CN111423243A - 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法 - Google Patents

一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN111423243A
CN111423243A CN202010353359.2A CN202010353359A CN111423243A CN 111423243 A CN111423243 A CN 111423243A CN 202010353359 A CN202010353359 A CN 202010353359A CN 111423243 A CN111423243 A CN 111423243A
Authority
CN
China
Prior art keywords
sic
powder
zrb
composite material
ceramic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010353359.2A
Other languages
English (en)
Inventor
张魁宝
郭海燕
曾建军
陈代梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202010353359.2A priority Critical patent/CN111423243A/zh
Publication of CN111423243A publication Critical patent/CN111423243A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:按3%~12%的SiC晶须、17%的SiC粉末、68%~77%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料,将SiC晶须置于无水乙醇中搅拌分散,然后加入SiC粉末、ZrB2粉末和AlN粉末混合,经湿法球磨混匀、干燥、研磨,制备成粉料;将粉料装入石墨模具中,经真空高温热压炉烧结,制得SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。采用本发明,制备工艺简单、成本低、周期短,制备的复合材料致密化程度高,晶须分布均匀,力学性能和高温抗氧化性能良好。

Description

一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法
技术领域
本发明属于陶瓷基复合材料,涉及一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,本发明制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料特别适用作高超声速飞行器的(超高温)热防护材料。
背景技术
高超声速飞行器工作时经受高温(>2000℃)、大的热梯度和热应力、高化学活性气流以及复杂苛刻的热-机械载荷作用,现有的高温合金材料密度大、成本高、抗氧化性能差,无法满足需要。超高温陶瓷因具有高熔点、高比强度、高热导、耐腐蚀以及较好的化学稳定性等众多优异特性,有望成为新一代超高温热防护材料。
现有技术中,超高温陶瓷主要包括一些过渡族金属的难熔硼化物、碳化物和氮化物等,其中ZrB2/SiC超高温陶瓷复合材料具有高熔点、高硬度、高导热率、优异的高温强度和抗高温氧化等特点,可以在2000℃以上的氧化环境中实现长时间非烧蚀,是一种非常有前途的超高温热防护材料。但是现有ZrB2/SiC复相陶瓷材料的力学性能和使用稳定性及高温抗氧化性能较差,难以获得实际工程应用。因此,需要进一步提高该类型材料的力学性能和服役可靠性,进一步改善其抗高温氧化性能。
发明内容
本发明的目的旨在克服现有技术中的不足,提供一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,从而提供一种力学性能和高温抗氧化性能良好的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法。
本发明的内容是:一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是步骤为:
a、配料:按3%~12%的SiC晶须、17%的SiC粉末、68%~77%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料(并且各组分的总和为100%);取各组分原料之和的总体积2~5倍体积的无水乙醇,备用;
b、混料:将SiC晶须置于无水乙醇中,经搅拌(较好的是用超声分散机搅拌)1~2h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机(较好的是用行星式球磨机)进行球磨(分散),磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨6~12h,得到浆料;
c、干燥、研磨:将浆料干燥(可以将浆料放入旋转蒸发器上干燥,以除去乙醇),再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1700~1900℃、热压压力为20~50MPa、烧结时间为1~5h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
本发明的内容中:步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料。
本发明的内容中:步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm。
本发明的内容中:步骤a中所述SiC粉末的平均粒径为600~800nm,纯度高于99%。
本发明的内容中:步骤a中所述ZrB2粉末的平均粒径为1~3μm,纯度高于99%。
本发明的内容中:步骤a中所述AlN粉末的平均粒径为300~500nm,纯度高于99%。
与现有技术相比,本发明具有下列特点和有益效果:
(1)本发明以SiC晶须为增强体,以ZrB2/SiC复相陶瓷为基体,以乙醇为介质分散SiC晶须,然后和ZrB2、Si粉末、烧结助剂混合,经湿法球磨、混匀、烘干、研磨制成粉料;将粉料装入石墨模具中,经真空高温热压炉烧结,制得SiC晶须增强ZrB2/SiC复相陶瓷基复合材料;
(2)采用本发明SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,以SiC晶须为增强体,以ZrB2/SiC复相陶瓷为基体,AlN为烧结助剂,促进了陶瓷材料的烧结致密化;反应机理是:ZrB2粉体表面存在硼化物氧化物层(B2O3),阻碍了扩散机制,AlN的加入可以通过消除氧化层来提高ZrB2粉末的烧结性,化学反应方程式如(1);同时,AlN的加入进一步提高了ZrB2-SiC复合材料的烧结性,形成了AlN与SiC固溶体相,促进了穿晶结构的形成;
AlN+B2O3→BN+Al2O3 (1);
(3)采用本发明制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料,由于SiC晶须的成功添加,在复合材料断裂过程中,因晶须产生桥接、裂纹偏转及拔出现象,大大提高了ZrB2/SiC复相陶瓷的韧性;
(4)采用本发明制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料,致密度大于99%,致密化程度高,晶须分布均匀,具有高熔点、高热导率、高力学性能及良好的耐化学介质腐蚀性能;具体技术指标范围为:断裂韧性为5.61MPa m1/2~6.45MPa m1/2,弯曲强度为650MPa~810MPa,试样在1600℃空气中氧化2h后,质量变化率为0.25%~0.75%;
(5)本发明制备工艺简单、成本低,制备周期短,产物性能良好,实用性强。
具体实施方式
下面给出的实施例拟对本发明作进一步说明,但不能理解为是对本发明保护范围的限制,该领域的技术人员根据上述本发明的内容对本发明作出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,具体是按以下步骤制备的:
a、配料:按体积百分比称取3%的SiC晶须、17%的SiC粉末、77%的ZrB2粉末和3%的AlN粉末作为原料;
b、混料:将3%的SiC晶须置于无水乙醇(无水乙醇的体积用量是各组分原料之和的总体积的4倍)中,经超声分散机搅拌1h,与17%的SiC粉末、77%的ZrB2粉末、3%的AlN粉末混合,得到待球磨物料,再利用行星式球磨机进行球磨分散,磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨12h,得到浆料;
c、干燥、研磨:将步骤b得到的浆料放入旋转蒸发器上干燥,再将干燥后的混合粉料进行研磨,过筛后得到的粒径为200目~400目的混合粉料;
d、热压烧结:将步骤c得到的粒径为200目~400目的混合粉料置于石墨模具中,在氩气气氛下热压烧结,烧结温度为1800℃、热压压力为30MPa、烧结时间为60min,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料;
本实施例步骤a中所述的SiC晶须直径为10~300nmSiC,长度为2~15μm;
本实施例步骤a中所述SiC粉末平均粒径600~800nm,纯度高于99%;
本实施例步骤a中所述ZrB2粉末平均粒径1~3μm,纯度高于99%;
本实施例步骤a中所述AlN粉末平均粒径300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为99%,断裂韧性为5.72MPa m1/2,弯曲强度为760MPa,试样在1600℃空气中氧化2h后,质量变化率为0.25%。
实施例2:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,具体是按以下步骤制备的:
a、配料:按体积百分比称取6%的SiC晶须、17%的SiC粉末、74%的ZrB2粉末和3%的AlN粉末作为原料;
b、混料:将6%的SiC晶须置于无水乙醇(无水乙醇的体积用量是各组分原料之和的总体积的5倍)中,经超声分散机搅拌1h,与17%的SiC粉末、74%的ZrB2粉末、3%的AlN粉末混合,得到待球磨物料,再利用行星式球磨机进行球磨分散,磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨12h,得到浆料;
c、干燥、研磨:将步骤b得到的浆料放入旋转蒸发器上干燥,再将干燥后的混合粉料进行研磨,过筛后得到的粒径为200目~400目的混合粉料;
d、热压烧结:将步骤c得到的粒径为200目~400目的混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1800℃、热压压力为30MPa、烧结时间为60min,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料;
本实施例步骤a中所述的SiC晶须直径为10~300nm,长度为2~15μm;
本实施例步骤a中所述SiC粉末平均粒径600~800nm,纯度高于99%;
本实施例步骤a中所述ZrB2粉末平均粒径1~3μm,纯度高于99%;
