WO2023037967A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2023037967A1
WO2023037967A1 PCT/JP2022/033029 JP2022033029W WO2023037967A1 WO 2023037967 A1 WO2023037967 A1 WO 2023037967A1 JP 2022033029 W JP2022033029 W JP 2022033029W WO 2023037967 A1 WO2023037967 A1 WO 2023037967A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
diameter side
roller bearing
flange
side annular
Prior art date
Application number
PCT/JP2022/033029
Other languages
English (en)
French (fr)
Inventor
直樹 中杤
翔太 東穂
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280060451.7A priority Critical patent/CN117916481A/zh
Publication of WO2023037967A1 publication Critical patent/WO2023037967A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Definitions

  • the present invention relates to a tapered roller bearing that can be used in a part where centrifugal force acts, such as a planetary reduction gear part of construction machinery, especially a first-stage planetary part where centrifugal force is large.
  • a typical tapered roller bearing has a rolling element guide type in which the retainer 5 is guided by the tapered rollers 4, as shown in FIG.
  • tapered roller bearings which are used in an environment where they revolve, such as the planetary parts of planetary reduction gears, have low stability in cage behavior due to the centrifugal force generated by the revolution. It is preferable that the bearing is of the race guide type (inner ring guide or outer ring guide).
  • FIGS. 10A, 11A, 12A, and 13A show the action of a tapered roller bearing using a standard cage of rolling element guide type
  • FIGS. shows the action of a tapered roller bearing using
  • FIGS. 11A and 11B when a tapered roller bearing is used for the planetary rotor 105 of the planetary reduction gear, the centrifugal force G is applied to the entire tapered roller bearing as the tapered roller bearing revolves as indicated by the arrow c. works.
  • the centrifugal force G similarly acts on the entire tapered roller bearing.
  • FIGS. 12A and 12B which are vertical cross-sectional views of the portion surrounded by a square in 11B
  • the centrifugal force G exerts an action of pulling the retainer 5 away from the revolution axis.
  • the clearance S between the inner ring flange, especially the small flange 2b, and the cage 5 is large.
  • the cage 5 moves greatly in that direction, and as shown in FIG. ⁇ disappears, and wear of the pocket inner surface of the column portion 8 increases.
  • an inner ring guide type tapered roller bearing there is a type in which a flange-shaped portion is provided on both the small diameter side and the large diameter side of the retainer, and the inner ring guides the retainer using the inner peripheral edge thereof as a sliding surface (see, for example, Patent Documents 1).
  • notch-shaped oil passages oil grooves that allow the passage of lubricating oil are provided at a plurality of locations on the inner peripheral edge of the flange-shaped portion on the small diameter side and large diameter side of the retainer. It lubricates each part of the bearing and reduces the temperature rise of the bearing.
  • the object of the present invention is to suppress seizure and wear in the sliding part of the bearing even when used in an environment where the bearing revolves, and to suppress the stress generated in the oil passage to prevent damage to the cage.
  • the tapered roller bearing of the present invention is an inner ring with both flanges; an outer member having an annular rolling surface facing the rolling surface of the inner ring; a plurality of tapered rollers interposed between the inner ring and the outer member; a retainer that retains the tapered rollers, the retainer including a small-diameter annular portion, a large-diameter annular portion, and a plurality of column portions in a circumferential direction connecting the small-diameter annular portion and the large-diameter annular portion.
  • An inner ring guided tapered roller bearing having At least one of the small-diameter side annular portion and the large-diameter side annular portion has a flange-like portion extending radially inward from the column portion via an arc-shaped bent portion, and at a plurality of locations on the inner peripheral edge of the flange-like portion.
  • a dimensionless number Z determined by the following formula (1) is 1.55 or more and 2.66 or less.
  • the projected area A of the oil passage in the bearing axial direction, the radius of curvature r at the center of the oil passage in the width direction, the inner diameter DI of the flange-like portion, and the outer diameter of the bent portion By setting the dimensionless number Z determined by the above formula (1) to be 1.55 or more and 2.66 or less, the dimensions and shape of the oil passage can be appropriately defined, so that the bearing can be Even if it is used in , it is possible to suppress the seizure and wear of the sliding part of the bearing, and suppress the stress generated in the oil passage to prevent damage to the cage.
  • the notch shape of the oil passage may be a circular arc or an elliptical arc.
  • the large diameter side annular portion has the flange portion, and the bending angle of the flange portion with respect to the column portion is such that the column portion is with respect to the bearing axis. It may be in the range of 90° ⁇ 10° (80° or more and 100° or less) based on the cage angle, which is the angle of inclination.
  • the retainer has an appropriate shape for the inner ring guide type.
  • the large-diameter side annular portion has the flange-shaped portion, and the radius of curvature of the inner diameter side surface of the bent portion where the flange-shaped portion continues is the above-mentioned radius of curvature in the direction in which the column extends. It may be more than 20% and less than 90% of the length of the large diameter side annular portion.
