CN115557793A - 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用 - Google Patents

一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN115557793A
CN115557793A CN202211137117.5A CN202211137117A CN115557793A CN 115557793 A CN115557793 A CN 115557793A CN 202211137117 A CN202211137117 A CN 202211137117A CN 115557793 A CN115557793 A CN 115557793A
Authority
CN
China
Prior art keywords
powder
entropy
ceramic
hardness
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211137117.5A
Other languages
English (en)
Other versions
CN115557793B (zh
Inventor
郭伟明
许亮
黄梓键
周宇章
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211137117.5A priority Critical patent/CN115557793B/zh
Publication of CN115557793A publication Critical patent/CN115557793A/zh
Application granted granted Critical
Publication of CN115557793B publication Critical patent/CN115557793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Abstract

本发明属于陶瓷材料技术领域,公开了一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用。所述高熵陶瓷是将HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和无定型硼粉球磨混合后压制成坯体,进行真空热处理得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2固熔体粉体;然后混入金属Co获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2‑xvol%Co复合粉体,采用放电等离子烧结将复合粉体升温至1200~1500℃煅烧制得;其中0<x≤15。高熵陶瓷的相对密度>98%,平均晶粒尺寸为0.4~0.6μm,硬度为23~30GPa,断裂韧性为4~8MPa·m1/2

Description

一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和 应用
技术领域
本发明属于超高温陶瓷材料技术领域,更具体地,涉及一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用。
背景技术
“高熵”是近年来出现的新的材料设计理论,目前已成为材料研究领域的一大热点,其概念最初由高熵合金发展而来。高熵陶瓷是一种无机非金属材料,一般由4种以上的等比例或近等比例金属元素和若干种非金属元素结合而成的单相陶瓷材料。
高熵陶瓷具有高强度、硬度、优异的耐磨性、优异的耐高温强度、良好的结构稳定性和良好的耐蚀性和抗氧化性。由于组分的增加,用于探索和发现新材料的组合空间大大增加。高熵陶瓷由于组分的增加,陶瓷体系的构型熵增加,导致其吉布斯自由能下降,使得陶瓷体系更为稳定,性能表现出优异的稳定性。另外,由于各种原子随机分布在晶格点阵中,每个原子周围的环境以及占位均不一样,使得晶格内部有更多的晶格畸变和缺陷,滑移困难,性能提高。
然而,过渡金属硼化物金属原子与硼原子之间存在强的共价键,使得其自扩散系数低,其很难烧结致密。为了获得致密的高熵硼化物陶瓷,往往需要较高的烧结温度和烧结压力。即使采用自合成的高质量纳米或亚微米级的高熵硼化物粉体,烧结温度通常>1900℃。然而,高的烧结温度通常会导致晶粒的粗化,降低材料的力学性能。此外,高熵硼化物断裂韧性低的特点也进一步限制了其应用。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供一种具有细晶、高硬度和高韧性的高熵陶瓷。
本发明的另一目的在于提供上述具有细晶、高硬度和高韧性的高熵陶瓷的制备方法。
本发明的再一目的在于提供一种上述具有细晶、高硬度和高韧性的高熵陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种具有细晶、高硬度和高韧性的高熵陶瓷,所述高熵陶瓷是在HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和无定型硼粉中加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至1000~1200℃保温,再升温至1500~1800℃保温,进行真空热处理得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末,在其中加入xvol%Co粉得到复合粉末,其中0<x≤15,进一步地,2.5<x≤10,采用放电等离子烧结将上述复合粉末升温至1200~1500℃煅烧制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷。
优选地,所述高熵陶瓷的相对密度为98%以上,所述高熵陶瓷的平均晶粒尺寸为0.4~0.6μm,硬度为23~30GPa,断裂韧性为4~8MPa·m1/2
优选地,所述HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和Co粉的纯度均>99.9%,所述HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和Co的粒径均为1~2μm;所述无定型硼粉的纯度为95~95.6%,所述无定型硼粉的粒径为1~2μm;所述(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末的粒径为0.1~0.4μm,所述高熵固溶体粉末中的氧含量为0.05~0.2wt%。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮。
优选地,所述球磨介质为Si3N4或WC。
所述的具有细晶、高硬度和高韧性的高熵陶瓷的制备方法,包括如下具体步骤:
S1.以HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和无定型硼粉为原料,加入溶剂和球磨介质进行混合,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至1000~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1500~1800℃保温0.5~2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
S3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末,加入溶剂和球磨介质经球磨混合10~48h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-xvol%Co高熵复合粉末;
S4.将复合粉末放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1200~1500℃保温1~30min,加压10~100MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
所述的具有细晶、高硬度和高韧性的高熵陶瓷在高温(1000~1500℃)抗氧化领域中的应用。
本发明的高熵陶瓷是将HfO2粉末、ZrO2粉末、Ta2O5粉末、Nb2O5粉末、TiO2粉末和无定型硼粉为原料粉体,Hf、Zr、Ta、Nb、Ti之间固溶形成(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2固溶体粉末,后加入Co粉末制备出高熵复合粉末。此粉末性能稳定,由于Co粉末促进材料在低温下的致密化,细化晶粒,提高其性能,烧结后高熵陶瓷的晶粒细小(平均晶粒尺寸为0.4~0.6μm)、硬度和韧性高。
与现有技术相比,本发明具有以下有益效果:
1.在本发明的高熵陶瓷具有细小的晶粒、高硬度和高韧性。由于Co与固溶体粉末高熵反应,可在~1050℃形成液相,该液相可有效润湿高熵硼化物的晶界,从而显著促进致密化。因此,在1200~1500℃的烧结温度即可实现制备致密度>98%的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵硼化物。
2.本发明的方法采用较低的烧结温度、高熵效应以及在低烧结温度下液相的拖拽效应,由于晶粒的细化,硬度和断裂韧性也得到了显著的提高,实现了细晶、高硬度和高断裂韧性高熵硼化物陶瓷的制备。
附图说明
图1为实施例1制得的高熵硼化物(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2陶瓷坯体显微形貌照片。
图2为对比例1制得的高熵硼化物(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2陶瓷坯体显微形貌照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量(由于反应过程中生成的B2O3与硼反应,B需要过量以补充因反应造成的B流失)加入乙醇溶剂和Si3N4球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末(粉末的纯度99.9%,粒径1μm)按体积比90:10进行称量,加入乙醇溶剂和Si3N4球磨介质在球磨机上混合24h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-10vol%Co高熵复合粉末;
4.将高熵复合粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1400℃保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
通过激光粒度分析本实施例的高熵固溶体粉末粉体的粒径为0.25μm,氧含量为0.1wt%。所得高熵陶瓷的相对密度99.1%,高熵陶瓷的平均晶粒尺寸为0.44μm,硬度为26.3GPa,断裂韧性为7.3MPa·m1/2
对比例1
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量,加入乙醇溶剂和Si3N4球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将高熵固溶体粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1600℃时充入Ar保护气氛,再以100℃/min速率升温至2000℃,保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷。
本实施例的高熵陶瓷的相对密度94.5%,所得高熵陶瓷的平均晶粒尺寸为1.4μm,硬度为20.7GPa,断裂韧性为2.3MPa·m1/2
实施例1虽然烧结温度只有1400℃,其具有更高的致密度。由于烧结温度的显著下降,实施例1中具有显著更小的晶粒尺寸和更高的硬度和断裂韧性。与对比例1相比,实施例1高熵陶瓷的硬度比对比例1的高27%以上,断裂韧性比对比例1的高217%%以上。图1为实施例1制得的高熵陶瓷的显微形貌照片。图2为对比例1制得的高熵陶瓷的显微形貌照片。从图1中可知,实施例1制备的高熵陶瓷晶粒细小,气孔少,断裂模式为穿晶和沿晶断裂的混合模式;从图2中可知,对比例1制备的高熵陶瓷气孔较多,断裂模式为穿晶断裂。结合实施例1与对比例1中性能测试可明显看出,在实施例1中制得了具有细晶、高硬度和高断裂韧性高熵硼化物陶瓷。
实施例2
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量,加入乙醇溶剂和Si3N4球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末(粉末的纯度99.9%,粒径1μm)按体积比90:10进行称量,加入乙醇溶剂和以Si3N4为球磨介质进行混合,在球磨机上混合24h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-10vol%Co高熵复合粉末;
4.将高熵复合粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1500℃,保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
通过激光粒度分析本实施例的高熵固溶体粉末粉体的粒径为0.25μm,氧含量为0.1wt%。高熵陶瓷的相对密度99.8%,所得高熵陶瓷的平均晶粒尺寸为0.49μm,硬度为24.4GPa,断裂韧性为5.4MPa·m1/2
实施例3
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量,加入乙醇溶剂和Si3N4球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末(粉末的纯度99.9%,粒径1μm)按体积比95:5进行称量,加入乙醇溶剂和以Si3N4为球磨介质进行混合,在球磨机上混合24h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-5vol%Co高熵复合粉末;
4.将高熵复合粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1500℃,保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
通过激光粒度分析本实施例的高熵固溶体粉末粉体的粒径为0.25μm,氧含量为0.1wt%。高熵陶瓷的相对密度99.6%,所得高熵陶瓷的平均晶粒尺寸为0.51μm,硬度为24.3GPa,断裂韧性为4.5MPa·m1/2
实施例4
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量,加入乙醇溶剂和Si3N4为球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末(粉末的纯度99.9%,粒径1μm)按体积比95:5进行称量,加入乙醇溶剂和以Si3N4为球磨介质进行混合,在球磨机上混合24h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-5vol%Co高熵复合粉末;
4.将高熵复合粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1300℃,保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
通过激光粒度分析本实施例的高熵固溶体粉末粉体的粒径为0.25μm,氧含量为0.1wt%。高熵陶瓷的相对密度98.9%,所得高熵陶瓷的平均晶粒尺寸为0.42μm,硬度为25.0GPa,断裂韧性为5.2MPa·m1/2
实施例5
1.将HfO2粉末(粉末的纯度99.9%,粒径1μm)、ZrO2粉末(粉末的纯度99.9%,粒径1μm)、Ta2O5粉末(粉末的纯度99.9%,粒径1μm)、Nb2O5粉末(粉末的纯度99.9%,粒径1μm)、TiO2粉末(粉末的纯度99.9%,粒径1μm)和无定型硼粉(纯度95%,粒径1μm)按摩尔比1:1:0.5:0.5:1:22进行称量,加入乙醇溶剂和Si3N4为球磨介质在球磨机上混合24h,干燥后获得混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温0.5h,然后再以10℃/min的速率升温至1600℃保温2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末(粉末的纯度99.9%,粒径1μm)按体积比97.5:2.5进行称量,加入乙醇溶剂和以Si3N4为球磨介质进行混合,在球磨机上混合24h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-2.5vol%Co高熵复合粉末;
4.将高熵复合粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1500℃,保温10min,加压35MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
5.通过激光粒度分析本实施例的高熵固溶体粉末粉体的粒径为0.25μm,氧含量为0.1wt%。高熵陶瓷的相对密度98.9%,所得高熵陶瓷的晶粒尺寸为0.48μm,硬度为23.84GPa,断裂韧性为4.1MPa·m1/2
9.本发明的高熵陶瓷的相对密度>98%,平均晶粒尺寸为0.4~0.6μm,硬度为23~30GPa,断裂韧性为4~8MPa·m1/2,,可应用在高温(1000~1500℃)抗氧化领域中。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种具有细晶、高硬度和高韧性的高熵陶瓷,其特征在于,所述高熵陶瓷是在HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和无定型硼粉中加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至1000~1200℃保温,再升温至1500~1800℃保温,进行真空热处理得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末,在其中加入xvol%Co粉得到复合粉末,其中0<x≤15,采用放电等离子烧结将上述复合粉末升温至1200~1500℃煅烧制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷。
2.根据权利要求1所述的具有细晶、高硬度和高韧性的高熵陶瓷,其特征在于,所述高熵陶瓷的相对密度为98%以上,所述高熵陶瓷的平均晶粒尺寸为0.4~0.6μm,硬度为23~30GPa,断裂韧性为4~8MPa·m1/2
3.根据权利要求1所述的具有细晶、高硬度和高韧性的高熵陶瓷,其特征在于,所述HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和Co粉的纯度均>99.9%,所述HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和Co的粒径均为1~2μm;所述无定型硼粉的纯度为95~95.6%,所述无定型硼粉的粒径为1~2μm;所述(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末的粒径为0.1~0.4μm,所述高熵固溶体粉末中的氧含量为0.05~0.2wt%。
4.根据权利要求1所述的具有细晶、高硬度和高韧性的高熵陶瓷,其特征在于,所述溶剂为乙醇、丙醇、甲醇或丙酮。
5.根据权利要求1所述的具有细晶、高硬度和高韧性的高熵陶瓷,其特征在于,所述球磨介质为Si3N4或WC。
6.根据权利要求1-5任一项所述的具有细晶、高硬度和高韧性的高熵陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.以HfO2、ZrO2、Ta2O5、Nb2O5、TiO2和无定型硼粉为原料,加入溶剂和球磨介质进行混合,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至1000~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1500~1800℃保温0.5~2h,获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末;
S3.将(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵固溶体粉末与Co粉末,加入溶剂和球磨介质经球磨混合10~48h,干燥后获得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2-xvol%Co高熵复合粉末;
S4.将复合粉末放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1200~1500℃保温1~30min,加压10~100MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2基高熵陶瓷。
7.权利要求1~5任一项所述的具有细晶、高硬度和高韧性的高熵陶瓷在高温抗氧化领域中的应用。
8.权利要求7所述的应用,其特征在于,所述高温为1000~1500℃。
CN202211137117.5A 2022-09-19 2022-09-19 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用 Active CN115557793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211137117.5A CN115557793B (zh) 2022-09-19 2022-09-19 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211137117.5A CN115557793B (zh) 2022-09-19 2022-09-19 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115557793A true CN115557793A (zh) 2023-01-03
CN115557793B CN115557793B (zh) 2023-06-02

Family

ID=84740520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211137117.5A Active CN115557793B (zh) 2022-09-19 2022-09-19 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115557793B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117142864A (zh) * 2023-09-01 2023-12-01 高安常莹新型材料有限公司 一种耐加工陶瓷及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478439A (zh) * 2014-12-12 2015-04-01 西安交通大学 一种抗高温磨损 Co3B 块体的制备工艺
CN107056304A (zh) * 2017-04-20 2017-08-18 哈尔滨工业大学 一种TiB2基陶瓷复合材料及其制备方法
CN108424146A (zh) * 2018-04-28 2018-08-21 东北大学 一种四硼化钨基陶瓷的制备方法
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109987941A (zh) * 2019-03-11 2019-07-09 广东工业大学 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN110735076A (zh) * 2019-09-04 2020-01-31 广东工业大学 一种高熵金属陶瓷及其制备方法和应用
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
WO2020133928A1 (zh) * 2018-12-23 2020-07-02 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
WO2020155283A1 (zh) * 2019-01-28 2020-08-06 广东工业大学 一种高熵合金硼化物陶瓷及其制备方法和应用
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy
CN113444952A (zh) * 2021-06-30 2021-09-28 厦门理工学院 一种高强度高韧性的高熵金属陶瓷及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478439A (zh) * 2014-12-12 2015-04-01 西安交通大学 一种抗高温磨损 Co3B 块体的制备工艺
CN107056304A (zh) * 2017-04-20 2017-08-18 哈尔滨工业大学 一种TiB2基陶瓷复合材料及其制备方法
CN108424146A (zh) * 2018-04-28 2018-08-21 东北大学 一种四硼化钨基陶瓷的制备方法
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
WO2020077770A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
WO2020133928A1 (zh) * 2018-12-23 2020-07-02 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
WO2020155283A1 (zh) * 2019-01-28 2020-08-06 广东工业大学 一种高熵合金硼化物陶瓷及其制备方法和应用
CN109987941A (zh) * 2019-03-11 2019-07-09 广东工业大学 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN110735076A (zh) * 2019-09-04 2020-01-31 广东工业大学 一种高熵金属陶瓷及其制备方法和应用
WO2021123239A1 (en) * 2019-12-20 2021-06-24 BJØRSETH, Alf Metal alloy
CN113444952A (zh) * 2021-06-30 2021-09-28 厦门理工学院 一种高强度高韧性的高熵金属陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SI-CHUN LUO: "Low-temperature densification of high-entropy (Ti,Zr,Nb,Ta,Mo)C–Co composites with high hardness and high toughness" *
李岗;刘宁;张晓玲;: "高熵碳化物粉体的研究现状", 硬质合金 *
赵鹏博: "高熵硼化物陶瓷的研究进展", 《硅酸盐学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117142864A (zh) * 2023-09-01 2023-12-01 高安常莹新型材料有限公司 一种耐加工陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115557793B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN110735076B (zh) 一种高熵金属陶瓷及其制备方法和应用
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
Fu et al. Pressureless sintering of submicron titanium carbide powders
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN110698204B (zh) 一种max相陶瓷的制备方法
US20090048087A1 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
KR102319079B1 (ko) SiC 복합체 및 이의 제조방법
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
JP5403851B2 (ja) 珪酸ジルコニウム焼結体の製造方法
CN111423243A (zh) 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法
CN112851360A (zh) 一种ZrN基超高温陶瓷及其热压反应烧结制备方法
CN112941391A (zh) 一种含NbC的高致密复合金属陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant