WO2023120639A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2023120639A1
WO2023120639A1 PCT/JP2022/047338 JP2022047338W WO2023120639A1 WO 2023120639 A1 WO2023120639 A1 WO 2023120639A1 JP 2022047338 W JP2022047338 W JP 2022047338W WO 2023120639 A1 WO2023120639 A1 WO 2023120639A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
tapered roller
roller bearing
diameter side
annular portion
Prior art date
Application number
PCT/JP2022/047338
Other languages
English (en)
French (fr)
Inventor
翔太 東穂
直樹 中杤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023120639A1 publication Critical patent/WO2023120639A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Definitions

  • the present invention relates to a tapered roller bearing that can be used in a part where centrifugal force acts, such as a planetary reduction gear part of construction machinery, especially a first-stage planetary part where centrifugal force is large.
  • a typical tapered roller bearing has a rolling element guide type in which a retainer 5 is guided by tapered rollers 4, as shown in FIG. 11, for example.
  • tapered roller bearings which are used in an environment where they revolve, such as the planetary parts of planetary reduction gears, have low stability in cage behavior due to the centrifugal force generated by the revolution. It is preferable that the bearing is of the race guide type (inner ring guide or outer ring guide).
  • FIGS. 12A, 13A, 14A, and 15A show the action of a tapered roller bearing using a standard cage of rolling element guide type
  • FIGS. shows the action of a tapered roller bearing using
  • FIGS. 13A and 13B when a tapered roller bearing is used for the planetary rotor 105 of the planetary reduction gear, the centrifugal force G is applied to the entire tapered roller bearing as the tapered roller bearing revolves as indicated by the arrow c. works.
  • the centrifugal force G similarly acts on the entire tapered roller bearing.
  • FIGS. 14A and 14B which are vertical cross-sectional views of the portion surrounded by a square in 13B
  • the centrifugal force G exerts an action of pulling the retainer 5 away from the revolution axis.
  • the gap S between the inner ring flange, especially the small flange 2b, and the cage 5 is large.
  • the cage 5 moves greatly in that direction, and as shown in FIG. ⁇ disappears, and wear of the pocket inner surface of the column portion 8 increases.
  • an inner ring guide type tapered roller bearing there is a type in which a flange-shaped portion is provided on both the small diameter side and the large diameter side of the retainer, and the inner ring guides the retainer using the inner peripheral edge thereof as a sliding surface (see, for example, Patent Documents 1).
  • An object of the present invention is to provide an inner ring guide type tapered roller bearing that can suppress the occurrence of skew of the tapered rollers and prevent wear of the retainer while realizing reliable inner ring guidance.
  • a tapered roller bearing comprises an inner ring having both flanges, an outer member having an annular rolling surface facing the rolling surface of the inner ring, and a plurality of bearings interposed between the inner ring and the outer member. and a retainer for holding the plurality of tapered rollers, wherein the retainer connects the small diameter side annular portion, the large diameter side annular portion, and the small diameter side annular portion and the large diameter side annular portion
  • An inner ring guide type tapered roller bearing having column portions at a plurality of locations in the circumferential direction and pockets formed between the adjacent column portions for holding the tapered rollers, A small-diameter side gap S1 that is a gap between the small-diameter side annular portion and the small flange portion of the inner ring, and a large-diameter side gap S2 that is a gap between the large-diameter side annular portion and the large flange portion of the inner ring, An average roller diameter d, a roller length l
  • the dimensionless number Y determined by the following formula (1) is 0.39 or more and 0.88 or less.
  • Y (S max /S 3 ) ⁇ (d/l) (1)
  • S 3 (W/2)/tan ⁇ (PCD/2+(d/2)/sin ⁇ ((D/2) 2 ⁇ (W/2) 2 ) 1/2 )
  • S max is the maximum value of S 1 and S 2
  • the small diameter side clearance S1 , the large diameter side clearance S2 , the average roller diameter d, the roller length l, the pocket width W, the column angle ⁇ By setting the dimensionless number Y determined by the above formula (1) between the roller center diameter PCD and the cage inner diameter D to 0.39 or more and 0.88 or less, the gap between the cage and the inner ring and the holding Since the gap between the container and the tapered rollers is appropriately defined, it is possible to suppress the occurrence of skew of the tapered rollers and prevent the wear of the retainer, etc., while realizing reliable inner ring guidance.
  • the small-diameter side annular portion and the large-diameter side annular portion may have a flange-shaped portion extending radially inward from the column portion through an arc-shaped bent portion.
  • the retainer may be formed by pressing or turning.
  • the small diameter side gap S1 , the large diameter side gap S2 , the average roller diameter d, the roller length l, and the rolling surface of the outer member are formed.
  • the dimensionless number X determined by the following formula (2) with the outer member angle ⁇ , which is the angle formed by the two generatrices in the cross section including the axis of the truncated cone, is 0.69 or more and 1.12 or less good too.
  • is 20° or more and 40° or less According to this additional configuration, even if the bearing is used in an environment where it revolves, the whirling of the cage (shake of the rotation axis of the cage) is suppressed and held. It is possible to further prevent the wear of the equipment.
  • a retainer angle is an angle at which the flange-like portion of the large-diameter side annular portion is bent with respect to the column portion and the column portion is inclined with respect to the bearing axis. may be in the range of 90° ⁇ 10° (80° or more and 100° or less).
  • the retainer has an appropriate shape for the inner ring guide type.
  • the radius of curvature of the inner diameter surface of the bent portion of the large-diameter annular portion where the flange-shaped portion is connected is the length of the large-diameter annular portion in the direction in which the column extends. Alternatively, it may be greater than 20% and less than 90%.
  • notch-shaped oil passages are provided at a plurality of locations on the inner peripheral edge of the flange-shaped portion to allow passage of lubricating oil to the inside and outside of the flange-shaped portion in the axial direction of the bearing. good too.
  • lubricating oil can easily pass through the inside and outside of the flange-shaped portion of the cage, and good lubrication can be obtained between the tapered rollers, the rolling surfaces, and the inner surface of the cage pocket.
  • the cross-sectional area ratio which is the ratio of the area of the longitudinal section of the large-diameter annular portion to the area of the longitudinal section of the small-diameter annular portion, is greater than 1.0 and 1.2. may be less than When the cross-sectional area ratio is greater than 1.0 and less than 1.2, the weight balance between the large diameter side and the small diameter side is appropriate, whirling of the retainer is suppressed, and good inner ring guidance can be performed.
  • FIG. 1 is a longitudinal sectional view of a tapered roller bearing according to one embodiment of the present invention
  • FIG. It is a longitudinal cross-sectional view of the retainer of the same tapered roller bearing. It is an end elevation of the small diameter side end of the cage. It is an end view of the large diameter side end of the cage. It is a partial enlarged vertical cross-sectional view of the cage.
  • FIG. 4 is a partially enlarged vertical cross-sectional view showing the large-diameter side annular portion and tapered rollers of the retainer in a further enlarged manner.
  • FIG. 4 is an explanatory diagram of centrifugal force acting on a tapered roller bearing in a planetary reduction gear using the same tapered roller bearing;
  • FIG. 2 is a cross-sectional view taken along line VII-VII in FIG. 1, showing column angles and the like in the same tapered roller bearing; It is a longitudinal cross-sectional view showing an example of a planetary reduction gear using the same tapered roller bearing.
  • FIG. 9 is a cross-sectional view taken along line IX-IX of FIG. 8;
  • FIG. 4 is an explanatory diagram of an example of a gauge used for clearance control of a tapered roller bearing
  • FIG. 10 is an explanatory diagram of another example of a gauge used for managing the clearance of a tapered roller bearing
  • 1 is a longitudinal sectional view of a conventional rolling element guide type tapered roller bearing
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type
  • FIG. 5 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing.
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type
  • FIG. 5 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing.
  • FIG. 1 A tapered roller bearing according to one embodiment of the present invention will be described with reference to FIGS. 1 to 7.
  • FIG. This tapered roller bearing 1 is used in a planetary portion of a planetary speed reducer or planetary transmission, which will be described later with reference to FIGS.
  • this tapered roller bearing 1 includes an inner ring 2, an outer member 3, a plurality of tapered rollers 4 interposed between the inner ring 2 and the outer member 3, and a plurality of tapered rollers 4 held thereon.
  • a retainer 5 is provided.
  • the inner ring 2 has a tapered rolling surface 2a whose diameter increases from the vicinity of one end to the vicinity of the other end in the axial direction of the bearing (the direction of the bearing axis O, also simply referred to as the axial direction) on the outer peripheral surface. , and has a small flange portion 2b at one end and a large flange portion 2c at the other end.
  • the outer member 3 is an annular component having a tapered raceway surface 3a facing the raceway surface 2a of the inner ring 2 and increasing in diameter from one end to the other end.
  • the outer member 3 is a part corresponding to an "outer ring” in the case of a part having only a function as a bearing. It is a part of the containing concept, and is referred to herein as an "outer member". In this specification, the "outer member” may be referred to as the "outer ring” in tests, analysis examples, and the like.
  • the outer member 3 has no flange in the illustrated embodiment, but may have a flange (not shown) projecting radially inward from one end or the other.
  • the retainer 5 has a small-diameter annular portion 6, a large-diameter annular portion 7, and a plurality of column portions 8 in the circumferential direction connecting the small-diameter annular portion 6 and the large-diameter annular portion 7. Pockets 9 for holding the tapered rollers 4 are provided between the adjacent pillars 8 .
  • the inner diameter surfaces of the small-diameter side annular portion 6 and the large-diameter side annular portion 7 of the retainer 5 have diameters that are guided by the small flange portion 2b and the large flange portion 2c of the inner ring 2, respectively.
  • the tapered roller bearing 1 is of the inner ring guide type.
  • the retainer 5 may be of an inner ring guide type, and may be configured to be guided by only one of the small flange portion 2b and the large flange portion 2c of the inner ring 2. As shown in FIG. Fundamentally, it is preferable to adopt a format in which at least the small flange portion 2b of the inner ring 2 guides.
  • the gaps S1 and S2 between the cage 5 and the inner ring 2 and the gap S3 (FIG. 7) between the cage 5 and the tapered rollers 4 are specified as follows. Namely, the small diameter side gap S1 between the small diameter side annular portion 6 of the cage 5 and the small flange portion 2b of the inner ring 2, and the large diameter side annular portion 7 of the cage 5 and the large flange portion 2c of the inner ring 2 , the average roller diameter d of the tapered rollers 4 , the roller length l of the tapered rollers 4, and the pocket width W which is the width of the portion of the pocket 9 corresponding to the average roller diameter d ( FIG.
  • a column angle ⁇ that is 1/2 of the angle formed in the cross section corresponding to the average roller diameter d between the surfaces of adjacent column portions 8 in contact with the tapered rollers 4 therebetween, and the angle of the tapered rollers 4
  • a dimensionless number Y determined by the following equation (1) is between 0.39 and 0.88 by the roller center diameter PCD, which is the pitch circle diameter of the array, and the cage inner diameter D, which is the inner diameter of the cage 5. .
  • the suffix "1" means that it corresponds to the small diameter side
  • the suffix "2" means that it corresponds to the large diameter side.
  • this dimensionless number Y was derived as follows.
  • the gap between the cage 5 and the tapered rollers 4 is always greater than the gaps S1 and S2 between the cage 5 and the inner ring 2.
  • the clearance S3 between the cage 5 and the tapered rollers 4 is excessively large, the skew of the tapered rollers 4 (shake of the rotation axis of the tapered rollers 4) may occur during operation. ) is likely to occur, which may lead to wear of the retainer 5 or the like.
  • the roller center diameter PCD is E 3 /2+ ( d/2) ⁇ It is calculated from cos( ⁇ /2).
  • the inner ring raceway diameter E3 is calculated from ( E1 + E2 )/ 2 using the small-brim side inner ring raceway diameter E1 and the large-brim side inner ring raceway diameter E2.
  • the small-diameter side annular portion 6 and the large-diameter side annular portion 7 of the retainer 5 each have a flange-like portion 6a extending from the column portion 8 to the inner diameter side via arc-shaped bent portions 6b, 7b. , 7a.
  • the retainer 5 is formed by pressing a metal plate such as an iron plate, the small-diameter side annular portion 6 and the large-diameter side annular portion 7 are formed by bending, and the pillars 8 are formed by forming the pockets 9 . It is formed by punching by press working.
  • the retainer 5 may be formed from metal by lathing, or may be a resin molding.
  • the tapered truncated cone formed by the small-diameter side gap S1 , the large-diameter side gap S2 , the average roller diameter d, the roller length l, and the rolling surface 3a of the outer member 3 The dimensionless number X determined by the following formula (2) is 0.69 or more and 1.12 or less with the outer member angle ⁇ which is the angle formed by the two generatrices in the cross section including the axis of .
  • the outer member angle ⁇ is set to 20° or more and 40° or less so as to appropriately have both the ability to apply an axial load and the ability to apply a radial load.
  • X (1/tan ⁇ ) ⁇ (1 ⁇ (S 1 /S 2 ) ⁇ (d/l)) (2)
  • this dimensionless number X was derived as follows.
  • the centrifugal force G acts as described above.
  • the gap between the cage 5 and the tapered rollers 4 when running should be controlled.
  • the dimensionless number X was proposed as a parameter for evaluating the adequacy of the clearances S 1 and S 2 between the cage 5 and the inner ring 2 at rest and between the cage 5 and the tapered rollers 4 during operation. I put it out. Then, eight types of tapered roller bearing sample Nos. (1) to (8) with different dimensionless numbers X were subjected to an endurance test simulating a speed reducer. Good results were obtained with the dimensionless number X of 1.12 or less. The range was set so that the gap between the
  • the dimensionless number X is 0.69 or more and 1.12 or less, the clearances S 1 and S 2 between the cage 5 and the inner ring 2 when stationary and the clearances between the cage 5 and the tapered rollers 4 during operation can be defined appropriately. Therefore, whirling of the retainer 5 can be suppressed, and wear of the retainer 5 can be further prevented.
  • the bending angle ⁇ of the flange-shaped portion 7a of the large-diameter side annular portion 7 with respect to the column portion 8 is the angle at which the column portion 8 is inclined with respect to the bearing axis O. It is in the range of 90° ⁇ 10° (80° or more and 100° or less) with a certain cage angle as a reference. Since the bending angle ⁇ of the flange-like portion 7a is within the range of 90° ⁇ 10°, the retainer 5 has an appropriate shape for the inner ring guide type.
  • the inner diameter surfaces of the small-diameter annular portion 6 and the large-diameter annular portion 7 are preferably parallel to the outer peripheral surfaces of the small flange portion 2b and the large flange portion 2c of the inner ring 2, respectively, but may be inclined.
  • this tapered roller bearing 1 is more than 20% and less than 90% of the length a of the large-diameter side annular portion 7 in .
  • the curvature radius b1 of the inner diameter surface of the bent portion 7b of the large-diameter annular portion 7 is 20% or less of the length a of the large-diameter annular portion 7b in the direction in which the column portion 8 extends, the retainer The stress concentration during the bending process of 5 increases, and there is a concern that damage may occur. If it is 90% or more, as shown by the thin line in FIG. Therefore, there is a concern that the end faces of the tapered rollers 4 come into contact with the edge of the opening of the pocket 9 . If it is greater than 20% and less than 90%, there is no such problem.
  • the inner and outer sides of the flange-like portions 6a and 7a in the axial direction of the bearing are provided. It has notched oil passages 10 and 11 that allow passage of lubricating oil.
  • the notch shape of the oil passages 10 and 11 is a circular arc in this embodiment, but may be an elliptical arc or other shapes. Alternatively, only one of the small-diameter side annular portion 6 and the large-diameter side annular portion 7 may have the flange-shaped portion.
  • oil passages 10 and 11 By providing such oil passages 10 and 11, lubricating oil can easily pass through the inside and outside of the flange-shaped portions 6a and 7a of the cage 5, and the tapered rollers 4, the rolling surfaces 2a and 3a, and the cage pockets Good lubrication with the inner surface is obtained, but the oil passages 10, 11 do not necessarily have to be provided.
  • this tapered roller bearing 1 as shown in the upper side of FIG. , greater than 1.0 and less than 1.2.
  • the cross-sectional area ratio is greater than 1.0 and less than 1.2, the weight balance between the large diameter side and the small diameter side becomes appropriate, whirling of the retainer 5 is suppressed, and good inner ring guidance can be performed. .
  • the area of the longitudinal section of the small-diameter side annular portion 6 is the area of the longitudinal section of the small-diameter side annular portion 6 that does not pass through the oil passage 10 (maximum value of the area of the longitudinal section of the small-diameter side annular portion 6).
  • the area of the longitudinal section of the large-diameter side annular portion 7 is the area of the longitudinal section of the large-diameter side annular portion 7 that does not pass through the oil passage 11 (maximum value of the area of the longitudinal section of the large-diameter side annular portion 7).
  • FIGS. 8 and 9 show an example of a planetary reduction gear in which the tapered roller bearing 1 of this embodiment is used.
  • this planetary reduction gear between a sun gear 102 attached to an input shaft 101 and an internal gear 104 fixed to a housing 103, a plurality of planetary rotating bodies 105 are arranged as planetary gears meshing with both gears 102 and 104. be done.
  • Each planetary rotor 105 is rotatably supported by a carrier 107 connected to an output shaft 106, and the planetary rotor 105 revolves while rotating between the sun gear 102 and the internal gear 104. 107 to the output shaft 106 .
  • This planetary reduction gear performs, for example, a first stage reduction in a final reduction gear provided inside a wheel rim of a construction machine.
  • the tapered roller bearings 1 are arranged as a pair between the planetary rotor 105 and the carrier 107 of the planetary reduction gear.
  • the outer member 3 ( FIG. 1 ) of each tapered roller bearing 1 is attached to the planetary rotor 105 and rotates together with the planetary rotor 105 .
  • the inner ring 2 of each tapered roller bearing 1 is fixedly attached to a support shaft 108 provided on a carrier 107 .
  • the small-diameter side gap S 1 and the large-diameter side gap S 2 change due to insufficient crimping of the small-diameter side annular portion 6 of the retainer 5 during assembly. It is desirable to check whether the For example, in order to appropriately measure the small diameter side clearance S1 , first, the tip ball portion (for example, having the design value S1 as a predetermined diameter) of the reference clearance gauge 51 shown in FIG. 10B at a 180° phase position opposite to the 0° phase position in the radial direction.
  • the small-diameter side clearance S1 is measured using the shown measurement clearance gauges 52 (there are a plurality of them, and the diameters of the tip cylindrical portions are slightly different). The same operation is performed by reversing the phase position for inserting the reference gap gauge 51 and the phase position for using the measurement gap gauge 52, and the average value of the small diameter side gap S1 obtained by both is used as the reference gap.
  • the tip ball portion of the reference clearance gauge 51 is placed between the small diameter side annular portion 6 of the retainer 5 and the small flange portion 2b of the inner ring 2 at an arbitrary circumferential position (0° phase position).
  • the small diameter side clearance S1 at the 180° phase position is measured using the measurement clearance gauge 52, and the small diameter side clearance S1 is compared with the reference clearance. is within the proper range.
  • the large-diameter side clearance S2 can also be appropriately measured in the same manner to confirm whether it is within an appropriate range.

Abstract

本発明は、内輪案内形式の円すいころ軸受(1)であって、保持器(5)の小径側環状部(6)と内輪(2)の小鍔部(2b)との小径側隙間(S)と、保持器(5)の大径側環状部(7)と内輪(2)の大鍔部(2a)との大径側隙間(S)と、円すいころ(4)の平均ころ径(d)およびころ長さ(l)と、保持器(5)のポケット幅(W)と、保持器(5)の隣り合う柱部(8)においてその間の円すいころ(4)に接触する面が、平均ころ径(d)に対応する断面において形成する角度の1/2である柱角度(θ)と、円すいころ(4)の配列のピッチ円直径であるころ中心径(PCD)と、保持器内径(D)とで、次式により定まる無次元数(Y)が、0.39以上0.88以下である。Y=(Smax/S)×(d/l) ただし、S=(W/2)/tanθ-(PCD/2+(d/2)/sinθ-((D/2)-(W/2))1/2)で、SmaxはSおよびSの最大値

Description

円すいころ軸受 関連出願
 本出願は、2021年12月23日出願の特願2021-209199の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 この発明は、遠心力が作用する部位、例えば建設機械等の遊星減速機部、特に遠心力が大きい1段目の遊星部等に利用できる円すいころ軸受に関する。
 一般的な円すいころ軸受は、例えば図11に示すように、保持器5が円すいころ4によって案内される転動体案内形式とされる。しかし、遊星減速機の遊星部等の公転する環境下で使用される円すいころ軸受は、公転で生じる遠心力のため、転動体案内形式であると保持器の挙動の安定性が低くて柱部の摩耗が大きく、軌道輪案内(内輪案内または外輪案内)形式の軸受であることが好ましい。
 これに関し、図12A,13A,14A,15Aに転動体案内形式の標準保持器を用いた円すいころ軸受の作用を示し、図12B,13B,14B,15Bに内輪案内形式で高遠心力対応の保持器を用いた円すいころ軸受の作用を示す。図13A,13Bに示すように、遊星減速機の遊星回転体105に円すいころ軸受を用いた場合、円すいころ軸受が矢印cで示すように公転することで円すいころ軸受の全体に遠心力Gが作用する。外輪案内形式で高遠心力対応の保持器を用いた円すいころ軸受を遊星回転体に用いた場合も、同様に円すいころ軸受の全体に遠心力Gが作用する。
 このように円すいころ軸受の全体に公転による遠心力Gが作用する場合、円すいころ軸受の固定側軌道輪となる内輪2が静止状態にあるとして軸受構成部品間の作用を考えると、図13A,13Bにおいて四角で囲った部分の縦断面図である図14A,14Bに示すように、遠心力Gにより保持器5を公転軸心から遠のく方向に引っ張る作用が生じる。図14Aに示す転動体案内形式では、内輪鍔部、特に小鍔部2bと保持器5との隙間Sが大きいので、保持器5が遠心力Gで公転軸心から遠のく方向に引っ張られると、その方向に保持器5が大きく移動し、図13Aにおいて四角で囲った部分の拡大横断面図である図15Aに示すように、保持器5の柱部8のポケット内面と円すいころ4との隙間δがなくなり、柱部8のポケット内面の摩耗が増加する。
 しかし、図14Bに示す内輪案内形式では、内輪鍔部(小鍔部2b、大鍔部2c)と保持器5との隙間S,Sが小さいので、保持器5が遠心力で公転軸心から遠のく方向に引っ張られても、その方向への保持器5の移動量が小さく、図13Bにおいて四角で囲った部分の拡大横断面図である図15Bに示すように、柱部8のポケット内面と円すいころ4との隙間δが維持され、柱部8のポケット内面の摩耗も増加しない。
 内輪案内形式の円すいころ軸受として、保持器の小径側と大径側の両方にフランジ状部を設け、その内周縁を摺動面として、内輪で保持器を案内するものがある(例えば特許文献1)。
中国特許出願公開第103410853号明細書
 内輪案内形式の円すいころ軸受においては、確実に内輪案内とするために、すべてのポケットで常に保持器と内輪との隙間よりも保持器と円すいころとの隙間が大きいという関係が必要である。しかし、上述のような従来技術による軸受では、そのような隙間の関係について特に明確な規定がないため、保持器と円すいころとの隙間が過度に大きくなりがちで、運転中に円すいころのスキュー(円すいころの自転軸心の振れ)が発生しやすくなり、保持器の摩耗等に繋がるおそれがある。
 この発明の目的は、確実な内輪案内を実現しつつ、円すいころのスキューの発生を抑制して保持器の摩耗等を防止できる内輪案内形式の円すいころ軸受を提供することである。
 本発明の円すいころ軸受は、両鍔付きの内輪と、前記内輪の転走面に対向する環状の転走面を有する外方部材と、前記内輪と前記外方部材との間に介在する複数の円すいころと、前記複数の円すいころを保持する保持器とを備え、前記保持器が、小径側環状部、大径側環状部、および前記小径側環状部と前記大径側環状部を繋ぐ円周方向複数箇所の柱部を有し、隣り合う前記柱部の間に前記円すいころを保持するポケットが形成された内輪案内形式の円すいころ軸受であって、
 前記小径側環状部と前記内輪の小鍔部との隙間である小径側隙間Sと、前記大径側環状部と前記内輪の大鍔部との隙間である大径側隙間Sと、平均ころ径dと、ころ長さlと、前記ポケットにおいて前記平均ころ径dに対応する箇所の幅であるポケット幅Wと、隣り合う前記柱部においてその間の前記円すいころに接触する面が、前記平均ころ径dに対応する断面において形成する角度の1/2である柱角度θと、前記円すいころの配列のピッチ円直径であるころ中心径PCDと、前記保持器の内径である保持器内径Dとで、次式(1)により定まる無次元数Yが、0.39以上0.88以下である。
  Y=(Smax/S)×(d/l)   …(1)
  ただし、S=(W/2)/tanθ-(PCD/2+(d/2)/sinθ-((D/2)-(W/2))1/2
      SmaxはSおよびSの最大値
 本発明の円すいころ軸受においては、前記小径側隙間Sと、前記大径側隙間Sと、平均ころ径dと、ころ長さlと、前記ポケット幅Wと、前記柱角度θと、前記ころ中心径PCDと、前記保持器内径Dとで、前式(1)により定まる無次元数Yを、0.39以上0.88以下とすることにより、保持器と内輪との隙間および保持器と円すいころとの隙間を適切に規定するので、確実な内輪案内を実現しつつ、円すいころのスキューの発生を抑制して保持器の摩耗等を防止できる。
 本発明の円すいころ軸受においては、前記小径側環状部および前記大径側環状部が、前記柱部から円弧状の曲げ部分を介して内径側に延びるフランジ状部を有してもよい。
 本発明の円すいころ軸受においては、前記保持器がプレス加工または旋削加工により形成されてもよい。
 本発明の円すいころ軸受においては、前記小径側隙間Sと、前記大径側隙間Sと、前記平均ころ径dと、前記ころ長さlと、前記外方部材の転走面が形成する円すい台の軸を含む断面において2本の母線が成す角度である外方部材角度αとで、次式(2)により定まる無次元数Xが、0.69以上1.12以下であってもよい。
  X=(1/tanα)×(1-(S/S)×(d/l))   …(2)
  ただし、αは20°以上40°以下
 この追加の構成によれば、軸受が公転する環境下で使用されても、保持器の振れ回り(保持器の自転軸心の振れ)を抑制して保持器の摩耗をいっそう防止できる。
 本発明の円すいころ軸受においては、前記大径側環状部が有する前記フランジ状部の前記柱部に対して成す屈曲角度が、前記柱部が軸受軸心に対して傾く角度である保持器角度を基準として90°±10°の範囲にあってもよい(80°以上100°以下であってもよい)。フランジ状部の前記屈曲角度が90°±10°の範囲にあることで、保持器を内輪案内形式とする上で適切な形状となる。
 本発明の円すいころ軸受においては、前記大径側環状部が有する前記フランジ状部が連なる前記曲げ部分の内径側表面の曲率半径が、前記柱部が延びる方向における前記大径側環状部の長さに対し、20%よりも大きく90%未満であってもよい。大径側環状部の曲げ部分の内径側表面の曲率半径が、柱部が延びる方向における大径側環状部の長さに対して、20%以下であると、保持器の曲げ加工時における応力集中が大きくなって、損傷する懸念があり、90%以上であると、曲げ部分の内径側表面の円弧形状が緩やかになりすぎて、ポケットの開口縁に対して円すいころの端面がエッジ当たりになる懸念がある。20%よりも大きく90%未満であれば、そのような問題がない。
 本発明の円すいころ軸受においては、前記フランジ状部の内周縁の複数箇所に、当該フランジ状部の軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路を設けてもよい。このような通油路が設けられることで、保持器のフランジ状部の内外で潤滑油が通過しやすく、円すいころと、転走面や保持器ポケット内面との間の良好な潤滑が得られる。
 本発明の円すいころ軸受においては、前記小径側環状部の縦断面の面積に対する、前記大径側環状部の縦断面の面積の比である断面積比が、1.0よりも大きく1.2未満であってもよい。この断面積比が1.0よりも大きく1.2未満であると、大径側と小径側との重量バランスが適切となり、保持器の振れ回りが抑えられ、かつ良好な内輪案内が行える。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の一実施形態の円すいころ軸受の縦断面図である。 同円すいころ軸受の保持器の縦断面図である。 同保持器の小径側端の端面図である。 同保持器の大径側端の端面図である。 同保持器の部分拡大縦断面図である。 同保持器の大径側環状部と円すいころとをさらに拡大して示す部分拡大縦断面図である。 同円すいころ軸受を用いた遊星減速機において円すいころ軸受に作用する遠心力の説明図である。 同円すいころ軸受における柱角度等を示す、図1のVII-VII線断面図である。 同円すいころ軸受を用いる遊星減速機の一例を示す縦断面図である。 図8のIX-IX線断面図である。 円すいころ軸受の隙間管理に用いるゲージの一例の説明図である。 円すいころ軸受の隙間管理に用いるゲージの他の例の説明図である。 従来の転動体案内形式の円すいころ軸受の縦断面図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。
 この発明の一実施形態の円すいころ軸受について、図1~図7とともに説明する。なおこの円すいころ軸受1は、後に図8、図9とともに説明する遊星減速機または遊星変速機における遊星部に用いられる。
 図1において、この円すいころ軸受1は、内輪2と、外方部材3と、これら内輪2と外方部材3との間に介在する複数の円すいころ4と、これら複数の円すいころ4を保持する保持器5とを備える。内輪2は、外周面の軸受軸方向(軸受軸心Oの方向であり、単に軸方向ともいう)の一端付近から他端付近に渡って径が大きくなるテーパ面の転走面2aを有し、前記一端に小鍔部2bを、他端に大鍔部2cを有する両鍔付きである。外方部材3は、内輪2の転走面2aと対向し一端から他端に渡って径が大きくなるテーパ面の転走面3aを有する環状の部品である。外方部材3は、軸受としての機能のみを有する部品である場合における「外輪」に相当する部品であるが、例えば外周面がギヤ部となり、内周面に前記転走面3aを有する部品を含む概念の部品であり、この明細書では「外方部材」と称する。なお、この明細書において、試験および解析例等においては、「外方部材」を「外輪」とする場合がある。外方部材3は、図示の実施形態では鍔無しであるが、一端または他端に内径側に突出する鍔部(図示せず)を有していてもよい。
 保持器5は、小径側環状部6、大径側環状部7、およびこれら小径側環状部6と大径側環状部7を繋ぐ円周方向複数箇所の柱部8を有する。隣り合う柱部8の間は、円すいころ4を保持するポケット9となる。保持器5の小径側環状部6および大径側環状部7の内径面は、内輪2の小鍔部2bおよび大鍔部2cでそれぞれ案内される径とされる。これにより、この円すいころ軸受1は内輪案内形式とされている。なお、保持器5は、内輪案内形式であればよく、内輪2の小鍔部2bおよび大鍔部2cのいずれか一方のみで案内される構成であってもよい。基本的には、少なくとも内輪2の小鍔部2bで案内される形式とすることが好ましい。
 この円すいころ軸受1では、保持器5と内輪2との隙間S,Sおよび保持器5と円すいころ4との隙間S(図7)について以下のように規定されている。すなわち、保持器5の小径側環状部6と内輪2の小鍔部2bとの隙間である小径側隙間Sと、保持器5の大径側環状部7と内輪2の大鍔部2cとの隙間である大径側隙間Sと、円すいころ4の平均ころ径dと、円すいころ4のころ長さlと、ポケット9において平均ころ径dに対応する箇所の幅であるポケット幅W(図7)と、隣り合う柱部8においてその間の円すいころ4に接触する面が、平均ころ径dに対応する断面において形成する角度の1/2である柱角度θと、円すいころ4の配列のピッチ円直径であるころ中心径PCDと、保持器5の内径である保持器内径Dとで、次式(1)により定まる無次元数Yが、0.39以上0.88以下である。なお、図1に示すように、添字「1」は小径側に対応することを意味し、添字「2」は大径側に対応することを意味している。
  Y=(Smax/S)×(d/l)   …(1)
  ただし、S=(W/2)/tanθ-(PCD/2+(d/2)/sinθ-((D/2)-(W/2))1/2
      SmaxはSおよびSの最大値
 この無次元数Yの数値限定は、以下のように導出された。内輪案内形式の円すいころ軸受1においては、確実に内輪案内とするために、すべてのポケット9で常に保持器5と内輪2との隙間S,Sよりも保持器5と円すいころ4との隙間Sが大きいという関係が必要であるが、保持器5と円すいころ4との隙間Sが過度に大きいと、運転中に円すいころ4のスキュー(円すいころ4の自転軸心の振れ)が発生しやすくなり、保持器5の摩耗等に繋がるおそれがある。
 そこで、保持器5と内輪2との隙間S,Sおよび保持器5と円すいころ4との隙間Sの適切性を評価するパラメーターとして、前述の無次元数Yを案出した。そして、無次元数Yが相異なる5種類の円すいころ軸受のサンプルNo.(A)~(E)について、減速機を模した耐久試験を行ったところ、表1に示すように、0.39以上0.88以下の無次元数Yにおいて良好な結果が得られたため、その範囲を保持器5と内輪2との隙間S,Sおよび保持器5と円すいころ4との隙間Sが適切である範囲とした。
Figure JPOXMLDOC01-appb-T000001
 このように、小径側隙間Sと、大径側隙間Sと、平均ころ径dと、ころ長さlと、ポケット幅Wと、柱角度θと、ころ中心径PCDと、保持器内径Dとで、前式(1)により定まる無次元数Yを、0.39以上0.88以下とすることにより、保持器5と内輪2との隙間S,Sおよび保持器5と円すいころ4との隙間Sを適切に規定するので、確実な内輪案内を実現しつつ、円すいころ4のスキューの発生を抑制して保持器5の摩耗等を防止できる。なお、図1に示すように、ころ中心径PCDは、内輪軌道径Eと、平均ころ径dと、後述する外方部材角度αとを用いて、E/2+(d/2)×cos(α/2)から算出される。内輪軌道径Eは、小鍔部側内輪軌道径Eと、大鍔部側内輪軌道径Eとを用いて、(E+E)/2から算出される。
 また、この円すいころ軸受1では、保持器5の小径側環状部6および大径側環状部7が、柱部8から円弧状の曲げ部分6b,7bを介して内径側に延びるフランジ状部6a,7aを有している。保持器5は、この実施形態では鉄板等の金属板からプレス加工により形成されており、小径側環状部6および大径側環状部7は、曲げ加工によって形成され、柱8は、ポケット9をプレス加工で打ち抜くことで形成されている。この他に、保持器5は、金属から旋削加工により形成されてもよく、樹脂の成形品であってもよい。
 さらに、この円すいころ軸受1では、小径側隙間Sと、大径側隙間Sと、平均ころ径dと、ころ長さlと、外方部材3の転走面3aが形成する円すい台の軸を含む断面において2本の母線が成す角度である外方部材角度αとで、次式(2)により定まる無次元数Xが、0.69以上1.12以下である。ただし、外方部材角度αは、アキシアル荷重を負荷する能力とラジアル荷重を負荷する能力の両方が適切に備わるように、20°以上40°以下とする。
  X=(1/tanα)×(1-(S/S)×(d/l))   …(2)
 この無次元数Xの数値限定は、以下のように導出された。内輪案内形式の円すいころ軸受1が公転する環境下で使用される場合、前述したように遠心力Gが作用することから、保持器5の振れ回り(保持器5の自転軸心の振れ)を抑制するには、静止時の保持器5と内輪2との隙間S,S(小径側隙間Sおよび大径側隙間S)に加えて、運転時の保持器5と円すいころ4との隙間(径方向および軸方向の隙間であり、平均ころ径dおよびころ長さlにより規定される)を管理すべきである。
 そこで、静止時の保持器5と内輪2との隙間S,Sおよび運転時の保持器5と円すいころ4との隙間の適切性を評価するパラメーターとして、前述の無次元数Xを案出した。そして、無次元数Xが相異なる8種類の円すいころ軸受のサンプルNo.(1)~(8)について、減速機を模した耐久試験を行ったところ、表2に示すように、0.69以上1.12以下の無次元数Xにおいて良好な結果が得られたため、その範囲を静止時の保持器5と内輪2との隙間S,Sおよび運転時の保持器5と円すいころ4との隙間が適切である範囲とした。
Figure JPOXMLDOC01-appb-T000002
 このように、小径側隙間Sと、大径側隙間Sと、平均ころ径dと、ころ長さlと、外方部材角度αとで、前式(2)により定まる無次元数Xを、0.69以上1.12以下とすることにより、静止時の保持器5と内輪2との隙間S,Sおよび運転時の保持器5と円すいころ4との隙間を適切に規定するので、保持器5の振れ回りを抑制して保持器5の摩耗等をいっそう防止できる。
 さらにまた、この円すいころ軸受1では、大径側環状部7が有するフランジ状部7aの、柱部8に対して成す屈曲角度βが、柱部8が軸受軸心Oに対して傾く角度である保持器角度を基準として、90°±10°の範囲にある(80°以上100°以下である)。フランジ状部7aの屈曲角度βが90°±10°の範囲にあることで、保持器5を内輪案内形式とする上で適切な形状となる。小径側環状部6および大径側環状部7の内径面は、内輪2の小鍔部2bおよび大鍔部2cの外周面とそれぞれ平行であることが好ましいが、傾斜していてもよい。
 さらにまた、この円すいころ軸受1では、図4に示すように、大径側環状部7が有するフランジ状部7aが連なる曲げ部分7bの内径側表面の曲率半径b1が、柱部8が延びる方向における大径側環状部7の長さaに対し、20%よりも大きく90%未満である。大径側環状部7の曲げ部分7bの内径側表面の曲率半径b1が、柱部8が延びる方向における大径側環状部7bの長さaに対して、20%以下であると、保持器5の曲げ加工時における応力集中が大きくなって、損傷する懸念があり、90%以上であると、図5に細線で示すように、曲げ部分7bの内径側表面の円弧形状が緩やかになりすぎて、ポケット9の開口縁に対して円すいころ4の端面がエッジ当たりになる懸念がある。20%よりも大きく90%未満であれば、そのような問題がない。
 さらにまた、この円すいころ軸受1では、図3A、図3Bに示すように、フランジ状部6a,7aの内周縁の複数箇所に、当該フランジ状部6a,7aの軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路10,11を有している。通油路10,11の切欠形状は、この実施形態では円弧であるが、楕円弧やその他の形状であってもよい。また、フランジ状部は、小径側環状部6および大径側環状部7のいずれか一方のみが有していてもよい。このような通油路10,11が設けられることで、保持器5のフランジ状部6a,7aの内外で潤滑油が通過しやすく、円すいころ4と、転走面2a,3aや保持器ポケット内面との間の良好な潤滑が得られるが、通油路10,11は必ずしも設けなくてもよい。
 さらにまた、この円すいころ軸受1では、図1の上側に示すように、小径側環状部6の縦断面の面積に対する、大径側環状部7の縦断面の面積の比である断面積比が、1.0よりも大きく1.2未満である。この断面積比が1.0よりも大きく1.2未満であると、大径側と小径側との重量バランスが適切となり、保持器5の振れ回りが抑えられ、かつ良好な内輪案内が行える。なお、この実施形態の円すいころ軸受1のように、小径側環状部6および大径側環状部7のフランジ状部6a,7aに切欠状の通油路10,11を設けた場合には、上述の小径側環状部6の縦断面の面積は、小径側環状部6における通油路10を通らない縦断面の面積(小径側環状部6の縦断面の面積の最大値)とし、上述の大径側環状部7の縦断面の面積は、大径側環状部7における通油路11を通らない縦断面の面積(大径側環状部7の縦断面の面積の最大値)とする。
 図8、図9は、この実施形態の円すいころ軸受1が使用される遊星減速機の一例を示す。この遊星減速機は、入力軸101に取り付けた太陽歯車102と、ハウジング103に固定された内歯車104との間に、両歯車102,104に噛み合う遊星歯車として、複数の遊星回転体105が配置される。出力軸106に連結されたキャリヤ107に対して各遊星回転体105が回転自在に支持され、太陽歯車102と内歯車104との間で自転しながら公転する遊星回転体105の公転運動が、キャリヤ107を介して出力軸106に出力される。この遊星減速機は、例えば、建設機械のホイールリムの内側に設けられた終減速装置の第1段目の減速を行う。
 円すいころ軸受1は、遊星減速機の遊星回転体105とキャリヤ107との間に一対で配置される。各円すいころ軸受1の外方部材3(図1)は、遊星回転体105に取り付けられ、遊星回転体105と一体に回転する。各円すいころ軸受1の内輪2は、キャリヤ107に設けられた支持軸108に固定状態に取り付けられる。
 なお、前記小径側隙間S、大径側隙間Sは、組み立て時における保持器5の小径側環状部6の加締(かしめ)不足等で変化するので、適宜測定して、適正な範囲にあるかを確認するのが望ましい。例えば、小径側隙間Sを適宜測定するには、まず、図10Aに示す基準隙間ゲージ51の先端球部(例えば設計値のSを所定の直径としてもつ)を、任意の周方向位置(0°位相位置とする)で保持器5の小径側環状部6と内輪2の小鍔部2bとの間に差し込み、径方向において0°位相位置に対向する180°位相位置で、図10Bに示す測定用隙間ゲージ52(複数あって、先端円柱部の直径がわずかずつ異なる)を用いて、小径側隙間Sを測定する。これと同じことを、基準隙間ゲージ51を差し込む位相位置と、測定用隙間ゲージ52を用いる位相位置を逆転させて行い、両者で得られた小径側隙間Sの平均値を基準隙間としておく。
 そして、適宜測定時には、任意の周方向位置(0°位相位置とする)で保持器5の小径側環状部6と内輪2の小鍔部2bとの間に基準隙間ゲージ51の先端球部を差し込むことにより、180°位相位置を基準隙間の状態にして、測定用隙間ゲージ52を用いて180°位相位置での小径側隙間Sを測定し、その小径側隙間Sが基準隙間と比べて所定の適正な範囲にあるかを確認する。大径側隙間Sも、同様に適宜測定して、適正な範囲にあるかを確認できる。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…円すいころ軸受
2…内輪
2a…転走面
2b…小鍔部
2c…大鍔部
3…外方部材
3a…転走面
4…円すいころ
5…保持器
6…小径側環状部
6a…フランジ状部
6b…曲げ部分
7…大径側環状部
7a…フランジ状部
7b…曲げ部分
8…柱部
9…ポケット
10,11…通油路
b1…曲げ部分の内径側曲率半径
d…平均ころ径
D…保持器内径
…小鍔部側内輪軌道径
…大鍔部側内輪軌道径
…内輪軌道径
l…ころ長さ
O…軸受軸心
PCD…ころ中心径
…小径側隙間
…大径側隙間
W…ポケット幅
X…無次元数
Y…無次元数
α…外方部材角度
β…屈曲角度
θ…柱角度

Claims (8)

  1.  両鍔付きの内輪と、
     前記内輪の転走面に対向する環状の転走面を有する外方部材と、
     前記内輪と前記外方部材との間に介在する複数の円すいころと、
     前記複数の円すいころを保持する保持器とを備え、
     前記保持器が、小径側環状部、大径側環状部、および前記小径側環状部と前記大径側環状部を繋ぐ円周方向複数箇所の柱部を有し、隣り合う前記柱部の間に前記円すいころを保持するポケットが形成された内輪案内形式の円すいころ軸受であって、
     前記小径側環状部と前記内輪の小鍔部との隙間である小径側隙間Sと、前記大径側環状部と前記内輪の大鍔部との隙間である大径側隙間Sと、平均ころ径dと、ころ長さlと、前記ポケットにおいて前記平均ころ径dに対応する箇所の幅であるポケット幅Wと、隣り合う前記柱部においてその間の前記円すいころに接触する面が、前記平均ころ径dに対応する断面において形成する角度の1/2である柱角度θと、前記円すいころの配列のピッチ円直径であるころ中心径PCDと、前記保持器の内径である保持器内径Dとで、次式(1)により定まる無次元数Yが、0.39以上0.88以下である円すいころ軸受。
      Y=(Smax/S)×(d/l)   …(1)
      ただし、S=(W/2)/tanθ-(PCD/2+(d/2)/sinθ-((D/2)-(W/2))1/2
          SmaxはSおよびSの最大値
  2.  請求項1に記載の円すいころ軸受において、前記小径側環状部および前記大径側環状部が、前記柱部から円弧状の曲げ部分を介して内径側に延びるフランジ状部を有する円すいころ軸受。
  3.  請求項1または2に記載の円すいころ軸受において、前記保持器がプレス加工または旋削加工により形成される円すいころ軸受。
  4.  請求項1から3のいずれか一項に記載の円すいころ軸受において、
     前記小径側隙間Sと、前記大径側隙間Sと、前記平均ころ径dと、前記ころ長さlと、前記外方部材の転走面が形成する円すい台の軸を含む断面において2本の母線が成す角度である外方部材角度αとで、次式(2)により定まる無次元数Xが、0.69以上1.12以下である円すいころ軸受。
      X=(1/tanα)×(1-(S/S)×(d/l))   …(2)
      ただし、αは20°以上40°以下
  5.  請求項2に記載の円すいころ軸受において、前記大径側環状部が有する前記フランジ状部の前記柱部に対して成す屈曲角度が、前記柱部が軸受軸心に対して傾く角度である保持器角度を基準として90°±10°の範囲にある円すいころ軸受。
  6.  請求項2に記載の円すいころ軸受において、前記大径側環状部が有する前記フランジ状部が連なる前記曲げ部分の内径側表面の曲率半径が、前記柱部が延びる方向における前記大径側環状部の長さに対し、20%よりも大きく90%未満である円すいころ軸受。
  7.  請求項2に記載の円すいころ軸受において、前記フランジ状部の内周縁の複数箇所に、当該フランジ状部の軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路を設けた円すいころ軸受。
  8.  請求項1から7のいずれか一項に記載の円すいころ軸受において、前記小径側環状部の縦断面の面積に対する、前記大径側環状部の縦断面の面積の比である断面積比が、1.0よりも大きく1.2未満である円すいころ軸受。
PCT/JP2022/047338 2021-12-23 2022-12-22 円すいころ軸受 WO2023120639A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209199A JP2023094008A (ja) 2021-12-23 2021-12-23 円すいころ軸受
JP2021-209199 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120639A1 true WO2023120639A1 (ja) 2023-06-29

Family

ID=86902729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047338 WO2023120639A1 (ja) 2021-12-23 2022-12-22 円すいころ軸受

Country Status (2)

Country Link
JP (1) JP2023094008A (ja)
WO (1) WO2023120639A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106234A (ja) * 2003-10-01 2005-04-21 Ntn Corp 円錐ころ軸受と円錐ころ加工方法
JP2009041651A (ja) * 2007-08-08 2009-02-26 Nsk Ltd 円錐ころ軸受
JP2011202714A (ja) * 2010-03-25 2011-10-13 Ntn Corp 風力発電装置主軸用円すいころ軸受
JP2018109448A (ja) * 2015-06-05 2018-07-12 Ntn株式会社 円すいころ軸受
WO2019172446A1 (ja) * 2018-03-09 2019-09-12 日本精工株式会社 円すいころ軸受
JP2021127774A (ja) * 2020-02-10 2021-09-02 日本精工株式会社 ハブユニット軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106234A (ja) * 2003-10-01 2005-04-21 Ntn Corp 円錐ころ軸受と円錐ころ加工方法
JP2009041651A (ja) * 2007-08-08 2009-02-26 Nsk Ltd 円錐ころ軸受
JP2011202714A (ja) * 2010-03-25 2011-10-13 Ntn Corp 風力発電装置主軸用円すいころ軸受
JP2018109448A (ja) * 2015-06-05 2018-07-12 Ntn株式会社 円すいころ軸受
WO2019172446A1 (ja) * 2018-03-09 2019-09-12 日本精工株式会社 円すいころ軸受
JP2021127774A (ja) * 2020-02-10 2021-09-02 日本精工株式会社 ハブユニット軸受

Also Published As

Publication number Publication date
JP2023094008A (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
EP2055972A2 (en) Arrangement with two lubricated rolling element bearings for supporting a pinion shaft
JP2016516969A (ja) グリース潤滑式のアンギュラ玉軸受
JP2008039035A (ja) ころ軸受
US20070076998A1 (en) Rotary machine
JP2008196583A (ja) 遊星回転体用円錐ころ軸受
WO2023120639A1 (ja) 円すいころ軸受
US20160025134A1 (en) Cage for angular ball bearing
JP5397505B2 (ja) 円すいころ軸受
JP2003314542A (ja) 円すいころ軸受
JP2015102144A (ja) 自動調心ころ軸受
US8529134B2 (en) Rolling bearing apparatus
CN108071683B (zh) 圆锥滚子轴承及动力传递装置
WO2023037967A1 (ja) 円すいころ軸受
WO2022050297A1 (ja) 円すいころ軸受
US10001171B2 (en) Rolling bearing
JP2006112555A (ja) 調心輪付きころ軸受
US10197094B2 (en) Double-row spherical roller bearing
JP5067338B2 (ja) ラジアル・スラスト組み合わせ軸受
JP5909918B2 (ja) ころ軸受用保持器
JP2015152049A (ja) スラストころ軸受
JP2007187207A (ja) スラストころ軸受
US11199226B2 (en) Rolling bearing
JP2011163387A (ja) 円錐ころ軸受
WO2008023787A1 (fr) Roulement à billes à contact oblique
JP2022079274A (ja) 転がり軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911341

Country of ref document: EP

Kind code of ref document: A1