Mu,W.Zhou,D.Zhu.Effects of thermal oxidation onmicrowave-absorbing and mechanical properties of SiCf/SiC composites with PyCinterphase[J].Transactions of Nonferrous Metals Society of China,2015,25(5):1484-1489)采用CVI法制备了SiC纤维增强SiC复合材料,通过氧化热处理,实现了对复合材料在X波段电磁性能的调控。Li等人(Q.Li,X.Yin,L.Zhang,L.Cheng.Effects of SiCfibers on microwave absorption and electromagnetic interference shieldingproperties of SiCf/SiCN composites[J].Ceramics International,2016,42:19237–19244)采用PIP法制备了SiC纤维增强Si-C-N复合材料,其在X波段具备良好的电磁吸波性能。然而上述CVI法和PIP法均需多炉次循环才能完成陶瓷基体的制备,实现复合材料近致密化(最终材料开气孔率约10%以上),这使复合材料制备周期较长,不仅大幅提高了复合材料的生产和制造成本,而且这种长时多炉次循环的制备过程也将对SiC纤维力学性能的保持非常不利。与上述工艺方法相比,浆料浸渗结合反应熔体渗透法(SI+RMI)具有制备周期短、制造成本低、所制材料几乎完全致密(最终材料开气孔率约5%以下)因而力学性能和抗氧化性能优异等特点。若通过对SI+RMI工艺中浸渗浆料的组成进行优选和设计,经后续硅熔体渗透反应生成Si3N4、Si-B-N、SiC或Si-C-N等硅基陶瓷基体,同时利用残留硅的半导体特性,进一步补强材料对电磁波的衰减耗散,则有望快速制备出不仅电磁性能满足要求、而且力学性能和环境性能更为优异的结构吸波型陶瓷基复合材料。然而目前这一工艺方法尚未被广泛应用于该类复合材料的制备,相关研究未见报道。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,解决现有技术(CVI法、PIP法)制备结构吸波型陶瓷基复合材料周期长、成本高、材料性能亟待提高等问题。
技术方案
一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于步骤如下:
步骤1:将SiC纤维预制体进行超声清洗、烘干;
步骤2:在40~100℃的蒸馏水中加入羧甲基纤维素钠和BN粉体、Si3N4粉体和SiC粉体,其中:蒸馏水占40~70wt.%,羧甲基纤维素钠占0.2~0.6wt.%,BN、Si3N4、SiC占29.8~59.8wt.%;搅拌均匀后倒入球磨罐,使用粒径为5~12mm的刚玉球磨10~60h,制成浆料;
步骤3:将浆料和预制体放入同一密闭容器中,保持密闭容器的绝对压力为100~4000Pa保压10~30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为100~4000Pa时,保压10~30min;然后给密闭容器中通入气氛,当容器压力达到0.3~3MPa时保持10~50min;从浆料中取出预制体,放入冷冻干燥机中冷冻2~15h,冷冻温度为-50~-80℃,继续真空冷冻干燥2~40h,保持干燥机的绝对压力为5~100Pa,干燥温度为40~80℃;重复前述浸渍和干燥的步骤,直至预制体中BN、Si3N4、SiC的体积含量达到25~36vol.%;
步骤4:在经步骤3处理的预制体表面涂覆粒径为2~45μm的工业用硅粉,在绝对压力为100~4000Pa的高温真空炉中以3~30℃/min的升温速率升温至1450~1600℃,保温0.2~1h,使硅熔融浸渗到预制体中,再以1~30℃/min的降温速率降温到1300℃~1400℃保温0.5~4h,使其充分反应,再以1~30℃/min的降温速率降温到室温,得到耐高温结构吸波型陶瓷基复合材料。
所述步骤2中的SiC以C+Si3N4混合粉体替代。
所述SiC纤维预制体的表面制备均匀致密的薄BN界面,内部制备致密的薄BN界面和Si3N4基体。
所述BN粉体中的BN为六方BN、立方BN或菱方BN。
所述SiC为α-SiC或β-SiC。
所述Si3N4粉体为α-Si3N4或β-Si3N4。
所述C包括但不限于炭黑、石墨。
有益效果
本发明提出的一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,采用SI+RMI工艺制备SiC纤维增强硅基陶瓷基复合材料,即首先通过SI工艺在SiC纤维预制体中分别引入Si3N4粉体、BN粉体、SiC粉体、或C+Si3N4混合粉体,然后经RMI工艺将硅熔体渗透至复合材料内部,分别与上述粉体结合或反应生成Si3N4-Si基体、Si-B-N基体、SiC-Si基体、或Si-C-N基体,制备出满足结构吸波型陶瓷基复合材料要求的电磁阻抗匹配型基体(如Si3N4-Si、Si-B-N等)或电磁吸波型基体(如SiC-Si、Si-C-N等),实现复合材料的快速致密化,有效缩短复合材料制备周期、提高复合材料致密度和力学/吸波性能。
本发明的优异效果是:
(1)CVI或PIP法制备复合材料的周期在400~1200h之间,而本发明可将制备周期降低到120~320h,大大降低复合材料制备周期和成本;
(2)CVI或PIP法制备复合材料的开气孔率在10%左右,而本发明可将开气孔率降低到5%左右,有效降低材料气孔率,提高致密度,利于增强材料的力学性能和抗氧化性能;
(3)本方法中先采用SI法使得多孔SiCf/Si3N4复合材料内部填充BN、Si3N4、SiC或C+Si3N4粉体,再采用RMI法渗透硅熔体,可以有效控制复合材料内部硅的含量,且复合材料的大孔被BN、Si3N4、SiC或C+Si3N4粉体间的小孔取代,使残余硅在复合材料内部均匀弥散,避免残余硅的富集团聚;同时因为BN、Si3N4、SiC或C+Si3N4粉体均匀分布于硅中间,可以起到颗粒增强的效果,有利于裂纹偏转提高复合材料的韧性;
(4)本方法中由于硅熔体与浸渗材料内部的粉体结合或反应会生成满足结构吸波型陶瓷基复合材料要求的电磁阻抗匹配型基体(如Si3N4-Si、Si-B-N等)或电磁吸波型基体(如SiC-Si、Si-C-N等),利于复合材料获得较好的电磁吸波性能。
附图说明
图1是本发明的制备方法流程图
图2是本发明实施例1中制备Si3N4基体前纤维预制体表面BN界面厚度照片
图3是本发明实施例1中浆料浸渗前SiCf/Si3N4复合材料的扫描电镜形貌照片
图4是本发明实施例1中浆料浸渗BN后SiCf/Si3N4复合材料的扫描电镜形貌照片
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明解决其技术问题所用的技术方案:一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特点是包括下述步骤:
(a)在经过预处理的纤维预制体内部/表面制备均匀致密的薄BN界面和Si3N4基体,获得存在较大气孔率的疏松态的SiCf/Si3N4复合材料,Si3N4基体有效填充纤维束内孔隙,并部分填充纤维束间空隙,可有效保护纤维不受损伤。将具有一定致密度和开孔隙率的预制体进行超声清洗、烘干;
(b)在温度约为40~100℃的蒸馏水中加入羧甲基纤维素钠和BN粉体(BN为六方BN、立方BN或菱方BN)、Si3N4粉体(Si3N4为α-Si3N4或β-Si3N4)、SiC粉体(SiC为α-SiC或β-SiC)或者C+Si3N4混合粉体(C包括但不限于炭黑、石墨,Si3N4为α-SiC或β-SiC),其中:蒸馏水占40~70wt.%,羧甲基纤维素钠占0.2~0.6wt.%,BN、Si3N4、SiC或C+Si3N4粉体分别占29.8~59.8wt.%;搅拌均匀后倒入球磨罐,使用粒径为5~12mm的刚玉球磨10~60h,制成浆料;
(c)将步骤(b)制备的浆料倒入敞口容器中,将装有浆料的敞口容器和经步骤(a)处理的预制体放入同一密闭容器中,保持密闭容器的绝对压力为100~4000Pa共10~30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为100~4000Pa时,保压10~30min;然后给密闭容器中通入气氛,当容器压力达到0.3~3MPa时保持10~50min;从浆料中取出预制体,放入冷冻干燥机中冷冻2~15h,冷冻温度为-50~-80℃,继续真空冷冻干燥2~40h,保持干燥机的绝对压力为5~100Pa,干燥温度为40~80℃;重复前述浸渍和干燥的步骤,直至预制体中BN、Si3N4、SiC或C+Si3N4粉体的体积含量达到25~36vol.%;
(d)在经步骤(c)处理的预制体表面涂覆粒径为2~45μm的工业用硅粉,在绝对压力为100~4000Pa的高温真空炉中以3~30℃/min的升温速率升温至1450~1600℃,保温0.2~1h,使硅熔融浸渗到预制体中,再以1~30℃/min的降温速率降温到1300℃~1400℃保温0.5~4h,使其充分反应,再以1~30℃/min的降温速率降温到室温。
具体实施例:
实施例1:经过预处理的二维多孔的SiC纤维预制体内部/表面制备均匀致密的BN界面(约480nm),如图2所示,在具有BN界面的预制体中制备致密的Si3N4基体,获得存在较大气孔率的疏松态的二维多孔SiCf/Si3N4复合材料预制体,其密度为1.6g/cm3,气孔率为42vol.%,经超声清洗、烘干后待用,如图3所示。在200g蒸馏水中加入1g羧甲基纤维素钠和100g粒度为1μm的六方BN粉,搅拌均匀后到入球磨罐,加入总重量为600g的粒径为5~12mm的刚玉球球磨10h制成浆料。浆料浸渗采用真空浸渍结合压力浸渍的方法。将装有浆料的敞口容器和二维SiCf/Si3N4复合材料预制体放入同一密闭容器内,抽真空,保持密闭容器的绝对压力为400Pa共30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为400Pa时,保压30min;然后给密闭容器中通入Ar气氛,当容器内的绝对压力达到0.8MPa时,保持30min;从浆料中取出预制体,放入冷冻干燥机中冷冻10h,冷冻温度为-80℃,继续真空冷冻干燥10h,保持干燥机的绝对压力为5Pa,干燥温度为80℃;重复前述浸渍和干燥的步骤,直至预制体中BN的体积含量达到26vol.%;在所得的预制体表面涂覆粒径为2μm的工业用硅粉,在绝对压力为1000Pa的高温真空炉中以30℃/min的升温速率升温至1500℃,保温0.3h,使硅熔融浸渗到预制体中,再以1℃/min的降温速率降温到1300℃保温1h,再以10℃/min的降温速率降温到室温。经检验,复合材料的密度为2.50g/cm3,开气孔率为5vol.%,经分析,所得的复合材料基体由非晶Si3N4、BN和残余Si组成,其中非晶Si3N4含量为30vol.%、BN含量为26vol./%,Si含量为9vol.%。
实施例2:在经过预处理的三维多孔的SiC纤维预制体内部/表面制备均匀致密的BN界面(约380nm),在具有BN界面的预制体中制备致密的Si3N4基体获得存在较大气孔率的疏松态的三维多孔SiCf/Si3N4复合材料预制体,其密度为1.7g/cm3,气孔率为约43vol.%,经超声清洗、烘干后待用。在300g蒸馏水中加入1.5g羧甲基纤维素钠和150g粒度为2μm的β-SiC粉,搅拌均匀后倒入球磨罐,加入总重量为900g的粒径为5~12mm的刚玉球球磨15h制成浆料。浆料浸渗采用真空浸渍结合压力浸渍的方法。将装有浆料的敞口容器和三维SiCf/Si3N4复合材料预制体放入同一密闭容器内,抽真空,保持密闭容器的绝对压力为400Pa共30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为400Pa时,保压30min;然后给密闭容器中通入空气,当容器内的绝对压力达到0.8MPa时,保压30min;从浆料中取出预制体,放入冷冻干燥机中冷冻15h,冷冻温度为-80℃,继续真空冷冻干燥15h,保持干燥机的绝对压力为5Pa,干燥温度为70℃;重复前述浸渍和干燥的步骤,直至预制体中SiC的体积含量达到28vol.%;在所得的预制体表面涂覆粒径为5μm的工业用硅粉,在绝对压力为1000Pa的高温真空炉中以30℃/min的升温速率升温至1500℃,保温0.3h,使硅熔融浸渗到预制体中,再以1℃/min的降温速率降温到1300℃保温1h,再以10℃/min的降温速率降温到室温。经检验,复合材料的密度为2.55g/cm3,开气孔率为5vol.%,经分析所得的复合材料基体由非晶Si3N4、SiC和残余Si组成,其中非晶Si3N4含量为29vol.%、SiC含量为28vol/%,Si含量为7vol.%。
实施例3:在经过预处理的二维半多孔的SiC纤维预制体内部/表面制备均匀致密的BN界面(约500nm),在具有BN界面的预制体中制备致密的Si3N4基体获得存在较大气孔率的疏松态的二维半多孔SiCf/Si3N4复合材料预制体,其密度为1.65g/cm3,总气孔率约为43vol.%,经超声清洗、烘干后待用。在200g蒸馏水中加入1g羧甲基纤维素钠和100g粒度为10μm的α-Si3N4粉,搅拌均匀后到入球磨罐,加入总重量为600g的粒径为5~12mm的刚玉球球磨15h制成浆料。浆料浸渗采用真空浸渍结合压力浸渍的方法。将装有浆料的敞口容器和二维半SiCf/Si3N4复合材料预制体放入同一密闭容器内,抽真空,保持密闭容器的绝对压力为4000Pa共30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为4000Pa时,保压30min;然后给密闭容器中通入N2气氛,当容器压力达到3.0MPa时,保压30min;从浆料中取出预制体,放入冷冻干燥机中冷冻15h,冷冻温度为-80℃,继续真空冷冻干燥40h,保持干燥机的绝对压力为80Pa,干燥温度为80℃;重复前述浸渍和干燥的步骤,直至预制体中Si3N4的体积含量达到15vol.%;在所得的预制体表面涂覆粒径为6μm的工业用硅粉,在绝对压力为1000Pa的高温真空炉中以30℃/min的升温速率升温至1500℃,保温0.3h,使硅熔融浸渗到预制体中,再以1℃/min的降温速率降温到1300℃保温1h,再以10℃/min的降温速率降温到室温。经检验,复合材料的密度为2.7g/cm3,开气孔率为5vol.%,经分析所得的复合材料基体由非晶Si3N4、Si3N4和残余Si组成,其中非晶Si3N4含量为29vol.%、Si3N4含量为29vol./%,Si含量为6vol.%。
实施例4:在经过预处理的三维针刺的SiC纤维预制体内部/表面制备均匀致密的BN界面(约420nm),在具有BN界面的预制体中制备致密的Si3N4基体获得存在较大气孔率的疏松态的三维针刺多孔SiCf/Si3N4复合材料预制体,其密度为1.8g/cm3,总气孔率约为43vol.%,超声清洗烘干待用。在250g蒸馏水中加入1.25g羧甲基纤维素钠和125g粒度为8μm的Si3N4粉,搅拌均匀后到入球磨罐,加入总重量为600g的粒径为5~12mm的刚玉球球磨20h制成浆料。浆料浸渗采用真空浸渍结合压力浸渍的方法。将装有浆料的敞口容器和三维针刺SiCf/Si3N4复合材料预制体放入同一密闭容器内,抽真空,保持密闭容器的绝对压力为400Pa共30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为400Pa时,保压30min;然后给密闭容器中通入N2气氛,使容器压力达到1.0MPa后保持30min;从浆料中取出预制体,放入冷冻干燥机中冷冻10h,冷冻温度为-80℃,继续真空冷冻干燥15h,保持干燥机的绝对压力为5Pa,干燥温度为80℃;重复前述浸渍和干燥的步骤,直至预制体中Si3N4的体积含量达到15vol.%;在所得的预制体表面涂覆粒径为6μm的工业用硅粉,在绝对压力为1000Pa的高温真空炉中以30℃/min的升温速率升温至1500℃,保温0.3h,使硅熔融浸渗到预制体中,再以1℃/min的降温速率降温到1300℃保温1h,再以10℃/min的降温速率降温到室温。经检验,复合材料的密度为2.68g/cm3,开气孔率为5.5vol.%,经分析所得的复合材料基体由非晶Si3N4、Si3N4和残余Si组成,其中非晶Si3N4含量为33vol.%、Si3N4含量为24vol/%,Si含量为5vol.%。
Claims (6)
1.一种耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于步骤如下:
步骤1:将SiC纤维预制体进行超声清洗、烘干;
步骤2:在40~100℃的蒸馏水中加入羧甲基纤维素钠和BN粉体、Si3N4粉体或SiC粉体三种中的任一种,其中:蒸馏水占40~70wt.%,羧甲基纤维素钠占0.2~0.6wt.%,BN、Si3N4或SiC占29.8~59.8wt.%;搅拌均匀后倒入球磨罐,使用粒径为5~12mm的刚玉球磨10~60h,制成浆料;
步骤3:将浆料和预制体放入同一密闭容器中,保持密闭容器的绝对压力为100~4000Pa保压10~30min,然后将预制体浸没在浆料中继续抽真空;当密闭容器内的绝对压力为100~4000Pa时,保压10~30min;然后给密闭容器中通入气氛,当容器压力达到0.3~3MPa时保持10~50min;从浆料中取出预制体,放入冷冻干燥机中冷冻2~15h,冷冻温度为-50~-80℃,继续真空冷冻干燥2~40h,保持干燥机的绝对压力为5~100Pa,干燥温度为40~80℃;重复前述浸渍和干燥的步骤,直至预制体中BN、Si3N4、SiC的体积含量达到25~36vol.%;
步骤4:在经步骤3处理的预制体表面涂覆粒径为2~45μm的工业用硅粉,在绝对压力为100~4000Pa的高温真空炉中以3~30℃/min的升温速率升温至1450~1600℃,保温0.2~1h,使硅熔融浸渗到预制体中,再以1~30℃/min的降温速率降温到1300℃~1400℃保温0.5~4h,使其充分反应,再以1~30℃/min的降温速率降温到室温,得到耐高温结构吸波型陶瓷基复合材料;
所述SiC纤维预制体的表面制备均匀致密的薄BN界面,内部制备致密的薄BN界面和Si3N4基体。
2.根据权利要求1所述耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于:所述步骤2中的SiC以C+Si3N4混合粉体替代。
3.根据权利要求1所述耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于:所述BN粉体中的BN为六方BN、立方BN或菱方BN。
4.根据权利要求1所述耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于:所述SiC为α-SiC或β-SiC。
5.根据权利要求1或2所述耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于:所述Si3N4粉体为α-Si3N4或β-Si3N4。
6.根据权利要求2所述耐高温结构吸波型陶瓷基复合材料的快速制备方法,其特征在于:所述C包括但不限于炭黑、石墨。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810851203.XA CN109020588B (zh) | 2018-07-30 | 2018-07-30 | 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810851203.XA CN109020588B (zh) | 2018-07-30 | 2018-07-30 | 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109020588A CN109020588A (zh) | 2018-12-18 |
CN109020588B true CN109020588B (zh) | 2021-07-06 |
Family
ID=64646811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810851203.XA Active CN109020588B (zh) | 2018-07-30 | 2018-07-30 | 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109020588B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7452949B2 (ja) * | 2019-02-19 | 2024-03-19 | イビデン株式会社 | セラミック繊維強化セラミック複合材料及びその製造方法 |
CN111943721B (zh) * | 2019-05-17 | 2023-06-02 | 深圳光启高端装备技术研发有限公司 | 一种耐高温吸波复合材料的制备方法及应用 |
CN114621728A (zh) * | 2020-12-10 | 2022-06-14 | 南京航空航天大学 | 一种耐高温宽频吸波结构复合材料及其制备方法 |
CN114956830B (zh) * | 2022-05-20 | 2023-08-29 | 西北工业大学 | 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法 |
CN115490529A (zh) * | 2022-09-16 | 2022-12-20 | 江苏华中新材料有限公司 | 一种具有电磁阻抗渐变集体的陶瓷基复合材料 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106507877B (zh) * | 2009-05-07 | 2012-04-04 | 西北工业大学 | 一种碳/碳化硅飞机刹车材料的制造方法 |
CN104628407A (zh) * | 2015-02-11 | 2015-05-20 | 西北工业大学 | 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法 |
CN106588124A (zh) * | 2016-11-10 | 2017-04-26 | 西北工业大学 | 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法 |
-
2018
- 2018-07-30 CN CN201810851203.XA patent/CN109020588B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106507877B (zh) * | 2009-05-07 | 2012-04-04 | 西北工业大学 | 一种碳/碳化硅飞机刹车材料的制造方法 |
CN104628407A (zh) * | 2015-02-11 | 2015-05-20 | 西北工业大学 | 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法 |
CN106588124A (zh) * | 2016-11-10 | 2017-04-26 | 西北工业大学 | 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法 |
Non-Patent Citations (2)
Title |
---|
A new route to fabricate SiB4 modified C/SiC composites;Shi, Fengming et al;《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》;20100326;第30卷(第9期);第1955-1962页 * |
结构吸波型SiCf/Si(B)CN的设计/制备基础与性能优化;叶昉;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20160315(第3期);第B020-21页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109020588A (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109020588B (zh) | 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法 | |
CN109721377B (zh) | 碳纤维增强碳化硅陶瓷基复合材料及其制备方法 | |
CN109055874B (zh) | 一种界面层增强铝合金-碳化硅双基纤维复合材料及其制备方法 | |
CN112341235B (zh) | 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法 | |
CN106957180B (zh) | 一种Cf/C-SiC复合材料及其制备方法和应用 | |
CN110256082B (zh) | 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法 | |
CN108395266A (zh) | 一种纤维增强复相陶瓷基复合材料的制备方法 | |
CN113246556B (zh) | 一种超轻质隔热耐冲刷的功能一体化复合材料及制备方法 | |
CN111996473B (zh) | 一种变结构超高温陶瓷基复合材料及其制备方法 | |
CN109437943B (zh) | 一种Cf/C-SiC-ZrB2复合材料及其制备方法 | |
CN109265189B (zh) | 具有电磁阻抗渐变基体的吸波陶瓷基复合材料快速制备方法 | |
CN103288468A (zh) | 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法 | |
CN109704799A (zh) | 陶瓷基复合材料的制备方法 | |
CN107602127B (zh) | SiC空心球及其制备方法 | |
CN114315394B (zh) | 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法 | |
CN102603344B (zh) | 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺 | |
CN117819999B (zh) | 一种防热-隔热-承载一体化轻质碳-陶复合材料及其制备与应用 | |
CN108727049B (zh) | 一种Cf/SiC-HfC超高温陶瓷基复合材料及其制备方法 | |
CN110304933B (zh) | 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法 | |
CN106431452B (zh) | 弥散分布自愈合相B12(C,Si,B)3改性SiC/SiC复合材料的制备方法 | |
CN114956844A (zh) | 一种三维碳纤维增韧陶瓷基复合材料及其制备方法 | |
CN108754357B (zh) | 一种SiC纳米线增强铝碳化硅复合材料及其制备方法 | |
CN111943705B (zh) | 一种石墨烯/热解碳/碳化硅电磁屏蔽复合材料及其制备方法 | |
CN113800837A (zh) | 连续碳纤维增强磷酸基地质聚合物复合材料及其制备方法 | |
CN117534495A (zh) | 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |