WO2011062257A1 - タンデムアンギュラ型玉軸受 - Google Patents

タンデムアンギュラ型玉軸受 Download PDF

Info

Publication number
WO2011062257A1
WO2011062257A1 PCT/JP2010/070667 JP2010070667W WO2011062257A1 WO 2011062257 A1 WO2011062257 A1 WO 2011062257A1 JP 2010070667 W JP2010070667 W JP 2010070667W WO 2011062257 A1 WO2011062257 A1 WO 2011062257A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter side
outer ring
diameter
small
inner ring
Prior art date
Application number
PCT/JP2010/070667
Other languages
English (en)
French (fr)
Inventor
泰資 田上
孝道 田中
大紀 前島
林 善貴
健一 安部
湯川 謹次
智治 齋藤
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009265212A external-priority patent/JP5600927B2/ja
Priority claimed from JP2009264632A external-priority patent/JP5600926B2/ja
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US13/059,414 priority Critical patent/US20110222807A1/en
Priority to CN201080002229.9A priority patent/CN102171470B/zh
Priority to EP10807579.7A priority patent/EP2503169B1/en
Publication of WO2011062257A1 publication Critical patent/WO2011062257A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • the present invention relates to an improvement of a tandem angular ball bearing that is incorporated in a rotary machine device such as a differential gear and a transfer device for an automobile and supports a rotating shaft that rotates in a state where a radial load and a thrust load are applied.
  • Patent Documents 1 to 6 Various structures for rotatably supporting a pinion shaft constituting a differential gear for an automobile in a differential case have been widely known as described in Patent Documents 1 to 6.
  • a large radial load and thrust load are simultaneously applied to the pinion shaft. Therefore, use a bearing that supports the pinion shaft with sufficiently large load capacity in both the radial and thrust directions. There is a need to.
  • the pinion shaft is rotatably supported inside the differential case using a pair of tapered roller bearings with different contact angles described in Patent Document 1, for example. Yes.
  • a tapered roller bearing has a larger dynamic torque (rotational resistance) than a ball bearing, instead of a larger load capacity. For this reason, due to the recent trend of reducing fuel consumption in automobiles, angular ball bearings that can support radial and thrust loads are used as rolling bearings to support the pinion shaft against the differential case. Has been proposed. Since the dynamic torque of the angular type ball bearing is smaller than that of the tapered roller bearing, the resistance of the differential gear can be lowered by changing the rolling bearing for supporting the pinion shaft from the tapered roller bearing to the ball bearing.
  • FIG. 14 shows an example of a conventional structure of a pinion shaft rotation support device for a differential gear, which is configured by an angular ball bearing described in Patent Document 2. Since the structure and operation of the entire differential gear are well known and described in Patent Documents 1 to 6, illustration and detailed description are omitted, and only the structure of the rotation support device portion will be described below.
  • a pair of ball bearings 1 and 2 are arranged inside the differential case in a state of being separated from each other, and the pinion shaft 3 is supported by these ball bearings 1 and 2.
  • These ball bearings 1 and 2 are angular ball bearings in which the balls have contact angles, and the contact angles of these ball bearings 1 and 2 are opposite to each other. Therefore, the pinion shaft 3 is rotatably supported in the differential case in a state where not only a radial load but also a thrust load in both directions is supported.
  • a tandem angular ball bearing is used as the ball bearing 1 on the side of the pinion gear 4 that supports a relatively large radial load and thrust load (left side of FIG. 14, hereinafter referred to as “pinion gear side”).
  • pinion gear side the ball bearing 2 on the side opposite to the pinion gear 4 that supports only a relatively small radial load and thrust load (the right side in FIG. 14, hereinafter referred to as “anti-pinion gear side”) uses a single-row angular ball bearing.
  • anti-pinion gear side uses a single-row angular ball bearing.
  • a structure in which not only the pinion gear side but also the anti-pinion gear side is a tandem angular ball bearing has been conventionally known as described in Patent Documents 2 to 6.
  • the ball bearing 1 on the pinion gear side supports a thrust load in a direction away from a ring gear (not shown) meshed with the pinion gear 4 (rightward in FIG. 14) in addition to the radial load.
  • the ball bearing 2 on the anti-pinion gear side supports a thrust load in a direction approaching the ring gear (leftward in FIG. 14) in addition to the radial load.
  • the pinion gear-side ball bearing 1 which is a tandem angular ball bearing includes an outer ring 5, an inner ring 6, a plurality of balls 7, and a pair of cages 8 and 9.
  • the outer ring 5 is provided with double-row angular outer ring raceways 10 and 11 having different inner diameters on the inner peripheral surface.
  • the inner diameters of both outer ring raceways 10 and 11 are larger in the outer ring raceway 10 on the pinion gear side, and smaller in the outer ring raceway 11 on the anti-pinion gear side.
  • the inner ring 6 is arranged concentrically with the outer ring 5 on the inner diameter side of the outer ring 5, and is a double-row angular type in which outer diameters are different from each other in a portion of the outer peripheral surface facing the outer ring raceways 10, 11.
  • Inner ring raceways 12 and 13 are provided.
  • the outer diameters of both the inner ring raceways 12 and 13 are larger in the inner ring raceway 12 on the pinion gear side and smaller in the outer ring raceway 13 on the anti-pinion gear side.
  • each ball 7 is provided with a contact angle in the same direction (parallel combination type) in both rows between the outer ring raceways 10 and 11 and the inner raceways 12 and 13 in each row. In this state, it is provided so as to be able to roll freely.
  • both the holders 8 and 9 are different in diameter from each other, and each hold the balls 7 in both rows in a freely rollable manner. Note that the diameters of the balls 7 in both rows may be the same or different from each other.
  • the tandem angular ball bearing 1 of the first example of this conventional structure does not involve a large sliding contact during operation, so that the dynamic torque can be kept low and the resistance of the differential gear can be reduced. Further, since the balls 7 arranged in double rows support the radial load and the thrust load generated at the meshing portion of the pinion gear 4 and the ring gear, it is possible to sufficiently secure the load capacity regarding the loads in both directions.
  • this ball bearing 1 due to the tandem angular structure, the following improvements are required from the viewpoint of ensuring sufficient reliability for durability.
  • the outer ring 5 constituting the ball bearing 1 needs to be fitted into the support hole 22 of the support portion 21 provided in the differential case with an interference fit.
  • the inner ring 6 is fitted to the pinion shaft 3 with an interference fit. It is necessary to fit externally. The reason for this is that during the operation of the differential gear, creep is prevented from occurring at the fitting portions of the outer ring 5 and the inner ring 6 and the mating member, and rattling due to wear occurs at these fitting portions. This is to prevent this.
  • the outer ring 5 cannot be fitted and fixed to the support hole 22 and the inner ring 6 to the pinion shaft 3 by interference fit.
  • each ball 7 has a peripheral surface portion (the inner diameter side portion of both outer ring raceways 10 and 11, or both inner ring raceways 12).
  • the differential case with the outer ring 5 fitted and fixed and the pinion shaft 3 with the inner ring 6 fitted and fixed are positioned with sufficient accuracy. If the inner ring 6 and the outer ring 5 are brought close to each other in the axial direction and the inner ring 6 is inserted into the inner diameter side of the outer ring 5 while the center axis of the outer ring 5 is accurately aligned, the durability of the ball bearing 1 after assembly In particular, there is no problem.
  • the center axis of the inner ring 6 and the center axis of the outer ring 5 do not coincide with each other due to variations in accuracy of the assembling apparatus or poor adjustment, for example, there is an inclination or eccentricity in these, or both rows
  • the inner ring 6 and the outer ring 5 are combined in a state in which there is a deviation in the arrangement state of each ball 7 such as an inclination between the balls 7, the rotation of each ball 7 held on one raceway ring
  • the moving surface and the peripheral surface of the other raceway will bump against each other vigorously or rub against each other.
  • Such a possibility may also occur when the balls 7 held by the two cages 8 and 9 are arranged on the peripheral surface portion of one of the race rings.
  • the outer ring raceways 10 and 11 and the inner ring raceways 12 and 13 are smooth polished surfaces.
  • the surface may be rough or have sharp corners.
  • tapered roller bearings have a larger dynamic torque (rotational resistance) instead of a larger load capacity than ball bearings. For this reason, due to the recent trend of fuel saving in automobiles, radial and thrust loads can be supported as at least one of the pair of rolling bearings for supporting the pinion shaft with respect to the differential case.
  • radial and thrust loads can be supported as at least one of the pair of rolling bearings for supporting the pinion shaft with respect to the differential case.
  • Tandem angular ball bearings do not involve large sliding contact as in the case of tapered roller bearings during operation, so that the dynamic torque can be kept low and the resistance of the differential gear can be reduced.
  • FIG. 15 to 17 show another example of the conventional structure of the tandem angular ball bearing described in Patent Document 6.
  • FIG. The basic structure of the tandem angular ball bearing of the second example of the conventional structure is the same as that of the first example of the conventional structure.
  • the contact angle of the mutually same direction is provided to each ball 7 which comprises a large diameter side ball row, and each ball 7 which comprises a small diameter side ball row.
  • the outer ring 5a is on one side in the axial direction of both the large diameter side and small diameter side outer ring raceways 10 and 11 ("one side in the axial direction” means the left side of FIGS.
  • the right side of FIGS. 15 to 17 is referred to as “other side” in the axial direction)
  • the groove shoulders 16b and 17b are provided only on the other side in the axial direction.
  • the inner ring 6a is provided with groove shoulders 18a, 18b, 19a, and 19b on both sides in the axial direction of both the large diameter side and small diameter side inner ring raceways 12 and 13, respectively.
  • both the large-diameter side and small-diameter side cages 8 and 9 hold the balls 7 in the pockets 14 and 15, and the balls 7 come out from the pockets 14 and 15 in the radial direction. It is configured to prevent it.
  • an inner ring side assembly 31 as shown by a solid line in FIG. 16 is assembled.
  • each ball 7 is held in each of the pockets 14 and 15 of both the large-diameter side and small-diameter side retainers 8 and 9 as indicated by chain lines in FIG.
  • Each ball 7 held in each pocket 14 of the large-diameter side cage 8 is brought closest to the outer diameter side of the large-diameter side cage 8 without elastically deforming the large-diameter side cage 8.
  • the diameter of the inscribed circle of each ball 7 is at least smaller than the outer diameters of the groove shoulder portions 18a and 18b existing on both side portions in the axial direction of the large-diameter inner ring raceway 12. Further, each ball 7 held in each pocket 15 of the small diameter side retainer 9 is in a state where it is closest to the outer diameter side of the small diameter side retainer 9 without elastically deforming the small diameter side retainer 9. The diameter of the inscribed circle of each ball 7 is at least smaller than the outer diameter of the groove shoulder portions 19a, 19b existing on both axial sides of the small-diameter side inner ring raceway 13.
  • the balls 7 are held in the pockets 14 and 15 of the large-diameter side and small-diameter side cages 8 and 9 as described above, then, as shown by the arrows in FIG.
  • the balls 7 held by the small diameter side cages 8 and 9 are caused to enter the outer diameter side of the inner ring 6a from the other side in the axial direction of the inner ring 6a.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8 and 9 are moved to the outer-diameter side of the large-diameter side and small-diameter side inner ring raceways 12 and 13. Assemble.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8 and 9 are elastically deformed by the large-diameter side and small-diameter side cages 8 and 9, and the inscribed circles of these balls 7 are inscribed. Passing through each of the groove shoulders 18b, 19a, 19b while expanding the diameter. After passing, the diameter of the inscribed circle of each ball 7 is reduced by elastic restoration of both the large-diameter side and small-diameter side cages 8 and 9, and these balls 7 are both large-diameter side and small-diameter side inner ring raceways. 12 and 13 are assembled on the outer diameter side.
  • each ball 7 held by both the large diameter side and small diameter side cages 8 and 9 has the large diameter side and small diameter side cages 8 and 9.
  • the groove shoulder portions 18a, 18b, It is blocked by 19a and 19b.
  • the inner ring 6a, the large-diameter side and small-diameter side cages 8 and 9, and the balls 7 can be integrally handled as the inner ring-side assembly 31.
  • the inner ring side assembly 31 is then inserted into the inner diameter side of the outer ring 5a from one axial side of the outer ring 5a.
  • the tandem angular ball bearing can be handled by dividing it into two elements, the outer ring 5a and the inner ring side assembly 31. For this reason, if this inner ring side assembly 31 is assembled after being assembled by a bearing manufacturer and then shipped, it is possible to easily assemble the tandem angular ball bearing at the place of use at the assembly site of various rotary machine devices such as a differential device. Can do.
  • this tandem angular ball bearing is used as the inner peripheral surface of the support hole 22 of the support member 21 provided inside the differential case.
  • the outer peripheral surface of the pinion shaft 3 the outer ring 5 a is fitted into the support hole 22 by an interference fit, and the inner ring 6 a is fitted to the tip end portion of the pinion shaft 3 by an interference fit.
  • the outer ring 5 a and the inner ring 6 a are combined through the balls 7.
  • the inner ring 6a is held on both the large-diameter side and the small-diameter side before the inner ring 6a is fitted on the tip portion of the pinion shaft 3 by an interference fit.
  • the inner ring side assembly 31 can be integrally handled together with the balls 8 and 9 and the balls 7. That is, even when the inner ring side assembly 31 is assembled, if the work of externally fitting the inner ring 6a to the pinion shaft 3 is performed by pressing the axial end face of the inner ring 6a, the outer fitting work is accompanied.
  • Indentations are not formed in the portions where the rolling surfaces of the balls 7 are in contact with each other on the large diameter side and small diameter side inner ring raceways 12 and 13. For this reason, it is possible to easily assemble the tandem angular ball bearing between the inner peripheral surface of the support hole 22 and the outer peripheral surface of the pinion shaft 3 without damaging the constituent members.
  • tandem angular contact ball bearing of the second example of this conventional structure also has the following problems to be solved.
  • the first problem is caused by the fact that there is no groove shoulder in each of the axial one side portions of both the large diameter side and small diameter side outer ring raceways 10 and 11.
  • a device that supplies lubricating oil to the bearing only during operation such as some differential gears
  • both the large-diameter and small-diameter outer rings are used when stopped.
  • Lubricating oil does not remain in the lower end portions of the tracks 10, 11, and the lubricating oil flows out to the outside through axial one side portions of the lower end portions of both the large diameter side and small diameter side outer ring raceways 10, 11. . For this reason, there is a problem that it is difficult to improve the initial lubrication when the operation is resumed.
  • the second problem is caused by the state in which the plurality of balls 7 are exposed at the outermost part in the radial direction of the inner ring side assembly 31 in a state where the inner ring side assembly 31 is assembled. That is, before assembling the tandem angular ball bearing, each ball 7 constituting the inner ring side assembly 31 is likely to collide with another article during conveyance, and the rolling surface of each ball 7 is damaged such as a scratch. There is a problem that it is likely to occur.
  • the present invention when assembled between the inner peripheral surface of a fixed portion such as a support portion provided inside a housing such as a differential case and the outer peripheral surface of the rotating shaft, Prevents damage such as scratches on the rolling surface of the ball that would cause an excessive decrease in service life, prevents excessive vibration and noise during operation, and provides excellent durability
  • An object of the present invention is to provide a tandem angular contact ball bearing that can ensure high performance.
  • the present invention aims to realize a structure in which a tandem angular ball bearing can be handled by being divided into two elements and a plurality of balls are difficult to collide with other articles during the conveyance.
  • the first aspect of the tandem angular ball bearing of the present invention includes an outer ring, an inner ring, and a plurality of balls, similarly to the conventionally known tandem angular ball bearing.
  • the outer ring is provided with two rows of outer ring raceways having different inner diameters on the inner peripheral surface, each of which is an angular type.
  • the inner ring is provided on the inner diameter side of the outer ring concentrically with the outer ring, and on the outer peripheral surface, two rows of inner ring raceways each having an angular shape are provided. Further, each of the balls rolls in a state where a contact angle in the same direction is given between both the inner ring raceways and the outer ring raceways for each row. It is provided freely.
  • the inner ring surface of the outer ring has a smaller inner diameter and the outer ring raceway of the outer ring has a larger inner diameter in the axial direction.
  • the continuous portion from the inner ring raceway having a large outer diameter to the end surface on the side having the smaller outer diameter in the axially opposite end surfaces of the inner ring has a non-differentiable corner with respect to the cross-sectional shape, that is, does not have a sharp corner, and is a polished smooth surface.
  • the inner peripheral surface of the outer ring is defined as the entire surface that can be seen from the radially inner side of the outer ring surface. Therefore, not only the inner peripheral surface portion that is clearly directed radially inward, but also the inner peripheral surface of the outer ring not only with respect to the continuous portion having a circular arc cross section that exists between the inner peripheral surface portion and the axial end surface. include. In addition, this continuous part says from the boundary continuous with the said internal peripheral surface part to an outer peripheral part.
  • the outer peripheral surface of the inner ring is defined as the entire surface of the inner ring surface that can be seen from the outside in the radial direction, and not only the outer peripheral surface portion that is clearly directed radially outward, but also this outer peripheral surface.
  • the boundary from the boundary portion continuous with the outer peripheral surface portion to the inner peripheral edge portion of the continuous portion is included in the outer peripheral surface of the inner ring. To do.