本实施例步骤a中所述AlN粉末平均粒径300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为98.5%,断裂韧性为6.11MPa m1/2,弯曲强度为810MPa,试样在1600℃空气中氧化2h后,质量变化率为0.45%。
实施例3:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,具体是按以下步骤制备的:
a、配料:按体积百分比称取5%的SiC晶须、17%的SiC粉末、75%的ZrB2粉末和3%的AlN粉末作为原料;
b、混料:将6%的SiC晶须置于无水乙醇(无水乙醇的体积用量是各组分原料之和的总体积的3倍)中,经超声分散机搅拌1h,与17%的SiC粉末、74%的ZrB2粉末、3%的AlN粉末混合,得到待球磨物料,再利用行星式球磨机进行球磨分散,磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨12h,得到浆料;
c、干燥、研磨:将步骤b得到的浆料放入旋转蒸发器上干燥,再将干燥后的混合粉料进行研磨,过筛后得到的粒径为200目~400目的混合粉料;
d、热压烧结:将步骤c得到的粒径为200目~400目的混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1800℃、热压压力为30MPa、烧结时间为60min,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料;
本实施例步骤a中所述的SiC晶须直径为10~300nm,长度为2~15μm;
本实施例步骤a中所述SiC粉末平均粒径600~800nm,纯度高于99%;
本实施例步骤a中所述ZrB2粉末平均粒径1~3μm,纯度高于99%;
本实施例步骤a中所述AlN粉末平均粒径300~500nm,纯度高于99%;
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为98.2%,断裂韧性为6.01MPa m1/2,弯曲强度为780MPa,试样在1600℃空气中氧化2h后,质量变化率为0.48%。
实施例4:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,步骤为:
a、配料:按体积百分比称取4%的SiC晶须、17%的SiC粉末、76%的ZrB2粉末和3%的AlN粉末作为原料;
b、混料:将SiC晶须置于无水乙醇(无水乙醇的体积用量是各组分原料之和的总体积的2倍)中,经超声分散机搅拌1h,与SiC粉末、ZrB2粉末、AlN粉末混合,得到待球磨物料,再利用行星式球磨机进行球磨分散,磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨12h,得到浆料;
c、干燥、研磨:将步骤b得到的浆料放入旋转蒸发器上干燥,再将干燥后的混合粉料进行研磨,过筛后得到的粒径为200目的混合粉料;
d、热压烧结:将步骤c得到的粒径为200目的混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1800℃、热压压力为30MPa、烧结时间为60min,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为99%,断裂韧性为5.82MPa m1/2,弯曲强度为765MPa,试样在1600℃空气中氧化2h后,质量变化率为0.30%。
实施例5:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,步骤为:
a、配料:按12%的SiC晶须、17%的SiC粉末、68%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料;取各组分原料之和的总体积5倍体积的无水乙醇,备用;
b、混料:将SiC晶须置于无水乙醇中,经搅拌(较好的是用超声分散机搅拌)2h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机(较好的是用行星式球磨机)进行球磨(分散),磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨12h,得到浆料;
c、干燥、研磨:将浆料干燥(可以将浆料放入旋转蒸发器上干燥,以除去乙醇),再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1900℃、热压压力为50MPa、烧结时间为1h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料;
步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm;
步骤a中所述SiC粉末的平均粒径为600~800nm,纯度高于99%;
步骤a中所述ZrB2粉末的平均粒径为1~3μm,纯度高于99%;
步骤a中所述AlN粉末的平均粒径为300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为97%,断裂韧性为6.45MPa m1/2,弯曲强度为650MPa,试样在1600℃空气中氧化2h后,质量变化率为0.75%。
实施例6:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,步骤为:
a、配料:按3%的SiC晶须、17%的SiC粉末、77%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料;取各组分原料之和的总体积2倍体积的无水乙醇,备用;
b、混料:将SiC晶须置于无水乙醇中,经搅拌(较好的是用超声分散机搅拌)1h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机(较好的是用行星式球磨机)进行球磨(分散),磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨6h,得到浆料;
c、干燥、研磨:将浆料干燥(可以将浆料放入旋转蒸发器上干燥,以除去乙醇),再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1700℃、热压压力为20MPa、烧结时间为5h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料;
步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm;
步骤a中所述SiC粉末的平均粒径为600~800nm,纯度高于99%;
步骤a中所述ZrB2粉末的平均粒径为1~3μm,纯度高于99%;
步骤a中所述AlN粉末的平均粒径为300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为98%,断裂韧性为5.61MPa m1/2,弯曲强度为700MPa,试样在1600℃空气中氧化2h后,质量变化率为0.35%。
实施例7:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,步骤为:
a、配料:按7%的SiC晶须、17%的SiC粉末、73%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料;取各组分原料之和的总体积4倍体积的无水乙醇,备用;
b、混料:将SiC晶须置于无水乙醇中,经搅拌(较好的是用超声分散机搅拌)1.5h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机(较好的是用行星式球磨机)进行球磨(分散),磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨8h,得到浆料;
c、干燥、研磨:将浆料干燥(可以将浆料放入旋转蒸发器上干燥,以除去乙醇),再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1800℃、热压压力为30MPa、烧结时间为3h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料;
步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm;
步骤a中所述SiC粉末的平均粒径为600~800nm,纯度高于99%;
步骤a中所述ZrB2粉末的平均粒径为1~3μm,纯度高于99%;
步骤a中所述AlN粉末的平均粒径为300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为98%,断裂韧性为6.15MPa m1/2,弯曲强度为780MPa,试样在1600℃空气中氧化2h后,质量变化率为0.50%。
实施例8~12:
一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,具体步骤为:
a、配料:按8%~12%的SiC晶须、17%的SiC粉末、68%~77%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料(并且各组分的总和为100%);取各组分原料之和的总体积2~5倍体积的无水乙醇,备用;
各实施例中各组分原料的具体体积百分比用量见下表:
Figure BDA0002472624390000091
Figure BDA0002472624390000101
b、混料:将SiC晶须置于无水乙醇中,经搅拌(较好的是用超声分散机搅拌)1~2h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机(较好的是用行星式球磨机)进行球磨(分散),磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨6~12h,得到浆料;
c、干燥、研磨:将浆料干燥(可以将浆料放入旋转蒸发器上干燥,以除去乙醇),再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1700~1900℃、热压压力为20~50MPa、烧结时间为1~5h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料;
步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm;
步骤a中所述SiC粉末的平均粒径为600~800nm,纯度高于99%;
步骤a中所述ZrB2粉末的平均粒径为1~3μm,纯度高于99%;
步骤a中所述AlN粉末的平均粒径为300~500nm,纯度高于99%。
通过检测可知,本实施例制备的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的致密度为97%~98%,断裂韧性为6.10MPam1/2~6.45MPam1/2,弯曲强度为650MPa~780MPa,试样在1600℃空气中氧化2h后,质量变化率为0.45%~0.75%。
上述实施例中:所采用的各原料均为市售产品。
上述实施例中:各步骤中的工艺参数(温度、压力、时间等)和各组分用量数值等为范围的,任一点均可适用。
本发明内容及上述实施例中未具体叙述的技术内容同现有技术。
本发明不限于上述实施例,本发明内容所述均可实施并具有所述良好效果。

Claims (6)

1.一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是步骤为:
a、配料:按3%~12%的SiC晶须、17%的SiC粉末、68%~77%的ZrB2粉末和3%的AlN粉末的体积百分比取各组分原料;取各组分原料之和的总体积2~5倍体积的无水乙醇,备用;
b、混料:将SiC晶须置于无水乙醇中,经搅拌1~2h后,加入SiC粉末、ZrB2粉末和AlN粉末混合,得到待球磨物料,再经球磨机进行球磨,磨球与待球磨物料的质量比为3:1,在球磨机转速200rpm下球磨6~12h,得到浆料;
c、干燥、研磨:将浆料干燥,再将干燥后的混合粉料进行研磨,过筛,得到混合粉料;
d、热压烧结:将混合粉料置于石墨模具中,在真空或氩气气氛下热压烧结,烧结温度为1700~1900℃、热压压力为20~50MPa、烧结时间为1~5h,得到SiC晶须增强ZrB2/SiC复相陶瓷基复合材料。
2.按权利要求1所述的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:步骤c中所述得到混合粉料是得到粒径为200目~400目的混合粉料。
3.按权利要求1或2所述的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:步骤a中所述SiC晶须的直径为10~300nm、长度为2~15μm。
4.按权利要求1或2所述的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:步骤a中所述SiC粉末的平均粒径为600~800nm。
5.按权利要求1或2所述的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:步骤a中所述ZrB2粉末的平均粒径为1~3μm。
6.按权利要求1或2所述的SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法,其特征是:步骤a中所述AlN粉末的平均粒径为300~500nm。
CN202010353359.2A 2020-04-29 2020-04-29 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法 Pending CN111423243A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010353359.2A CN111423243A (zh) 2020-04-29 2020-04-29 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010353359.2A CN111423243A (zh) 2020-04-29 2020-04-29 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN111423243A true CN111423243A (zh) 2020-07-17

Family

ID=71554839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010353359.2A Pending CN111423243A (zh) 2020-04-29 2020-04-29 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111423243A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511900A (zh) * 2021-05-28 2021-10-19 中国科学院上海硅酸盐研究所 一种硼化锆增强SiC-AlN固溶主相纳米复相陶瓷烧结体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN102161588A (zh) * 2011-01-04 2011-08-24 武汉理工大学 ZrB2/SiC/Zr-Al-C陶瓷的制备方法
CN102424596A (zh) * 2011-09-06 2012-04-25 哈尔滨工业大学 SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN102161588A (zh) * 2011-01-04 2011-08-24 武汉理工大学 ZrB2/SiC/Zr-Al-C陶瓷的制备方法
CN102424596A (zh) * 2011-09-06 2012-04-25 哈尔滨工业大学 SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN DEJIANG 等: "Preparation of ZrB2 based hybrid composites reinforced with SiC whiskers and SiC particles by hot-pressing", 《INT. JOURNAL OF REFRACTORY METALS & HARD MATERIALS》 *
HAN WENBO等: "Effect of AlN as sintering aid on hot-pressed ZrB2-SiC ceramic composite", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
陈思敏 等: "ZrB2基超高温陶瓷的强韧化研究进展", 《现代技术陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511900A (zh) * 2021-05-28 2021-10-19 中国科学院上海硅酸盐研究所 一种硼化锆增强SiC-AlN固溶主相纳米复相陶瓷烧结体的制备方法

Similar Documents

Publication Publication Date Title
Fattahi et al. Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
Zhang et al. Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics
Zhang et al. Microstructures and mechanical properties of B4C–SiC intergranular/intragranular nanocomposite ceramics fabricated from B4C, Si, and graphite powders
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
WO2020135404A1 (zh) 一种Ti(C,N)基超硬金属复合材料及其制备方法
Wang et al. Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C composites
Nasiri et al. Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite
JPS5924751B2 (ja) 焼結成形体
Heydari et al. Effect of different additives on the sintering ability and the properties of B4C–TiB2 composites
WO2008019182A2 (en) Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
Xu et al. Improved both mechanical and anti-oxidation performances of ZrB2-SiC ceramics with molybdenum disilicide addition
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN103938006B (zh) 耐铝液腐蚀金属陶瓷材料的制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN111875385B (zh) 一种高强度、高硬度且低模量硼化钛纳米复相陶瓷的制备方法
CN111423243A (zh) 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法
Abdul Karim et al. Hexagonal boron nitride-based composites: an overview of processing approaches and mechanical properties
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN111747748A (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN111995418B (zh) 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法
Sakvand et al. Effect of graphite addition on the microstructure, mechanical properties and oxidation resistance of HfB2-SiC composites prepared by the SPS method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717