  • the cross-sectional area is the area of the longitudinal section of the large-diameter side annular portion that does not pass through the oil passage with respect to the area of the longitudinal section that does not pass through the oil passage in the small-diameter side annular portion.
  • the ratio may be greater than 1.0 and less than 1.2.
  • the cross-sectional area ratio is greater than 1.0 and less than 1.2, the weight balance between the large diameter side and the small diameter side is appropriate, whirling of the retainer is suppressed, and good inner ring guidance can be performed.
  • FIG. 1 is a longitudinal sectional view of a tapered roller bearing according to one embodiment of the present invention
  • FIG. It is a longitudinal cross-sectional view of the retainer of the same tapered roller bearing. It is an end elevation of the small diameter side end of the cage. It is an end view of the large diameter side end of the cage. It is a partial enlarged vertical cross-sectional view of the cage.
  • FIG. 4 is a partially enlarged vertical cross-sectional view showing the large-diameter side annular portion and tapered rollers of the retainer in a further enlarged manner.
  • FIG. 4 is an explanatory diagram of centrifugal force acting on a tapered roller bearing in a planetary reduction gear using the same tapered roller bearing; It is a longitudinal cross-sectional view showing an example of a planetary reduction gear using the same tapered roller bearing.
  • FIG. 8 is a cross-sectional view taken along the line XX of FIG. 7; 1 is a longitudinal sectional view of a conventional rolling element guide type tapered roller bearing;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type; FIG.
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on a tapered roller bearing of a rolling element guide type;
  • FIG. 4 is an explanatory diagram of the action of centrifugal force on an inner ring guide type tapered roller bearing;
  • a tapered roller bearing according to one embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • the tapered roller bearing 1 is used in a planetary portion of a planetary speed reducer or planetary transmission, which will be described later with reference to FIGS.
  • this tapered roller bearing 1 includes an inner ring 2, an outer member 3, a plurality of tapered rollers 4 interposed between the inner ring 2 and the outer member 3, and a plurality of tapered rollers 4 held thereon.
  • a retainer 5 is provided.
  • the inner ring 2 has a tapered rolling surface 2a whose diameter increases from the vicinity of one end to the vicinity of the other end in the axial direction of the bearing (the direction of the bearing axis O, also simply referred to as the axial direction) on the outer peripheral surface. , and has a small flange portion 2b at one end and a large flange portion 2c at the other end.
  • the outer member 3 is an annular component having a tapered raceway surface 3a facing the raceway surface 2a of the inner ring 2 and increasing in diameter from one end to the other end.
  • the outer member 3 is a part corresponding to an "outer ring” in the case of a part having only a function as a bearing. It is a part of the containing concept, and is referred to herein as an "outer member". In this specification, the "outer member” may be referred to as the "outer ring” in the test and analysis examples.
  • the outer member 3 has no flange in the illustrated embodiment, but may have a flange (not shown) projecting radially inward from one end or the other.
  • the retainer 5 has a small-diameter annular portion 6, a large-diameter annular portion 7, and a plurality of column portions 8 in the circumferential direction connecting the small-diameter annular portion 6 and the large-diameter annular portion 7. Pockets 9 for holding the tapered rollers 4 are provided between the adjacent pillars 8 .
  • the inner diameter surfaces of the small-diameter side annular portion 6 and the large-diameter side annular portion 7 of the retainer 5 have diameters that are guided by the small flange portion 2b and the large flange portion 2c of the inner ring 2, respectively.
  • the tapered roller bearing 1 is of the inner ring guide type.
  • the retainer 5 may be of an inner ring guide type, and may be guided by only one of the small flange portion 2b and the large flange portion 2c of the inner ring 2. As shown in FIG. Fundamentally, it is preferable to use at least the small flange portion 2b of the inner ring 2 for guiding.
  • the small-diameter side annular portion 6 and the large-diameter side annular portion 7 of the retainer 5 have flange-like portions 6a and 7a extending radially inward from the column portion 8 via arc-shaped bent portions 6b and 7b.
  • lubricating oil passes through a plurality of locations on the inner peripheral edge of the flange-shaped portions 6a and 7a in the axial direction of the bearing of the flange-shaped portions 6a and 7a. It has notch-shaped oil passages 10 and 11 that permit.
  • the notch shape of the oil passages 10 and 11 is a circular arc in this embodiment, but may be an elliptical arc or other shapes. Alternatively, only one of the small-diameter side annular portion 6 and the large-diameter side annular portion 7 may have the flange-shaped portion.
  • the retainer 5 may be a molded product of resin, but in this embodiment, it is a press-molded product of a metal plate such as an iron plate, and the small diameter side annular portion 6 and the large diameter side annular portion 7 are formed by bending.
  • the column 8 is formed by punching out the pocket 9 by press working.
  • the dimensions and shapes of the oil passages 10 and 11 are specified as follows. That is, the projected area A (A 1 or A 2 ) of the oil passages 10 and 11 in the bearing axial direction, the radius of curvature r (r 1 or r 2 ) at the center of the width direction of the oil passages 10 and 11, and the flange
  • the dimensionless number Z determined by the following equation (1) is given by the inner diameter D I (D I1 or D I2 ) of the shaped portions 6a and 7a and the outer diameter D O (D O1 or D O2 ) of the bent portions 6b and 7b. , from 1.55 to 2.66. As shown in FIGS.
  • the suffix "1" means that it corresponds to the small diameter side
  • the suffix "2" means that it corresponds to the large diameter side.
  • the dimensionless number Z determined by the following equation (1) is 1.55 or more and 2.66 or less.
  • Z AD I 2 / ⁇ (D O 2 -D I 2 )r 2 (1)
  • the retainer 5 since the retainer 5 is pulled away from the inner ring 2 by centrifugal force in a direction away from the axis of revolution, the outer peripheral edges of both end surfaces of the retainer 5 have major axes in the direction of being pulled from the circle.
  • a large stress is generated in the notch-shaped oil passages 10, 11 at positions corresponding to the minor axes on the inner peripheral edges of the flange-shaped portions 6a, 7a, and the retainer 5 may be damaged therefrom. be. Therefore, in order to suppress the stress generated in the oil passages 10 and 11 and prevent the retainer 5 from being damaged, it is necessary to limit the size and shape of the oil passages 10 and 11 .
  • the aforementioned dimensionless number Z was devised as a parameter for evaluating the appropriateness of the dimensions and shapes of the oil passages 10 and 11.
  • Five types of tapered roller bearing samples (1) to (5) with different dimensionless numbers Z were subjected to endurance tests and behavior analyzes simulating reduction gears. Since good results were obtained with the dimensionless number Z of 55 or more and 2.66 or less, this range was defined as the range in which the dimensions and shape of the oil passages 10 and 11 are appropriate.
  • the dimensions and shape of the oil passages 10 and 11 are appropriately defined, so that the environment in which the tapered roller bearing 1 revolves Even if it is used under the condition, it is possible to suppress the seizure and wear of the sliding portion of the tapered roller bearing 1, and suppress the stress generated in the oil passages 10 and 11 to prevent the cage 5 from being damaged.
  • the large-diameter side annular portion 7 has a flange-shaped portion 7a, and the bending angle It is in the range of 90° ⁇ 10° (80° or more and 100° or less) on the basis of the cage angle that is the angle that is inclined with respect to the Since the bending angle ⁇ of the flange-like portion 7a is within the range of 90° ⁇ 10°, the retainer 5 has an appropriate shape for the inner ring guide type.
  • the inner diameter surfaces of the small-diameter annular portion 6 and the large-diameter annular portion 7 are preferably parallel to the outer peripheral surfaces of the small flange portion 2b and the large flange portion 2c of the inner ring 2, respectively, but may be inclined.
  • the large-diameter side annular portion 7 has a flange-shaped portion 7a, and the radius of curvature b1 of the inner diameter side surface of the bent portion 7b where the flange-shaped portion 7a continues is , greater than 20% and less than 90% of the length a of the large-diameter side annular portion 7 in the direction in which the column portion 8 extends.
  • the retainer If the curvature radius b1 of the inner diameter surface of the bent portion 7b of the large-diameter annular portion 7 is 20% or less of the length a of the large-diameter annular portion 7b in the direction in which the column portion 8 extends, the retainer The stress concentration during the bending process of 5 increases, and there is a concern that damage may occur. If it is 90% or more, as shown by the thin line in FIG. Therefore, there is a concern that the end faces of the tapered rollers 4 come into contact with the edge of the opening of the pocket 9 . If it is greater than 20% and less than 90%, there is no such problem.
  • a cross-sectional area ratio which is the area of the vertical cross section that does not pass, is greater than 1.0 and less than 1.2.
  • the area of the longitudinal section of the small-diameter side annular portion 6 that does not pass through the oil passage 10 is the maximum value of the area of the longitudinal section of the small-diameter side annular portion 6 .
  • the area of the vertical cross section without the large diameter side annular portion 7 is the maximum value of the area of the vertical cross section.
  • FIG. 7 and 8 show an example of a planetary reduction gear in which the tapered roller bearing 1 of this embodiment is used.
  • this planetary reduction gear between a sun gear 102 attached to an input shaft 101 and an internal gear 104 fixed to a housing 103, a plurality of planetary rotating bodies 105 are arranged as planetary gears meshing with both gears 102 and 104. be done.
  • Each planetary rotor 105 is rotatably supported by a carrier 107 connected to an output shaft 106, and the planetary rotor 105 revolves while rotating between the sun gear 102 and the internal gear 104. 107 to the output shaft 106 .
  • This planetary reduction gear performs, for example, a first stage reduction in a final reduction gear provided inside a wheel rim of a construction machine.
  • the tapered roller bearings 1 are arranged as a pair between the planetary rotor 105 and the carrier 107 of the planetary reduction gear.
  • the outer member 3 ( FIG. 1 ) of each tapered roller bearing 1 is attached to the planetary rotor 105 and rotates together with the planetary rotor 105 .
  • the inner ring 2 of each tapered roller bearing 1 is fixedly attached to a support shaft 108 provided on a carrier 107 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

本発明は、内輪案内形式の円すいころ軸受(1)であって、保持器(5)の小径側環状部(6)および/または大径側環状部(7)が、柱部(8)から円弧状の曲げ部分(6b,7b)を介して内径側に延びるフランジ状部(6a,7a)を有するとともに、そのフランジ状部(6a,7a)の内周縁の複数箇所に切欠状の通油路(10,11)を有し、通油路(10,11)の軸受軸方向への投影面積(A)と、通油路(10,11)における幅方向中央の曲率半径(r)と、フランジ状部(6a,7a)の内径(DI)と、曲げ部分(6b,7b)の外径(DO)とで、次式により定まる無次元数(Z)が、1.55以上2.66以下である。Z=ADI 2/π(DO 2-DI 2)r2

Description

円すいころ軸受 関連出願
 本出願は、2021年9月10日出願の特願2021-148122の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 この発明は、遠心力が作用する部位、例えば建設機械等の遊星減速機部、特に遠心力が大きい1段目の遊星部等に利用できる円すいころ軸受に関する。
 一般的な円すいころ軸受は、例えば図9に示すように、保持器5が円すいころ4によって案内される転動体案内形式とされる。しかし、遊星減速機の遊星部等の公転する環境下で使用される円すいころ軸受は、公転で生じる遠心力のため、転動体案内形式であると保持器の挙動の安定性が低くて柱部の摩耗が大きく、軌道輪案内(内輪案内または外輪案内)形式の軸受であることが好ましい。
 これに関し、図10A,11A,12A,13Aに転動体案内形式の標準保持器を用いた円すいころ軸受の作用を示し、図10B,11B,12B,13Bに内輪案内形式で高遠心力対応の保持器を用いた円すいころ軸受の作用を示す。図11A,11Bに示すように、遊星減速機の遊星回転体105に円すいころ軸受を用いた場合、円すいころ軸受が矢印cで示すように公転することで円すいころ軸受の全体に遠心力Gが作用する。外輪案内形式で高遠心力対応の保持器を用いた円すいころ軸受を遊星回転体に用いた場合も、同様に円すいころ軸受の全体に遠心力Gが作用する。
 このように円すいころ軸受の全体に公転による遠心力Gが作用する場合、円すいころ軸受の固定側軌道輪となる内輪2が静止状態にあるとして軸受構成部品間の作用を考えると、図11A,11Bにおいて四角で囲った部分の縦断面図である図12A,12Bに示すように、遠心力Gにより保持器5を公転軸心から遠のく方向に引っ張る作用が生じる。図12Aに示す転動体案内形式では、内輪鍔部、特に小鍔部2bと保持器5との隙間Sが大きいので、保持器5が遠心力Gで公転軸心から遠のく方向に引っ張られると、その方向に保持器5が大きく移動し、図11Aにおいて四角で囲った部分の拡大横断面図である図13Aに示すように、保持器5の柱部8のポケット内面と円すいころ4との隙間δがなくなり、柱部8のポケット内面の摩耗が増加する。
 しかし、図12Bに示す内輪案内形式では、内輪鍔部(小鍔部2b、大鍔部2c)と保持器5との隙間S,Sが小さいので、保持器5が遠心力で公転軸心から遠のく方向に引っ張られても、その方向への保持器5の移動量が小さく、図11Bにおいて四角で囲った部分の拡大横断面図である図13Bに示すように、柱部8のポケット内面と円すいころ4との隙間δが維持され、柱部8のポケット内面の摩耗も増加しない。
 内輪案内形式の円すいころ軸受として、保持器の小径側と大径側の両方にフランジ状部を設け、その内周縁を摺動面として、内輪で保持器を案内するものがある(例えば特許文献1)。この円すいころ軸受では、保持器の小径側および大径側のフランジ状部の内周縁の複数箇所に、潤滑油の通過を許容する切欠状の通油路(油溝)を設けることにより、軸受の各部品を潤滑し、軸受の温度上昇を低減させている。
中国特許出願公開第103410853号明細書
 しかし、このような従来技術による軸受では、通油路の寸法形状について特に明確な規定がないため、通油路の大きさが小さすぎると、軸受の摺動部に十分に給油できず、焼き付きや摩耗が発生する。また、通油路の形状が不適切であったり、通油路の大きさが大きすぎたりすると、保持器に遠心力が作用したときに、通油路を設けた箇所に大きな応力が発生し、そこから保持器が破損するおそれがある。
 この発明の目的は、軸受が公転する環境下で使用されても、軸受の摺動部での焼き付きや摩耗を抑制できるとともに、通油路での発生応力を抑制して保持器の破損を防止できる内輪案内形式の円すいころ軸受を提供することである。
 本発明の円すいころ軸受は、
 両鍔付きの内輪と、前記内輪の転走面に対向する環状の転走面を有する外方部材と、前記内輪と前記外方部材との間に介在する複数の円すいころと、前記複数の円すいころを保持する保持器とを備え、前記保持器が、小径側環状部、大径側環状部、および前記小径側環状部と前記大径側環状部を繋ぐ円周方向複数箇所の柱部を有する内輪案内形式の円すいころ軸受であって、
 前記小径側環状部および前記大径側環状部の少なくとも一方が、前記柱部から円弧状の曲げ部分を介して内径側に延びるフランジ状部を有するとともに、そのフランジ状部の内周縁の複数箇所に、当該フランジ状部の軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路を有し、
 前記通油路の軸受軸方向への投影面積Aと、前記通油路における幅方向中央の曲率半径rと、前記フランジ状部の内径Dと、前記曲げ部分の外径Dとで、次式(1)により定まる無次元数Zが、1.55以上2.66以下である。
  Z=AD /π(D -D )r   …(1)
 本発明の円すいころ軸受においては、通油路の軸受軸方向への投影面積Aと、通油路における幅方向中央の曲率半径rと、フランジ状部の内径Dと、曲げ部分の外径Dとで、前式(1)により定まる無次元数Zを、1.55以上2.66以下とすることにより、通油路の寸法形状を適切に規定するので、軸受が公転する環境下で使用されても、軸受の摺動部での焼き付きや摩耗を抑制できるとともに、通油路での発生応力を抑制して保持器の破損を防止できる。
 本発明の円すいころ軸受においては、前記通油路の切欠形状が円弧または楕円弧であってもよい。
 本発明の円すいころ軸受においては、前記大径側環状部が前記フランジ状部を有し、そのフランジ状部の前記柱部に対して成す屈曲角度が、前記柱部が軸受軸心に対して傾く角度である保持器角度を基準として、90°±10°の範囲にあってもよい(80°以上100°以下であってもよい)。フランジ状部の前記屈曲角度が90°±10°の範囲にあることで、保持器を内輪案内形式とする上で適切な形状となる。
 本発明の円すいころ軸受においては、前記大径側環状部が前記フランジ状部を有し、そのフランジ状部が連なる前記曲げ部分の内径側表面の曲率半径が、前記柱部が延びる方向における前記大径側環状部の長さに対し、20%よりも大きく90%未満であってもよい。大径側環状部の曲げ部分の内径側表面の曲率半径が、柱部が延びる方向における大径側環状部の長さに対して、20%以下であると、保持器の曲げ加工時における応力集中が大きくなって、損傷する懸念があり、90%以上であると、曲げ部分の内径側表面の円弧形状が緩やかになりすぎて、ポケットの開口縁に対して円すいころの端面がエッジ当たりになる懸念がある。20%よりも大きく90%未満であれば、そのような問題がない。
 本発明の円すいころ軸受においては、前記小径側環状部における前記通油路を通らない縦断面の面積に対する、前記大径側環状部における前記通油路を通らない縦断面の面積である断面積比が、1.0よりも大きく1.2未満であってもよい。この断面積比が1.0よりも大きく1.2未満であると、大径側と小径側との重量バランスが適切となり、保持器の振れ回りが抑えられ、かつ良好な内輪案内が行える。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の一実施形態の円すいころ軸受の縦断面図である。 同円すいころ軸受の保持器の縦断面図である。 同保持器の小径側端の端面図である。 同保持器の大径側端の端面図である。 同保持器の部分拡大縦断面図である。 同保持器の大径側環状部と円すいころとをさらに拡大して示す部分拡大縦断面図である。 同円すいころ軸受を用いた遊星減速機において円すいころ軸受に作用する遠心力の説明図である。 同円すいころ軸受を用いる遊星減速機の一例を示す縦断面図である。 図7のX-X線断面図である。 従来の転動体案内形式の円すいころ軸受の縦断面図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。 転動体案内形式の円すいころ軸受への遠心力による作用の説明図である。 内輪案内形式の円すいころ軸受への遠心力による作用の説明図である。
 この発明の一実施形態の円すいころ軸受について、図1~図6とともに説明する。なおこの円すいころ軸受1は、後に図7、図8とともに説明する遊星減速機または遊星変速機における遊星部に用いられる。
 図1において、この円すいころ軸受1は、内輪2と、外方部材3と、これら内輪2と外方部材3との間に介在する複数の円すいころ4と、これら複数の円すいころ4を保持する保持器5とを備える。内輪2は、外周面の軸受軸方向(軸受軸心Oの方向であり、単に軸方向ともいう)の一端付近から他端付近に渡って径が大きくなるテーパ面の転走面2aを有し、前記一端に小鍔部2bを、他端に大鍔部2cを有する両鍔付きである。外方部材3は、内輪2の転走面2aと対向し一端から他端に渡って径が大きくなるテーパ面の転走面3aを有する環状の部品である。外方部材3は、軸受としての機能のみを有する部品である場合における「外輪」に相当する部品であるが、例えば外周面がギヤ部となり、内周面に前記転走面3aを有する部品を含む概念の部品であり、この明細書では「外方部材」と称する。なお、この明細書において、試験及び解析例等においては、「外方部材」を「外輪」とする場合がある。外方部材3は、図示の実施形態では鍔無しであるが、一端または他端に内径側に突出する鍔部(図示せず)を有していてもよい。
 保持器5は、小径側環状部6、大径側環状部7、およびこれら小径側環状部6と大径側環状部7を繋ぐ円周方向複数箇所の柱部8を有する。隣り合う柱部8の間は、円すいころ4を保持するポケット9となる。保持器5の小径側環状部6および大径側環状部7の内径面は、内輪2の小鍔部2bおよび大鍔部2cでそれぞれ案内される径とされる。これにより、この円すいころ軸受1は内輪案内形式とされている。なお、保持器5は、内輪案内形式であればよく、内輪2の小鍔部2bおよび大鍔部2cのいずれか一方のみで案内される構成であってもよい。基本的には、少なくとも内輪2の小鍔部2bで案内される形式とすることが好ましい。
 図4に示すように、保持器5の小径側環状部6および大径側環状部7は、柱部8から円弧状の曲げ部分6b,7bを介して内径側に延びるフランジ状部6a,7aを有するとともに、図3A、図3Bに示すように、そのフランジ状部6a,7aの内周縁の複数箇所に、当該フランジ状部6a,7aの軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路10,11を有している。通油路10,11の切欠形状は、この実施形態では円弧であるが、楕円弧やその他の形状であってもよい。また、フランジ状部は、小径側環状部6および大径側環状部7のいずれか一方のみが有していてもよい。
 保持器5は、樹脂の成形品であってもよいが、この実施形態では鉄板等の金属板のプレス成形品であり、小径側環状部6および大径側環状部7は、曲げ加工によって形成され、柱8は、ポケット9をプレス加工で打ち抜くことで形成されている。
 この円すいころ軸受1では、通油路10,11の寸法形状について以下のように規定されている。すなわち、通油路10,11の軸受軸方向への投影面積A(AまたはA)と、通油路10,11における幅方向中央の曲率半径r(rまたはr)と、フランジ状部6a,7aの内径D(DI1またはDI2)と、曲げ部分6b,7bの外径D(DO1またはDO2)とで、次式(1)により定まる無次元数Zが、1.55以上2.66以下である。なお、図3A、図3B、図1に示すように、添字「1」は小径側に対応することを意味し、添字「2」は大径側に対応することを意味しており、小径側および大径側のそれぞれにおいて、次式(1)により定まる無次元数Zが、1.55以上2.66以下である。
  Z=AD /π(D -D )r   …(1)
 この無次元数Zの数値限定は、以下のように導出された。軸受内部および摺動部への潤滑油の供給は、保持器5と内輪2との隙間、つまり、保持器5の小径側環状部6と内輪2の小鍔部2bとの隙間である小径側隙間Sおよび保持器5の大径側環状部7と内輪2の大鍔部2cとの隙間である大径側隙間Sと、通油路10,11とによる。しかし、図6に示すように、円すいころ軸受1を遊星減速機の遊星部等の公転(矢印c)を伴う環境下で使用すると、前述したように、保持器5が、内輪2に対して、遠心力で公転軸心から遠のく方向に引っ張られて移動するので、公転軸心に近い位置では、小径側隙間Sおよび大径側隙間Sが小さくなり、特に、保持器5を案内する側の隙間は実質0となるおそれがある。したがって、軸受内部および摺動部への潤滑油の供給のために、通油路10,11の大きさを確保する必要がある。
 また、保持器5が、内輪2に対して、遠心力で公転軸心から遠のく方向に引っ張られることにより、保持器5の両端面の外周縁は、円から、引っ張られる方向を長軸とする楕円に変形して、フランジ状部6a,7aの内周縁において短軸に対応する位置にある切欠状の通油路10,11に大きな応力が発生し、そこから保持器5が破損するおそれがある。したがって、通油路10,11での発生応力を抑制して保持器5の破損を防止するために、通油路10,11の大きさ、形状を制限する必要がある。
 そこで、通油路10,11の寸法形状の適切性を評価するパラメーターとして、前述の無次元数Zを案出した。そして、無次元数Zが相異なる5種類の円すいころ軸受のサンプル(1)~(5)について、減速機を模した耐久試験および挙動解析を行ったところ、表1に示すように、1.55以上2.66以下の無次元数Zにおいて良好な結果が得られたため、その範囲を通油路10,11の寸法形状が適切である範囲とした。
Figure JPOXMLDOC01-appb-T000001
 このように、通油路の軸受軸方向への投影面積Aと、通油路における幅方向中央の曲率半径rと、フランジ状部の内径Dと、曲げ部分の外径Dとで、前式(1)により定まる無次元数Zを、1.55以上2.66以下とすることにより、通油路10,11の寸法形状を適切に規定するので、円すいころ軸受1が公転する環境下で使用されても、円すいころ軸受1の摺動部での焼き付きや摩耗を抑制できるとともに、通油路10,11での発生応力を抑制して保持器5の破損を防止できる。
 また、この円すいころ軸受1では、大径側環状部7がフランジ状部7aを有し、そのフランジ状部7aの柱部8に対して成す屈曲角度βが、柱部8が軸受軸心Oに対して傾く角度である保持器角度を基準として、90°±10°の範囲にある(80°以上100°以下である)。フランジ状部7aの屈曲角度βが90°±10°の範囲にあることで、保持器5を内輪案内形式とする上で適切な形状となる。小径側環状部6および大径側環状部7の内径面は、内輪2の小鍔部2bおよび大鍔部2cの外周面とそれぞれ平行であることが好ましいが、傾斜していてもよい。
 さらに、この円すいころ軸受1では、図4に示すように、大径側環状部7がフランジ状部7aを有し、そのフランジ状部7aが連なる曲げ部分7bの内径側表面の曲率半径b1が、柱部8が延びる方向における大径側環状部7の長さaに対し、20%よりも大きく90%未満である。大径側環状部7の曲げ部分7bの内径側表面の曲率半径b1が、柱部8が延びる方向における大径側環状部7bの長さaに対して、20%以下であると、保持器5の曲げ加工時における応力集中が大きくなって、損傷する懸念があり、90%以上であると、図5に細線で示すように、曲げ部分7bの内径側表面の円弧形状が緩やかになりすぎて、ポケット9の開口縁に対して円すいころ4の端面がエッジ当たりになる懸念がある。20%よりも大きく90%未満であれば、そのような問題がない。
 さらにまた、この円すいころ軸受1では、図1の上側に示すように、小径側環状部6における通油路10を通らない縦断面の面積に対する、大径側環状部7における通油路11を通らない縦断面の面積である断面積比が、1.0よりも大きく1.2未満である。この断面積比が1.0よりも大きく1.2未満であると、大径側と小径側との重量バランスが適切となり、保持器5の振れ回りが抑えられ、かつ良好な内輪案内が行える。なお、小径側環状部6における通油路10を通らない縦断面の面積は、小径側環状部6の縦断面の面積の最大値であり、大径側環状部7における通油路11を通らない縦断面の面積は、大径側環状部7の縦断面の面積の最大値である。
 図7、図8は、この実施形態の円すいころ軸受1が使用される遊星減速機の一例を示す。この遊星減速機は、入力軸101に取り付けた太陽歯車102と、ハウジング103に固定された内歯車104との間に、両歯車102,104に噛み合う遊星歯車として、複数の遊星回転体105が配置される。出力軸106に連結されたキャリヤ107に対して各遊星回転体105が回転自在に支持され、太陽歯車102と内歯車104との間で自転しながら公転する遊星回転体105の公転運動が、キャリヤ107を介して出力軸106に出力される。この遊星減速機は、例えば、建設機械のホイールリムの内側に設けられた終減速装置の第1段目の減速を行う。
 円すいころ軸受1は、遊星減速機の遊星回転体105とキャリヤ107との間に一対で配置される。各円すいころ軸受1の外方部材3(図1)は、遊星回転体105に取り付けられ、遊星回転体105と一体に回転する。各円すいころ軸受1の内輪2は、キャリヤ107に設けられた支持軸108に固定状態に取り付けられる。
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…円すいころ軸受
2…内輪
2a…転走面
2b…小鍔部
2c…大鍔部
3…外方部材
3a…転走面
4…円すいころ
5…保持器
6…小径側環状部
6a…フランジ状部
6b…曲げ部分
7…大径側環状部
7a…フランジ状部
7b…曲げ部分
8…柱部
9…ポケット
10,11…通油路
A…通油路の投影面積
b1…曲げ部分の内径側曲率半径
…フランジ状部の内径
…曲げ部分の外径
O…軸受軸心
r…通油路の曲率半径
Z…無次元数
β…屈曲角度

Claims (5)

  1.  両鍔付きの内輪と、
     前記内輪の転走面に対向する環状の転走面を有する外方部材と、
     前記内輪と前記外方部材との間に介在する複数の円すいころと、
     前記複数の円すいころを保持する保持器とを備え、
     前記保持器が、小径側環状部、大径側環状部、および前記小径側環状部と前記大径側環状部を繋ぐ円周方向複数箇所の柱部を有する内輪案内形式の円すいころ軸受であって、
     前記小径側環状部および前記大径側環状部の少なくとも一方が、前記柱部から円弧状の曲げ部分を介して内径側に延びるフランジ状部を有するとともに、そのフランジ状部の内周縁の複数箇所に、当該フランジ状部の軸受軸方向の内外に対して潤滑油の通過を許容する切欠状の通油路を有し、
     前記通油路の軸受軸方向への投影面積Aと、前記通油路における幅方向中央の曲率半径rと、前記フランジ状部の内径Dと、前記曲げ部分の外径Dとで、次式(1)により定まる無次元数Zが、1.55以上2.66以下である円すいころ軸受。
      Z=AD /π(D -D )r   …(1)
  2.  請求項1に記載の円すいころ軸受において、前記通油路の切欠形状が円弧または楕円弧である円すいころ軸受。
  3.  請求項1または2に記載の円すいころ軸受において、前記大径側環状部が前記フランジ状部を有し、そのフランジ状部の前記柱部に対して成す屈曲角度が、前記柱部が軸受軸心に対して傾く角度である保持器角度を基準として90°±10°の範囲にある円すいころ軸受。
  4.  請求項1または2に記載の円すいころ軸受において、前記大径側環状部が前記フランジ状部を有し、そのフランジ状部が連なる前記曲げ部分の内径側表面の曲率半径が、前記柱部が延びる方向における前記大径側環状部の長さに対し、20%よりも大きく90%未満である円すいころ軸受。
  5.  請求項1から4のいずれか一項に記載の円すいころ軸受において、前記小径側環状部における前記通油路を通らない縦断面の面積に対する、前記大径側環状部における前記通油路を通らない縦断面の面積である断面積比が、1.0よりも大きく1.2未満である円すいころ軸受。
PCT/JP2022/033029 2021-09-10 2022-09-01 円すいころ軸受 WO2023037967A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280060451.7A CN117916481A (zh) 2021-09-10 2022-09-01 圆锥滚子轴承

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021148122A JP2023040921A (ja) 2021-09-10 2021-09-10 円すいころ軸受
JP2021-148122 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023037967A1 true WO2023037967A1 (ja) 2023-03-16

Family

ID=85506325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033029 WO2023037967A1 (ja) 2021-09-10 2022-09-01 円すいころ軸受

Country Status (3)

Country Link
JP (1) JP2023040921A (ja)
CN (1) CN117916481A (ja)
WO (1) WO2023037967A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410853A (zh) * 2013-07-26 2013-11-27 大连冶金轴承股份有限公司 一种水泥立磨减速机专用轴承
CN203463492U (zh) * 2013-07-26 2014-03-05 大连冶金轴承股份有限公司 一种水泥立磨减速机专用轴承
FR3040749A1 (fr) * 2015-09-09 2017-03-10 Ntn-Snr Roulements Systeme de roulement muni d'au moins une cage
JP2018044576A (ja) * 2016-09-13 2018-03-22 日本精工株式会社 駆動装置用転がり軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410853A (zh) * 2013-07-26 2013-11-27 大连冶金轴承股份有限公司 一种水泥立磨减速机专用轴承
CN203463492U (zh) * 2013-07-26 2014-03-05 大连冶金轴承股份有限公司 一种水泥立磨减速机专用轴承
FR3040749A1 (fr) * 2015-09-09 2017-03-10 Ntn-Snr Roulements Systeme de roulement muni d'au moins une cage
JP2018044576A (ja) * 2016-09-13 2018-03-22 日本精工株式会社 駆動装置用転がり軸受

Also Published As

Publication number Publication date
CN117916481A (zh) 2024-04-19
JP2023040921A (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
JP2007051715A (ja) 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置
EP2055972A2 (en) Arrangement with two lubricated rolling element bearings for supporting a pinion shaft
WO2012099120A1 (ja) 転がり軸受
WO2011062257A1 (ja) タンデムアンギュラ型玉軸受
CN106979232B (zh) 滚子轴承
EP3073138A1 (en) Cylindrical roller bearing and bearing device for transmission
JP2007303608A (ja) 保持器付複列ころ軸受
EP2824365B1 (en) Speed reducer
WO2023037967A1 (ja) 円すいころ軸受
US10584743B2 (en) Needle roller thrust bearing
JP5397505B2 (ja) 円すいころ軸受
CN108071683B (zh) 圆锥滚子轴承及动力传递装置
EP2532906A1 (en) Conical roller bearing
WO2023120639A1 (ja) 円すいころ軸受
WO2022050297A1 (ja) 円すいころ軸受
US20170292569A1 (en) Rolling Bearing
EP2017487A2 (en) Tapered roller bearing with lubricant grooves on the cage
JP2006112555A (ja) 調心輪付きころ軸受
JP5909918B2 (ja) ころ軸受用保持器
JP5067338B2 (ja) ラジアル・スラスト組み合わせ軸受
WO2024111513A1 (ja) 保持器、その保持器を用いた保持器付き針状ころ及び軸受装置
JP2003120683A (ja) スラストころ軸受
JP2015152049A (ja) スラストころ軸受
WO2016204220A1 (ja) 円すいころ軸受及び遊星軸受装置
JP2019168084A (ja) 円筒ころ軸受用保持器および円筒ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060451.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE