WO2019172446A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2019172446A1
WO2019172446A1 PCT/JP2019/009490 JP2019009490W WO2019172446A1 WO 2019172446 A1 WO2019172446 A1 WO 2019172446A1 JP 2019009490 W JP2019009490 W JP 2019009490W WO 2019172446 A1 WO2019172446 A1 WO 2019172446A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tapered roller
diameter side
end surface
annular portion
Prior art date
Application number
PCT/JP2019/009490
Other languages
English (en)
French (fr)
Inventor
誠 前佛
啓陽 山中
知之 宮▲崎▼
大紀 前島
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US16/979,041 priority Critical patent/US11306774B2/en
Priority to EP19764186.3A priority patent/EP3763958B1/en
Priority to JP2020504070A priority patent/JP7306372B2/ja
Priority to KR1020207025982A priority patent/KR102478695B1/ko
Priority to CN201980018295.6A priority patent/CN111868400B/zh
Publication of WO2019172446A1 publication Critical patent/WO2019172446A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4682Details of individual pockets, e.g. shape or roller retaining means of the end walls, e.g. interaction with the end faces of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones

Definitions

  • the present invention relates to a tapered roller bearing, and more particularly to a tapered roller bearing in which lubricating oil is supplied to the inside of the bearing.
  • the conventional bearing includes an outer ring and an inner ring, a plurality of balls disposed between the outer ring and the inner ring, and a synthetic resin holder that rotatably holds the plurality of balls. It is known that an uneven surface in which parallel fine grooves are densely formed is formed on the inner surface (see, for example, Patent Document 1).
  • This synthetic resin retainer is for ball bearings and is provided so that it can be injection molded. A plurality of narrow grooves are formed along the radial direction or circumferential direction of the pocket.
  • the tapered roller bearing is fixed to the outer peripheral surface of the large-diameter side annular portion of the retainer with a predetermined interval with respect to the inner peripheral surface of the outer ring, and contacts the end surface of the tapered roller.
  • a device provided with a roller contact member is known (see, for example, Patent Document 3).
  • the tapered roller contact member is made of a material having a property of allowing the lubricating oil to permeate.
  • the oil retaining portion (the pocket surface on which the narrow groove or the oil groove is formed and the tapered roller contact member) is tapered. Since it is the structure which always contacts a roller (rolling element), it was difficult to maintain the lubricating effect for a long period of time by increasing frictional resistance and promoting wear of the oil retaining part. In addition, in order to appropriately maintain the pressing force of the oil retaining portion against the tapered roller, a high degree of management is required with respect to the size and rigidity of the bearing member, which may increase the manufacturing cost.
  • Patent Documents 1 and 2 the groove portion (thin groove or oil groove) penetrates the pocket surface in the radial direction, and the closed portion of the groove end does not contact the tapered roller, so that the capillary portion has high capillary force.
  • the portion was not in contact with the tapered roller, and all of the lubricating oil accumulated in the groove portion could not be supplied, so that effective oil supply to the tapered roller was insufficient.
  • Patent Document 1 it is described in detail that various cross-sectional shapes of the groove portion can be applied. However, these shapes increase the capillary force at the back of the groove more than the pocket surface, and the lubricating oil accumulated in the groove bottom is increased. It makes it difficult to refuel a tapered roller.
  • the above-mentioned Patent Document 2 does not mention a device for the groove cross-sectional shape.
  • the present invention has been made in view of the problems described above, and its purpose is to suppress seizure even in a lubricating environment of a small amount of lubricating oil while suppressing an increase in frictional resistance and an increase in manufacturing cost. It is an object of the present invention to provide a tapered roller bearing that can be prevented.
  • the large diameter side annular portion and the small diameter side annular portion are connected in the axial direction, and are formed between a plurality of column portions provided at substantially equal intervals in the circumferential direction and column portions adjacent to each other in the circumferential direction.
  • a tapered roller bearing having a pocket for holding the roller in a rollable manner, wherein the cage is made of resin, and is formed between an axially inner end surface of the small diameter side annular portion and a small diameter side end surface of the tapered roller.
  • the first gap and the second gap between the axially inner end face of the large-diameter side annular portion and the large-diameter side end face of the tapered roller.
  • the large-diameter side annular part retains lubricating oil.
  • the cage moves in the axial direction toward the small diameter side of the tapered roller, the oil retaining portion contacts the large diameter end surface of the tapered roller, and the cage axially contacts the large diameter side of the tapered roller.
  • a tapered roller bearing in which the oil retaining portion is separated from the end surface on the large diameter side of the tapered roller when moved.
  • the oil retaining portion is composed of any one of a groove, a plurality of grooves, and a plurality of holes capable of retaining the lubricating oil, and the shaft of the large diameter side end surface of the tapered roller and the large diameter side annular portion.
  • the groove end portion or the hole end portion of the groove that can come into contact with the tapered roller is disposed on the axial inner end surface of the large-diameter side annular portion in the projection plane with the direction inner end surface, and the groove or hole is on the large-diameter side.
  • the tapered roller bearing according to (2) wherein more than half of the groove end portions of the grooves provided on the inner end surface in the direction are formed in a shape that can be contacted simultaneously with the large-diameter side end surface of the tapered roller.
  • the cage has a structure in which the inner peripheral surface of the large-diameter side annular portion is guided in the radial direction by the outer peripheral surface of the large collar portion of the inner ring, and the inner peripheral surface of the small-diameter side annular portion is small in the inner ring.
  • the tapered roller bearing according to (1) comprising at least one of a structure in which radial guidance is provided on an outer peripheral surface of the flange portion.
  • the tapered roller bearing according to (1) wherein (13) The tapered roller bearing according to (1), wherein the oil retaining portion includes a stepped portion capable of retaining lubricating oil. (14) Any one of (1) to (13), characterized in that the lubricating oil is intermittently supplied to the inside of the bearing, or is used in a lubricating environment in which the lubricating oil inside the bearing is very small. Tapered roller bearings described in 1.
  • At least the surface of the inner end surface in the axial direction of the large-diameter-side annular portion of the cage is formed to be rough, and the large-diameter-side annular portion is provided with the oil-retaining portion that holds the lubricating oil.
  • the oil retaining part moves away from the end surface on the large diameter side of the tapered roller and the oil retaining part does not always contact the tapered roller.
  • the increase in the frictional resistance can be suppressed, and further, the wear of the oil retaining portion can be suppressed. Further, it is not necessary to manage advanced component dimensional accuracy and the like, and an increase in manufacturing cost can be suppressed.
  • FIG. 2 is a cross-sectional view for explaining a case where the cage shown in FIG. 1 moves in the axial direction toward the large diameter side of the tapered roller.
  • FIG. 2 is a cross-sectional view for explaining a case where the cage shown in FIG. 1 moves in the axial direction toward the small diameter side of the tapered roller.
  • FIG. 16 It is a schematic sectional drawing explaining the opening angle of the circumferential direction side surface of a pillar part. It is a schematic sectional drawing explaining the case where the opening angle of the circumferential direction side surface of a pillar part is 0 degree
  • the tapered roller bearing 10 of this embodiment includes an outer ring 11 having an outer ring raceway surface 11a on an inner peripheral surface, an inner ring 12 having an inner ring raceway surface 12a on an outer peripheral surface, an outer ring raceway surface 11a and an inner ring.
  • a plurality of tapered rollers 13 provided so as to be able to roll between the raceway surface 12a, and a cage 14 that holds the plurality of tapered rollers 13 at substantially equal intervals in the circumferential direction.
  • the lubricating oil is appropriately supplied into the bearing by a lubricating oil pump P (see FIG. 31) or the like.
  • the inner ring 12 has a large collar part 12 b provided at the large diameter side end part of the inner ring 12 and a small collar part 12 c provided at the small diameter side end part of the inner ring 12.
  • the outer peripheral surface of the inner ring 12 is formed in a substantially conical shape.
  • the tapered roller 13 includes a rolling surface 13 a provided on the circumferential surface of the tapered roller 13, a large diameter side end surface 13 b provided on the large diameter side end portion of the tapered roller 13, and a small diameter side end portion of the tapered roller 13. And a small-diameter side end face 13c provided.
  • the cage 14 is made of synthetic resin and is injection-molded by an axial draw.
  • the large-diameter annular portion 14a and the small-diameter annular portion 14c are connected in the axial direction, and between the plurality of column portions 14e provided at substantially equal intervals in the circumferential direction and the column portions 14e adjacent to each other in the circumferential direction,
  • a pocket 14f is formed surrounded by the diameter-side annular portion 14a and the small-diameter-side annular portion 14c, and holds the tapered roller 13 in a rollable manner.
  • the cage 14 has a first gap S1 between the axially inner end surface 14d of the small diameter side annular portion 14c of the cage 14 and the small diameter side end surface 13c of the tapered roller 13. Further, the cage 14 has a second gap S ⁇ b> 2 between the axial inner end surface 14 b of the large-diameter side annular portion 14 a of the cage 14 and the large-diameter side end surface 13 b of the tapered roller 13. Thereby, the retainer 14 is provided to be movable within a predetermined range along the axial direction.
  • the axial dimension of the first gap S1 is D1
  • the axial dimension of the second gap S2 is D2
  • the length dimension of the tapered roller 13 is LR.
  • the axial dimensions D1 and D2, the length dimension LR of the tapered roller 13 and the length dimension LP of the pocket 14f are dimensions along the central axis (spinning axis) direction of the tapered roller 13.
  • the retainer 14 can freely move in the range of the total dimension Dt of the gap along the axial direction.
  • the total dimension Dt of the gaps does not require strict dimension control, and takes into account the general processing accuracy of the cage, and is from 0.1 mm to 1 / of the length dimension LR of the tapered roller 13.
  • the range is set to 5 or less.
  • the surface of the axially inner end surface (hereinafter also simply referred to as “pocket surface”) 14b of the large-diameter side annular portion 14a of the retainer 14 is formed to be rough, and a specific surface of the axially inner end surface 14b.
  • the roughness (arithmetic average roughness) is set to 3 ⁇ m to 20 ⁇ m.
  • the surface roughness of the axial inner end surface 14b may be formed to be rougher than the circumferential side surface of the column portion 14e, for example.
  • the roughness of the axially inner end surface (pocket surface) 14b of the large-diameter side annular portion 14a functions to guide lubricating oil stored in a groove 20 described later to the tapered roller 13. Thereby, the oil retention capability and oil supply capability of the axial direction inner end surface 14b can be improved. Moreover, it is preferable that the inner surface of the groove 20 to be described later is also roughly formed in order to enhance the oil retaining ability.
  • the axial inner end surface 14b is perpendicular to the die-cutting direction at the time of molding the cage, even if the axial inner end surface 14b is formed rough, there is no problem in releasing after molding.
  • the surface roughness of the axial inner end surface 14b may be set for all the pockets 14f or may be set for some of the pockets 14f.
  • a plurality of (five in the present embodiment) are formed on the axially inner end surface (pocket surface) 14b of the large-diameter side annular portion 14a of the retainer 14 by groove processing or the like.
  • the fine groove (oil retaining portion) 20 is formed.
  • One groove 20 may be provided.
  • the five grooves 20 are arranged in two rows (two on the outer diameter side and three on the inner diameter side).
  • channel 20 is a bottomed groove
  • the groove 20 is an oil retaining portion capable of retaining the lubricating oil with a capillary force, and enhances the oil retaining capacity of the retainer 14 and promotes the propagation of the lubricating oil to the tapered roller 13.
  • channel 20 may be provided with respect to all the pockets 14f, and may be provided with respect to some pockets 14f.
  • the capillary force described in this description is a force in which a solid tries to attract a liquid.
  • the surface tension of the solid (retainer) is larger than the surface tension of the liquid (lubricating oil)
  • a capillary force is generated and the liquid is attracted to the solid surface.
  • the liquid tries to reduce the surface in contact with air due to surface tension. That is, the lubricating oil tends to increase the area in contact with the cage while decreasing the area in contact with air. For this reason, the capillary force increases as the groove of the cage becomes narrower and narrower. Utilizing this principle, in the present invention, the narrow and narrow groove 20 is formed in the pocket surface 14b.
  • the groove end portion 20 a is an end portion in the circumferential direction of the groove 20. Further, a groove center portion 20b described later is a center portion in the circumferential direction of the groove 20.
  • the groove 20 needs to have a fine shape capable of retaining oil and supplying oil to the tapered roller 13 by the action of capillary force.
  • the width and depth of the groove 20 are constant or the groove end.
  • the radial width D3 of the groove 20 is set in consideration of the oil retaining property of the lubricating oil in the groove 20, the strength of the cage 14, and the accuracy of general injection molding.
  • the maximum portion is set in the range of 0.01 mm to 0.5 mm
  • the depth D4 of the groove 20 is set in the range of 0.05 mm in the maximum portion to 1/5 or less of the length dimension LR of the tapered roller 13. .
  • the radial width D3 of the groove 20 is a width in a direction orthogonal to the extending direction of the groove 20.
  • molded by an axial draw is extended in the same direction (axial direction) as the center axis
  • the cage 14 is made of synthetic resin and can be injection-molded by, for example, an axial draw.
  • the surface roughness of the inner end surface (pocket surface) 14b in the axial direction of the large-diameter side annular portion 14a and the groove 20 can be simultaneously formed by this injection molding. In this case, it is not necessary to add processing steps, special molding such as two-color molding (double mold), and adhesion of a separately produced oil retaining member. Therefore, the seizure resistance can be improved without substantially increasing the manufacturing cost.
  • the material of the cage 14 is not particularly limited, but may be any synthetic resin material having a lipophilicity that has high surface tension with respect to the used lubricating oil and generates capillary force.
  • a typical cage resin material you may make the synthetic resin of the holder
  • FIG. 5 is a schematic diagram showing the contact position relationship between the groove end portion 20a in the circumferential direction of the groove 20 and the large-diameter side end surface 13b of the tapered roller 13.
  • the large-diameter end surface 13b of the tapered roller 13 is usually provided with a relief recess 13d at the center and an annular contact surface 13e around the relief recess 13d.
  • a projection surface of the annular contact surface 13e and the pocket surface 14b (a surface that overlaps when viewed in the longitudinal direction of the tapered roller 13, see the hatched portion in FIG. 5) is a surface on which the tapered roller 13 and the cage 14 can contact. It is.
  • At least one of the groove end portions 20a of the five grooves 20 is provided so as to be accommodated in the fan-shaped contact surface 13e. Thereby, it becomes possible to supply the tapered roller 13 with the capillary force with the tapered roller 13 without leaving the lubricating oil collected in the groove end portion 20a by the mechanism described later.
  • symbol L is a lubricating oil (a portion provided with a dot pattern).
  • FIG. 6A and 6B are explanatory views showing the positional relationship between the longitudinal direction (circumferential direction) of the groove 20 and the tapered roller 13, for example, a cross-sectional view taken along the line B in FIG.
  • the depth of the groove 20 is shown enlarged from the actual depth in order to facilitate understanding of the description.
  • the cage 14 is characterized in that the lubricating oil stored in the groove 20 by capillary force is supplied to the large-diameter side end surface 13b of the tapered roller 13 by the action of capillary force with the roller surface.
  • the groove 20 In order to make this action effective, it is important that the groove 20 generates a high capillary force at a portion where the tapered roller 13 and the pocket surface 14b are in contact with each other. And as one of the methods, in this embodiment, as shown to FIG. 6A, it has comprised so that the groove edge part 20a whose capillary force is higher than the intermediate part of the groove
  • FIG. 7A and 7B are explanatory views showing the cross-sectional shape in the radial direction of the groove 20, for example, a cross-sectional view taken along line C in FIG.
  • the capillary force works more strongly in a narrow space. Therefore, the radial width D3 of the groove 20 is not only thin, but it should not spread at the opening as shown in FIG. 7B. Therefore, in the present embodiment, as shown in FIG. 7A, the corner 20d between the wall surface (at least one of the radial wall surface and the circumferential wall surface) 20c of the groove 20 and the pocket surface 14b is a sharp edge.
  • a circular chamfer with a radius of 0.1 mm or less preferably a circular chamfer with a radius of 0.05 mm or less, or a linear chamfer with a side of 0.1 mm and 45 degrees.
  • the groove bottom corner 20e in the radial cross section of the groove 20 is formed in an arc shape, and when the radius Rw of the arc shape of the groove bottom corner 20e is small, the capillary force increases and the lubricating oil enters the groove bottom corner 20e. Acts to stay.
  • the radius Rw of the arc shape of the groove bottom corner 20e in the radial section of the groove 20 is 1 ⁇ 4 to the radial width D3 of the groove 20 at the groove center portion 20b that is the center in the longitudinal direction of the groove 20 that is the largest. It is desirable to set it to 1/2. Further, in order to increase the capillary force to the groove end portion 20a, as shown in FIG.
  • the arc-shaped radius Rw of the groove bottom corner 20e in the radial cross section of the groove 20 is changed from the groove center portion 20b of the groove 20 to the groove end. It is more desirable to make it smaller (Rw1> Rw2> Rw3) toward the portion 20a. As a result, the lubricating oil accumulated in the groove center portion 20b can be sucked up to the groove end portion 20a having higher capillary force and guided to the pocket surface 14b.
  • FIG. 8A and 8B are explanatory views showing a cross-sectional shape of the groove 20 in the longitudinal direction (circumferential direction), for example, a cross-sectional view taken along line B in FIG.
  • the depth of the groove 20 is shown enlarged from the actual depth in order to facilitate understanding of the description.
  • the radius Rw of the groove bottom corner 20f in the circumferential cross section of the groove 20 is small, the lubricating oil remains in the groove bottom corner 20f, and it becomes difficult to supply the tapered roller 13 with oil.
  • the groove bottom corner 20f in the circumferential cross section of the groove 20 is formed in an arc shape, and the depth D4 of the groove 20 is changed from the groove center portion 20b to the groove end portion 20a. It is getting smaller as it goes to. Thereby, the capillary force of the part connected to the pocket surface 14b of the groove end portion 20a can be increased, and the lubricating oil accumulated in the groove bottom can be efficiently sucked up and supplied to the tapered roller 13.
  • FIG. 10 is a schematic diagram illustrating an example in which the radial width D3 of the groove 20 is reduced (thinned) at both groove end portions 20a in the longitudinal direction. That is, in the groove 20 shown in FIG. 10, the radial width D3 of the groove end portion 20a is set smaller than the radial width D3 of the groove center portion 20b.
  • the narrowed portion is limited to a part of the tip, it is a shape that can easily store a lot of lubricating oil without reducing the space volume of the entire groove.
  • FIG. 11 and FIG. 12 are schematic diagrams for explaining another example of the shape of the groove 20.
  • the radial width D3 of the groove 20 decreases from the groove center part 20b toward the groove end part 20a, and the depth D4 of the groove 20 extends from the groove center part 20b to the groove end part 20a.
  • the radius Rw of the arc shape of the groove bottom corner 20e in the radial cross section of the groove 20 is made smaller (Rw1> Rw2> Rw3) from the groove center portion 20b of the groove 20 toward the groove end portion 20a.
  • the capillary force of the portion connected to the pocket surface 14b of the groove end portion 20a can be increased, and the lubricating oil accumulated in the groove bottom can be sucked up efficiently and supplied to the tapered roller 13. It becomes possible.
  • the circumferential length of the groove 20, the change in the radial width D3 of the groove 20, the change in the depth D4 of the groove 20, and the change in the radius Rw of the arc shape of the groove bottom corner 20e in the radial cross section of the groove 20 The degree and the continuity / discontinuity of the change can be freely set. Moreover, you may employ
  • FIG. 13 is a cross-sectional view showing a state of a radial gap between the cage and the inner ring.
  • the cage is a component that rotates in synchronization with the revolution of the roller, and is configured such that movement in the radial direction is restricted by any of the inner ring, the outer ring, and the roller.
  • the movement in the radial direction is restricted by the roller, and the roller can be freely moved in the radial direction within a gap provided in the pocket.
  • the restriction by rollers there are many factors for variation in the radial position, and it is difficult to intentionally keep the movement amount in the radial direction within a narrow range. And if the movement amount of the cage in the radial direction is increased, the contact position with the pocket surface and the end surface is also greatly displaced, and the effect of refueling is weakened.
  • the radial movement of the cage is reduced by adopting a slide bearing structure in which the gap between the inner circumferential surface of the annular portion of the cage and the outer circumferential surface of the flange portion of the inner ring is reduced.
  • the cage 14 has a structure in which the inner peripheral surface of the large-diameter side annular portion 14a is guided in the radial direction by the outer peripheral surface of the large collar portion 12b of the inner ring 12, and Both are provided with a structure in which the inner peripheral surface of the small-diameter side annular portion 14c is guided in the radial direction by the outer peripheral surface of the small flange portion 12c of the inner ring 12.
  • the present invention is not limited to having both of the two structures described above, and any one of the two structures may be provided.
  • the radial movement of the cage is restricted on the outer peripheral surface of the flange portion of the inner ring, and in order to ensure this, the cage is eccentric to the state where it is in contact with the flange portion. Even if it is made to do, although it is in contact with the cage, it has a structure that does not restrain the movement in the radial direction.
  • This structure is generally called an inner ring guide retainer.
  • the third gap S3 between the inner peripheral surface of the large-diameter side annular portion 14a and the outer peripheral surface of the large collar portion 12b of the inner ring 12 shown in FIG. 13, and the inner peripheral surface and inner ring of the small-diameter side annular portion 14c are shown.
  • the fourth gap S4 between the outer periphery of the twelve small flange portions 12c an optimum design is required for each application depending on the size of the bearing, the material of the cage and the bearing, and the operating environment temperature. However, it is optimal to set the gap between the cage and the inner ring to be just zero or leave a slight gap at the lowest temperature in the usage environment.
  • the cage resin has a higher linear expansion coefficient than the steel bearing, and the gap decreases at low temperatures.
  • the amount of change in the gap increases as the linear expansion coefficient difference, operating temperature range, and cage guide diameter increase.
  • a clearance gap with an inner ring becomes negative, a cage
  • basket will be restrained by an inner ring and smooth rotation will be inhibited. For this reason, it is important not to make the guide gap negative.
  • the gap during use is desirably the minimum, the above-described gap setting is optimal.
  • FIGS. 14 and 15 are cross-sectional views of the tapered roller 13 and the column portion 14e of the cage 14 as seen from the axial direction.
  • the column portion 14 e that faces in the circumferential direction across the tapered roller 13 is configured such that the gap on the outer diameter side is narrower than the roller diameter of the tapered roller 13. Therefore, the tapered roller 13 does not fall off from the pocket 14f.
  • the roller In the state where the bearing is incorporated in the equipment to be used, the roller is sandwiched between the inner ring and the outer ring, so the roller will not fall off even if there is no cage, but until the assembly to the equipment to be used, that is, the inner ring, roller, cage When the assembly is separated from the outer ring, the above structure is employed so that the assembly will not be disassembled.
  • the cage has a larger component force in the radial direction of the cage, which is generated from the force in the roller revolution direction received by contact with the roller. Since the roller behavior is uneven among the rollers, the force in the radial direction of the cage generated in all pockets of the cage is also uneven, which causes the cage center axis to deviate from the rotation center axis.
  • the contact position between the pocket surface 14b and the end surface on the large diameter side of the tapered roller 13 is also displaced, so this displacement of the cage center axis should be suppressed as much as possible.
  • the opening angle ⁇ of the circumferential side surface 14h of the column portion 14e constituting the pocket 14f is set to 0 ° to 40 °.
  • the structure of a low opening angle such as 0 degrees is provided with a protrusion 14i that narrows the window width to prevent the roller from falling off at the radially outer end of the circumferential side surface 14h of the column portion 14e. It can be realized by separating the roller drop-off prevention part and the contact position of the pillar part in use.
  • the large-diameter side end surface 13b of the tapered roller 13 and the pocket surface 14b are brought into contact with each other by a fan-shaped contact surface 13e of the tapered roller 13, and the inside of the contact surface 13e. Since the lubricating oil is supplied from the groove end portion 20a to the tapered roller 13 by capillary force, it is necessary to bring the groove end portion 20a and the large-diameter side end surface 13b of the tapered roller 13 into contact with each other.
  • the axially inner end surface (pocket surface) 14b of the large-diameter side annular portion 14a is the large-diameter side end surface 13b of the tapered roller 13.
  • the projection surface of the projection surface of the pocket surface 14b more than half of the groove end portions 20a of the five grooves 20 provided in the pocket surface 14b can be in contact with the large-diameter side end surface 13b of the tapered roller 13 at the same time. It is desirable to be formed. In the case of FIG.
  • the five grooves 20 are arranged in two rows (two on the outer diameter side and three on the inner diameter side), and among the ten groove end portions 20a in total, six groove end portions 20 a is in contact with the large diameter side end surface 13 b of the tapered roller 13.
  • FIG. 16 and 17 are diagrams showing the surface shapes of the large-diameter side end surface 13b and the pocket surface 14b of the tapered roller 13.
  • FIG. 16 and 17 are diagrams showing the surface shapes of the large-diameter side end surface 13b and the pocket surface 14b of the tapered roller 13.
  • the roller of the tapered roller bearing has a structure in which the cone angle vertices of the outer diameters of all the rollers are gathered at one point (cone center) on the bearing central axis.
  • the large-diameter end surface 13b of the tapered roller 13 is formed in a convex spherical shape having a radius Ra from the cone center.
  • the pocket surface is flat or conical, and the adhesion with the large diameter side end surface of the tapered roller is not considered, but in the present invention, the tapered roller 13 is used.
  • the pocket surface 14b is used to minimize the gap between the large-diameter side end surface 13b of the tapered roller 13 and the pocket surface 14b. Is preferably formed in a concave spherical shape.
  • FIGS. 18 and 19 are diagrams showing a first modification of the surface shape of the pocket surface 14b.
  • the pocket surface 14b is formed in a concave shape along the circumferential direction.
  • FIGS. 20 and 21 are diagrams showing a second modification of the surface shape of the pocket surface 14b.
  • the pocket surface 14b is formed in a concave shape along the radial direction.
  • FIGS. 18 to 21 are examples in which the pocket surface 14b is not formed into a concave spherical shape, but even in this case, an effect close to a concave spherical shape can be obtained. These examples are effective when spherical machining is extremely difficult or impossible due to the convenience of the mold manufacturing method.
  • the tapered roller bearing 10 of the present invention moves the retainer 14 using the component force of its own weight, and therefore is used for a structure that supports a horizontally provided shaft (horizontal axis). Is preferred.
  • the surface of the inner end surface 14b in the axial direction of the large-diameter side annular portion 14a of the cage 14 is formed rough, and the large-diameter side annular portion 14a
  • a groove (oil retaining portion) 20 that retains lubricating oil by capillary force is provided on the axial inner end surface 14b, and when the retainer 14 moves in the axial direction toward the small diameter side of the tapered roller 13, the groove 20 is tapered. 13 is in contact with the large-diameter side end surface 13b, so that seizure of the bearing 10 can be prevented even in a lubricating environment of a small amount of lubricating oil.
  • the groove 20 is separated from the large diameter side end surface 13b of the tapered roller 13, and the large diameter side annular portion in which the groove 20 is formed. Since 14a does not always contact the tapered roller 13, an increase in frictional resistance during rotation of the bearing can be suppressed, and wear of the large-diameter side annular portion 14a in which the groove 20 is formed can be suppressed. Further, it is not necessary to manage advanced component dimensional accuracy and the like, and an increase in manufacturing cost can be suppressed.
  • the large-diameter side annular portion 14a in which the groove 20 is formed does not have a contact force (pressing force) set in advance, and the tapered roller 13 is generated by the component force of the weight of the cage 14. Therefore, the frictional resistance is hardly generated and the wear deterioration of the large-diameter side annular portion 14a can be minimized.
  • the cage 14 is made of synthetic resin, and the surface roughness and the groove 20 of the axially inner end surface 14b of the large-diameter side annular portion 14a of the cage 14 are formed. Since it is injection-molded simultaneously with the retainer 14 by the axial draw, an increase in manufacturing cost can be suppressed.
  • the groove 20 is formed along the circumferential direction, and since the acting direction of the centrifugal force during rotation of the bearing and the forming direction of the groove 20 are orthogonal to each other, the groove 20 is held in the groove 20. It is possible to prevent the lubricating oil from scattering due to centrifugal force.
  • the amount of lubricating oil can be greatly reduced, so that the stirring resistance of the lubricating oil can be reduced.
  • the lubricating oil pump and the oil supply passage can be eliminated, thereby reducing the weight and compactness of the entire system, Cost reduction can be achieved.
  • the lubricant is intermittently supplied into the bearing, or the bearing is prevented from seizing even in a lubrication environment in which the lubricant in the bearing is very small. Performance and lubrication effect can be maintained over a long period of time.
  • the tapered roller bearing 10 of the present embodiment can be suitably used for a mechanism in which the lubricating oil pump temporarily stops when the engine is stopped, such as a transmission of some hybrid vehicles. It is possible to cope with a situation where it is difficult to sufficiently supply the lubricating oil because the lubricating oil pump does not operate when towed.
  • the outer ring 11 of the tapered roller bearing 10 is fitted in the housing H, and the inner ring 12 is fitted on the rotary shaft A, as shown in FIG.
  • a structure in which an oil supply path R communicating with the bearing 10 is provided in H and a lubricating oil pump P is connected to the oil supply path R is generally known.
  • the lubricating oil pumped from the lubricating oil pump P is supplied to the bearing 10 through the oil supply path R.
  • the structure in which the lubricating oil is splashed by the gear G is such that the outer ring 11 of the tapered roller bearing 10 is fitted in the housing H, and the inner ring 12 is fitted on the rotating shaft A, so that A structure in which a gear G is provided on the shaft A adjacent to the inner ring 12 is generally known.
  • the lubricating oil adhering to the gear G is scattered by the centrifugal force accompanying the shaft rotation, and the scattered lubricating oil adheres to the bearing 10 and is supplied.
  • a lubricating oil amount of about 50 cc / min to 1000 cc / min is supplied in order to prevent seizure of the bearing.
  • the amount of the lubricating oil is less than 10 cc / min, heat generation or seizure is likely to occur due to an oil film shortage accompanying the lack of lubricating oil, and seizure occurs at 0 cc / min (non-lubricating oil).
  • the present invention is applicable to a lean lubrication state, not a non-lubricated state, and is highly effective in a lubrication environment where the amount of lubricating oil is small, specifically, in a lean lubrication state of about 0.01 cc / min to 10 cc / min. Demonstrate.
  • the time until seizure is related to the amount of oil retained in the oil retaining part, so by increasing the amount of oil retained, the unlubricated application time can be extended significantly from several tens of minutes to several hours. Is possible. Expansion of the oil retention amount can be dealt with, for example, by increasing the number of oil grooves or expanding the oil groove depth.
  • a passenger car may be towed as an auxiliary vehicle at a destination of a large vehicle such as a camper when a failure occurs.
  • a large vehicle such as a camper
  • a preload is generally applied because it is generally applied with a preload. In this idling state, the engine and the electric lubricating oil pump do not operate and the lubricating oil pump is stopped, so that the bearing is likely to seize.
  • the bearing can be supplied with oil until there is no lubricating oil stored in the oil retaining portion, so that seizure resistance is maintained even in a towed state where the splashing is insufficient or there is no splashing. Can greatly improve the performance.
  • the groove 20 circulates in a semicircular shape within the axially inner end surface 14b (inside the pocket 14f) of the large-diameter side annular portion 14a. It may be formed.
  • the groove 20 is arranged concentrically with the central axis of the tapered roller 13. For this reason, the tapered roller 13 improves the familiarity of the oil film of the groove 20 and the lubricating oil is not easily shaken off against the centrifugal force accompanying the rotation of the bearing. Therefore, the lubricating oil held in the groove 20 is caused by the centrifugal force. It is possible to suppress scattering.
  • channel 20 is opened to the inner peripheral surface of the large diameter side annular part 14a and is not opened to the outer peripheral surface side of the large diameter side annular part 14a, the oil retaining property of the groove 20 can be improved.
  • the groove 20 formed in a semicircular shape is formed by two grooves in a shape that is divided at the center thereof, and the end of the groove 20 is in contact with the large-diameter side end face 13 b of the tapered roller 13. It is like that.
  • the groove 20 is linear and circumferential in the radial direction within the axial inner end surface 14b (inside the pocket 14f) of the large-diameter side annular portion 14a. It may be formed in parallel with the direction. Moreover, the groove
  • a plurality of (this modification) is provided in the axially inner end face 14b (in the pocket 14f) of the large-diameter side annular portion 14a instead of the groove 20.
  • seven holes 21 may be formed.
  • the hole 21 is a tear-shaped bottomed hole as viewed in the axial direction, the width (minor diameter side) D5 of the hole 21 is set in the range of 0.01 mm to 0.5 mm, and the depth D6 of the hole 21 is It is set within a range from 0.05 mm to 1/5 or less of the length dimension LR of the tapered roller 13.
  • lubricating oil can be held while suppressing a decrease in strength of the cage 14.
  • the hole 21 only needs to have a narrowed part in the opening, and is not limited to the teardrop shape, but may be a polygonal shape such as a lemon shape or a triangle shape, or a combination thereof. May be.
  • a plurality of the grooves 20 described above are formed on the axially inner end surface (pocket surface) 14 b of the large-diameter side annular portion 14 a of the retainer 14. It is formed in parallel along the circumferential direction. Further, the surface of the inner peripheral surface 14g of the large-diameter side annular portion 14a of the retainer 14 is formed to be rough, and a plurality (six in this embodiment) are provided on the inner peripheral surface 14g of the large-diameter side annular portion 14a.
  • An annular groove (oil retaining portion) 30 is formed. The annular groove 30 is formed so as to be linear in the axial direction and parallel to the circumferential direction.
  • the annular portion groove 30 is formed so as to penetrate the large-diameter-side annular portion 14a in the axial direction in consideration of pullability at the time of mold release after molding.
  • the annular groove 30 may be provided for all the pockets 14f or may be provided for some of the pockets 14f.
  • the surface roughness of the inner peripheral surface 14g of the large-diameter side annular portion 14a is set to 3 ⁇ m to 20 ⁇ m similarly to the axial inner end surface 14b.
  • the width D7 of the annular groove 30 is set in the range of 0.01 mm to 0.5 mm, and the depth D8 (see FIG. 26) of the annular groove 30 is 0.05 mm to the larger diameter side of the tapered roller 13. It is set to a range of 1/5 or less of the outer diameter Dr (see FIG. 1) of the end.
  • the surfaces of the inner end surface 14b and the inner peripheral surface 14g in the axial direction of the large-diameter-side annular portion 14a of the cage 14 are formed rough, and the large-diameter side
  • the groove 20 is formed on the axial inner end surface 14b of the annular portion 14a, and the annular portion groove 30 is formed on the inner peripheral surface 14g of the large-diameter side annular portion 14a.
  • the annular portion groove 30 is formed on the axially outer end portion of the annular portion groove 30 in accordance with optimization to the injection mold. You may provide the dam part 31 which plugs up the axial direction outer end opening.
  • the depth D8 of the annular groove 30 is gradually made shallower toward the outside in the axial direction in accordance with the optimization to the injection mold.
  • the bottom surface of the annular groove 30 may be inclined so that the depth becomes zero at the outer end in the axial direction.
  • the width D7 of the annular groove 30 may be gradually narrowed outward in the axial direction, or both may be changed.
  • a plurality of grooves 20 are provided on the axially inner end surface (pocket surface) 14b of the large-diameter side annular portion 14a.
  • the circumferential groove 32 which connects the annular part groove
  • an annular groove 30 can be added between the adjacent pockets 14f.
  • the lubricating oil widely held by the large-diameter side annular portion 14a can be supplied to the pocket 14f side.
  • the circumferential groove 32 is forcibly removed from the mold, so the depth of the circumferential groove 32 is in the range of 0.05 mm to 2 mm, and the width of the circumferential groove 32 is 0.5 mm.
  • the width of the 14 large-diameter side annular portion 14a is set within a range of ⁇ 1 mm.
  • a plurality of step portions are provided in the axial inner end surface 14 b (in the pocket 14 f) of the large-diameter side annular portion 14 a of the retainer 14 instead of the groove 20.
  • the step part 40 which consists of is formed.
  • the staircase portion 40 is an oil retaining portion capable of holding the lubricating oil with a capillary force. Further, the staircase portion 40 is formed in a shape that is divided at its central portion.
  • an annular groove 30 similar to that of the first modification of the second embodiment (see FIG. 26) is formed on the inner peripheral surface 14g of the large-diameter annular portion 14a of the cage 14. Has been.
  • the staircase portion 40 and the annular groove 30 may be provided for all the pockets 14f or may be provided for some of the pockets 14f.
  • the plurality of stepped portions of the staircase portion 40 are formed in parallel along the circumferential direction on the axially inner end surface 14b of the large-diameter side annular portion 14a.
  • the step portion is provided with a step end portion at a position in contact with the tapered roller 13, and the capillary radius is reduced by making the curvature radius of the step portion corner of the step end portion smaller than that of the step center portion.
  • the width (diameter dimension) D9 of one step portion is set in a range of 0.01 mm to 0.5 mm
  • the height (axial dimension) D10 of one step portion is 0.01 mm to 0.00 mm. The range is set to 5 mm.
  • the surface of the staircase portion 40 is formed to be rough, and the surface roughness is set to 3 ⁇ m to 20 ⁇ m. Further, the inner peripheral surface 14g of the large-diameter side annular portion 14a is also formed rough, and the surface roughness is set to 3 ⁇ m to 20 ⁇ m.
  • the staircase portion 40 is formed on the axially inner end surface 14b of the large-diameter-side annular portion 14a of the retainer 14, and the surface of the staircase portion 40 is formed. Is formed with a rough surface, the surface of the inner peripheral surface 14g of the large-diameter-side annular portion 14a is formed rough, and a plurality of annular portion grooves 30 are formed on the inner peripheral surface 14g, and the capillary end is enhanced.
  • the portion is in contact with the tapered roller 13, the oil retaining ability and the oil supplying ability of the cage 14 can be increased, and seizure of the bearing 10 can be further prevented.
  • the staircase portion 40 is formed along the circumferential direction, and the direction in which the centrifugal force is applied during rotation of the bearing and the formation direction of the staircase portion 40 are orthogonal. It is possible to prevent the lubricating oil held in the air from being scattered by centrifugal force. Moreover, since the strength conditions for the injection mold of the cage 14 are relaxed, an increase in manufacturing cost can be further suppressed. About another structure and an effect, it is the same as that of the said 1st and 2nd embodiment.
  • the test conditions were as follows: a single row tapered roller bearing with a cage press cage ( ⁇ 25 ⁇ ⁇ 55 ⁇ 17) was mounted on the horizontal axis (horizontal axis), the test load was 4 kN axial load, the rotational speed was 5,000 rpm, and the lubricating oil The hydraulic oil (VG32) was used for the test, and 5 ml of lubricating oil was dropped before the test was started.
  • the cage is formed by three-dimensional modeling (3D printing), and the surface roughness of the inner end surface (pocket surface) in the axial direction of the large-diameter side annular portion is 2 ⁇ m, and the four rows are arranged in the circumferential direction. 2 (the two rows of grooves shown in FIG. 2 are four rows, the groove width: 0.2 mm, the groove depth: 0.5 mm).
  • the test was performed twice, and seizure occurred in 86 seconds for the first time and 71 seconds for the second time.
  • seizure did not occur until 1271 seconds for the first time and 997 seconds for the second time, and the seizure occurrence time could be extended. Therefore, the effectiveness of the oil retaining part (groove) of the present invention was demonstrated.

Abstract

摩擦抵抗の増加や製造コストの増大を抑制しつつ、微量な潤滑油の潤滑環境下であったとしても焼付きを防止することができる円すいころ軸受を提供する。円すいころ軸受(10)の保持器(14)は、樹脂製であり、小径側円環部(14c)の軸方向内端面(14d)と円すいころ(13)の小径側端面(13c)との間に第1隙間(S1)を有すると共に、大径側円環部(14a)の軸方向内端面(14b)と円すいころ(13)の大径側端面(13b)との間に第2隙間(S2)を有して、軸方向に沿って所定の範囲で移動可能に設けられ、大径側円環部(14a)の軸方向内端面(14b)の表面が粗く形成され、大径側円環部(14a)には、潤滑油を保持する保油部である1つ又は複数の溝(20)が設けられ、その溝(20)の溝端部(20a)が円すいころ(13)と接触可能な位置にある。

Description

円すいころ軸受
 本発明は、円すいころ軸受に関し、特に、軸受内部に潤滑油が供給される円すいころ軸受に関する。
 近年、一部のハイブリッド車のトランスミッションのように、エンジン停止時に潤滑油ポンプを停止する機構が登場しており、軸受の焼付き問題を生じさせやすい。また、自動車の被牽引時には潤滑油ポンプが作動せずにタイヤが空転するため、トランスミッション内の軸受に焼付きが生じることがある。このため、微量な潤滑油の潤滑環境下であったとしても焼付きを防止することができる軸受が求められている。
 従来の軸受として、外輪及び内輪と、外輪と内輪との間に配置される複数の玉と、複数の玉を回転可能に保持する合成樹脂保持器と、を備え、合成樹脂保持器のポケットの内面に、平行な細溝が密に並ぶ凹凸面が形成されるものが知られている(例えば、特許文献1参照)。この合成樹脂保持器は、玉軸受用であり、射出成形可能に設けられる。細溝は、ポケットの径方向又は周方向に沿って複数形成される。
 また、同様な合成樹脂保持器として、ポケットの内面の一部分に、2本の油溝又は1つの渦巻き状の油溝が形成されるものが知られている(例えば、特許文献2参照)。このような細溝又は油溝の形成により保持器と転動体と間に潤滑油を浸透させて摺接による発熱を防止している。
 また、従来の円すいころ軸受として、外輪の内周面に対して所定の間隔を有して保持器の大径側円環部の外周面に固定されると共に、円すいころの端面に接触する円すいころ接触部材を設けるものが知られている(例えば、特許文献3参照)。この円すいころ接触部材は、潤滑油が浸透する性質を有する材料からなる。
 また、従来の他の円すいころ軸受として、保持器の大径側円環部の内周面に、各ポケットと同数の保持凹部が、周方向において各ポケットに整合する位置に設けられるものが知られている(例えば、特許文献4参照)。
日本国特開平8-184318号公報 日本国実開昭54-027256号公報 国際公開第2008/087926号 日本国特許第5668420号公報
 しかしながら、上記特許文献1~3に記載の軸受では、軸受の焼付きを防止することができるものの、保油部(細溝又は油溝が形成されるポケット面、及び円すいころ接触部材)が円すいころ(転動体)に常時接触する構成であるため、摩擦抵抗の増加や保油部の摩滅の促進により潤滑効果を長期間持続することが困難であった。また、保油部の円すいころへの押付け力を適切に保つためには、軸受部材の寸法や剛性などに対し高度な管理が求められ、製造コストが増大する可能性があった。
 さらに、上記特許文献1、2では、溝部(細溝又は油溝)はポケット面を径方向に貫通しており、溝終端の閉じた部分が円すいころと接しないため、溝部で毛管力の高い部分が円すいころと接しておらず、溝部に溜まった潤滑油を全て給油できずに残ってしまい、円すいころへの効果的な給油が不十分であった。例えば、上記特許文献1では、溝部の断面形状を種々適用できると詳述しているが、これら形状は、どれもポケット表面よりも溝奥の毛管力が高まり、溝底に溜まった潤滑油を円すいころへ給油させることを難しくしている。また、上記特許文献2には、溝断面形状の工夫に関しての言及がない。
 また、上記特許文献4に記載の軸受では、保持凹部に潤滑油が保持されるものの、保持凹部が大きいため、潤滑油が短時間で供給されてしまい、焼付き寿命の延長効果は限定的であった。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、摩擦抵抗の増加や製造コストの増大を抑制しつつ、微量な潤滑油の潤滑環境下であったとしても焼付きを防止することができる円すいころ軸受を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
(1)内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、外輪軌道面と内輪軌道面との間に転動可能に設けられる複数の円すいころと、複数の円すいころを周方向に略等間隔に保持する保持器と、を備え、保持器は、大径側円環部と、大径側円環部と同軸に配置される小径側円環部と、大径側円環部と小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う柱部間に形成され、円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、保持器は、樹脂製であって、小径側円環部の軸方向内端面と円すいころの小径側端面との間に第1隙間を有すると共に、大径側円環部の軸方向内端面と円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、大径側円環部の少なくとも軸方向内端面の表面は、粗く形成され、大径側円環部には、潤滑油を保持する保油部が設けられ、保持器が円すいころの小径側に軸方向に移動したときに、保油部が円すいころの大径側端面に接触し、保持器が円すいころの大径側に軸方向に移動したときに、保油部が円すいころの大径側端面から離れることを特徴とする円すいころ軸受。
(2)保油部は、潤滑油を保持可能な1つの溝、複数の溝、及び複数の孔のいずれか1つからなり、円すいころの大径側端面と大径側円環部の軸方向内端面との投影面内における大径側円環部の軸方向内端面に、円すいころと接触可能な溝の溝端部又は孔の孔端部が配置され、溝又は孔は、大径側円環部の軸方向内端面と接続する溝端部又は孔端部から円すいころに潤滑油を供給することを特徴とする(1)に記載の円すいころ軸受。
(3)潤滑油を保持可能な溝と大径側円環部の軸方向内端面との間の角部は、シャープエッジに形成されることを特徴とする(2)に記載の円すいころ軸受。
(4)潤滑油を保持可能な溝の径方向断面の溝底すみは円弧形状に形成されており、溝底すみの円弧形状の半径は、溝の径方向幅の1/4~1/2に設定される最大円弧部分を有することを特徴とする(2)に記載の円すいころ軸受。
(5)溝の径方向断面の溝底すみの円弧形状の半径は、溝の溝中央部から溝端部に向かうに従って小さくなることを特徴とする(4)に記載の円すいころ軸受。
(6)溝の溝端部の深さは、溝の溝中央部の深さよりも小さく設定されることを特徴とする(2)に記載の円すいころ軸受。
(7)溝の溝端部の幅は、溝の溝中央部の幅よりも小さく設定されることを特徴とする(2)に記載の円すいころ軸受。
(8)大径側円環部の軸方向内端面は、円すいころの大径側端面と大径側円環部の軸方向内端面との投影面内において、大径側円環部の軸方向内端面に設けられた溝の溝端部の半数以上が円すいころの大径側端面と同時に接触可能な形状に形成されることを特徴とする(2)に記載の円すいころ軸受。
(9)保持器は、大径側円環部の内周面を内輪の大鍔部の外周面で径方向の案内をさせた構造、及び小径側円環部の内周面を内輪の小鍔部の外周面で径方向の案内をさせた構造の少なくとも一方を備えることを特徴とする(1)に記載の円すいころ軸受。
(10)ポケットを構成する柱部の周方向側面の開き角は、0度~40度に設定されることを特徴とする(1)に記載の円すいころ軸受。
(11)大径側円環部の軸方向内端面が凹球面状に形成され、円すいころの大径側端面が凸球面状に形成され、大径側円環部の軸方向内端面の凹球面状の曲率半径をSRy、円すいころの大径側端面の凸球面状の曲率半径をRaとすると、SRy=Ra±20%Raに設定されることを特徴とする(1)に記載の円すいころ軸受。
(12)大径側円環部の軸方向内端面が周方向又は径方向に沿った凹面状に形成され、円すいころの大径側端面が凸球面状に形成され、大径側円環部の軸方向内端面の周方向又は径方向に沿った凹面状の曲率半径をRz、円すいころの大径側端面の凸球面状の曲率半径をRaとすると、Rz=Ra±20%Raに設定されることを特徴とする(1)に記載の円すいころ軸受。
(13)保油部は、潤滑油を保持可能な階段部からなることを特徴とする(1)に記載の円すいころ軸受。
(14)潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする(1)~(13)のいずれか1つに記載の円すいころ軸受。
 本発明によれば、保持器の大径側円環部の少なくとも軸方向内端面の表面が粗く形成され、大径側円環部に、潤滑油を保持する保油部が設けられ、保持器が円すいころの小径側に軸方向に移動したときに、保油部が円すいころの大径側端面に接触するため、微量な潤滑油の潤滑環境下であったとしても軸受の焼付きを防止することができる。また、保持器が円すいころの大径側に軸方向に移動したときに、保油部が円すいころの大径側端面から離れて、保油部が円すいころに常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、保油部の摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。
本発明に係る円すいころ軸受の第1実施形態を説明する断面図である。 図1に示す保持器を径方向内側から見た模式図である。 図1に示す保持器が円すいころの大径側に軸方向に移動したときを説明する断面図である。 図1に示す保持器が円すいころの小径側に軸方向に移動したときを説明する断面図である。 溝の周方向の溝端部と円すいころの大径側端面との接触位置関係を示す模式図である。 溝端部が円すいころと接する状態を示す説明図である。 溝端部が円すいころと接しない状態を示す説明図である。 溝の角部がシャープエッジに形成される場合を示す説明図である。 溝の角部が大きな円弧状に形成される場合を示す説明図である。 溝の深さを溝の溝中央部から溝端部に向かうに従って小さくした場合を示す説明図である。 溝の深さを溝の溝中央部から溝端部まで均一にした場合を示す説明図である。 溝の径方向断面の溝底すみの円弧形状の半径を、溝の溝中央部から溝端部に向かうに従って小さくすることを説明する模式図である。 溝の径方向幅を長手方向両方の溝端部で小さくした例を説明する模式図である。 溝の他の形状例を説明する模式図である。 溝の他の形状例を説明する模式図である。 保持器と内輪とのラジアル方向の隙間の状態を示す断面図である。 柱部の周方向側面の開き角を説明する概略断面図である。 柱部の周方向側面の開き角が0度の場合を説明する概略断面図である。 保持器のポケット面を凹球面状に形成した場合を示す断面図である。 図16の場合の保持器と円すいころを径方向外側から見た平面図である。 保持器のポケット面を周方向に沿った凹面状に形成した場合を示す断面図である。 図18の場合の保持器と円すいころを径方向外側から見た平面図である。 保持器のポケット面を径方向に沿った凹面状に形成した場合を示す断面図である。 図20の場合の保持器と円すいころを径方向外側から見た平面図である。 第1実施形態の保油部の第1変形例を説明する模式図である。 第1実施形態の保油部の第2変形例を説明する模式図である。 第1実施形態の保油部の第3変形例を説明する模式図である。 本発明に係る円すいころ軸受の第2実施形態の保持器を径方向内側から見た模式図である。 第2実施形態の保油部の第1変形例を示す断面図である。 第2実施形態の保油部の第2変形例を示す断面図である。 第2実施形態の保油部の第3変形例を示す模式図である。 本発明に係る円すいころ軸受の第3実施形態を説明する断面図である。 図29に示す保持器を径方向内側から見た模式図である。 潤滑油ポンプによる軸受への給油を説明する断面図である。 歯車の跳ね掛けによる軸受への給油を説明する断面図である。
 以下、本発明に係る円すいころ軸受の各実施形態について、図面に基づいて詳細に説明する。
(第1実施形態)
 まず、図1~図24を参照して、本発明に係る円すいころ軸受の第1実施形態について説明する。
 本実施形態の円すいころ軸受10は、図1に示すように、内周面に外輪軌道面11aを有する外輪11と、外周面に内輪軌道面12aを有する内輪12と、外輪軌道面11aと内輪軌道面12aとの間に転動可能に設けられる複数の円すいころ13と、複数の円すいころ13を周方向に略等間隔に保持する保持器14と、を備える。なお、本実施形態では、潤滑油が潤滑油ポンプP(図31参照)などにより軸受内部に適宜供給される。
 内輪12は、内輪12の大径側端部に設けられる大鍔部12bと、内輪12の小径側端部に設けられる小鍔部12cと、を有する。内輪12の外周面は、略円すい状に形成されている。また、円すいころ13は、円すいころ13の周面に設けられる転動面13aと、円すいころ13の大径側端部に設けられる大径側端面13bと、円すいころ13の小径側端部に設けられる小径側端面13cと、を有する。
 保持器14は、合成樹脂製であり、アキシアルドローにより射出成形されており、大径側円環部14aと、大径側円環部14aと同軸配置される小径側円環部14cと、大径側円環部14aと小径側円環部14cとを軸方向で連結し、周方向に略等間隔に設けられる複数の柱部14eと、周方向に互いに隣り合う柱部14e間で、大径側円環部14a及び小径側円環部14cとにより囲まれて形成され、円すいころ13を転動可能に保持するポケット14fと、を有する。
 また、保持器14は、保持器14の小径側円環部14cの軸方向内端面14dと円すいころ13の小径側端面13cとの間に第1隙間S1を有する。また、保持器14は、保持器14の大径側円環部14aの軸方向内端面14bと円すいころ13の大径側端面13bとの間に第2隙間S2を有する。これにより、保持器14は、軸方向に沿って所定の範囲で移動可能に設けられる。
 そして、本実施形態の円すいころ軸受10では、図1に示すように、第1隙間S1の軸方向寸法をD1、第2隙間S2の軸方向寸法をD2、円すいころ13の長さ寸法をLR、保持器14のポケット14fの長さ寸法をLP、隙間全体の総和寸法をDtとしたとき、Dt=D1+D2=LP-LRの関係となる。なお、軸方向寸法D1,D2、円すいころ13の長さ寸法LR、及びポケット14fの長さ寸法LPは、円すいころ13の中心軸(自転軸)方向に沿った寸法である。
 このように、円すいころ13と保持器14との間には軸方向の隙間が設けられるため、保持器14は、軸方向に沿って隙間の総和寸法Dtの範囲で自由に移動可能である。また、本実施形態では、隙間の総和寸法Dtは、厳密な寸法管理は不要で、保持器の一般的な加工精度を考慮して、0.1mmから円すいころ13の長さ寸法LRの1/5以下の範囲に設定される。
 また、保持器14の大径側円環部14aの軸方向内端面(以下、単に「ポケット面」とも言う)14bの表面は、粗く形成されており、具体的な軸方向内端面14bの表面粗さ(算術平均粗さ)は3μm~20μmに設定される。また、軸方向内端面14bの表面粗さは、例えば、柱部14eの周方向側面よりも粗く形成されていてもよい。
 そして、大径側円環部14aの軸方向内端面(ポケット面)14bの粗さは、後述する溝20が蓄えた潤滑油を円すいころ13に導くように機能する。これにより、軸方向内端面14bの保油能力及び給油能力を高めることができる。また、後述する溝20の内面も保油能力を高めるために粗く形成されていた方が好ましい。また、軸方向内端面14bが保持器成形時の型抜き方向に対して垂直なため、軸方向内端面14bを粗く形成したとしても、成形後の離型の際に支障になることはない。なお、軸方向内端面14bの表面粗さは、全てのポケット14fに対して設定してもよいし、一部のポケット14fに対して設定してもよい。
 また、図1~図5に示すように、保持器14の大径側円環部14aの軸方向内端面(ポケット面)14bには、溝加工等により、複数(本実施形態では5つ)の微細な溝(保油部)20が形成されている。なお、溝20は、1つであってもよい。そして、5つの溝20は、2列(外径側に2つ、内径側に3つ)に並べられて配置されている。溝20は、有底溝であり、それぞれのポケット14fにおいて、周方向に沿って平行に形成されている。溝20は、毛管力で潤滑油を保持可能な保油部であり、保持器14の保油能力を高めると共に、円すいころ13への潤滑油の伝播を促進する。なお、溝20は、全てのポケット14fに対して設けられてもよいし、一部のポケット14fに対して設けられてもよい。
 ここで、本説明で述べる毛管力とは、固体が液体を引き寄せようとする力のことである。固体(保持器)の表面張力が液体(潤滑油)の表面張力よりも大きなときに毛管力が生じ、液体は固体表面に引き寄せられる。また、液体は表面張力により空気と触れる面を減らそうともする。つまり、潤滑油は空気と接する面積が減少させながら、保持器と接する面積を増そうとする。このため、保持器の溝は、細く狭いほど毛管力が高まる。この原理を利用し、本発明では、ポケット面14bに、細く狭い形状の溝20を形成している。そして、溝20は、大径側円環部14aの軸方向内端面(ポケット面)14bと接続する溝端部20aから円すいころ13の大径側端面13bに潤滑油を供給することを特徴とする。なお、溝端部20aは、溝20の周方向の端部のことである。また、後述する溝中央部20bは、溝20の周方向の中央部のことである。
 また、溝20は、毛管力の作用で保油及び円すいころ13への給油が可能な微細な形状であることが必要であり、本実施形態では、溝20の幅及び深さは一定又は溝端部が浅くなるように設定されており、溝20の潤滑油の保油性、保持器14の強度及び一般的な射出成形の精度などを考慮して、例えば、溝20の径方向幅D3は、最大部で0.01mm~0.5mmの範囲に設定され、溝20の深さD4は、最大部で0.05mmから円すいころ13の長さ寸法LRの1/5以下の範囲に設定される。なお、溝20の径方向幅D3は、溝20の延在方向と直交する方向の幅である。また、アキシアルドローにより成形される溝20は、射出成形時に成形金型が移動(離型)する方向である、保持器14の中心軸と同じ方向(軸方向)に延在している。
 保持器14は、合成樹脂製であり、例えば、アキシアルドローにより射出成形可能である。大径側円環部14aの軸方向内端面(ポケット面)14bの表面粗さ及び溝20もこの射出成形により同時に形成可能である。この場合、加工工程の追加、二色成形(ダブルモールド)のような特殊な成形、及び別途製作した保油部材の接着などが不要である。従って、製造コストをほぼ増大させることなく、耐焼付き性を向上することができる。
 また、保持器14の材質としては、特に制限はないが、使用される潤滑油に対して表面張力が高く毛管力を生じる親油性を有する合成樹脂材であればよく、例えば、ナイロンなどの一般的な保持器樹脂材を挙げることができる。なお、保持器14の合成樹脂に強化剤として繊維を含有させてもよい。また、親油性が低い樹脂材を使用することも可能であるが、この場合、親油処理を施した方が好ましい。
 図5は、溝20の周方向の溝端部20aと円すいころ13の大径側端面13bとの接触位置関係を示す模式図である。円すいころ13の大径側端面13bには、通常中心部に逃げ凹部13dが設けられ、逃げ凹部13dの周囲に円環状の接触面13eが設けられている。この円環状の接触面13eとポケット面14bとの投影面(円すいころ13の長手方向に見たとき重なり合う面、図5の斜線部分参照)が、円すいころ13と保持器14が接触可能な面である。そして、5つの溝20のそれぞれの溝端部20aの少なくとも一方は、この扇状の接触面13eに収まるように設けられる。これにより、後述のメカニズムにより溝端部20aに集まった潤滑油を余す事なく、円すいころ13との毛管力によって円すいころ13に給油することが可能となる。なお、図5~図8中の符号Lは潤滑油(ドット模様を付与した部分)である。
 図6A及び図6Bは、溝20の長手方向(周方向)と円すいころ13との位置関係を示す説明図であり、例えば、図5の線Bに沿った断面図である。なお、図6A及び図6Bでは、説明の理解を容易にするため、溝20の深さを実際よりも拡大して表している。保持器14は、毛管力によって溝20の内部に蓄えられた潤滑油を、同じくころ表面との毛管力の作用によって円すいころ13の大径側端面13bに供給することを特徴としている。この作用を効果的にさせるためには、溝20は、円すいころ13とポケット面14bが接する部分に高い毛管力を発生させることが重要である。そして、その手法の1つとして、本実施形態では、図6Aに示すように、溝20の中間部分よりも毛管力が高い溝端部20aが円すいころ13と接するように構成している。これにより、溝20の内部の潤滑油を、溝端部20aから円すいころ13の大径側端面13bとの毛管力で吸い上げることができる。なお、図6Bでは、溝端部20aが円すいころ13と接しないため、潤滑油を吸い上げる量が少なくなる。
 図7A及び図7Bは、溝20の径方向の断面形状を示す説明図であり、例えば、図5の線Cに沿った断面図である。毛管力は毛細管現象などからも明白なように、狭い空間ほど強く働くため、溝20の径方向幅D3が細いだけではなく、図7Bに示すように開口部で広がっていてはならない。そこで、本実施形態では、図7Aに示すように、溝20の壁面(溝20の径方向の壁面と周方向の壁面の少なくとも一方)20cとポケット面14bとの間の角部20dがシャープエッジ(半径0.1mm以下の円弧状の面取り、好ましくは半径0.05mm以下の円弧状の面取り、又は1辺0.1mmで45度の直線状の面取り)に形成されている。角部20dをシャープエッジに形成することにより、潤滑油をポケット面14bまで導きやすくすることが可能となる。なお、図7Bでは、角部20dの円弧が大きいため、潤滑油の油面がポケット面14bに届かず、給油量が少なくなる。
 また、溝20の径方向断面の溝底すみ20eは、円弧形状に形成されており、この溝底すみ20eの円弧形状の半径Rwが小さい場合、毛管力が高まり潤滑油が溝底すみ20eに留まるように作用する。このため、溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwは、最大となる溝20の長手方向中央である溝中央部20bにおいて溝20の径方向幅D3の1/4~1/2に設定される方が望ましい。また、溝端部20aへの毛管力を高めるためには、図9に示すように、溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、溝20の溝中央部20bから溝端部20aに向かうに従って小さくする(Rw1>Rw2>Rw3)方が更に望ましい。これにより、溝中央部20bに溜まった潤滑油を、より毛管力の高い溝端部20aに吸い上げて、ポケット面14bに導くことが可能となる。
 図8A及び図8Bは、溝20の長手方向(周方向)の断面形状を示す説明図であり、例えば、図5の線Bに沿った断面図である。なお、図8A及び図8Bでは、説明の理解を容易にするため、溝20の深さを実際よりも拡大して表している。図8Bに示すように、溝20の周方向断面の溝底すみ20fの半径Rwが小さい場合、潤滑油が溝底すみ20fに留まってしまい、円すいころ13への給油が難しくなる。このため、溝端部20aの深さD4を、溝中央部20bの深さD4よりも小さく(浅く)設定した方が望ましい。具体的には、図8Aに示すように、溝20の周方向断面の溝底すみ20fを円弧形状に形成して、溝20の深さD4を、溝20の溝中央部20bから溝端部20aに向かうに従って小さくしている。これにより、溝端部20aのポケット面14bと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。
 図10は、溝20の径方向幅D3を長手方向両方の溝端部20aで小さく(細く)した例を説明する模式図である。つまり、図10に示す溝20では、溝端部20aの径方向幅D3を、溝中央部20bの径方向幅D3よりも小さく設定されている。このように溝20の先端を細くすることにより、溝端部20aの毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。また、細くなっている部分が先端の一部に限られるため、溝全体の空間体積をあまり減らすことなく、多くの潤滑油を蓄えやすい形状でもある。
 図11及び図12は、溝20の他の形状例を説明する模式図である。図11及び図12に示す溝20では、溝20の径方向幅D3を溝中央部20bから溝端部20aに向かうに従って小さく、且つ溝20の深さD4を溝中央部20bから溝端部20aに向かうに従って浅く、且つ溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、溝20の溝中央部20bから溝端部20aに向かうに従って小さく(Rw1>Rw2>Rw3)している。このような構造にすることにより、溝端部20aのポケット面14bと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。なお、溝20の周方向長さ、溝20の径方向幅D3の変化度合い、溝20の深さD4の変化度合い、溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwの変化度合い、及びその変化の連続・不連続は自由に設定可能である。また、上記項目の一部のみを採用してもよい。
 図13は、保持器と内輪とのラジアル方向の隙間の状態を示す断面図である。保持器は、ころの公転と同期して自転する部品であり、内輪、外輪、ころのいずれかによってラジアル方向の動きが規制されるように構成されている。そして、一般的な円すいころ軸受では、ころによってラジアル方向の動きが規制され、ポケットに設けられた隙間の範囲で自由にラジアル方向に移動可能である。しかし、ころによる規制では、ラジアル方向位置のばらつき要因が多く、ラジアル方向の移動量を意図的に狭い範囲に収めることは困難である。そして、保持器のラジアル方向の移動量が大きくなると、ポケット面ところ端面との接触位置も大きくズレてしまい、給油の効果が弱くなってしまう。
 このため、本発明では、保持器の円環部の内周面と内輪の鍔部の外周面との隙間を小さくしたすべり軸受構造とすることにより、保持器のラジアル方向の移動量を小さくしている。具体的には、図13に示すように、保持器14は、大径側円環部14aの内周面を内輪12の大鍔部12bの外周面で径方向の案内をさせた構造、及び小径側円環部14cの内周面を内輪12の小鍔部12cの外周面で径方向の案内をさせた構造の両方を備えている。なお、上記2つの構造の両方を備えることに限定されず、2つの構造のいずれか一方を備えていればよい。
 また、上記すべり軸受構造において、保持器のラジアル方向の移動量を規制するのは、内輪の鍔部の外周面であり、これを確実とするために保持器を鍔部に接した状態まで偏心させても、保持器ところは接触するものの、ラジアル方向の動きを拘束し合わない構造とする。この構造は、一般的に内輪案内保持器と呼ばれ、本発明の保油/給油のための溝を有する保持器にこの内輪案内を組み合わせることで、効果的な給油機能を発揮することが可能となる。
 また、図13に示す大径側円環部14aの内周面と内輪12の大鍔部12bの外周面との間の第3隙間S3、及び小径側円環部14cの内周面と内輪12の小鍔部12cの外周面との間の第4隙間S4については、軸受の大きさ、保持器と軸受の材質、及び使用環境温度によって用途毎に最適設計が必要なため一定の隙間量とはならないが、使用環境の最低温度にて保持器と内輪との間の隙間が丁度ゼロか、僅かに隙間が残る設定が最適である。これは、保持器の樹脂が鋼製の軸受よりも線膨張係数が高く、低温時に隙間が減少するためである。この隙間の変化量は、線膨張係数差と使用温度範囲、保持器案内径が大きいほど大きくなる。そして、保持器は、内輪との隙間が負になると内輪に拘束され円滑な回転が阻害されてしまう。このため、案内隙間を負にしないようにすることが重要である。さらに、使用時の隙間は、最小であるのが望ましいため上述の隙間設定が最適となる。
 図14及び図15は、円すいころ13と保持器14の柱部14eを軸方向から見た断面図である。図14及び図15に示すように、円すいころ13を挟んで周方向に対向する柱部14eは、外径側の隙間が円すいころ13のころ径よりも狭くなるように構成されており、これにより、ポケット14fから円すいころ13が脱落しない構造となっている。軸受が使用装置に組み込まれた状態ではころは内輪と外輪とに挟まれるため、保持器がなくてもころは脱落しないが、使用装置への組み付けまでの間、つまり、内輪・ころ・保持器の組立体が外輪と分離した状態のときに、この組立体が分解してしまわないように、上記構造としている。
 しかし、柱部14eの周方向側面14hの径方向に対する開き角θが大きくなると、使用時に保持器はころとの接触で受けるころ公転方向の力から生じる保持器径方向の分力が大きくなる。ころの挙動は各ころ間で不均一なため、保持器の全ポケットで生じる保持器径方向の力にも不均一が生じ、保持器中心軸が回転中心軸からズレる原因となる。保持器中心軸が回転中心軸からズレた場合、ポケット面14bと円すいころ13の大径側端面との接触位置にもズレが生じるため、この保持器中心軸のズレは極力抑えるべきである。このため、ポケット14fを構成する柱部14eの周方向側面14hの開き角θは、0度~40度に設定されるのが望ましい。なお、0度のような低い開き角の構造は、図15に示すように、柱部14eの周方向側面14hの径方向外端にころ脱落防止のために窓幅を狭める突起14iを設けて、ころ脱落防止用の部分と使用中の柱部ところの接触位置とを分けることで実現可能である。
 また、図5に示すように、円すいころ13の大径側端面13bとポケット面14bは、円すいころ13の扇円環状の接触面13eで接触するようになっており、その接触面13e内の溝端部20aから毛管力によって円すいころ13に潤滑油が供給されるため、溝端部20aと円すいころ13の大径側端面13bを接触状態にすることが必要である。このため、例え1箇所でも給油機能は働くが、十分な潤滑を行うためには、大径側円環部14aの軸方向内端面(ポケット面)14bは、円すいころ13の大径側端面13bとポケット面14bとの投影面との投影面内において、ポケット面14bに設けられた5つの溝20の溝端部20aの半数以上が円すいころ13の大径側端面13bと同時に接触可能な形状に形成された方が望ましい。なお、図5の場合、5つの溝20が2列(外径側に2つ、内径側に3つ)に並べられており、全部で10個の溝端部20aのうち、6個の溝端部20aが円すいころ13の大径側端面13bと接触している。
 図16及び図17は、円すいころ13の大径側端面13bとポケット面14bの面形状を示す図である。ところで、円すいころ軸受のころは、全てのころの外径の円錐角頂点が、軸受中心軸上の1点(コーンセンタ)に集まる構造となっている。そして、円すいころ13の大径側端面13bは、コーンセンタからの距離を半径Raとした凸球面状に形成されている。
 一方、既存の一般的な保持器では、ポケット面は、平面状だったり円錐状だったりと、円すいころの大径側端面との密着性は考慮されていないが、本発明では、円すいころ13の大径側端面13bとの毛管力を高めることで潤滑油の給油効果を向上するため、円すいころ13の大径側端面13bとポケット面14bとの隙間を最小にするために、ポケット面14bは、凹球面状に形成されていた方が望ましい。また、ポケット面14bの凹球面状の曲率半径をSRy、円すいころ13の大径側端面13bの凸球面状の曲率半径をRaとすると、SRy=Ra±20%Raに設定した方が、高い給油効果を発揮するため更に望ましい。これは、ポケット面14bの凹球面状の曲率半径SRyが大き過ぎても小さ過ぎても密着度合いが低下するためである。しかしながら、SRyをRaに一致(SRy=Ra)させて全面当りにしてしまうと、摩擦抵抗が増加してしまうため、僅かに曲率半径をずらして完全密着させない状態が最適である。
 図18及び図19は、ポケット面14bの面形状の第1変形例を示す図である。本例では、ポケット面14bが周方向に沿った凹面状に形成されている。そして、この場合、ポケット面14bの周方向に沿った凹面状の曲率半径をRz、円すいころ13の大径側端面13bの凸球面状の曲率半径をRaとすると、Rz=Ra±20%Raに設定した方が望ましい。
 図20及び図21は、ポケット面14bの面形状の第2変形例を示す図である。本例では、ポケット面14bが径方向に沿った凹面状に形成されている。そして、この場合、ポケット面14bの径方向に沿った凹面状の曲率半径をRz、円すいころ13の大径側端面13bの凸球面状の曲率半径をRaとすると、Rz=Ra±20%Raに設定した方が望ましい。
 図18~図21に示した例は、ポケット面14bを凹球面状にしない例であるが、この場合であっても、凹球面状に近い効果を得ることが可能である。そして、これらの例は、金型製作の工法による都合等で球面加工が極めて困難又は不可能な場合に有効である。
 このように構成された円すいころ軸受10では、軸受に潤滑油が供給され軸受内が潤滑油で満たされている場合、軸受回転のポンプ作用により潤滑油が内輪12の小径側から大径側へ流れる現象が起きる。従って、本実施形態では、図3に示すように、上記ポンプ作用による潤滑油の流れの力を受けて、保持器14が円すいころ13の大径側に軸方向に移動し、保持器14の大径側円環部14aが円すいころ13から離れる側に移動する(Dt=D2、D1=0)。これにより、大径側円環部14aが円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加が抑制される。
 その一方、軸受に潤滑油が供給されず軸受内の潤滑油が微量である場合、ポンプ作用による潤滑油の流れは発生せず、図4に示すように、保持器14は自重の分力により円すいころ13の小径側に軸方向に移動し、保持器14の大径側円環部14aの軸方向内端面14bに形成された溝20が円すいころ13の大径側端面13bに接触する(Dt=D1、D2=0)。これにより、溝20に蓄えられた潤滑油が円すいころ13の大径側端面13bに供給される。つまり、軸受内の潤滑油が微量である場合にのみ、溝20が円すいころ13の大径側端面13bに接触し、潤滑油が円すいころ13に供給される。なお、本発明の円すいころ軸受10は、保持器14の自重の分力を利用して保持器14を移動させるものであるため、水平に設けられる軸(横軸)を支持する構造に用いるのが好適である。
 以上説明したように、本実施形態の円すいころ軸受10によれば、保持器14の大径側円環部14aの軸方向内端面14bの表面が粗く形成され、大径側円環部14aの軸方向内端面14bに、毛管力で潤滑油を保持する溝(保油部)20が設けられ、保持器14が円すいころ13の小径側に軸方向に移動したときに、溝20が円すいころ13の大径側端面13bに接触するため、微量な潤滑油の潤滑環境下であったとしても軸受10の焼付きを防止することができる。また、保持器14が円すいころ13の大径側に軸方向に移動したときに、溝20が円すいころ13の大径側端面13bから離れて、溝20が形成された大径側円環部14aが円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、溝20が形成された大径側円環部14aの摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。
 更に詳細に説明すると、溝20が形成された大径側円環部14aは、事前に接触力(押付け力)が設定されているわけではなく、保持器14の自重の分力により円すいころ13に接触するため、摩擦抵抗を殆ど発生させず、大径側円環部14aの摩耗劣化を最小限に抑えることができる。
 また、本実施形態の円すいころ軸受10によれば、保持器14が、合成樹脂製であり、保持器14の大径側円環部14aの軸方向内端面14bの表面粗さ及び溝20がアキシアルドローにより保持器14と同時に射出成形されるため、製造コストの増大を抑制することができる。
 また、本実施形態の円すいころ軸受10によれば、溝20が周方向に沿って形成され、軸受回転時の遠心力の作用方向と溝20の形成方向が直交するため、溝20に保持される潤滑油が遠心力により飛散するのを抑制することができる。
 また、本実施形態の円すいころ軸受10によれば、潤滑油量を大幅に減らすことができるので、潤滑油の攪拌抵抗を低減することができる。また、例えば、歯車による跳ね掛けなどによって潤滑油を微量でも供給できる構造(図32参照)とすれば、潤滑油ポンプや給油路を廃止することもでき、これにより、システム全体の軽量コンパクト化、低コスト化を図ることができる。
 また、本実施形態の円すいころ軸受10によれば、潤滑油が軸受内に断続的に供給される、或いは、軸受内の潤滑油が微量である潤滑環境下でも、焼付きを防止して軸受性能や潤滑効果を長期間に亘って維持することができる。このため、本実施形態の円すいころ軸受10は、例えば、一部のハイブリッド車のトランスミッションのようにエンジン停止時に潤滑油ポンプが一時的に停止する機構に好適に用いることができ、また、自動車の被牽引時に潤滑油ポンプが作動せずに潤滑油の十分な供給が困難な状況などに対応することができる。
 ここで、本明細書における潤滑油が微量である潤滑環境下について説明する。例えば、自動車などのトランスミッションの場合、潤滑油の供給方法として、図31に示す潤滑油ポンプPによる潤滑油の圧送と、図32に示す歯車Gによる潤滑油の跳ね掛けとの2通りが一般的に知られている。
 潤滑油ポンプPにより潤滑油を圧送する構造としては、図31に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、ハウジングHに軸受10に連通する給油路Rが設けられ、この給油路Rに潤滑油ポンプPが接続される構造が一般的に知られている。この構造の場合、潤滑油ポンプPから圧送された潤滑油が給油路Rを介して軸受10に供給される。
 また、歯車Gにより潤滑油を跳ね掛ける構造としては、図32に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、回転軸Aに内輪12と隣接して歯車Gが設けられる構造が一般的に知られている。この構造の場合、歯車Gに付着している潤滑油が軸回転に伴う遠心力により飛散し、飛散した潤滑油が軸受10に付着して給油される。
 上記した2通りの構造では、軸受の焼付きを防止するため、50cc/minから1000cc/min程度の潤滑油量が供給されている。そして、この潤滑油量が10cc/minを下回ると潤滑油不足に伴う油膜不足により発熱や焼付きが起こりやすくなり、0cc/min(無潤滑油)では焼付きが生じる。本発明は、無潤滑状態ではなく希薄潤滑状態への対応であり、潤滑油が微量である潤滑環境下、具体的には、0.01cc/min~10cc/min程度の希薄潤滑状態で大きな効果を発揮する。
 次に、本明細書における潤滑油が断続的に供給される環境について説明する。例えば、ハイブリッド車では、エンジンを停止したまま電動モータで走行するモードがある。このモード中は、エンジンと直結した潤滑油ポンプだけの構造では、軸受に潤滑油が給油されない状態で走行が行われる。このため、数分程度までの無給油走行状態が発生するが、軸受はこの間に焼付きを起こしてはならない。この電動走行時間はバッテリーの進化と共に延長させたいニーズがある。現状では焼付き防止のために一定間隔毎にエンジンを回し、潤滑油ポンプを作動させる制御を行っている車種もある。この課題を解決するには、電動潤滑油ポンプをシステムに追加するか、本発明のような無潤滑で焼付きにくい軸受の採用が必要となる。本発明では、焼付きまでの時間は保油部に蓄えられる保油量と関連があることから、保油量を増やすことで無潤滑適用時間を数十分から数時間と大幅に延長させることが可能である。保油量の拡大には、例えば、油溝の数の増加や油溝深さの拡大で対応できる。
 また、乗用車は、故障時やキャンピングカーなどの大型車両での移動先での補助用車両として牽引されることがある。このようなときは、車両の駆動輪を台車などに載せることで空転を防止することが可能であるが、現実には、駆動輪を空転させながら牽引される事例が起こっている。この場合、駆動伝達はなく無負荷空転のため軸受の負担も軽微であるが、円すいころ軸受の場合、一般的に予圧をかけて使用されるため、予圧分の負荷が常に作用している。そして、この空転状態では、エンジンや電動潤滑油ポンプが稼働せず、潤滑油ポンプは停止しているため、軸受は焼付きを起こしやすい。この対策のために、跳ね掛け給油が起こるように駆動装置に工夫を施している車種もある。本発明では、潤滑油ポンプが停止しても、保油部に蓄えられた潤滑油がなくなるまで軸受に給油を行えるため、跳ね掛けが不十分又は跳ね掛けがないような被牽引状態でも耐焼付き性を大幅に向上することができる。
 次に、本実施形態の第1変形例として、図22に示すように、溝20は、大径側円環部14aの軸方向内端面14b内(ポケット14f内)で半円状に周回して形成されていてもよい。溝20は、円すいころ13の中心軸と同心円状に配置されている。このため、円すいころ13が溝20の油膜の馴染みを良好にすると共に、軸受回転に伴う遠心力に対して潤滑油が振り飛ばされ難くなるので、溝20に保持される潤滑油が遠心力により飛散するのを抑制することができる。また、溝20は、大径側円環部14aの内周面に開口し、大径側円環部14aの外周面側に開口していないので、溝20の保油性を向上することができる。また、半円状に形成される溝20は、その中央部で分断されるような形状で2つの溝で構成されて、その溝20の端部が円すいころ13の大径側端面13bと接するようになっている。
 また、本実施形態の第2変形例として、図23に示すように、溝20は、大径側円環部14aの軸方向内端面14b内(ポケット14f内)で径方向に直線状且つ周方向に平行に並んで形成されていてもよい。また、溝20は、大径側円環部14aの内周面及び外周面のいずれにも突き抜けない、止まり溝に形成される。本変形例によれば、溝20が径方向に直線状に形成されるため、軸受回転に伴う遠心力により潤滑油が振り飛ばされやすいので、低速回転時に効率よく給油することができる。また、溝20が止まり溝に形成されるため、ある程度の遠心力まで溝20内に潤滑油を留めることができる。
 また、本実施形態の第3変形例として、図24に示すように、大径側円環部14aの軸方向内端面14b内(ポケット14f内)に、溝20の代わりに、複数(本変形例では7つ)の孔21を形成してもよい。孔21は、軸方向視で涙型の有底孔であり、孔21の幅(短径側)D5は、0.01mm~0.5mmの範囲に設定され、孔21の深さD6は、0.05mmから円すいころ13の長さ寸法LRの1/5以下の範囲に設定される。本変形例によれば、保持器14の強度低下を抑制しつつ、潤滑油を保持することができる。なお、孔21は、開口部の一部に狭くなった部位があればよく、涙型に限定されず、レモン型形状や三角形状などの多角形状などであってもよく、それらの組み合わせであってもよい。
(第2実施形態)
 次に、図25~図28を参照して、本発明に係る円すいころ軸受の第2実施形態について説明する。なお、上記第1実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。
 本実施形態では、図25に示すように、保持器14の大径側円環部14aの軸方向内端面(ポケット面)14bに、上記した溝20が複数(本実施形態では2つ)、周方向に沿って平行に形成されている。また、保持器14の大径側円環部14aの内周面14gの表面が粗く形成されると共に、大径側円環部14aの内周面14gに複数(本実施形態では6つ)の円環部溝(保油部)30が形成されている。円環部溝30は、軸方向に直線状且つ周方向に平行に並んで形成されている。また、円環部溝30は、成形後の離型時の引抜き性を考慮して、大径側円環部14aを軸方向に貫通するように形成されている。なお、円環部溝30は、全てのポケット14fに対して設けられてもよいし、一部のポケット14fに対して設けられてもよい。
 そして、大径側円環部14aの内周面14gの表面粗さは、軸方向内端面14bと同様に、3μm~20μmに設定される。円環部溝30の幅D7は、0.01mm~0.5mmの範囲に設定され、円環部溝30の深さD8(図26参照)は、0.05mmから円すいころ13の大径側端部の外径Dr(図1参照)の1/5以下の範囲に設定される。
 以上説明したように、本実施形態の円すいころ軸受10によれば、保持器14の大径側円環部14aの軸方向内端面14b及び内周面14gの表面が粗く形成され、大径側円環部14aの軸方向内端面14bに、溝20が形成され、大径側円環部14aの内周面14gに、円環部溝30が形成されるため、保持器14の保油能力及び給油能力を高めることができ、これにより、軸受10の焼付きを更に防止することができる。
 次に、本実施形態の第1変形例として、図26に示すように、射出成形金型への最適化に応じて、円環部溝30の軸方向外端部に、円環部溝30の軸方向外端開口を塞ぐ堰部31を設けてもよい。
 また、本実施形態の第2変形例として、図27に示すように、射出成形金型への最適化に応じて、円環部溝30の深さD8を軸方向外側に向けて次第に浅くして、軸方向外端部で深さが零になるように、円環部溝30の底面を斜めにしてもよい。なお、円環部溝30の深さD8を変化させるだけでなく、円環部溝30の幅D7を軸方向外側に向けて次第に狭く変化させてもよく、また両方を変化させてもよい。
 また、本実施形態の第3変形例として、図28に示すように、大径側円環部14aの軸方向内端面(ポケット面)14bに、溝20を複数(本実施形態では3つ)形成すると共に、保持器14の大径側円環部14aの内周面14gに、円環部溝30を周方向に連通する周溝32を全周に亘って形成してもよい。この場合、隣り合うポケット14f間に円環部溝30を追加することが可能である。本変形例によれば、大径側円環部14aで広く保持した潤滑油をポケット14f側に供給することができる。また、本変形例の場合、周溝32は金型の無理抜きとなるため、周溝32の深さは、0.05mm~2mmの範囲、周溝32の幅は、0.5mmから保持器14の大径側円環部14aの幅-1mmの範囲に設定されると好ましい。
 その他の構成及び作用効果については、上記第1実施形態と同様である。
(第3実施形態)
 次に、図29及び図30を参照して、本発明に係る円すいころ軸受の第3実施形態について説明する。なお、上記第1及び第2実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。
 本実施形態では、図29及び図30に示すように、保持器14の大径側円環部14aの軸方向内端面14b内(ポケット14f内)に、溝20の代わりに、複数の段部からなる階段部40が形成されている。階段部40は、毛管力で潤滑油を保持可能な保油部である。また、階段部40は、その中央部で分断されるような形状で形成されている。また、本実施形態では、保持器14の大径側円環部14aの内周面14gに、上記第2実施形態の第1変形例(図26参照)と同様の円環部溝30が形成されている。また、階段部40及び円環部溝30は、全てのポケット14fに対して設けられてもよいし、一部のポケット14fに対して設けられてもよい。
 階段部40の複数の段部は、大径側円環部14aの軸方向内端面14bにおいて、周方向に沿って平行に形成されている。また、段部は、溝の場合と同様に、円すいころ13と接する位置に段端部を設け、段端部の段部すみの曲率半径を段中央部よりも小さくすることで、毛管力を高められる。また、1つの段部の幅(径方向寸法)D9は、0.01mm~0.5mmの範囲に設定され、1つの段部の高さ(軸方向寸法)D10は、0.01mm~0.5mmの範囲に設定される。また、階段部40の表面は粗く形成されており、その表面粗さは、3μm~20μmに設定される。また、大径側円環部14aの内周面14gも粗く形成されており、その表面粗さは、3μm~20μmに設定される。
 以上説明したように、本実施形態の円すいころ軸受10によれば、保持器14の大径側円環部14aの軸方向内端面14bに、階段部40が形成され、その階段部40の表面が粗く形成され、大径側円環部14aの内周面14gの表面が粗く形成され、その内周面14gに、複数の円環部溝30が形成され、且つ毛管力を高めた段端部が円すいころ13と接することで、保持器14の保油能力及び給油能力を高めることができ、軸受10の焼付きを更に防止することができる。
 また、本実施形態の円すいころ軸受10によれば、階段部40が周方向に沿って形成され、軸受回転時の遠心力の作用方向と階段部40の形成方向が直交するため、階段部40に保持される潤滑油が遠心力により飛散するのを抑制することができる。また、保持器14の射出成形金型に対する強度条件が緩和されるため、製造コストの増大を更に抑制することができる。
 その他の構成及び作用効果については、上記第1及び第2実施形態と同様である。
 なお、本発明は、上記各実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 本発明の作用効果を確認するため、保油部(溝)を有する円すいころ軸受(本発明例、上記第1実施形態相当品)と保油部を有さない円すいころ軸受(比較例、従来品)と、を用意して、それぞれに対して焼付試験を行った。試験条件は以下の通りである。
 試験条件は、かご形プレス保持器付き単列円すいころ軸受(φ25×φ55×17)を水平軸(横軸)に取り付け、試験荷重をアキシャル荷重4kNとし、回転速度を5,000rpmとし、潤滑油に作動油(VG32)を使用し、潤滑油を試験開始前に5ml滴下し、試験中は無給油とした。また、保持器は、三次元造形(3Dプリント)により成形したもので、大径側円環部の軸方向内端面(ポケット面)の表面粗さが2μmであり、周方向に並べた4列の溝(図2に示した2列の溝が4列、溝幅:0.2mm、溝深さ:0.5mm)からなる保油部を有する。
 試験の結果、比較例では、2回試験を実施し、1回目は86秒、2回目は71秒で焼付きが発生した。これに対して、本発明例では、1回目は1271秒、2回目は997秒まで焼付きが発生せず、焼付発生時間を延長することができた。従って、本発明の保油部(溝)の有効性が実証された。
 なお、本出願は、2018年3月9日出願の日本特許出願(特願2018-043540)に基づくものであり、その内容は本出願の中に参照として援用される。
  10  円すいころ軸受
  11  外輪
  11a 外輪軌道面
  12  内輪
  12a 内輪軌道面
  12b 大鍔部
  12c 小鍔部
  13  円すいころ
  13a 転動面
  13b 大径側端面
  13c 小径側端面
  14  保持器
  14a 大径側円環部
  14b 軸方向内端面(ポケット面)
  14c 小径側円環部
  14d 軸方向内端面
  14e 柱部
  14f ポケット
  14g 内周面
  14h 周方向側面
  20  複数の溝(保油部)
  20a 溝端部
  20b 溝中央部
  20c 壁面
  20d 角部
  20e 溝の径方向断面の溝底すみ
  20f 溝の周方向断面の溝底すみ
  21  複数の孔(保油部)
  30  円環部溝(保油部)
  40  階段部(保油部)
  S1  第1隙間
  S2  第2隙間
  D1  第1隙間の軸方向寸法
  D2  第2隙間の軸方向寸法
  D3  溝の径方向幅
  D4  溝の深さ
  Dt  隙間全体の総和寸法
  LR  円すいころの長さ寸法
  LP  ポケットの長さ寸法
  Rw  溝底すみの円弧形状の半径
  Ra  円すいころの大径側端面の曲率半径
  SRy ポケット面の凹球面状の曲率半径
  Rz  ポケット面の凹面状の曲率半径
   θ  開き角

Claims (14)

  1.  内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動可能に設けられる複数の円すいころと、前記複数の円すいころを周方向に略等間隔に保持する保持器と、を備え、
     前記保持器は、大径側円環部と、前記大径側円環部と同軸に配置される小径側円環部と、前記大径側円環部と前記小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う前記柱部間に形成され、前記円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、
     前記保持器は、樹脂製であって、前記小径側円環部の軸方向内端面と前記円すいころの小径側端面との間に第1隙間を有すると共に、前記大径側円環部の軸方向内端面と前記円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、
     前記大径側円環部の少なくとも前記軸方向内端面の表面は、粗く形成され、
     前記大径側円環部には、潤滑油を保持する保油部が設けられ、
     前記保持器が前記円すいころの小径側に軸方向に移動したときに、前記保油部が前記円すいころの大径側端面に接触し、前記保持器が前記円すいころの大径側に軸方向に移動したときに、前記保油部が前記円すいころの大径側端面から離れることを特徴とする円すいころ軸受。
  2.  前記保油部は、潤滑油を保持可能な1つの溝、複数の溝、及び複数の孔のいずれか1つからなり、
     前記円すいころの前記大径側端面と前記大径側円環部の前記軸方向内端面との投影面内における前記大径側円環部の前記軸方向内端面に、前記円すいころと接触可能な前記溝の溝端部又は前記孔の孔端部が配置され、
     前記溝又は前記孔は、前記大径側円環部の前記軸方向内端面と接続する前記溝端部又は前記孔端部から前記円すいころに潤滑油を供給することを特徴とする請求項1に記載の円すいころ軸受。
  3.  前記潤滑油を保持可能な溝と前記大径側円環部の前記軸方向内端面との間の角部は、シャープエッジに形成されることを特徴とする請求項2に記載の円すいころ軸受。
  4.  前記潤滑油を保持可能な溝の径方向断面の溝底すみは円弧形状に形成されており、
     前記溝底すみの円弧形状の半径は、前記溝の径方向幅の1/4~1/2に設定される最大円弧部分を有することを特徴とする請求項2に記載の円すいころ軸受。
  5.  前記溝の径方向断面の前記溝底すみの円弧形状の半径は、前記溝の溝中央部から溝端部に向かうに従って小さくなることを特徴とする請求項4に記載の円すいころ軸受。
  6.  前記溝の溝端部の深さは、前記溝の溝中央部の深さよりも小さく設定されることを特徴とする請求項2に記載の円すいころ軸受。
  7.  前記溝の溝端部の幅は、前記溝の溝中央部の幅よりも小さく設定されることを特徴とする請求項2に記載の円すいころ軸受。
  8.  前記大径側円環部の前記軸方向内端面は、前記円すいころの前記大径側端面と前記大径側円環部の前記軸方向内端面との投影面内において、前記大径側円環部の前記軸方向内端面に設けられた前記溝の溝端部の半数以上が前記円すいころの前記大径側端面と同時に接触可能な形状に形成されることを特徴とする請求項2に記載の円すいころ軸受。
  9.  前記保持器は、前記大径側円環部の内周面を前記内輪の大鍔部の外周面で径方向の案内をさせた構造、及び前記小径側円環部の内周面を前記内輪の小鍔部の外周面で径方向の案内をさせた構造の少なくとも一方を備えることを特徴とする請求項1に記載の円すいころ軸受。
  10.  前記ポケットを構成する前記柱部の周方向側面の開き角は、0度~40度に設定されることを特徴とする請求項1に記載の円すいころ軸受。
  11.  前記大径側円環部の前記軸方向内端面が凹球面状に形成され、前記円すいころの前記大径側端面が凸球面状に形成され、
     前記大径側円環部の前記軸方向内端面の凹球面状の曲率半径をSRy、前記円すいころの前記大径側端面の凸球面状の曲率半径をRaとすると、SRy=Ra±20%Raに設定されることを特徴とする請求項1に記載の円すいころ軸受。
  12.  前記大径側円環部の前記軸方向内端面が周方向又は径方向に沿った凹面状に形成され、前記円すいころの前記大径側端面が凸球面状に形成され、
     前記大径側円環部の前記軸方向内端面の周方向又は径方向に沿った凹面状の曲率半径をRz、前記円すいころの前記大径側端面の凸球面状の曲率半径をRaとすると、Rz=Ra±20%Raに設定されることを特徴とする請求項1に記載の円すいころ軸受。
  13.  前記保油部は、潤滑油を保持可能な階段部からなることを特徴とする請求項1に記載の円すいころ軸受。
  14.  潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする請求項1~13のいずれか1項に記載の円すいころ軸受。
PCT/JP2019/009490 2018-03-09 2019-03-08 円すいころ軸受 WO2019172446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/979,041 US11306774B2 (en) 2018-03-09 2019-03-08 Tapered roller bearing
EP19764186.3A EP3763958B1 (en) 2018-03-09 2019-03-08 Tapered roller bearing
JP2020504070A JP7306372B2 (ja) 2018-03-09 2019-03-08 円すいころ軸受
KR1020207025982A KR102478695B1 (ko) 2018-03-09 2019-03-08 원추 롤러 베어링
CN201980018295.6A CN111868400B (zh) 2018-03-09 2019-03-08 圆锥滚子轴承

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018043540 2018-03-09
JP2018-043540 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019172446A1 true WO2019172446A1 (ja) 2019-09-12

Family

ID=67846672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009490 WO2019172446A1 (ja) 2018-03-09 2019-03-08 円すいころ軸受

Country Status (6)

Country Link
US (1) US11306774B2 (ja)
EP (1) EP3763958B1 (ja)
JP (1) JP7306372B2 (ja)
KR (1) KR102478695B1 (ja)
CN (1) CN111868400B (ja)
WO (1) WO2019172446A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246589A1 (ja) * 2019-06-05 2020-12-10 Ntn株式会社 円すいころ軸受
DE102019213992A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Radiallagerkäfig
DE102019213988A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Axiallagerkäfig
WO2022039041A1 (ja) * 2020-08-19 2022-02-24 Ntn株式会社 円すいころ軸受用樹脂製保持器および円すいころ軸受
WO2023120639A1 (ja) * 2021-12-23 2023-06-29 Ntn株式会社 円すいころ軸受

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427256U (ja) 1977-07-27 1979-02-22
JPH01168014U (ja) * 1988-05-16 1989-11-27
JPH0587326U (ja) * 1992-04-27 1993-11-26 エヌティエヌ株式会社 円筒ころ軸受
JPH076524U (ja) * 1993-06-30 1995-01-31 エヌティエヌ株式会社 ころ軸受用保持器
JPH08184318A (ja) 1994-12-28 1996-07-16 Ntn Corp 転がり軸受用保持器
JPH08200376A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd ころ軸受用の保持器
JPH09203414A (ja) * 1996-01-24 1997-08-05 Hitachi Constr Mach Co Ltd ころ軸受用保持器
JP2000130443A (ja) * 1998-10-26 2000-05-12 Ntn Corp 円すいころ軸受および円すいころ軸受用保持器
JP2003294038A (ja) * 2002-04-01 2003-10-15 Nsk Ltd 円すいころ軸受
JP2007032612A (ja) * 2005-07-22 2007-02-08 Nsk Ltd ころ軸受
JP2008069875A (ja) * 2006-09-14 2008-03-27 Ntn Corp 円錐ころ軸受
WO2008087926A1 (ja) 2007-01-15 2008-07-24 Jtekt Corporation 円錐ころ軸受
DE102009055660A1 (de) * 2009-11-24 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Wälzlagerkäfig mit Schmiermitteltaschen
JP2011202714A (ja) * 2010-03-25 2011-10-13 Ntn Corp 風力発電装置主軸用円すいころ軸受
JP5668420B2 (ja) 2009-11-17 2015-02-12 日本精工株式会社 円すいころ軸受及び円すいころ軸受用保持器の製造方法
JP2015183804A (ja) * 2014-03-25 2015-10-22 株式会社ジェイテクト 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受
JP2016142382A (ja) * 2015-02-04 2016-08-08 株式会社ジェイテクト 分割保持器およびころ軸受
JP2017166641A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 円錐ころ軸受用保持器、円錐ころ軸受
JP2018043540A (ja) 2016-09-12 2018-03-22 トヨタ紡織株式会社 シート操作システム及び線状部材作動装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1011029A (en) * 1910-10-15 1911-12-05 Star Ball Retainer Company Roller-bearing.
US2219031A (en) * 1937-12-01 1940-10-22 Bantam Bearings Corp Bearing construction
US2867076A (en) * 1957-05-16 1959-01-06 Herr Mfg Co Inc Lubrication of spinning rings
JPS5427256A (en) 1977-08-02 1979-03-01 Asahi Glass Co Ltd Method of removing nitrogen content in drainage
US4400040A (en) * 1981-11-16 1983-08-23 The Timken Company Tapered roller bearing with improved lubricating means
JPH03113U (ja) * 1989-05-22 1991-01-07
JP3699249B2 (ja) * 1997-07-28 2005-09-28 Ntn株式会社 ハブユニット軸受およびその製造方法
JP4526739B2 (ja) 2001-07-11 2010-08-18 中西金属工業株式会社 円錐ころ軸受用保持器の製造方法
JP3747006B2 (ja) 2002-03-28 2006-02-22 Ntn株式会社 ころ軸受用保持器及びころ軸受
JP2004293700A (ja) * 2003-03-27 2004-10-21 Ntn Corp 円すいころ軸受
JP4149350B2 (ja) * 2003-10-15 2008-09-10 Ntn株式会社 円すいころ軸受および円すいころ軸受用保持器
JP2007040512A (ja) * 2005-06-29 2007-02-15 Nsk Ltd 円錐ころ軸受
DE602006018399D1 (de) * 2005-08-25 2011-01-05 Ntn Toyo Bearing Co Ltd Kegelrollenlager
JP2008256168A (ja) * 2007-04-09 2008-10-23 Jtekt Corp 転がり軸受用保持器およびそれを具備した風力発電用軸受
JP2009058039A (ja) * 2007-08-31 2009-03-19 Jtekt Corp 転がり軸受用保持器
EP2503167B1 (en) 2009-11-17 2020-05-06 NSK Ltd. Conical rolling-element bearing and method for manufacturing a cage for a conical rolling-element bearing
JP2012251571A (ja) * 2011-05-31 2012-12-20 Nsk Ltd 円すいころ軸受用保持器及び円すいころ軸受
JP6357782B2 (ja) * 2013-07-31 2018-07-18 日本精工株式会社 円すいころ軸受
JP6520061B2 (ja) 2013-12-25 2019-05-29 株式会社ジェイテクト 玉軸受
JP6458458B2 (ja) 2013-12-25 2019-01-30 株式会社ジェイテクト 円すいころ軸受
JP6458459B2 (ja) * 2013-12-25 2019-01-30 株式会社ジェイテクト 円すいころ軸受
JP6256023B2 (ja) * 2014-01-16 2018-01-10 株式会社ジェイテクト 円すいころ軸受及び動力伝達装置
JP6442837B2 (ja) * 2014-03-10 2018-12-26 株式会社ジェイテクト 円錐ころ軸受
JP6550898B2 (ja) * 2015-04-28 2019-07-31 株式会社ジェイテクト 転がり軸受
JP6776536B2 (ja) 2016-01-14 2020-10-28 株式会社ジェイテクト 円すいころ軸受
DE102016222711A1 (de) * 2016-11-18 2018-05-24 Schaeffler Technologies AG & Co. KG Kegelrollenlager

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427256U (ja) 1977-07-27 1979-02-22
JPH01168014U (ja) * 1988-05-16 1989-11-27
JPH0587326U (ja) * 1992-04-27 1993-11-26 エヌティエヌ株式会社 円筒ころ軸受
JPH076524U (ja) * 1993-06-30 1995-01-31 エヌティエヌ株式会社 ころ軸受用保持器
JPH08184318A (ja) 1994-12-28 1996-07-16 Ntn Corp 転がり軸受用保持器
JPH08200376A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd ころ軸受用の保持器
JPH09203414A (ja) * 1996-01-24 1997-08-05 Hitachi Constr Mach Co Ltd ころ軸受用保持器
JP2000130443A (ja) * 1998-10-26 2000-05-12 Ntn Corp 円すいころ軸受および円すいころ軸受用保持器
JP2003294038A (ja) * 2002-04-01 2003-10-15 Nsk Ltd 円すいころ軸受
JP2007032612A (ja) * 2005-07-22 2007-02-08 Nsk Ltd ころ軸受
JP2008069875A (ja) * 2006-09-14 2008-03-27 Ntn Corp 円錐ころ軸受
WO2008087926A1 (ja) 2007-01-15 2008-07-24 Jtekt Corporation 円錐ころ軸受
JP5668420B2 (ja) 2009-11-17 2015-02-12 日本精工株式会社 円すいころ軸受及び円すいころ軸受用保持器の製造方法
DE102009055660A1 (de) * 2009-11-24 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Wälzlagerkäfig mit Schmiermitteltaschen
JP2011202714A (ja) * 2010-03-25 2011-10-13 Ntn Corp 風力発電装置主軸用円すいころ軸受
JP2015183804A (ja) * 2014-03-25 2015-10-22 株式会社ジェイテクト 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受
JP2016142382A (ja) * 2015-02-04 2016-08-08 株式会社ジェイテクト 分割保持器およびころ軸受
JP2017166641A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 円錐ころ軸受用保持器、円錐ころ軸受
JP2018043540A (ja) 2016-09-12 2018-03-22 トヨタ紡織株式会社 シート操作システム及び線状部材作動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3763958A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246589A1 (ja) * 2019-06-05 2020-12-10 Ntn株式会社 円すいころ軸受
US11841051B2 (en) 2019-06-05 2023-12-12 Ntn Corporation Tapered roller bearing
DE102019213992A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Radiallagerkäfig
DE102019213988A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Axiallagerkäfig
WO2022039041A1 (ja) * 2020-08-19 2022-02-24 Ntn株式会社 円すいころ軸受用樹脂製保持器および円すいころ軸受
WO2023120639A1 (ja) * 2021-12-23 2023-06-29 Ntn株式会社 円すいころ軸受

Also Published As

Publication number Publication date
CN111868400B (zh) 2022-06-21
US20210054877A1 (en) 2021-02-25
KR20200117025A (ko) 2020-10-13
EP3763958B1 (en) 2023-02-15
KR102478695B1 (ko) 2022-12-16
EP3763958A1 (en) 2021-01-13
JP7306372B2 (ja) 2023-07-11
US11306774B2 (en) 2022-04-19
JPWO2019172446A1 (ja) 2021-02-25
CN111868400A (zh) 2020-10-30
EP3763958A4 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019172446A1 (ja) 円すいころ軸受
WO2010150707A1 (ja) 深みぞ玉軸受用の合成樹脂製保持器および深みぞ玉軸受並びにギヤ支持装置
JP2007032612A (ja) ころ軸受
US20150192176A1 (en) Rolling bearing for a turbocharger
EP2562437A2 (en) Angular contact ball bearing
JP2012041940A (ja) 円筒ころ軸受の保持器及び円筒ころ軸受
JP6234137B2 (ja) 深みぞ玉軸受
WO2021039532A1 (ja) 円すいころ軸受
JP2006071016A (ja) 玉軸受用保持器
JP2002515105A (ja) 自己ポンプ作動ローラーベアリング
JP2018179039A (ja) 円すいころ軸受
WO2019172447A1 (ja) 円すいころ軸受
JP7272175B2 (ja) 円すいころ軸受
WO2019235578A1 (ja) 玉軸受
JP2007032768A (ja) ころ軸受
JP2021032360A (ja) ラジアル型ころ軸受
JP7466501B2 (ja) 円すいころ軸受
JPH08200376A (ja) ころ軸受用の保持器
JP2021060071A (ja) 円すいころ軸受
JP2007040512A (ja) 円錐ころ軸受
JP7272176B2 (ja) 円すいころ軸受
WO2023090208A1 (ja) 円すいころ軸受
JP2003254338A (ja) 円すいころ軸受
JP2011196393A (ja) スラストころ軸受
JP2021032359A (ja) ラジアル型ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504070

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207025982

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019764186

Country of ref document: EP