  • the second aspect of the tandem angular ball bearing of the present invention is basically a large diameter having a relatively large diameter on one side in the axial direction of the inner peripheral surface, similarly to the conventionally known tandem angular ball bearing.
  • the outer ring is at least one of an axial one side portion of the large-diameter outer ring raceway and an axial one-side portion of the small-diameter side outer ring raceway.
  • the other axial portion of the large-diameter outer ring raceway, and the other axial portion of the small-diameter outer ring raceway are each provided with a groove shoulder.
  • the outer ring is provided with groove shoulders on both sides in the axial direction of the large-diameter side outer ring raceway and on both sides in the axial direction of the small-diameter side outer ring raceway.
  • the inner ring includes groove shoulders on one axial part of the large-diameter side inner ring raceway and on one axial part of the small-diameter side inner ring raceway.
  • the other shoulder portion in the axial direction of the small-diameter inner ring raceway is not provided with a groove shoulder portion.
  • both the large-diameter side and small-diameter side retainers are provided with a shape capable of preventing the balls from coming out from the inside of the pockets to the inside diameter side in a state where the balls are held in the pockets.
  • the outer ring includes groove shoulders on both sides in the axial direction of the large-diameter side outer ring raceway and on the other axial side portion of the small-diameter side outer ring raceway. Do not have a groove shoulder on one side of the direction.
  • the inner ring includes groove shoulders on one axial portion of the large-diameter side inner ring raceway and on the one axial side portion of the small-diameter side inner ring raceway. A groove shoulder is not provided in each of the portion and the other axial portion of the small-diameter side inner ring raceway.
  • the balls can be prevented from coming out from the pockets to the inner diameter side, and the outer ring And the large-diameter side cage and the small-diameter side cage and the respective balls in the same positional relationship as the ball bearing in the same positional relationship, in the state of constituting the outer ring side assembly, end portions on the side close to each other It is made to provide the shape which mutually opposes regarding an axial direction.
  • the outer ring includes groove shoulders on the other axial side portion of the large-diameter side outer ring raceway and on both axial sides of the small-diameter side outer ring raceway, and the large-diameter side outer ring raceway. Do not provide a groove shoulder on one side of the shaft.
  • the inner ring includes a groove shoulder on each of one axial portion of the large-diameter side inner ring raceway and one axial portion of the small-diameter side inner ring raceway. The side shoulder portion and the other side portion in the axial direction of the small-diameter inner ring raceway are not provided with groove shoulders, respectively.
  • the large-diameter side retainer and the small-diameter side retainer can prevent the balls from slipping out from the pockets to the inner diameter side while holding the balls in the pockets, and
  • the outer ring, the large-diameter side cage, and the small-diameter side cage and the balls are combined in the same positional relationship as the completed state as a ball bearing.
  • a shape that can prevent engagement of each other and displacement in a direction away from each other with respect to the axial direction is provided.
  • tandem angular contact ball bearing of the present invention rotates, for example, a rotating shaft that constitutes a mechanical device incorporated in a power transmission system of an automobile, that is, a pinion shaft that constitutes a differential device or a transfer device. While supporting freely, it can use suitably for the use for supporting the load of radial and the axial direction which acts on this rotating shaft.
  • tandem angular ball bearing of the present invention when assembling between an inner peripheral surface of a fixed portion such as a support portion provided inside a housing such as a differential case and an outer peripheral surface of a rotary shaft, it is possible to prevent damage such as scratches from occurring on the rolling surface of each ball to the extent that it causes an excessive decrease in life. That is, in the tandem angular contact ball bearing of the present invention, when combining the outer ring that is fitted and fixed to the fixed portion and the inner ring that is fitted and fixed to the rotary shaft among the inner circumferential surface of the outer ring and the outer circumferential surface of the inner ring.
  • the entire portion of the ball that may be in contact with the rolling surface has no sharp corners and is a smooth surface.
  • tandem angular ball bearing of the present invention groove shoulders are provided on both axial sides of at least one of the outer ring raceways on either the large diameter side or the small diameter side. For this reason, for example, in a device in which lubricating oil is supplied to the bearing only during operation, such as some differential gears, if the tandem angular ball bearing of the present invention is assembled and used, both outer rings are Lubricating oil can be kept in the lower end portion of the outer ring raceway having groove shoulders on both sides in the axial direction. Therefore, it is possible to improve the initial lubrication in both rows when the operation is resumed.
  • the outer ring, both the large-diameter side and small-diameter side cages, and the balls constituting both the large-diameter side and small-diameter side ball arrays are the same as when the assembly of the tandem angular ball bearing is completed.
  • the tandem angular ball bearing can be handled by dividing it into two components: the outer ring side assembly and the inner ring. For this reason, if the outer ring side assembly is assembled after being assembled by a bearing manufacturer or the like and then shipped, the work of assembling the tandem angular ball bearing of the present invention at the location where it is used at the assembly site of various rotating machinery devices such as differential devices is facilitated. Can be done.
  • a plurality of balls are arranged on the inner diameter side of the outer ring in a state where the outer ring side assembly is assembled. For this reason, it can avoid that the problem that each ball collides with another article and is damaged during conveyance before assembling the tandem angular ball bearing.
  • FIG. 1 is a half sectional view showing a tandem angular ball bearing according to a first example of an embodiment of the present invention.
  • FIG. 2 is a half cross-sectional view for showing a portion of the inner ring surface of the outer ring and the outer ring surface of the inner ring where the radius of curvature of the cross-sectional shape should be secured in the first example.
  • FIG. 3 is a half cross-sectional view for showing a portion of the inner ring surface of the outer ring and the outer ring surface of the inner ring whose surface should be smoothed out of the outer ring track and the inner ring track in the first example.
  • FIG. 1 is a half sectional view showing a tandem angular ball bearing according to a first example of an embodiment of the present invention.
  • FIG. 2 is a half cross-sectional view for showing a portion of the inner ring surface of the outer ring and the outer ring surface of the inner ring where the radius of curvature of the cross-sectional shape should
  • FIG. 4 is a half sectional view showing a state in which balls are assembled on the inner diameter side of the outer ring before the outer ring is fitted into the support portion in the first example.
  • FIG. 5 shows a state in which, in the first example, after an outer ring having a plurality of balls assembled on the inner diameter side is fitted and fixed to the support portion, an inner ring that is fitted and fixed to the pinion shaft in advance on the inner diameter side of each ball is assembled.
  • FIG. FIG. 6 is a cross-sectional view showing a first example of a tandem angular contact ball bearing according to a second example of an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a part of the cage holding the balls in the second example.
  • FIG. 8 is a cross-sectional view showing a state in which the outer ring side assembly is assembled in the second example.
  • FIG. 9 is a cross-sectional view showing a situation where a tandem angular ball bearing is completed by combining the outer ring side assembly and the inner ring in the second example.
  • FIG. 10 is a sectional view showing a tandem angular contact ball bearing according to a third example of the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a state in which the outer ring side assembly is assembled in the third example.
  • FIG. 12 is a cross-sectional view showing a tandem angular ball bearing according to a fourth example of the embodiment of the present invention.
  • FIG. 13 is sectional drawing which shows the condition which assembles an outer ring side assembly in a 4th example. It is half sectional drawing which shows an example of the rotation support part of the pinion shaft which comprises the differential gear incorporating the tandem angular ball bearing of the conventional structure. It is sectional drawing in which the tandem angular structure of conventional structure shows another example of another ball bearing. In the example of FIG. 15, it is sectional drawing which shows the condition which assembles an inner ring
  • the ball bearing 1a of this example which is a tandem angular ball bearing, includes an outer ring 5b, an inner ring 6b, a plurality of balls 7, and a pair of cages 8 and 9.
  • the outer ring 5 b is provided with two rows of outer ring raceways 10, 11 having different inner diameters and each being an angular type on the inner peripheral surface.
  • the inner ring 6b is disposed concentrically with the outer ring 5b on the inner diameter side of the outer ring 5b, and each of the outer peripheral surfaces facing the outer ring raceways 10 and 11 is an angular type, and each has an outer diameter.
  • Two different inner ring raceways 12 and 13 are provided.
  • a thrust load is applied between the outer ring 5b and the inner ring 6b in such a direction as to press the outer ring 5b to the left in FIG. 1 and the inner ring 6b to the right in the same manner.
  • the side of the inner ring 6b whose outer peripheral surface has a large diameter becomes the input side, and a thrust load directed in the right direction in FIGS. 1 to 3 and 5 is applied to the inner ring 6b.
  • the side of the outer ring 5b whose inner peripheral surface has a small diameter is the output side of this thrust load, and a leftward force in FIGS.
  • both outer ring raceways 10 and 11 are larger in the outer ring raceway 10 on the front side (left side in FIG. 1) of the reaction force acting on the outer ring 5b, and in the same way on the outer ring raceway 11 on the rear side (right side in FIG. 1). Is small.
  • the outer diameters of the inner ring raceways 12 and 13 are larger in the inner ring raceway 12 on the rear side (left side in FIG. 1) of the thrust load acting on the inner ring 6b, and the inner ring raceway on the front side (right side in FIG. 1). 13 is smaller.
  • a plurality of balls 7 are provided between the outer ring raceways 10 and 11 and the inner ring raceways 12 and 13, respectively, and a plurality of contact angles ⁇ and ⁇ in the same direction between the rows. It is provided so that it can roll freely. That is, the ball bearing 1a is a parallel combination type. Note that the contact angles ⁇ and ⁇ may be the same or different from each other. Further, both the retainers 8 and 9 have different diameters, and each retains the balls 7 in both rows in a freely rollable manner.
  • the basic configuration of the ball bearing 1a is the same as that of the conventional tandem angular ball bearing 1 shown in FIG.
  • the outer ring raceway 11 having a small inner diameter to the end face 23 on the side having the larger inner diameter among the axial end faces of the outer ring 5b.
  • the entire portion up to the continuous portion has no corner portion that cannot be differentiated with respect to the cross-sectional shape, that is, has no sharp corner portion, and is a smooth surface that is smoothly continuous and polished.
  • the entire portion of the outer ring surface of the inner ring 6b from the inner ring raceway 12 having a large outer diameter to the continuous part with the end surface 24 on the side having the smaller outer diameter of both end surfaces in the axial direction of the inner ring 6b has a cross-sectional shape.
  • the surface there is no non-differentiable corner, and the surface is smoothly continuous and polished.
  • the end faces 23 and 24 themselves do not necessarily have to be smooth surfaces, but they can be made smooth surfaces.
  • the corner portions 25a and 25g which are continuous portions between the both end surfaces 23 and 24 and the inner peripheral surface of the outer ring 5b or the outer peripheral surface of the inner ring 6b, are smooth surfaces.
  • both outer ring raceways 10 and 11 and among the outer peripheral surface of the inner ring 6b, both inner ring raceways 12 and 13 are conventionally polished with a rotating grindstone to form smooth surfaces.
  • a rough surface or a sharp corner is left as it is without being subjected to special processing such as polishing.
  • the portions other than the tracks 10 to 13 are also polished to form smooth surfaces.
  • the corners 25c, 25d, 25f, 25h, and 25i existing at the side edge portions of the tracks 10, 11, and 13 are polished unless special processing is performed.
  • the edge shape formed at the time (the tip having a non-differentiable cross-sectional shape) is left as it is.
  • the edge shape formed when cutting the adjacent surfaces is left as it is.
  • any corner 25a to 25i has a shape that cannot be differentiated, that is, a single tangent cannot be set for a certain point, and the sharpness of the curvature radius of the cross-sectional shape is almost zero.
  • the left shape is left as it is.
  • the inclined surface portions 26a to 26d in total of four positions, each of the two positions of the inner peripheral surface of the outer ring 5b and the outer peripheral surface of the inner ring 6b, shown by the ellipses of the chain line in FIG.
  • the cut surface and the heat-treated skin are left as they are unless special processing is performed. Such a rough surface tends to cause damage to the rolling surface of the ball 7 when the ball bearing 1 is assembled.
  • the inner ring surface of the outer ring 5b and the outer ring surface of the inner ring 6b are polished to the portions other than both the outer ring raceways 10 and 11 and both the inner ring raceways 12 and 13, and the inclined surface portions 26a to 26d and
  • the cylindrical surface portions 27a and 27b are smooth surfaces. That is, the surface roughness of each of the inclined surface portions 26a to 26d and the cylindrical surface portions 27a and 27b is a smooth surface having an arithmetic average roughness (Ra) of about 0.4 ⁇ m.
  • the surface roughness of each of the inclined surface portions 26a to 26d and the cylindrical surface portions 27a and 27b is about 0.4 ⁇ m Ra as described above in consideration of polishing simultaneously with the respective tracks 10 to 13. It is said. However, there is no problem in terms of preventing damage to the rolling surface of the balls 7 even if Ra is about 0.6 ⁇ m, and further about Ra 0.8 ⁇ m. A smaller surface roughness value is preferable from the viewpoint of preventing damage to the rolling surface of the balls 7 and obtaining good quality tracks 10 to 13. However, even if the surface roughness value is excessively small, the processing cost only increases. In consideration of the processing cost, it is not realistic to make the surface roughness Ra smaller than 0.2 ⁇ m.
  • each of the surface portions 26a to 26d, 27a, and 27b is preferably the same as the surface roughness of each of the tracks 10 to 13 before superfinishing, which will be described later, from the viewpoint of facilitating the processing. The reason for this will be described later.
  • the corners 25a to 25f that exist between the end surfaces 23 and the outer ring raceway 11 on the small diameter side, and the outer peripheral surface of the inner ring 6b are convex curved surfaces having a curvature radius of a cross-sectional shape of 0.2 mm or more by polishing, and each of the surface portions 26a to 26d, The smooth surface is equivalent to 27a and 27b.
  • the upper limit value of the radius of curvature related to the cross-sectional shape of each corner 25a to 25i is not particularly restricted.
  • the corner portions 25c, 25d, 25f, 25h, and 25i are adversely affected by the holding function of the balls 7 and the securing of the width dimension of the rolling surface. Therefore, the maximum value of the radius of curvature is restricted by design considerations in consideration of these points and, in some cases, the shape and material of the cages 8 and 9. In the case of a tandem angular ball bearing for supporting a pinion shaft of a differential gear or a transfer device, it is not preferable to increase the radius of curvature to a level exceeding 1 mm.
  • each of the corners 25a to 25i may be a single arc or a complex arc that is smoothly continuous by combining a plurality of arcs having different curvature radii.
  • the curvature radius of the arc portion having the smallest curvature radius is set to 0.2 mm or more.
  • the work for making the shape and properties (surface roughness) of the inner peripheral surface of the outer ring 5b and the outer peripheral surface of the inner ring 6b as described above is as follows. It is preferable to use a so-called general-purpose rotary grindstone having a bus bar shape that matches the bus bar shape of the peripheral surface to be machined. The reason for this is that the shape and properties of the peripheral surface can be processed all at once, and not only the processing efficiency can be improved, but also the peripheral portion is divided in the width direction and processed with separate grindstones. This is to eliminate the possibility of a sharp step on the surface.
  • the surface roughness of the inclined surfaces 26a to 26d is preferably the same as the surface roughness of the tracks 10 to 13.
  • the cylindrical surface portions 27a and 27b existing between the corner portions 25b and 25c and between the corner portions 25e and 25f are also processed with a general-purpose rotary grindstone to obtain the same smooth surface. This is because both cylindrical surface portions 27a and 27b also rub against the rolling surface of each ball 7 when the ball bearing 1a is assembled.
  • each of the tracks 10 to 12 is made a smooth surface having a surface roughness Ra of about 0.4 ⁇ m and then superfinished. Along with this super-finishing, and at the boundary between each of the tracks 10-12 and the portion adjacent to each of the tracks 10-12, a very slight bent portion is formed with respect to the cross-sectional shape.
  • the generatrix of the portion adjacent to 10-12 does not exist completely in the tangential direction with respect to the circular arcs of the cross-sectional shapes of these tracks 10-12.
  • the bending angle of such a bent portion that is, the deviation of the direction of the generatrix with respect to the complete tangential direction is extremely small, and the bent portion causes an excessive decrease in life on the rolling surface of each ball 7. There will be no damage such as scratches. Therefore, the bent portion generated by such superfinishing is not treated as a non-differentiable corner portion in the interpretation of the present invention.
  • the tandem angular ball bearing 1a of this example is provided between the inner peripheral surface of the support hole 22a provided in the support portion 21a provided in the differential case and the outer peripheral surface of the pinion shaft 3a (see FIG. 5), first, as shown in FIG. 4, a double-row outer ring provided on the inner peripheral surface of the outer ring 5b in a state where the balls 7 in both rows are held by the cages 8 and 9, respectively. It is assembled on the inner diameter side of the tracks 10 and 11.
  • the inner diameters of the cylindrical surface portions 27a and 27b adjacent to the outer ring raceways 10 and 11 are slightly smaller than the inner diameters of the bottom portions (the portions with the largest inner diameters) of the outer ring raceways 10 and 11.
  • each ball 7 held by the cages 8 and 9 are elastically deformed by the cages 8 and 9 to reduce the diameter of the circumscribed circle of the balls 7, and the edge on the large diameter side. Pass through the department. After passing, the diameter of the circumscribed circle of each ball 7 is expanded by elastic restoration of both the cages 8, 9, and a part of the rolling surface of each ball 7 is elastically applied to both outer ring raceways 10, 11. Make contact. As a result, as shown in the upper right part of FIG. 5, each ball 7 is assembled to the inner diameter side of the outer ring 5 b via both the cages 8 and 9 so as not to be inadvertently separated.
  • both cylindrical surface portions 27a and 27b are determined by the material, thickness, shape, dimensions, etc., taking into account the amount of elastic deformation of both cages 8 and 9, and the ease of assembly and non-separability after assembly. Designed to be compatible with both.
  • each ball 7 may hit or rub against the corners 25a to 25f and the inclined portions 26a and 26b existing on the inner peripheral surface of the outer ring 5b.
  • each of the corners 25a to 25f is a convex curved surface having a radius of curvature of 0.2 mm or more, and both the inclined portions 26a and 26b and the both cylindrical surface portions 27a and 27b are smooth surfaces.
  • the moving surface is not damaged to the extent that it causes an excessive decrease in life. In this manner, the operation of assembling these balls 7 on the inner diameter side of the outer ring 5b is performed at a bearing manufacturing factory.
  • the outer ring 5b in which the balls 7 are assembled on the inner diameter side is transported to the differential gear assembly factory, and is fixed to the support hole 22a by interference fit as shown in the upper right part of FIG. Since the inner fitting fixing work can be performed by pressing the end surface 23 on the large diameter side of the outer ring 5b, the rolling surfaces of the balls 7 are not strongly pressed against the outer ring raceways 10 and 11, and both the outer ring raceways are provided. Brinell impressions are not formed on 10 and 11.
  • the inner ring 6b is inserted into the inner diameter side of each ball 7 held on the inner diameter side of the outer ring 5b.
  • the inner ring 6b Prior to this insertion operation, the inner ring 6b is externally fixed to the pinion shaft 3a by an interference fit as shown in the lower left part of FIG.
  • each ball 7 is inserted into the corners 25g to 25i existing on the outer peripheral surface of the inner ring 6b, or inclined. There is a possibility of hitting or rubbing against the surface portions 26c and 26d.
  • each of the corners 25g to 25i is a convex curved surface having a radius of curvature of 0.2 mm or more, and even if both the inclined surface portions 26c and 26d are smooth surfaces, the rolling surface of each ball 7 is It will not be damaged to the extent that it will cause an excessive decrease in life.
  • the tandem angular ball bearing of this example includes an outer ring 5c, an inner ring 6c, both large-diameter and small-diameter side cages 8a and 9a, and a plurality of balls 7 constituting both large-diameter and small-diameter side ball arrays.
  • the outer ring 5c is provided with double-row angular type large-diameter and small-diameter both outer ring raceways 10 and 11 having different inner diameters on the inner peripheral surface.
  • the inner ring 6c is provided with double-row angular type large-diameter and small-diameter inner ring raceways 12 and 13 having different outer diameters on the outer peripheral surface.
  • both the large-diameter side and small-diameter side cages 8a and 9a are formed in an annular shape as a whole and have pockets 14a and 15a at a plurality of locations at equal intervals in the circumferential direction. Further, each ball 7 constituting the large-diameter side ball row is held between each large-diameter outer ring raceway 10 and the large-diameter side inner ring raceway 12 while being held in each pocket 14a of the large-diameter side retainer 8a. It is provided to roll freely.
  • each ball 7 constituting the small diameter side ball row is rollable between the small diameter side outer ring raceway 11 and the small diameter side inner ring raceway 13 while being held in each pocket 15a of the small diameter side retainer 9a. Is provided.
  • contact angles in the same direction parallel combination type
  • the basic configuration of the tandem angular ball bearing described above is the same as the conventional structure.
  • the outer ring 5c is provided with groove shoulders 16a, 16b, 17a and 17b on both sides in the axial direction of both the large diameter side and small diameter side outer ring raceways 10 and 11, respectively.
  • the inner ring 6c is one side in the axial direction of the inner ring raceways 12 and 13 on both the large-diameter side and the small-diameter side (“one side” with respect to the axial direction is the left side of FIGS. 6 and 8-13.
  • the groove shoulders 18a and 19a are provided only on the right side of FIGS. 6 and 8 to 13 on the other side in the axial direction, and no groove shoulder is provided on the other side in the axial direction.
  • both the large-diameter side and small-diameter side retainers 8a and 9a hold the balls 7 in the pockets 14a and 15a, and the balls 7 come out from the pockets 14a and 15a to at least the inner diameter side. It has the structure which can prevent this.
  • the opening width (opening diameter) W on the inner diameter side of each pocket 14a (15a) of both the large diameter side and small diameter side cages 8a (9a) 7 slightly smaller than the diameter D (W ⁇ D).
  • an engagement margin 32 having a width dimension of slightly less than (DW) / 2 (“weak” is due to the pocket clearance) is provided on the entire circumference of the opening peripheral edge of each pocket 14a (15a). ing.
  • each ball 7 is held in each pocket 14a, 15a of both the large diameter side and small diameter side retainers 8a, 9a.
  • the balls 7 held in the pockets 14a of the large-diameter side cage 8a are placed on the inner diameter side of the large-diameter side cage 8a without elastically deforming the large-diameter side cage 8a.
  • the diameter of the circumscribed circle of each of the balls 7 in the close state is larger than at least the inner diameters of the groove shoulder portions 16 a and 16 b existing on both axial sides of the large-diameter outer ring raceway 10. Further, each ball 7 held in each pocket 15a of the small-diameter side retainer 9a is brought close to the inner diameter side of the small-diameter side retainer 9a without elastically deforming the small-diameter side retainer 9a.
  • the diameter of the circumscribed circle of each ball 7 is at least larger than the inner diameters of the groove shoulder portions 17a and 17b existing on both axial sides of the small-diameter outer ring raceway 11.
  • the balls 7 are held in the pockets 14a and 15a of both the large-diameter side and small-diameter side cages 8a and 9a as described above, then as shown by the arrows in FIG.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8a and 9a are inserted into the inner diameter side of the outer ring 5c from one axial side of the outer ring 5c.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8a and 9a are assembled to the inner diameter side of the large-diameter side and small-diameter side outer ring raceways 10 and 11, respectively.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8a and 9a are elastically deformed by the large-diameter side and small-diameter side cages 8a and 9a. It passes through each groove shoulder 16a, 16b, 17a while reducing the diameter of the circle. Then, after passing, the diameter of the circumscribed circle of each ball 7 is expanded by elastic restoration of both the large diameter side and small diameter side cages 8a, 9a, and each ball 7 has a large diameter side, a small diameter side outer ring raceway 10, 11 is assembled to the inner diameter side.
  • the outer ring 5 c and the large-diameter side and small-diameter side cages 8 a and 9 a and the balls 7 can be integrally handled as the outer ring-side assembly 33.
  • the inner ring 6 c is placed on the inner diameter side of the outer ring side assembly 33 from one side in the axial direction of the outer ring side assembly 33. insert.
  • the balls 7 held by both the large-diameter side and small-diameter side cages 8 a and 9 a are assembled to the outer-diameter side of both the large-diameter side and small-diameter side inner ring raceways 12 and 13.
  • the insertion work of the inner ring 6c as described above is smoothly performed. Yes.
  • this tandem angular ball bearing can be handled by dividing it into two elements, the outer ring side assembly 33 and the inner ring 6c. Therefore, if the outer ring side assembly 33 is assembled after being assembled by a bearing manufacturer and then shipped, the operation of assembling the tandem angular ball bearing at the use location can be easily performed at the assembly site of various rotary machine devices such as a differential device.
  • the tandem angular ball bearing of this example when used as a rolling bearing that supports a portion near the tip (pinion gear) of the pinion shaft constituting the differential device, the outer ring side assembly 33 is assembled, The outer ring 5c is fitted into the support hole 22 provided in the differential case by an interference fit, and the inner ring 6c is fitted to the portion near the tip of the pinion shaft 3 by an interference fit.
  • the outer ring 5c can be fitted into the support hole 22 with an interference fit by pressing the axial end surface of the outer ring 5c. For this reason, an indentation is not formed in the part which each ball 7 is contacting among large diameter side and small diameter side outer ring raceways 10 and 11 with this internal fitting operation.
  • the tandem angular ball bearing of this example is inserted between the support hole 22 and the pinion shaft 3, Can be assembled easily.
  • groove shoulder portions 16a, 16b, 17a, and 17b are provided on both axial sides of the large-diameter side and small-diameter side outer ring raceways 10 and 11, respectively.
  • Lubricating oil can remain in the lower end portions of both the large-diameter side and small-diameter side outer ring raceways 10 and 11.
  • FIG. 10 to 11 show a third example of the embodiment of the present invention according to the second aspect of the present invention.
  • the shapes of part of the outer ring 5d and the large diameter side cage 8b are different from those of the second example described above. That is, the outer ring 5d is provided with groove shoulders 16a, 16b, and 17b only on both sides in the axial direction of the large-diameter side outer ring raceway 10 and on the other side in the axial direction of the small-diameter side outer ring raceway 11, respectively.
  • a groove shoulder portion is not provided on one side portion of the side outer ring raceway 11 in the axial direction.
  • the large-diameter side cage 8b is formed with an inward flange-shaped flange 34 at the other axial end, and the outer surface of the flange 34 is axially one end surface of the small-diameter side cage 9a in the axial direction. They are facing each other.
  • an outer ring side assembly 33a as shown by a solid line in FIG. 11 is assembled.
  • each ball 7 is held in each pocket 14a, 15a of both the large-diameter side and small-diameter side retainers 8b, 9a.
  • the balls 7 held by both the large-diameter side and small-diameter side cages 8b and 9a are inserted into the inner diameter side of the outer ring 5d from one axial side of the outer ring 5d. .
  • the balls 7 held by the large-diameter side and small-diameter side cages 8b and 9a are assembled to the inside diameter side of the large-diameter side and small-diameter side outer ring raceways 10 and 11, respectively.
  • the balls 7 held by the small-diameter side cage 9a can be smoothly inserted into the inner diameter side of the small-diameter side outer ring raceway 11 regardless of the presence of the groove shoulder portions 16a and 16b.
  • each ball 7 held by the large-diameter side cage 8b elastically deforms the large-diameter side cage 8b to reduce the diameter of the circumscribed circle of each ball 7, and the groove shoulder portion 16a. Pass through. After the passage, the diameter of the circumscribed circle of each ball 7 is expanded by the elastic restoration of the large-diameter side cage 8b, and the respective balls 7 are assembled on the inner diameter side of the large-diameter outer ring raceway 10.
  • each ball 7 held by the small diameter side retainer 9a escapes from the inside of the small diameter side outer ring raceway 11 to one side in the axial direction, and the one end surface in the axial direction of the small diameter side retainer 9a is the large diameter side retainer 8b. It is prevented by coming into contact (engagement) with the outer surface of the flange 34, and is also prevented from slipping out to the other side in the axial direction by the groove shoulder 17b existing on the other side in the axial direction of the small-diameter outer ring raceway 11. Is done.
  • the outer ring 5d, both the large-diameter side and small-diameter side cages 8b and 9a, and the balls 7 can be integrally handled as the outer ring-side assembly 33a.
  • the inner ring 6c is then inserted into the inner diameter side of the outer ring side assembly 33a from one axial direction of the outer ring side assembly 33a.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8b and 9a are assembled on the outer-diameter side of the large-diameter side and small-diameter side inner ring raceways 12 and 13, respectively.
  • this tandem angular ball bearing can be handled by dividing it into two elements, the outer ring side assembly 33a and the inner ring 6c. For this reason, if the outer ring side assembly 33a is assembled after being assembled by a bearing manufacturer and then shipped, the operation of assembling the tandem angular ball bearing at the place of use can be easily performed at the assembly site of various rotary machine devices such as a differential device.
  • groove shoulder portions 16 a and 16 b are provided on both axial sides of the large-diameter side outer ring raceway 10, respectively.
  • the initial lubrication of the row can be improved by the lubricating oil accumulated at the lower end of the large-diameter side outer ring raceway 10.
  • the row including the small-diameter side outer ring raceway 11 at the same time when the operation is resumed, a part of the lubricating oil accumulated at the lower end of the large-diameter side outer ring raceway 10 rolls on the large-diameter side outer ring raceway 10 part.
  • the outer ring 5e is provided with groove shoulders 16b, 17a, and 17b only on the other axial side portion of the large-diameter side outer ring raceway 10 and on both axial sides of the small-diameter side outer ring raceway 11, respectively.
  • a groove shoulder portion is not provided on one side portion of the side outer ring raceway 10 in the axial direction.
  • the large-diameter side cage 8c is provided with an inward engagement portion 35 over the entire circumference at the other axial end portion of the inner peripheral surface.
  • the small-diameter side retainer 9c is provided with an outward engagement portion 36 over the entire circumference at one axial end portion of the outer peripheral surface. The outward engagement portion 36 and the inward engagement portion 35 are engaged with each other with the inner surfaces of the engagement portions 35 and 36 facing each other.
  • an outer ring side assembly 33b as shown by a solid line in FIG. 13 is assembled.
  • each ball 7 held by both the large-diameter side and small-diameter side cages 8c and 9c are inserted into the inner diameter side of the outer ring 5e from one side in the axial direction of the outer ring 5e. .
  • each ball 7 held by both the large diameter side and small diameter side cages 8c and 9c is assembled to the inner diameter side of both the large diameter side and small diameter side outer ring raceways 10 and 11. .
  • each ball 7 held by the small diameter side cage 9c passes through the groove shoulder portion 17a while elastically deforming the small diameter side cage 9c and reducing the diameter of the circumscribed circle of each ball 7. .
  • each ball 7 held by the large diameter side cage 8 c can be smoothly inserted into the inner diameter side of the large diameter side outer ring raceway 10.
  • the balls 7 held by both the large diameter side and small diameter side cages 8c and 9c are the large diameter side and small diameter side cages 8c and 9c. Are prevented from slipping out of the pockets 14a and 15a toward the inner diameter side. Further, the balls 7 held by the small-diameter side cage 9c slip out in the axial direction from the inside of the small-diameter side outer ring raceway 11, so that the groove shoulders 17a, 17b existing on both axial sides of the small-diameter side outer ring raceway 11 are provided. Is prevented by.
  • the balls 7 held by the large-diameter side cage 8c come out from the inside of the large-diameter side outer ring raceway 10 to one side in the axial direction.
  • the groove shoulder 16b existing on the other side in the axial direction of the large-diameter outer ring raceway 10 is prevented from being engaged with the outward engagement portion 36 of the container 9c, and also coming out to the other side in the axial direction. Is prevented by. Therefore, the outer ring 5e, both the large diameter side and small diameter side cages 8c and 9c, and the balls 7 can be integrally handled as the outer ring side assembly 33b.
  • the inner ring 6a is inserted into the inner diameter side of the outer ring side assembly 33b from one axial direction of the outer ring side assembly 33b.
  • the balls 7 held by the large-diameter side and small-diameter side cages 8c and 9c are assembled on the outer-diameter side of the large-diameter side and small-diameter side inner ring raceways 10 and 11, respectively.
  • this tandem angular ball bearing can be handled by dividing it into two elements, the outer ring side assembly 33b and the inner ring 6a. For this reason, if the outer ring side assembly 33b is assembled after being assembled by a bearing manufacturer and then shipped, the operation of assembling the tandem angular ball bearing at the use location can be easily performed at the assembly site of various rotary machine devices such as a differential device.
  • groove shoulder portions 17a and 17b are provided on both axial sides of the small-diameter outer ring raceway 11, respectively.
  • the initial lubrication of the row can be improved by the lubricating oil accumulated at the lower end portion of the small-diameter side outer ring raceway 11.
  • the row including the large-diameter side outer ring raceway 10 at the same time when the operation is resumed, a part of the lubricating oil accumulated at the lower end of the small-diameter side outer ring raceway 11 rolls on each small-diameter side outer ring raceway 11 7 is pushed out and overflows to the outside, and this enters the large-diameter outer ring raceway 10, whereby the initial lubrication of the row becomes good.
  • Other configurations and operations are the same as those of the second example shown in FIGS.
  • the main body part that is, the part holding each ball has a cylindrical shape.
  • the large-diameter side and small-diameter side retainers those having a non-cylindrical shape of the main body portion, for example, a partially conical cylindrical shape can also be employed.
  • the present invention is not limited to an apparatus incorporated in an automobile drive system such as an automotive differential gear or a transfer apparatus, but is incorporated in various rotary machine apparatuses to rotate a rotating shaft that rotates with a radial load and a thrust load applied. Applicable to tandem angular ball bearings for bearings.
  • the assembly order is not limited to the example shown in the drawings unless otherwise specified.
  • each ball and cage are assembled on the outer diameter side of the inner ring.
  • the inner ring can be externally fixed to a rotating shaft such as a pinion shaft, and then the outer ring that is internally fixed to the housing or the like can be assembled around each ball.
  • the race rings such as the outer ring and the inner ring are fitted and fixed to the mating member, the balls can be assembled together with the cage on the inner diameter side or the outer diameter side of the race ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 組付時や搬送時に、各玉の転動面に、過度の寿命低下の原因となる損傷の発生を防止し、運転時に過大な振動や騒音の発生がなく、優れた耐久性を確保できるタンデムアンギュラ型玉軸受を提供する。このため、外輪(5b)の内周面のうち、小径側外輪軌道(11)から、外輪(5b)の内径が大きい側の端面(23)との連続部(25a)までの部分全体、内輪(6b)の外周面のうち、大径側内輪軌道(12)から、内輪(6b)の外径が小さい側の端面(14)との連続部(25g)までの部分全体を、断面形状に関して微分不能な角部を有さず、研磨加工された平滑面とする。また、外輪(5c)が、大径側外輪軌道(10)の軸方向片側部分と小径側外輪軌道(11)の軸方向片側部分とのうちの少なくとも一方の部分と、大径側外輪軌道(10)の軸方向他側部分と、小径側外輪軌道(11)の軸方向他側部分とに、それぞれ溝肩部(16a,16b,17a,17b)を設ける。

Description

タンデムアンギュラ型玉軸受
 この発明は、自動車用のデファレンシャルギヤ、トランスファ装置などの回転機械装置に組み込まれて、ラジアル荷重およびスラスト荷重が加わった状態で回転する回転軸を支承するためのタンデムアンギュラ型玉軸受の改良に関する。
 自動車用のデファレンシャルギヤを構成するピニオン軸をデファレンシャルケース内に回転自在に支持するための各種構造については、特許文献1~6に記載されている通り、従来から広く知られている。自動車用のデファレンシャル装置の運転時に、ピニオン軸には、大きなラジアル荷重およびスラスト荷重が同時に加わるため、ピニオン軸を支持するための軸受には、ラジアル、スラスト両方向の負荷容量が十分に大きなものを使用する必要がある。このため、例えば特許文献1に記載されている、接触角の方向が互いに異なる、背面組み合わせ型の1対の円すいころ軸受を用いて、ピニオン軸をデファレンシャルケースの内部に、回転自在に支持している。
 転がり軸受の技術分野では周知であるが、円すいころ軸受は、玉軸受に比べて、負荷容量が大きい代わりに、動トルク(回転抵抗)が大きくなる。このため、近年における自動車の省燃費化の流れにより、デファレンシャルケースに対してピニオン軸を支持するための転がり軸受として、ラジアル、スラスト両方向の荷重を支承可能な、アンギュラ型の玉軸受を使用することが、提案されている。アンギュラ型の玉軸受の動トルクは、円すいころ軸受と比べて小さいため、ピニオン軸支持用の転がり軸受を、円すいころ軸受から玉軸受に変えることにより、デファレンシャルギヤの抵抗を低くすることができる。
 図14は、特許文献2に記載されている、アンギュラ型の玉軸受により構成した、デファレンシャルギヤ用のピニオン軸の回転支持装置の従来構造の1例を示している。なお、デファレンシャルギヤ全体の構造および作用は従来から周知であり、特許文献1~6にも記載されているため、図示並びに詳しい説明を省略し、以下、回転支持装置部分の構造についてのみ説明する。デファレンシャルケースの内部に1対の玉軸受1、2を、互いに離隔した状態で配置し、これら両玉軸受1、2によりピニオン軸3を支持している。これら両玉軸受1、2は、それぞれ玉に接触角を持たせたアンギュラ型玉軸受であり、これら両玉軸受1、2の接触角の方向を互いに逆向きとしている。従って、ピニオン軸3は、デファレンシャルケースの内部に、ラジアル荷重だけでなく、両方向のスラスト荷重を支承される状態で、回転自在に支持される。
 両玉軸受1、2のうち、比較的大きなラジアル荷重およびスラスト荷重を支承するピニオンギヤ4の側(図14の左側、以下「ピニオンギヤ側」という)にある玉軸受1として、タンデムアンギュラ型玉軸受を使用している。これに対して、比較的小さなラジアル荷重およびスラスト荷重しか支承しないピニオンギヤ4から反対側(図14の右側、以下「反ピニオンギヤ側」という)の玉軸受2は、単列アンギュラ型玉軸受を使用している。なお、ピニオンギヤ側だけでなく、反ピニオンギヤ側もタンデムアンギュラ型玉軸受とする構造についても、特許文献2~6に記載されている通り、従来から知られている。ピニオンギヤ側の玉軸受1は、ラジアル荷重に加えて、このピニオンギヤ4と噛合したリングギヤ(図示省略)から離れる方向(図14の右向き)のスラスト荷重を支承する。これに対して反ピニオンギヤ側の玉軸受2は、ラジアル荷重に加えて、前記リングギヤに近付く方向(図14の左向き)のスラスト荷重を支承する。
 この例の場合、タンデムアンギュラ型玉軸受である、ピニオンギヤ側の玉軸受1は、外輪5と、内輪6と、複数個の玉7と、1対の保持器8、9とを備える。外輪5は、内周面に、互いに内径が異なる、複列アンギュラ型の外輪軌道10、11を設けている。両外輪軌道10、11の内径は、ピニオンギヤ側の外輪軌道10の方が大きく、反ピニオンギヤ側の外輪軌道11の方が小さい。また、内輪6は、外輪5の内径側に外輪5と同心に配置されており、外周面のうちで両外輪軌道10、11に対向する部分に、互いに外径が異なる、複列アンギュラ型の内輪軌道12、13を設けている。両内輪軌道12、13の外径は、ピニオンギヤ側の内輪軌道12の方が大きく、反ピニオンギヤ側の外輪軌道13の方が小さい。さらに、各玉7は、両外輪軌道10、11と両内輪軌道12、13との間に、それぞれの列毎に複数個ずつ、両列で同じ方向の(並列組み合わせ型の)接触角を付与された状態で、転動自在に設けられている。また、両保持器8、9は、互いに直径が異なり、それぞれが両列の玉7を、転動自在に保持している。なお、これら両列の玉7の直径は、互いに同じである場合も、互いに異なっている場合もある。
 この従来構造の第1例のタンデムアンギュラ型玉軸受1は、円すいころ軸受と異なり、運転時に大きな滑り接触を伴わないので、動トルクを低く抑えられ、デファレンシャルギヤの抵抗を低くできる。また、複列に配置した玉7により、ピニオンギヤ4と前記リングギヤとの噛合部で発生するラジアル荷重およびスラスト荷重を支承するため、これら両方向の荷重に関する負荷容量も十分に確保できる。ただし、この玉軸受1では、タンデムアンギュラ型の構造に起因して、耐久性について十分な信頼性を確保する観点から、次のような改良が必要とされている。
 玉軸受1を構成する外輪5は、デファレンシャルケースの内部に設けられた支持部21の支持孔22内に、締り嵌めで内嵌する必要があり、同じく内輪6はピニオン軸3に、締り嵌めで外嵌する必要がある。この理由は、デファレンシャルギヤの運転時に、外輪5および内輪6と相手部材との嵌合部でクリープが発生することを防止して、これら両嵌合部に、摩耗に基づくがたつきが発生することを防止するためである。ただし、玉軸受1の構成各部材を互いに分離しないように組み立てた状態で、外輪5を支持孔22に、同じく内輪6をピニオン軸3に、それぞれ締り嵌めで嵌合固定することはできない。この理由は、この嵌合固定作業に伴い、両外輪軌道10、11と両内輪軌道12、13の一部であって、各玉7の転動面が接触している部分に、ブリネル圧痕が形成され、玉軸受1の運転時に、過大な振動や騒音が発生する原因となるだけでなく、耐久性が著しく損なわれるためである。
 このため、玉軸受1を、支持孔22の内周面とピニオン軸3の外周面との間に組み付ける場合には、例えば特許文献3に記載されているように、予め、すなわち、玉軸受1の構成各部材の組み立てを完了する以前に、支持孔22に外輪5を締り嵌めで内嵌し、ピニオン軸3に内輪6を締り嵌めで外嵌してから、外輪5と内輪6とを、各玉7を介して組み合わせている。この際、各玉7は、外輪5と内輪6との組み合わせに先立って、これらのうちの一方の軌道輪の周面部分(両外輪軌道10、11の内径側部分、または、両内輪軌道12、13の外径側部分)に、両保持器8、9に保持された状態で配置しておく。そして、他方の軌道輪を、この他方の軌道輪を嵌合固定した部材と共に、各玉7の内径側部分または外径側部分に進入させる。そして、各玉7の転動面を、それぞれの外輪軌道および内輪軌道に接触させる。
 このような玉軸受1の組立作業の際、外輪5を内嵌固定したデファレンシャルケースと、内輪6を外嵌固定したピニオン軸3との位置決めを十分に精度良く行い、内輪6の中心軸と外輪5との中心軸とが正確に一致した状態のまま、内輪6と外輪5とを軸方向に近付け、外輪5の内径側に内輪6を進入させれば、組立後の玉軸受1の耐久性に、特に問題を生じることはない。ただし、組立装置の精度のばらつきや調整不良などにより、内輪6の中心軸と外輪5の中心軸とが不一致のまま、例えば、これらに傾斜や偏心が存在する状態のまま、あるいは、両列の玉7同士の間に傾斜があるなど、各玉7の配置状態のずれが存在した状態のまま、内輪6と外輪5とを組み合わせると、一方の軌道輪に保持されている各玉7の転動面と、他方の軌道輪の周面とが勢い良く突き当たったり、強く擦れ合ったりする可能性がある。このような可能性は、両保持器8、9により保持した各玉7を、一方の軌道輪の周面部分に配置する場合にも生じ得る。
 一方、外輪5の内周面および内輪6の外周面のうち、両外輪軌道10、11および両内輪軌道12、13は、平滑な研磨面となっているが、これらの軌道から外れた部分は、粗面であったり、尖った角部が存在したりする。外輪5と内輪6との組み合わせ時に、これら粗面や角部が、各玉7のうちの一部の転動面に勢い良く突き当たったり、強く擦れ合ったりすると、その転動面に傷などの損傷が発生する可能性がある。このような損傷の発生は、玉軸受1を組み込んだデファレンシャルギヤの運転時に、大きな振動や騒音を発生しやすくするばかりか、玉の過度の寿命低下の原因となるため、タンデムアンギュラ型玉軸受の耐久性を損なう可能性がある。
 転がり軸受の技術分野では周知であるが、円すいころ軸受は、玉軸受に比べて、負荷容量が大きい代わりに、動トルク(回転抵抗)が大きい。このため、近年における自動車の省燃費化の流れにより、デファレンシャルケースに対してピニオン軸を支持するための1対の転がり軸受のうちの少なくとも一方の転がり軸受として、ラジアル、スラスト両方向の荷重を支承可能な、タンデムアンギュラ型玉軸受を使用することが、特許文献1に記載されているように、従来から考えられている。タンデムアンギュラ型玉軸受は、運転時に円すいころ軸受の場合のような大きな滑り接触を伴わないので、動トルクを低く抑えられ、デファレンシャルギヤの抵抗を低くできる。
 また、図15~17は、特許文献6に記載されている、タンデムアンギュラ型玉軸受の従来構造の別の例を示している。この従来構造の第2例のタンデムアンギュラ型玉軸受も、基本的な構造は、従来構造の第1例と同様である。なお、第1例でも同様であるが、大径側玉列を構成する各玉7と小径側玉列を構成する各玉7とに、互いに同じ向きの(並列組み合わせ型の)接触角が付与されている。これら両列の接触角θ1、θ2の大きさは、同じにする(θ1=θ2)こともできるし、異ならせる(θ1≠θ2)こともできる。
 この従来構造の第2例においては、外輪5aは、大径側、小径側両外輪軌道10、11の軸方向片側(軸方向に関して「片側」とは、図15~17の左側をいう。一方、図15~17の右側を、軸方向に関して「他側」という。)に溝肩部を設けておらず、軸方向他側にのみ溝肩部16b、17bを設けている。これに対して、内輪6aは、大径側、小径側両内輪軌道12、13の軸方向両側に、それぞれ溝肩部18a、18b、19a、19bを設けている。また、大径側、小径側両保持器8、9は、各ポケット14、15内に各玉7を保持した状態で、各玉7が、各ポケット14、15内から径方向に抜け出ることを阻止できるように構成されている。
 この従来構造の第2例のタンデムアンギュラ型玉軸受を組み立てる場合、まず、図16に実線で示すような、内輪側組立品31を組み立てる。このために、同図に鎖線で示すように、各玉7を、大径側、小径側両保持器8、9の各ポケット14、15内に保持する。なお、大径側保持器8の各ポケット14内に保持されている各玉7を、大径側保持器8を弾性変形させることなく、大径側保持器8の外径側に最も寄せた状態での、これら各玉7の内接円の直径は、少なくとも大径側内輪軌道12の軸方向両側部分に存在する溝肩部18a、18bの外径よりも小さい。また、小径側保持器9の各ポケット15内に保持されている各玉7を、小径側保持器9を弾性変形させることなく、小径側保持器9の外径側に最も寄せた状態での、各玉7の内接円の直径は、少なくとも小径側内輪軌道13の軸方向両側に存在する溝肩部19a、19bの外径よりも小さい。そして、上述のように各玉7を大径側、小径側両保持器8、9の各ポケット14、15内に保持したならば、次いで、同図に矢印で示すように、これら大径側、小径側両保持器8、9に保持された各玉7を、内輪6aの外径側に、内輪6aの軸方向他側から進入させる。これにより、同図に実線で示すように、大径側、小径側両保持器8、9に保持された各玉7を、大径側、小径側両内輪軌道12、13の外径側に組み付ける。この際、大径側、小径側両保持器8、9に保持された各玉7は、大径側、小径側両保持器8、9を弾性変形させて、これら各玉7の内接円の直径を拡げつつ、各溝肩部18b、19a、19bを通過する。そして、通過後は、大径側、小径側両保持器8、9の弾性的復元により前記各玉7の内接円の直径が縮まり、これら各玉7が大径側、小径側両内輪軌道12、13の外径側に組み付けられた状態となる。
 このようにして、内輪側組立品31を完成させた状態で、大径側、小径側両保持器8、9に保持された各玉7は、大径側、小径側両保持器8、9の各ポケット14、15内から外径側に抜け出ることを阻止されており、かつ、大径側、小径側両内輪軌道12、13から軸方向に抜け出ることを、各溝肩部18a、18b、19a、19bによって阻止されている。このため、内輪6aと大径側、小径側両保持器8、9と各玉7とは、内輪側組立品31として一体的に取り扱うことが可能となる。この内輪側組立品31を組み立てたならば、その後、図17に示すように、内輪側組立品31を外輪5aの内径側に、外輪5aの軸方向片側から挿入する。これにより、図15に示すように、大径側、小径側両保持器8、9に保持された各玉7を、大径側、小径側両外輪軌道10、11の内径側に組み付けることによって、タンデムアンギュラ型玉軸受の組み立てを完了する。なお、この従来構造の第2例の場合、大径側、小径側両外輪軌道10、11の軸方向片側部分には、それぞれ溝肩部が存在しないため、上述のような内輪側組立体31の挿入作業を、円滑に行うことができる。
 従来構造の第2例では、タンデムアンギュラ型玉軸受を、外輪5aと内輪側組立品31との、2つの要素に分けて取り扱える。このため、この内輪側組立品31を軸受メーカーで組み立ててから出荷すれば、デファレンシャル装置などの各種回転機械装置の組立現場で、このタンデムアンギュラ型玉軸受を使用箇所に組み付ける作業を容易に行うことができる。
 このような従来構造の第2例の場合も、従来構造の第1例と同様に、このタンデムアンギュラ型玉軸受を、デファレンシャルケースの内部に設けられた支持部材21の支持孔22の内周面とピニオン軸3の外周面との間に組み付ける場合には、外輪5aを支持孔22に締り嵌めで内嵌し、内輪6aをピニオン軸3の先端寄り部分に締り嵌めで外嵌してから、これら外輪5aと内輪6aとを、各玉7を介して組み合わせる。
 従来構造の第2例のタンデムアンギュラ型玉軸受を用いる場合には、内輪6aをピニオン軸3の先端寄り部分に締り嵌めで外嵌する以前から、内輪6aを大径側、小径側両保持器8、9および各玉7と共に、内輪側組立品31として一体的に取り扱える。すなわち、内輪側組立品31を組み立てた状態でも、内輪6aをピニオン軸3に締り嵌めで外嵌する作業を、内輪6aの軸方向端面を押圧することによって行えば、この外嵌作業に伴って、大径側、小径側両内輪軌道12、13のうち、各玉7の転動面が接触している部分に、圧痕が形成されることはない。このため、タンデムアンギュラ型玉軸受を支持孔22の内周面とピニオン軸3の外周面との間に、構成部材を損傷せずに組み付ける作業を、容易に行うことができる。
 ところが、この従来構造の第2例のタンデムアンギュラ型玉軸受においても、次のような解決すべき問題がある。
 第1の問題は、大径側、小径側両外輪軌道10、11の軸方向片側部分に、それぞれ溝肩部が存在しないことに起因する問題である。例えば、一部のデファレンシャルギヤのように、運転時にのみ軸受に潤滑油が供給される装置に、このタイプのタンデムアンギュラ型玉軸受を組み付けて使用すると、停止時に、大径側、小径側両外輪軌道10、11の下端部に潤滑油が溜まったままの状態にならず、これらの大径側、小径側両外輪軌道10、11の下端部の軸方向片側部分を通じて潤滑油が外部に流失する。このため、運転を再開した際の初期潤滑を良好にするのが難しいという問題がある。
 第2の問題は、内輪側組立品31を組み立てた状態で、この内輪側組立品31の径方向の最外部に、複数個の玉7が露出した状態となることに起因する問題である。すなわち、タンデムアンギュラ型玉軸受を組み立てる前の、搬送中に、内輪側組立品31を構成する各玉7が他の物品にぶつかりやすく、これら各玉7の転動面に、傷などの損傷が生じやすいといった問題がある。
 このような問題も、タンデムアンギュラ型玉軸受の耐久性の低下に結び付く問題であるため、その解決が強く望まれている。
 これまでも、動トルクの低減など、タンデムアンギュラ型玉軸受の特性を改善しようとする試みは多くなされている。しかしながら、特許文献1~6を含む公知文献においては、タンデムアンギュラ型玉軸受の組立時に、各玉の転動面が損傷することを防止するための技術については、何ら記載されていないように、上述のような問題については、十分な解決が図られていないのが現状である。
特開平11-48805号公報 特開2004-169890号公報 特開2004-183745号公報 特開2009-138795号公報 特表2002-523710号公報 特開2004-124996号公報
 本発明は、上述の様な事情に鑑みて、デファレンシャルケースなどのハウジングの内部に設けられた支持部などの固定部分の内周面と、回転軸の外周面との間に組み付ける際に、各玉の転動面に、過度の寿命低下の原因となる程の、傷などの損傷が発生することを防止して、運転時に過大な振動や騒音が発生することがなく、かつ、優れた耐久性を確保できるタンデムアンギュラ型玉軸受を提供することを目的とする。
 また、本発明は、タンデムアンギュラ型玉軸受において、2つの要素に分けて取り扱えるようにすると共に、その搬送中に複数個の玉が他の物品にぶつかりにくい構造を実現しようとするものである。
 本発明のタンデムアンギュラ型玉軸受の第1の態様は、従来から知られているタンデムアンギュラ型玉軸受と同様に、外輪と、内輪と、複数個の玉とを備える。前記外輪は、内周面に、互いに内径が異なる、それぞれがアンギュラ型である2列の外輪軌道を設けている。また、前記内輪は、前記外輪の内径側にこの外輪と同心に配置され、外周面に互いに外径が異なる、それぞれがアンギュラ型である2列の内輪軌道を設けている。さらに、前記各玉は、前記両内輪軌道と前記両外輪軌道との間に、それぞれの列毎に複数個ずつ、両列同士の間で同じ方向の接触角を付与された状態で、転動自在に設けられている。
特に、本発明のタンデムアンギュラ型玉軸受の第1の態様においては、前記外輪の内周面のうちで、内径が小さい外輪軌道から、この外輪の軸方向両端面のうちで内径が大きい側の端面との連続部までの部分全体、および、前記内輪の外周面のうちで、外径が大きい内輪軌道から、この内輪の軸方向両端面のうちで外径が小さい側の端面との連続部までの部分全体が、断面形状に関して微分不能な角部、すなわち、尖った角部を有さず、かつ、研磨加工された平滑面となっている。
 なお、本発明の解釈においては、外輪の内周面は、外輪の表面のうちで径方向内方から見た場合に見得る面全体と定義されるものとする。従って、はっきりと径方向内方に向いた内周面部分だけでなく、この内周面部分と軸方向端面との間に存在する、断面円弧形の連続部に関しても、外輪の内周面に含まれる。なお、この連続部は、前記内周面部分と連続する境界から外周縁部までをいう。同様に、内輪の外周面は、内輪の表面のうちで径方向外方から見た場合に見える面全体と定義され、はっきりと径方向外方を向いた外周面部分だけでなく、この外周面部分と軸方向端面との間に存在する、断面円弧形の連続部に関しても、この連続部の前記外周面部分と連続する境界から内周縁部までが、内輪の外周面に含まれるものとする。
 本発明のタンデムアンギュラ型玉軸受の第2の態様も、従来から知られているタンデムアンギュラ型玉軸受と同様に、基本的に、内周面の軸方向片側に直径が相対的に大きい大径側外輪軌道を、同じく軸方向他側に直径が相対的に小さい小径側外輪軌道を、それぞれ有する外輪と、外周面の軸方向片側に直径が相対的に大きい大径側内輪軌道を、同じく軸方向他側に直径が相対的に小さい小径側内輪軌道を、それぞれ有する内輪と、円周方向複数箇所にポケットを有する、直径が相対的に大きい円環状の大径側保持器と、円周方向複数箇所にポケットを有する、直径が相対的に小さい円環状の小径側保持器と、前記大径側保持器の各ポケット内に保持された状態で、前記大径側外輪軌道と前記大径側内輪軌道との間に転動自在に設けられた、大径側玉列を構成する複数個の玉と、前記小径側保持器の各ポケット内に保持された状態で、前記小径側外輪軌道と前記小径側内輪軌道との間に転動自在に設けられた、小径側玉列を構成する複数個の玉とを備えている。また、前記大径側玉列を構成する各玉と前記小径側玉列を構成する各玉とに、互いに同じ向きの接触角が付与されている。
 特に、本発明のタンデムアンギュラ型玉軸受の第2の態様においては、前記外輪は、前記大径側外輪軌道の軸方向片側部分と前記小径側外輪軌道の軸方向片側部分とのうちの少なくとも一方の部分と、前記大径側外輪軌道の軸方向他側部分と、前記小径側外輪軌道の軸方向他側部分とに、それぞれ溝肩部を備えている。
 本発明の第2の態様において、好ましくは、前記外輪が、前記大径側外輪軌道の軸方向両側部分、および、前記小径側外輪軌道の軸方向両側部分に、それぞれ溝肩部を備えるようにする。同時に、前記内輪が、大径側内輪軌道の軸方向片側部分、および、小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えるが、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分には、それぞれ溝肩部を備えないようにする。さらに、前記大径側、小径側両保持器が、各ポケット内に各玉を保持した状態で、これら各ポケット内からこれら各玉が内径側に抜け出ることを阻止できる形状を備えるようにする。
 代替的に、前記外輪が、前記大径側外輪軌道の軸方向両側部分、および、前記小径側外輪軌道の軸方向他側部分に、それぞれ溝肩部を備えるが、前記小径側外輪軌道の軸方向片側部分に溝肩部を備えないようにする。同時に、内輪が、前記大径側内輪軌道の軸方向片側部分、および、前記小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えるが、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分に、それぞれ溝肩部を備えないようにする。さらに、前記大径側保持器および前記小径側保持器が、各ポケット内に各玉を保持した状態で、これら各ポケット内からこれら各玉が内径側に抜け出ることを阻止でき、かつ、前記外輪と該大径側保持器および該小径側保持器と前記各玉とを玉軸受としての完成状態と同じ位置関係で組み合わせてなる、外輪側組立品を構成した状態で、互いに近い側の端部同士が軸方向に関して対向する形状を備えるようにする。
 さらに代替的に、前記外輪が、前記大径側外輪軌道の軸方向他側部分、および、前記小径側外輪軌道の軸方向両側部分に、それぞれ溝肩部を備えると共に、前記大径側外輪軌道の軸方向片側部分に、溝肩部を備えないようにする。同時に、前記内輪が、前記大径側内輪軌道の軸方向片側部分、および、前記小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えると共に、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分に、それぞれ溝肩部を備えないようにする。さらに、前記大径側保持器および前記小径側保持器を、前記各ポケット内に前記各玉を保持した状態で、該各ポケット内から該各玉が内径側に抜け出ることを阻止でき、かつ、前記外輪と該大径側保持器および該小径側保持器と前記各玉とを玉軸受としての完成状態と同じ位置関係で組み合わせてなる、外輪側組立品を構成した状態で、互いの一部同士が係合し、軸方向に関して互いに離れる方向に変位することを阻止できる形状を備えるようにする。
 なお、本発明のタンデムアンギュラ型玉軸受は、何れの態様についても、例えば自動車の動力伝達系統に組み込まれる機械装置を構成する回転軸、すなわちデファレンシャル装置やトランスファ装置を構成するピニオン軸などを、回転自在に支持すると共に、この回転軸に作用するラジアル、アキシアル両方向の荷重を支承するための用途に、好適に使用することができる。
 本発明のタンデムアンギュラ型玉軸受の一態様によれば、デファレンシャルケースのようなハウジングの内部に設けられた支持部などの固定部分の内周面と、回転軸の外周面との間に組み付ける際に、各玉の転動面に、過度の寿命低下の原因となる程の、傷などの損傷が発生することを防止できる。すなわち、本発明のタンデムアンギュラ型玉軸受では、外輪の内周面および内輪の外周面のうちで、前記固定部分に内嵌固定した外輪と、回転軸に外嵌固定した内輪とを組み合わせる際に、前記玉の転動面が接触する可能性のある部分全体を、尖った角部がなく、しかも平滑面となるようにしている。従って、前記組み付け作業の際に、何れかの玉の転動面が、前記外輪の内周面または前記内輪の外周面の何れの部分に勢い良く突き当たったり、あるいは強く擦れ合ったりした場合でも、当該玉の転動面に、上述のような傷などの損傷が発生することがない。このため、タンデムアンギュラ型玉軸受の運転時に、何れかの玉の転動面の損傷に起因する過大な振動や騒音の発生を防止でき、しかも、タンデムアンギュラ型玉軸受の耐久性を十分に確保することができる。
 本発明のタンデムアンギュラ型玉軸受の別の態様の場合には、大径側もしくは小径側の両外輪軌道のうちの少なくとも一方の外輪軌道の軸方向両側に溝肩部が設けられている。このため、例えば、一部のデファレンシャルギヤのように、運転時にのみ軸受に潤滑油が供給される装置において、本発明のタンデムアンギュラ型玉軸受を組み付けて使用すれば、運転の停止時に、両外輪軌道のうち、軸方向両側に溝肩部が存在する外輪軌道の下端部に、潤滑油が溜まったままの状態にできる。従って、運転を再開した際の、両列の初期潤滑を良好にできる。すなわち、両外輪軌道のそれぞれの軸方向両側に溝肩部が存在する場合には、運転の停止時に、これら大径側および小径側の両外輪軌道の下端部に潤滑油が溜まったままの状態になる。このため、運転を再開した際には、これら両下端部に溜まっている潤滑油によって、両列の初期潤滑を良好にできる。また、大径側および小径側の両外輪軌道のうちの何れか一方の外輪軌道にのみ、軸方向両側に溝肩部が設けられている場合には、運転の停止時に、当該一方の外輪軌道の下端部にのみ潤滑油が溜まったままの状態になる。ただし、運転の再開と同時に、当該一方の外輪軌道の下端部に溜まった潤滑油の一部が、当該外輪軌道を転走する玉に押されて外部に溢れ出し、これが他方の外輪軌道に入り込むことで、当該一方の外輪軌道を含む列だけでなく、他方の外輪軌道を含む列に関しても、初期潤滑を良好にすることができる。
 さらに好ましい態様においては、外輪と、大径側および小径側の両保持器と、大径側および小径側の両玉列を構成する各玉とを、タンデムアンギュラ型玉軸受の組み立て完了時と同じ状態に組み合わせることにより、これら各部品を外輪側組立品として一体的に取り扱うことを可能としている。
 この場合、タンデムアンギュラ型玉軸受を、外輪側組立品と内輪との2つの構成要素に分けて取り扱える。このため、この外輪側組立品を軸受メーカーなどで組み立ててから出荷すれば、デファレンシャル装置などの各種回転機械装置の組立現場で、本発明のタンデムアンギュラ型玉軸受を使用箇所に組み付ける作業を容易に行うことが可能となる。
 特に、本発明の場合、外輪側組立品を組み立てた状態で、複数個の玉は、外輪の内径側に配置される。このため、タンデムアンギュラ型玉軸受を組み立てる前の、搬送中に、各玉が他の物品にぶつかって損傷するといった問題が発生することを回避できる。
図1は、本発明の実施の形態の第1例に係るタンデムアンギュラ型玉軸受を示す半部断面図である。 図2は、第1例において、外輪の内周面および内輪の外周面のうち、断面形状の曲率半径を確保すべき部分を示すための半部断面図である。 図3は、第1例において、外輪の内周面および内輪の外周面のうち、外輪軌道および内輪軌道から外れた部分で表面を平滑にすべき部分を示すための半部断面図である。 図4は、第1例において、外輪を支持部に内嵌するのに先立って、この外輪の内径側に玉を組み付ける状態を示す半部断面図である。 図5は、第1例において、内径側に複数個の玉を組み付けた外輪を支持部に内嵌固定した後、これら各玉の内径側に、予めピニオン軸に外嵌固定した内輪を組み付ける状態を示す半部断面図である。 図6は、本発明の実施の形態の第2例に係るタンデムアンギュラ型玉軸受の第1例を示す断面図である。 図7は、第2例における、玉を保持した保持器の一部を示す断面図である。 図8は、第2例において、外輪側組立品を組み立てる状況を示す断面図である。 図9は、第2例において、外輪側組立品と内輪とを組み合わせてタンデムアンギュラ型玉軸受を完成させる状況を示す断面図である。 図10は、本発明の実施の形態の第3例に係るタンデムアンギュラ型玉軸受を示す断面図である。 図11は、第3例において、外輪側組立品を組み立てる状況を示す断面図である。 図12は、本発明の実施の形態の第4例に係るタンデムアンギュラ型玉軸受を示す断面図である。 図13は、第4例において、外輪側組立品を組み立てる状況を示す断面図である。 従来構造のタンデムアンギュラ型玉軸受を組み込んでいる、デファレンシャルギヤを構成するピニオン軸の回転支持部の1例を示す半部断面図である。 従来構造のタンデムアンギュラが他玉軸受の別の1例を示す断面図である。 図15の例において、内輪側組立品を組み立てる状況を示す断面図である。 図15の例において、外輪と内輪側組立品とを組み合わせてタンデムアンギュラ型玉軸受を完成させる状況を示す断面図である。
 [実施の形態の第1例]
 図1~5は、本発明の第1の態様に係る、実施の形態の第1例を示している。タンデムアンギュラ型玉軸受である本例の玉軸受1aは、外輪5bと、内輪6bと、複数個の玉7と、1対の保持器8、9とを備える。外輪5bは、内周面に、互いに内径が異なる、それぞれがアンギュラ型である2列の外輪軌道10、11を設けている。また、内輪6bは、外輪5bの内径側に外輪5bと同心に配置されており、外周面のうちで両外輪軌道10、11に対向する部分に、それぞれがアンギュラ型であって互いに外径が異なる、2列の内輪軌道12、13を設けている。運転時には、外輪5bと内輪6bとの間に、このうちの外輪5bを図1の左方に、内輪6bを同じく右方に、それぞれ押圧する方向のスラスト荷重が加わる。デファレンシャルギヤに組み込んだ状態では、内輪6bのうち外周面が大径である側が入力側となって、内輪6bに、図1~3、5で右向きのスラスト荷重が加わる。これに対して、外輪5bのうち内周面が小径である側がこのスラスト荷重の出力側となり、このスラスト荷重に対する反力として外輪5bに、図1~5で左向きの力が加わる。
両外輪軌道10、11の内径は、外輪5bに対する前記反力の作用方向前側(図1の左側)の外輪軌道10の方が大きく、同じく後側(図1の右側)の外輪軌道11の方が小さい。また、両内輪軌道12、13の外径は、内輪6bに対する前記スラスト荷重の作用方向後側(図1の左側)の内輪軌道12の方が大きく、同じく前側(図1の右側)の内輪軌道13の方が小さい。さらに、各玉7は、両外輪軌道10、11と両内輪軌道12、13との間に、それぞれの列毎に複数個ずつ、かつ、両列同士の間で同じ方向の接触角α、βを付与された状態で、転動自在に設けられている。すなわち、玉軸受1aは、並列組合せ型である。なお、接触角α、βは、同じでも、互いに異なっていてもよい。また、両保持器8、9は、互いに直径が異なり、それぞれが両列の玉7を転動自在に保持している。なお、この玉軸受1aの基本的構成については、図14に示した従来のタンデムアンギュラ型玉軸受1と同様である。
 特に、本例の玉軸受1aの場合には、外輪5bの内周面のうちで、内径が小さい外輪軌道11から、外輪5bの軸方向両端面のうちで内径が大きい側の端面23との連続部までの部分全体を、断面形状に関して微分不能な角部がなく、すなわち尖った角部がなく、滑らかに連続させ、かつ、研磨加工された平滑面としている。また、内輪6bの外周面のうちで、外径が大きい内輪軌道12から、内輪6bの軸方向両端面のうちで外径が小さい側の端面24との連続部までの部分全体を、断面形状に関して微分不能な角部がなく滑らかに連続させ、かつ、研磨加工された平滑面としている。なお、両端面23、24そのものは、必ずしも平滑面とする必要はないが、平滑面とすることは自由である。ただし、両端面23、24と外輪5bの内周面または内輪6bの外周面との連続部である、角部25a、25gは、何れも平滑面とする。
 上述の点について、図2~3を参照しつつ、さらに詳しく説明する。外輪5bの内周面のうちで両外輪軌道10、11部分、内輪6bの外周面のうちで両内輪軌道12、13部分は、従来から回転砥石による研磨加工を施して、平滑面としている。本発明では、この部分のみならず、従来の構造では、特に研磨加工などの特別な加工が施されることなく、粗面や尖った角部がそのまま残されていた、前記両周面のうちで各軌道10~13部分以外の部分についても、研磨加工を施して、平滑面としている。
 例えば、図2に破線の丸印で示した、外輪5bの内周面のうちの6箇所位置、内輪6bの外周面のうちの3箇所位置の、合計9箇所位置の角部25a~25iのうち、各軌道10、11、13の側縁部分に存在する角部25c、25d、25f、25h、25iに関しては、特別な加工が施されない限り、これら各軌道10、11、13を研磨加工する際に形成されるエッジ形状(断面形状が微分不能な尖端)がそのまま残される。また、残りの角部25a、25b、25e、25gに関しても、隣接する面を切削加工する際に形成されるエッジ形状がそのまま残される。要するに、特別な加工が施されない限り、何れの角部25a~25iにおいても、微分不能な形状、すなわち、ある1点に関して単一の接線を設定できない、断面形状の曲率半径がほぼ0である尖った形状がそのまま残されることになる。
 また、図3に鎖線の楕円印により示した、外輪5bの内周面、内輪6bの外周面の2箇所位置ずつ、合計4箇所位置の傾斜面部26a~26d、並びに、両外輪軌道10、11の大径側から連続する2箇所の円筒面部27a、27bに関しても、特別な加工が施されない限り、切削加工面や熱処理肌がそのまま残される。このような粗面は、玉軸受1の組立時に、玉7の転動面を損傷させる原因となりやすい。
 本例の場合、外輪5bの内周面および内輪6bの外周面に、両外輪軌道10、11部分および両内輪軌道12、13以外の部分まで研磨加工を施して、各傾斜面部26a~26dおよび各円筒面部27a、27bを平滑面としている。すなわち、各傾斜面部26a~26dおよび両円筒面部27a、27bにおける表面粗さを、算術平均粗さ(Ra)で約0.4μmとなる平滑面としている。なお、各傾斜面部26a~26dおよび両円筒面部27a、27bの表面粗さに関しては、後述するように、各軌道10~13と同時に研磨することを考慮して、上述のようにRa0.4μm程度としている。ただし、Ra0.6μm程度、さらにはRa0.8μm程度であっても、玉7の転動面の損傷防止の面では問題がない。表面粗さの値は、小さいほど、玉7の転動面の損傷防止や良質の軌道10~13を得る面からは好ましいが、過度に小さくしても、加工コストが嵩むだけになる。加工コストを考慮した場合、表面粗さRaを0.2μmよりも小さくすることは現実的ではない。
 各傾斜面部26a~26dおよび両円筒面部27a、27bを上述のような平滑面とすれば、これら各面部26a~26d、27a、27bと各玉7の転動面とが、多少強く擦れ合ったとしても、これら各玉7の転動面に、過度の寿命低下の原因となる程の損傷が生じることはない。なお、各面部26a~26d、27a、27bの表面粗さは、後述する超仕上加工前における、各軌道10~13の表面粗さと同じとすることが、加工の容易化の面からは好ましい。この理由については後述する。
 さらに、外輪5bの内周面のうちで、端面23から小径側の外輪軌道11までに存在する各面同士の間部分に存在する角部25a~25f、並びに、内輪6bの外周面のうちで、端面24から傾斜面部26dまでの間部分に存在する角部25g~25iに関しては、研磨加工により、断面形状の曲率半径が0.2mm以上である凸曲面であって、各面部26a~26d、27a、27bと同等の平滑面としている。各角部25a~25iの断面形状に関する曲率半径の上限値は特に規制されない。この曲率半径が大きい程、各玉7の転動面の損傷を防止する面からは有利になるが、徒に大きくしても、それ以上の損傷防止効果は期待できず、軌道面に隣接する角部25c、25d、25f、25h、25iに関しては、玉7の保持機能や転走面の幅寸法確保の面から弊害を生じる。従って、前記曲率半径の最大値は、これらの点や、場合によっては保持器8、9の形状や材質などを考慮して、設計的考慮により規制される。デファレンシャルギヤやトランスファ装置のピニオン軸支持用のタンデムアンギュラ型玉軸受の場合、1mmを超える程度まで曲率半径を大きくすることは、好ましくない。なお、各角部25a~25iの断面形状は、単一円弧でも、あるいは、互いに曲率半径の異なる複数の円弧を組み合わせて、滑らかに連続させた複合円弧でもよい。この場合、最も曲率半径が小さな円弧部分の曲率半径を0.2mm以上とする。
 各角部25a~25iの断面形状の曲率半径を大きくすることも合わせて、外輪5bの内周面および内輪6bの外周面の形状および性状(表面粗さ)を上述のようにする作業は、それぞれが加工すべき周面の母線形状と一致する母線形状を有する、いわゆる総型の回転砥石により行うことが好ましい。この理由は、当該周面の形状および性状を一挙に加工できて、加工能率を良好にできるだけでなく、当該周面を幅方向に分割して別々の砥石により加工する場合のように、分割部分に尖った段差などが生じる可能性をなくせるためである。このような理由で、総型の回転砥石により前記両周面に仕上げ加工を施すことが好ましいが、総型の回転砥石の場合、全幅にわたって同じ性状とすることが現実的である。このような理由から、各傾斜面26a~26dの表面粗さは、各軌道10~13の表面粗さと同じとすることが好ましい。なお、角部25b、25c同士の間部分、角部25e、25f同士の間部分に存在する円筒面部27a、27bについても、総型の回転砥石による加工を行い、同様の平滑面とする。この理由は、両円筒面部27a、27bに関しても、玉軸受1aの組み立て時に、各玉7の転動面と擦れ合うからである。
 また、各軌道10~12部分は、上述したように、表面粗さRaを0.4μm程度の平滑面とした後、超仕上げ加工を施す。この超仕上げ加工に伴って、また、各軌道10~12とこれら各軌道10~12に隣接する部分との境目に、断面形状に関して、極く僅かな曲がり部が形成される、すなわち、各軌道10~12に隣接する部分の母線が、これら各軌道10~12の断面形状の円弧に対し、完全には接線方向に存在しない状態となる可能性がある。ただし、このような曲がり部の曲がり角度、すなわち、前記完全な接線方向に対する前記母線の方向のずれは極めて小さく、前記曲がり部が各玉7の転動面に、過度の寿命低下の原因となる程の、傷などの損傷を与えることはない。従って、このような超仕上げ加工に伴って生じる曲がり部は、本発明の解釈においては、微分不能な角部とは扱われない。
 上述のような、本例のタンデムアンギュラ型玉軸受1aを、デファレンシャルケースの内部に設けられた支持部21aに設けた支持孔22aの内周面と、ピニオン軸3aの外周面との間(図5参照)に組み付けるには、最初に、図4に示すように、両列の玉7をそれぞれ保持器8、9に保持した状態で、外輪5bの内周面に設けた、複列の外輪軌道10、11の内径側に組み付ける。両外輪軌道10、11に隣接する、両円筒面部27a、27bの内径は、両外輪軌道10、11の底部(最も内径が大きくなった部分)の内径よりも、少しだけ小さくなっている。このため、両保持器8、9に保持された各玉7は、これら両保持器8、9を弾性変形させて、各玉7の外接円の直径を縮めつつ、前記大径側の端縁部を通過する。そして、通過後は、これら両保持器8、9の弾性的復元により各玉7の外接円の直径を拡げ、これら各玉7の転動面の一部を、両外輪軌道10、11に弾性的に当接させる。この結果、図5の右上部分に示すように、各玉7が外輪5bの内径側に、両保持器8、9を介して、不用意に分離しないように組み付けられる。従って、両円筒面部27a、27bの内径は、材質、厚さ、形状、寸法などにより定まる、両保持器8、9の弾性変形量などを考慮して、組み立て容易性と組み立て後の非分離性とを両立させられるように、設計的に定める。
 何れにしても、上述のような組み付け作業の際、各玉7が、外輪5bの内周面に存在する角部25a~25fや傾斜部26a、26bに突き当たったり擦れ合ったりする可能性がある。しかしながら、これら各角部25a~25fは、曲率半径が0.2mm以上の凸曲面であるし、両傾斜部26a、26bおよび両円筒面部27a、27bは平滑面であるから、各玉7の転動面が、過度の寿命低下の原因となる程の損傷を受けることはない。なお、このように、これら各玉7を外輪5bの内径側に組み付ける作業は、軸受の製造工場で行う。
 上述のように内径側に各玉7を組み付けた外輪5bは、デファレンシャルギヤの組立工場に運ばれ、図5の右上部分に示すように、支持孔22aに、締り嵌めで内嵌固定する。この内嵌固定作業は、外輪5bの大径側の端面23を押圧することにより行えるため、各玉7の転動面が両外輪軌道10、11に強く押し付けられることはなく、これら両外輪軌道10、11にブリネル圧痕が形成されることはない。
 このようにして、支持孔22aの内径側に外輪5bを内嵌固定したならば、次いで、この外輪5bの内径側に保持された各玉7の内径側に、内輪6bを挿入する。この内輪6bは、この挿入作業に先立って、図5の左下部分に示すように、ピニオン軸3aに、締り嵌めで外嵌固定しておく。このように各玉7の内径側に内輪6bを、図5に太矢印で示すように挿入する際に、これら各玉7が、この内輪6bの外周面に存在する角部25g~25iや傾斜面部26c、26dに突き当たったり擦れ合ったりする可能性がある。ただし、これら各角部25g~25iにしても、曲率半径が0.2mm以上の凸曲面であるし、両傾斜面部26c、26dにしても平滑面であるから、各玉7の転動面が、過度の寿命低下の原因となる程の損傷を受けることはない。
 これらにより、タンデムアンギュラ型玉軸受である本例の玉軸受1aを、支持部21aとピニオン軸3aとの間に組み付ける際に、各玉7の転動面に、過度の寿命低下の原因となる程の、傷などの損傷が発生することを防止できる。このため、玉軸受1aを組み込んだデファレンシャルギヤなどの運転時に、何れかの玉7の転動面の損傷に基づいて、過大な振動や騒音が発生することがなく、しかも、この玉軸受1aおよびこれを組み込んだデファレンシャルギヤなどの装置の耐久性を十分に確保できる。
[実施の形態の第2例]
 図6~9は、本発明の第2の態様に係る、実施の形態の第2例を示している。本例のタンデムアンギュラ型玉軸受は、外輪5cと、内輪6cと、大径側、小径側両保持器8a、9aと、大径側、小径側両玉列を構成する複数個の玉7とを備える。外輪5cは、内周面に、互いの内径が異なる、複列アンギュラ型の大径側、小径側両外輪軌道10、11を設けている。また、内輪6cは、外周面に、互いの外径が異なる、複列アンギュラ型の大径側、小径側両内輪軌道12、13を設けている。また、大径側、小径側両保持器8a、9aは、全体を円環状に構成すると共に、円周方向等間隔の複数箇所にポケット14a、15aを有する。また、大径側玉列を構成する各玉7は、大径側保持器8aの各ポケット14a内に保持された状態で、大径側外輪軌道10と大径側内輪軌道12との間に転動自在に設けられている。また、小径側玉列を構成する各玉7は、小径側保持器9aの各ポケット15a内に保持された状態で、小径側外輪軌道11と小径側内輪軌道13との間に転動自在に設けられている。また、この状態で、大径側玉列を構成する各玉7と小径側玉列を構成する各玉7とに、互いに同じ向きの(並列組み合わせ型の)接触角が付与されている。これら両列の接触角θ1、θ2の大きさは、同じにする(θ1=θ2)こともできるし、異ならせる(θ1≠θ2)こともできる。以上に述べた、タンデムアンギュラ型玉軸受の基本的構成については、従来構造と同様である。
 特に、本例の場合、前記外輪5cは、大径側、小径側両外輪軌道10、11の軸方向両側に、それぞれ溝肩部16a、16b、17a、17bを設けている。これに対して、前記内輪6cは、大径側、小径側両内輪軌道12、13の軸方向片側(軸方向に関して「片側」とは、図6、8~13の左側をいう。反対に、図6、8~13の右側を、軸方向に関して「他側」という。)にのみ溝肩部18a、19aを設けており、軸方向他側には溝肩部を設けていない。また、大径側、小径側両保持器8a、9aは、各ポケット14a、15a内に各玉7を保持した状態で、これら各玉7がこれら各ポケット14a、15a内から少なくとも内径側に抜け出ることを阻止できる構成を有している。具体的には、図7に詳示するように、大径側、小径側両保持器8a(9a)の各ポケット14a(15a)の内径側の開口幅(開口部直径)Wを、各玉7の直径Dよりも少しだけ小さく(W<D)している。これにより、これら各ポケット14a(15a)の内径側の開口周縁部に、(D-W)/2弱(「弱」はポケット隙間による)の幅寸法を有する係り代32を、全周にわたって設けている。
 上述のように構成するタンデムアンギュラ型玉軸受を組み立てる場合には、まず、図8に実線で示すような、外輪側組立品33を組み立てる。このために、最初に、同図に鎖線で示すように、各玉7を、大径側、小径側両保持器8a、9aの各ポケット14a、15a内に保持する。なお、この大径側保持器8aの各ポケット14a内に保持されている各玉7を、この大径側保持器8aを弾性変形させることなく、この大径側保持器8aの内径側に最も寄せた状態での、これら各玉7の外接円の直径は、少なくとも大径側外輪軌道10の軸方向両側部分に存在する溝肩部16a、16bの内径よりも大きい。また、小径側保持器9aの各ポケット15a内に保持されている各玉7を、この小径側保持器9aを弾性変形させることなく、この小径側保持器9aの内径側に最も寄せた状態での、これら各玉7の外接円の直径は、少なくとも小径側外輪軌道11の軸方向両側に存在する溝肩部17a、17bの内径よりも大きい。
 何れにしても、上述のように各玉7を大径側、小径側両保持器8a、9aの各ポケット14a、15a内に保持したならば、次いで、同図に矢印で示すように、これら大径側、小径側両保持器8a、9aに保持された各玉7を、外輪5cの内径側に、この外輪5cの軸方向片側から挿入する。これにより、同図に実線で示すように、大径側、小径側両保持器8a、9aに保持された各玉7を、大径側、小径側両外輪軌道10、11の内径側に組み付ける。この際に、大径側、小径側両保持器8a、9aに保持された各玉7は、これら大径側、小径側両保持器8a、9aを弾性変形させて、これら各玉7の外接円の直径を縮めつつ、各溝肩部16a、16b、17aを通過する。そして、通過後は、大径側、小径側両保持器8a、9aの弾性的復元により各玉7の外接円の直径が拡がり、これら各玉7が大径側、小径側両外輪軌道10、11の内径側に組み付けられた状態となる。
 このようにして外輪側組立品33を完成させた状態で、大径側、小径側両保持器8a、9aに保持された各玉7は、これら大径側、小径側両保持器8a、9aの各ポケット14a、15a内から内径側に抜け出ることを阻止されており、かつ、大径側、小径側両外輪軌道10、11の内側から軸方向に抜け出ることを、各溝肩部16a、16b、17a、17bによって阻止されている。このため、外輪5cと大径側、小径側両保持器8a、9aと各玉7とは、外輪側組立品33として一体的に取り扱うことが可能となる。このような外輪側組立品33を組み立てたならば、その後、図9に矢印で示すように、この外輪側組立品33の内径側に内輪6cを、この外輪側組立品33の軸方向片側から挿入する。これにより、図6に示すように、大径側、小径側両保持器8a、9aに保持された各玉7を、大径側、小径側両内輪軌道12、13の外径側に組み付けることによって、タンデムアンギュラ型玉軸受の組み立てを完了する。なお、本例の場合、大径側、小径側両内輪軌道12、13の軸方向他側部分には、それぞれ溝肩部が存在しないため、上述のような内輪6cの挿入作業は、円滑に行える。
 上述のように構成する本例のタンデムアンギュラ型玉軸受によれば、このタンデムアンギュラ型玉軸受を、外輪側組立品33と内輪6cとの、2つの要素に分けて取り扱える。このため、この外輪側組立品33を軸受メーカーで組み立ててから出荷すれば、デファレンシャル装置などの各種回転機械装置の組立現場で、前記タンデムアンギュラ型玉軸受を使用箇所に組み付ける作業を容易に行える。
 例えば、本例のタンデムアンギュラ型玉軸受を、デファレンシャル装置を構成するピニオン軸の先端寄り(ピニオンギヤ寄り)部分を支持する転がり軸受として使用する場合には、外輪側組立品33を組み立てた状態で、外輪5cを、デファレンシャルケース内に設けた支持孔22に締り嵌めで内嵌すると共に、内輪6cを、ピニオン軸3の先端寄り部分に締り嵌めで外嵌する。この場合に、外輪5cは、この外輪5cの軸方向端面を押圧することによって、前記支持孔22に締り嵌めで内嵌することができる。このため、この内嵌作業に伴って、大径側、小径側両外輪軌道10、11のうち各玉7が接触している部分に圧痕が形成されることはない。その後、外輪側組立品33の内径側に内輪6cを、前述の図9に示すように挿入することによって、本例のタンデムアンギュラ型玉軸受を、支持孔22とピニオン軸3との間に、容易に組み付けることができる。
 また、本例のタンデムアンギュラ型玉軸受の場合には、大径側、小径側両外輪軌道10、11の軸方向両側に、それぞれ溝肩部16a、16b、17a、17bを設けている。このため、例えば、一部のデファレンシャル装置のように、運転時にのみ軸受に潤滑油が供給される装置に、本例のタンデムアンギュラ型玉軸受を組み付けて使用する場合には、運転の停止時に、大径側、小径側両外輪軌道10、11の下端部に、潤滑油が溜まったままの状態にできる。このため、運転を再開した際に、これら両下端部に溜まった潤滑油によって、両列の初期潤滑を良好にできる。
[実施の形態の第3例]
 図10~11は、本発明の第2の態様に係る、本発明の実施の形態の第3例を示している。本例の場合には、外輪5dおよび大径側保持器8bの一部の形状が、上述した第2例の場合と異なる。すなわち、この外輪5dは、大径側外輪軌道10の軸方向両側部分、および、小径側外輪軌道11の軸方向他側部分にのみ、それぞれ溝肩部16a、16b、17bを設けており、小径側外輪軌道11の軸方向片側部分には、溝肩部を設けていない。また、大径側保持器8bは、軸方向他端部に内向フランジ状の鍔部34を形成し、この鍔部34の外側面を小径側保持器9aの軸方向片端面に、軸方向に対向させている。
 上述のような本例のタンデムアンギュラ型玉軸受を組み立てる場合には、まず、図11に実線で示すような、外輪側組立品33aを組み立てる。このために、最初に、同図に鎖線で示すように、各玉7を、大径側、小径側両保持器8b、9aの各ポケット14a、15a内に保持する。次いで、同図に矢印で示すように、これら大径側、小径側両保持器8b、9aに保持された各玉7を、外輪5dの内径側に、この外輪5dの軸方向片側から挿入する。これにより、同図に実線で示すように、大径側、小径側両保持器8b、9aに保持された各玉7を、大径側、小径側両外輪軌道10、11の内径側に組み付ける。この際に、小径側保持器9aに保持された各玉7は、各溝肩部16a、16bの存在に拘らず、小径側外輪軌道11の内径側に、円滑に挿入することができる。これに対して、大径側保持器8bに保持された各玉7は、この大径側保持器8bを弾性変形させて、これら各玉7の外接円の直径を縮めつつ、溝肩部16aを通過する。そして、通過後は、大径側保持器8bの弾性的復元により各玉7の外接円の直径が拡がり、これら各玉7が大径側外輪軌道10の内径側に組み付けられた状態となる。
 このようにして外輪側組立品33aを完成させた状態で、大径側、小径側両保持器8b、9aに保持された各玉7は、これら大径側、小径側両保持器8b、9aの各ポケット14a、15a内から内径側に抜け出ることを阻止される。また、大径側保持器8bに保持された各玉7は、大径側外輪軌道10の内側から軸方向に抜け出ることを、この大径側外輪軌道10の軸方向両側に存在する溝肩部16a、16bによって阻止される。また、小径側保持器9aに保持された各玉7は、小径側外輪軌道11の内側から軸方向片側に抜け出ることを、小径側保持器9aの軸方向片端面が大径側保持器8bの鍔部34の外側面に当接(係合)することによって阻止されると共に、同じく軸方向他側に抜け出ることを、小径側外輪軌道11の軸方向他側に存在する溝肩部17bによって阻止される。従って、外輪5dと、大径側、小径側両保持器8b、9aと、各玉7とを、外輪側組立品33aとして一体的に取り扱うことができる。このような外輪側組立品33aを組み立てたならば、その後、この外輪側組立品33aの内径側に内輪6cを、この外輪側組立品33aの軸方向片側から挿入する。これにより、図10に示すように、大径側、小径側両保持器8b、9aに保持された各玉7を、大径側、小径側両内輪軌道12、13の外径側に組み付けることによって、タンデムアンギュラ型玉軸受の組み立てを完了する。
 上述のように構成する本例のタンデムアンギュラ型玉軸受の場合も、このタンデムアンギュラ型玉軸受を、外輪側組立品33aと内輪6cとの、2つの要素に分けて取り扱える。このため、この外輪側組立品33aを軸受メーカーで組み立ててから出荷すれば、デファレンシャル装置等の各種回転機械装置の組立現場で、前記タンデムアンギュラ型玉軸受を使用箇所に組み付ける作業を容易に行える。
 また、本例のタンデムアンギュラ型玉軸受の場合には、大径側外輪軌道10の軸方向両側に、それぞれ溝肩部16a、16bを設けている。このため、例えば、一部のデファレンシャル装置のように、運転時にのみ軸受に潤滑油が供給される装置に、本例のタンデムアンギュラ型玉軸受を組み付けて使用する場合には、運転の停止時に、大径側外輪軌道10の下端部に、潤滑油が溜まったままの状態にできる。従って、運転を再開した際の両列の初期潤滑が良好になる。すなわち、大径側外輪軌道10を含む列に関しては、この大径側外輪軌道10の下端部に溜まった潤滑油によって、当該列の初期潤滑を良好にできる。一方、小径側外輪軌道11を含む列に関しては、運転の再開と同時に、大径側外輪軌道10の下端部に溜まった潤滑油の一部が、この大径側外輪軌道10部分を転走する玉7により押されて外部に溢れ出し、これが小径側外輪軌道11に入り込むことで、当該列の初期潤滑が良好になる。その他の構成および作用は、上述した第2例の場合と同様である。
[実施の形態の第4例]
 図12~13は、本発明に第2態様に係る、実施の形態の第4例を示している。本例の場合には、外輪5eおよび大径側、小径側両保持器8c、9cの一部の形状が、前述の図6~9に示した第2例の場合と異なる。すなわち、外輪5eは、大径側外輪軌道10の軸方向他側部分、および、小径側外輪軌道11の軸方向両側部分にのみ、それぞれ溝肩部16b、17a、17bを設けており、大径側外輪軌道10の軸方向片側部分には、溝肩部を設けていない。また、大径側保持器8cは、内周面の軸方向他端部に内向係合部35を、全周にわたって設けている。また、小径側保持器9cは、外周面の軸方向片端部に外向係合部36を、全周にわたって設けている。そして、この外向係合部36と内向係合部35とを、これら両係合部35、36の内側面同士が対向する状態で係合させている。
 上述のような本例のタンデムアンギュラ型玉軸受を組み立てる場合には、まず、図13に実線で示すような、外輪側組立品33bを組み立てる。このために、最初に、同図に鎖線で示すように、大径側保持器8cの内向係合部35と小径側保持器9cの外向係合部36とを係合させた状態で、これら大径側、小径側両保持器8c、9cの各ポケット14a、15a内に、各玉7を保持する。次いで、同図に矢印で示すように、これら大径側、小径側両保持器8c、9cに保持された各玉7を、外輪5eの内径側に、この外輪5eの軸方向片側から挿入する。これにより、同図に実線で示すように、大径側、小径側両保持器8c、9cに保持された各玉7を、大径側、小径側両外輪軌道10、11の内径側に組み付ける。この際に、小径側保持器9cに保持された各玉7は、この小径側保持器9cを弾性変形させて、これら各玉7の外接円の直径を縮めつつ、溝肩部17aを通過する。そして、通過後は、小径側保持器9cの弾性的復元により各玉7の外接円の直径が拡がり、これら各玉7が小径側外輪軌道11の内径側に組み付けられた状態となる。これに対して、大径側保持器8cに保持された各玉7は、大径側外輪軌道10の内径側に、円滑に挿入することができる。
 このようにして外輪側組立品33bを完成させた状態で、大径側、小径側両保持器8c、9cに保持された各玉7は、これら大径側、小径側両保持器8c、9cの各ポケット14a、15a内から内径側に抜け出ることを阻止される。また、小径側保持器9cに保持された各玉7は、小径側外輪軌道11の内側から軸方向に抜け出ることを、この小径側外輪軌道11の軸方向両側に存在する溝肩部17a、17bによって阻止される。また、大径側保持器8cに保持された各玉7は、大径側外輪軌道10の内側から軸方向片側に抜け出ることを、大径側保持器8cの内向係合部35と小径側保持器9cの外向係合部36とが係合していることによって阻止されると共に、同じく軸方向他側に抜け出ることを、大径側外輪軌道10の軸方向他側に存在する溝肩部16bによって阻止される。従って、外輪5eと、大径側、小径側両保持器8c、9cと、各玉7とを、外輪側組立品33bとして一体的に取り扱うことができる。このような外輪側組立品33bを組み立てたならば、その後、この外輪側組立品33bの内径側に内輪6aを、この外輪側組立品33bの軸方向片側から挿入する。これにより、図12に示すように、大径側、小径側両保持器8c、9cに保持された各玉7を、大径側、小径側両内輪軌道10、11の外径側に組み付けることによって、タンデムアンギュラ型玉軸受の組み立てを完了する。
 上述のように構成する本例のタンデムアンギュラ型玉軸受の場合も、このタンデムアンギュラ型玉軸受を、外輪側組立品33bと内輪6aとの、2つの要素に分けて取り扱える。このため、この外輪側組立品33bを軸受メーカーで組み立ててから出荷すれば、デファレンシャル装置などの各種回転機械装置の組立現場で、前記タンデムアンギュラ型玉軸受を使用箇所に組み付ける作業を容易に行える。
 また、本例のタンデムアンギュラ型玉軸受の場合には、小径側外輪軌道11の軸方向両側に、それぞれ溝肩部17a、17bを設けている。このため、例えば、一部のデファレンシャル装置のように、運転時にのみ軸受に潤滑油が供給される装置に、本例のタンデムアンギュラ型玉軸受を組み付けて使用する場合には、運転の停止時に、小径側外輪軌道11の下端部に、潤滑油が溜まったままの状態にできる。従って、運転を再開した際の両列の初期潤滑が良好になる。すなわち、小径側外輪軌道11を含む列に関しては、この小径側外輪軌道11の下端部に溜まった潤滑油によって、当該列の初期潤滑を良好にできる。一方、大径側外輪軌道10を含む列に関しては、運転の再開と同時に、小径側外輪軌道11の下端部に溜まった潤滑油の一部が、この小径側外輪軌道11を転走する各玉7に押されて外部に溢れ出し、これが大径側外輪軌道10に入り込むことで、当該列の初期潤滑が良好になる。その他の構成および作用は、前述の図6~9に示した第2例の場合と同様である。
 なお、上述した各実施の形態では、大径側、小径側両保持器として、本体部分、すなわち各玉を保持する部分の形状が円筒状であるものを採用した。ただし、本発明を実施する場合に、大径側、小径側両保持器として、本体部分の形状が非円筒状のもの、例えば、部分円すい筒状のものも採用することができる。
 本発明は、自動車用のデファレンシャルギヤ、トランスファ装置などの自動車用駆動系に組み込まれる装置に限らず、各種回転機械装置に組み込まれて、ラジアル荷重およびスラスト荷重が加わった状態で回転する回転軸を支承するためのタンデムアンギュラ型玉軸受に適用できる。また、組立順序に関しても、特に明示されている場合を除き、図示の例に限らず、前述した特許文献3に記載されているように、各玉および保持器を内輪の外径側に組み付けた状態で、この内輪をピニオン軸などの回転軸に外嵌固定し、その後、ハウジングなどに内嵌固定した外輪を、各玉の周囲に組み付けることもできる。さらには、外輪、内輪などの軌道輪を相手部材に嵌合固定してから、当該軌道輪の内径側または外径側に玉を、保持器と共に組み付けることもできる。
 1、1a 玉軸受
 2    玉軸受
 3、3a ピニオン軸
 4    ピニオンギヤ
 5、5a~5e 外輪
 6、6a~6c 内輪
 7    玉
 8、8a~8c 大径側保持器
 9、9a、9c 小径側保持器
 10  大径側外輪軌道
  11  小径側外輪軌道
  12  大径側内輪軌道
  13  小径側内輪軌道
  14、14a ポケット
  15、15a ポケット
  16a、16b 溝肩部
  17a、17b 溝肩部
  18a、18b 溝肩部
  19a、19b 溝肩部
  21、21a  支持部
  22、22a  支持孔
  23  端面
  24  端面
  25a~25j 角部
  26a~26d 傾斜面部
  27a、27b 円筒面部
  31  内輪側組立品
  32  係り代
  33、33a、33b 外輪側組立品
  34  鍔部
  35  内向係合部
  36  外向係合部

Claims (6)

  1.  内周面に互いに内径が異なる2列の外輪軌道を設けた外輪と、該外輪の内径側に該外輪と同心に配置され、外周面に互いに外径が異なる2列の内輪軌道を設けた内輪と、前記両内輪軌道と前記両外輪軌道との間に、それぞれの列毎に複数個ずつ、両列同士の間で同じ方向の接触角を付与された状態で転動自在に設けられた玉とを備えたタンデムアンギュラ型玉軸受において、
     前記外輪の内周面のうちで、内径が小さい外輪軌道から、該外輪の軸方向両端面のうちで内径が大きい側の端面との連続部までの部分全体、および、前記内輪の外周面のうちで、外径が大きい内輪軌道から、該内輪の軸方向両端面のうちで外径が小さい側の端面との連続部までの部分全体が、断面形状に関して微分不能な角部を有さず、かつ、研磨加工された平滑面となっていることを特徴とする、タンデムアンギュラ型玉軸受。
  2.  内周面の軸方向片側に直径が相対的に大きい大径側外輪軌道を、同じく軸方向他側に直径が相対的に小さい小径側外輪軌道を、それぞれ有する外輪と、外周面の軸方向片側に直径が相対的に大きい大径側内輪軌道を、同じく軸方向他側に直径が相対的に小さい小径側内輪軌道を、それぞれ有する内輪と、円周方向複数箇所にポケットを有する、直径が相対的に大きい円環状の大径側保持器と、円周方向複数箇所にポケットを有する、直径が相対的に小さい円環状の小径側保持器と、前記大径側保持器の各ポケット内に保持された状態で、前記大径側外輪軌道と前記大径側内輪軌道との間に転動自在に設けられた、大径側玉列を構成する複数個の玉と、前記小径側保持器の各ポケット内に保持された状態で、前記小径側外輪軌道と前記小径側内輪軌道との間に転動自在に設けられた、小径側玉列を構成する複数個の玉とを備え、前記大径側玉列を構成する各玉と前記小径側玉列を構成する各玉とに、互いに同じ向きの接触角が付与されているタンデムアンギュラ型玉軸受において、
     前記外輪が、前記大径側外輪軌道の軸方向片側部分と前記小径側外輪軌道の軸方向片側部分とのうちの少なくとも一方の部分と、前記大径側外輪軌道の軸方向他側部分と、前記小径側外輪軌道の軸方向他側部分とに、それぞれ溝肩部を備えていることを特徴とする、タンデムアンギュラ型玉軸受。
  3.  前記外輪は、前記大径側外輪軌道の軸方向両側部分、および、前記小径側外輪軌道の軸方向両側部分に、それぞれ溝肩部を備えており、前記内輪は、前記大径側内輪軌道の軸方向片側部分、および、前記小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えると共に、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分には、それぞれ溝肩部を備えておらず、前記大径側保持器および前記小径側保持器は、前記各ポケット内に前記各玉を保持した状態で、該各ポケット内から該各玉が内径側に抜け出ることを阻止できる形状を備える、請求項2に記載したタンデムアンギュラ型玉軸受。
  4.  前記外輪は、前記大径側外輪軌道の軸方向両側部分、および、前記小径側外輪軌道の軸方向他側部分に、それぞれ溝肩部を備えると共に、前記小径側外輪軌道の軸方向片側部分に溝肩部を備えておらず、前記内輪は、前記大径側内輪軌道の軸方向片側部分、および、前記小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えると共に、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分に、それぞれ溝肩部を備えておらず、前記大径側保持器および前記小径側保持器は、前記各ポケット内に前記各玉を保持した状態で、該各ポケット内から該各玉が内径側に抜け出ることを阻止でき、かつ、前記外輪と該大径側保持器および該小径側保持器と前記各玉とを玉軸受としての完成状態と同じ位置関係で組み合わせてなる、外輪側組立品を構成した状態で、互いに近い側の端部同士が軸方向に関して対向する形状を備える、請求項2に記載したタンデムアンギュラ型玉軸受。
  5.  前記外輪は、前記大径側外輪軌道の軸方向他側部分、および、前記小径側外輪軌道の軸方向両側部分に、それぞれ溝肩部を備えると共に、前記大径側外輪軌道の軸方向片側部分に、溝肩部を備えておらず、前記内輪は、前記大径側内輪軌道の軸方向片側部分、および、前記小径側内輪軌道の軸方向片側部分に、それぞれ溝肩部を備えると共に、前記大径側内輪軌道の軸方向他側部分、および、前記小径側内輪軌道の軸方向他側部分に、それぞれ溝肩部を備えておらず、前記大径側保持器および前記小径側保持器は、前記各ポケット内に前記各玉を保持した状態で、該各ポケット内から該各玉が内径側に抜け出ることを阻止でき、かつ、前記外輪と前記大径側保持器および前記小径側保持器と前記各玉とを玉軸受としての完成状態と同じ位置関係で組み合わせてなる、外輪側組立品を構成した状態で、互いの一部同士が係合し、軸方向に関して互いに離れる方向に変位することを阻止できる形状を備える、請求項2に記載したタンデムアンギュラ型玉軸受。
  6.  自動車の動力伝達系統に組み込まれる機械装置を構成する回転軸を回転自在に支持すると共に、該回転軸に作用するラジアルおよびアキシアル両方向の荷重を支承するために使用される、請求項1~5のうちの何れか1項に記載したタンデムアンギュラ型玉軸受。
PCT/JP2010/070667 2009-11-20 2010-11-19 タンデムアンギュラ型玉軸受 WO2011062257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/059,414 US20110222807A1 (en) 2009-11-20 2010-11-19 Tandem angular ball bearing
CN201080002229.9A CN102171470B (zh) 2009-11-20 2010-11-19 串联角接触球轴承
EP10807579.7A EP2503169B1 (en) 2009-11-20 2010-11-19 Tandem angular type ball bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009265212A JP5600927B2 (ja) 2009-11-20 2009-11-20 タンデムアンギュラ型玉軸受
JP2009264632A JP5600926B2 (ja) 2009-11-20 2009-11-20 タンデム型複列アンギュラ玉軸受
JP2009-264632 2009-11-20
JP2009-265212 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011062257A1 true WO2011062257A1 (ja) 2011-05-26

Family

ID=44059729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070667 WO2011062257A1 (ja) 2009-11-20 2010-11-19 タンデムアンギュラ型玉軸受

Country Status (4)

Country Link
US (1) US20110222807A1 (ja)
EP (1) EP2503169B1 (ja)
CN (1) CN102171470B (ja)
WO (1) WO2011062257A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330148B2 (en) 2014-02-26 2019-06-25 Airbus Helicopters Deutschland GmbH Bearing arrangement with a first bearing layer and a second bearing layer
WO2023135668A1 (ja) * 2022-01-12 2023-07-20 株式会社ジェイテクト 玉軸受

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720262B2 (ja) * 2011-01-20 2015-05-20 株式会社ジェイテクト 車輪用転がり軸受装置
CN102434576A (zh) * 2011-11-25 2012-05-02 常熟长城轴承有限公司 新型角接触球轴承
DE102013203981B4 (de) * 2013-03-08 2014-12-24 Aktiebolaget Skf Zweireihiges Schrägkugellager
US9926974B2 (en) 2015-06-19 2018-03-27 Aktiebolaget Skf Roller bearing, in particular for a vehicle steering system or for a vehicle wheel hub assembly
DE102015014087B4 (de) * 2015-11-03 2017-11-09 Sew-Eurodrive Gmbh & Co Kg Getriebe
US10391645B2 (en) * 2015-11-25 2019-08-27 Southern Grind, Inc. Multi-track bearing folding knife
JP6712718B2 (ja) * 2016-03-17 2020-06-24 日東電工株式会社 光導波路
JP2018017382A (ja) * 2016-07-29 2018-02-01 日本精工株式会社 玉軸受

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501278A (ja) * 1984-02-20 1986-06-26 ヤ−コプ、ウエルナ− 片方向に負荷可能な複列アンギユラ玉軸受
JPH01148805A (ja) 1987-12-07 1989-06-12 Nichibi:Kk 貴金属コロイド含有繊維およびその製法
JP2002523710A (ja) 1998-08-29 2002-07-30 イナーシエツフレル コマンディートゲゼルシャフト 自動車用トランスファー
JP2003148459A (ja) * 2001-11-08 2003-05-21 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2003232346A (ja) * 2001-12-04 2003-08-22 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2004124996A (ja) 2002-09-30 2004-04-22 Koyo Seiko Co Ltd 複列玉軸受用組品
JP2004169890A (ja) 2002-11-22 2004-06-17 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2004183745A (ja) 2002-12-02 2004-07-02 Koyo Seiko Co Ltd 複列玉軸受
JP2004245231A (ja) * 2002-12-19 2004-09-02 Koyo Seiko Co Ltd 玉軸受
JP2007263266A (ja) * 2006-03-29 2007-10-11 Jtekt Corp ピニオン軸支持用転がり軸受装置
JP2008138841A (ja) * 2006-12-05 2008-06-19 Ntn Corp タンデム型複列アンギュラ玉軸受
WO2009012763A2 (de) * 2007-07-25 2009-01-29 Schaeffler Kg Schrägkugellager in tandemanordnung sowie lageranordnung mit dem schrägkugellager
JP2009138795A (ja) 2007-12-04 2009-06-25 Jtekt Corp 複列アンギュラ玉軸受

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1325113A (en) * 1919-12-16 Ball-bearing
US918422A (en) * 1906-11-24 1909-04-13 Evans Coppins & Starks Company Ball-bearing.
EP0172204A1 (de) * 1984-02-20 1986-02-26 Werner Jacob Einseitig belastbares doppelschrägkugellager
JPS6350486Y2 (ja) * 1984-09-13 1988-12-26
DE4037270A1 (de) * 1990-11-23 1992-05-27 Kugelfischer G Schaefer & Co Zweireihiges schraegwaelzlager
JP3062674B2 (ja) * 1994-05-10 2000-07-12 光洋精工株式会社 波形保持器
EP1443228B1 (en) * 2001-11-08 2011-03-30 JTEKT Corporation Bearing device for supporting pinion shaft
JP2003314541A (ja) * 2002-04-19 2003-11-06 Koyo Seiko Co Ltd 複列転がり軸受
DE10239742B4 (de) * 2002-05-10 2011-07-28 Schaeffler Technologies GmbH & Co. KG, 91074 Einseitig belastbares Doppelschrägkugellager
WO2004007219A1 (ja) * 2002-07-15 2004-01-22 Nsk Ltd. 車輪支持用転がり軸受ユニット
JP4489672B2 (ja) * 2005-09-20 2010-06-23 Ntn株式会社 車輪用軸受装置
WO2007037477A1 (ja) * 2005-09-30 2007-04-05 Ntn Corporation 車輪用軸受装置
EP1947355B1 (en) * 2005-10-27 2013-11-27 NTN Corporation Bearing device for wheel
JP2007120594A (ja) * 2005-10-27 2007-05-17 Ntn Corp 車輪用軸受装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501278A (ja) * 1984-02-20 1986-06-26 ヤ−コプ、ウエルナ− 片方向に負荷可能な複列アンギユラ玉軸受
JPH01148805A (ja) 1987-12-07 1989-06-12 Nichibi:Kk 貴金属コロイド含有繊維およびその製法
JP2002523710A (ja) 1998-08-29 2002-07-30 イナーシエツフレル コマンディートゲゼルシャフト 自動車用トランスファー
JP2003148459A (ja) * 2001-11-08 2003-05-21 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2003232346A (ja) * 2001-12-04 2003-08-22 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2004124996A (ja) 2002-09-30 2004-04-22 Koyo Seiko Co Ltd 複列玉軸受用組品
JP2004169890A (ja) 2002-11-22 2004-06-17 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2004183745A (ja) 2002-12-02 2004-07-02 Koyo Seiko Co Ltd 複列玉軸受
JP2004245231A (ja) * 2002-12-19 2004-09-02 Koyo Seiko Co Ltd 玉軸受
JP2007263266A (ja) * 2006-03-29 2007-10-11 Jtekt Corp ピニオン軸支持用転がり軸受装置
JP2008138841A (ja) * 2006-12-05 2008-06-19 Ntn Corp タンデム型複列アンギュラ玉軸受
WO2009012763A2 (de) * 2007-07-25 2009-01-29 Schaeffler Kg Schrägkugellager in tandemanordnung sowie lageranordnung mit dem schrägkugellager
JP2009138795A (ja) 2007-12-04 2009-06-25 Jtekt Corp 複列アンギュラ玉軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503169A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330148B2 (en) 2014-02-26 2019-06-25 Airbus Helicopters Deutschland GmbH Bearing arrangement with a first bearing layer and a second bearing layer
WO2023135668A1 (ja) * 2022-01-12 2023-07-20 株式会社ジェイテクト 玉軸受

Also Published As

Publication number Publication date
CN102171470A (zh) 2011-08-31
CN102171470B (zh) 2015-08-19
US20110222807A1 (en) 2011-09-15
EP2503169A4 (en) 2013-10-23
EP2503169A1 (en) 2012-09-26
EP2503169B1 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
WO2011062257A1 (ja) タンデムアンギュラ型玉軸受
JP5375969B2 (ja) ピニオン軸用回転支持装置
EP2952763B1 (en) Multipoint contact ball bearing
JP6497833B2 (ja) 保持器付き針状ころ
WO2010147135A1 (ja) 車輪用軸受
JP2008180246A (ja) 円すいころ軸受
JP4661424B2 (ja) 回転支持部
JP2007278406A (ja) 保持器付ころ軸受
JP5600927B2 (ja) タンデムアンギュラ型玉軸受
JP2011094716A (ja) スラストころ軸受
JP5862162B2 (ja) タンデムアンギュラ型玉軸受
JP6472671B2 (ja) 円すいころ軸受
JP2008002503A (ja) スラストころ軸受
JP2005214330A (ja) 四点接触玉軸受およびその製造方法
JP5810627B2 (ja) タンデムアンギュラ型玉軸受及びタンデムアンギュラ型玉軸受用外輪側組立品
JP2011085153A (ja) 転がり軸受
WO2017208908A1 (ja) ころ軸受
JP5600926B2 (ja) タンデム型複列アンギュラ玉軸受
JP2008202755A (ja) 転がり軸受
JP6236754B2 (ja) タンデム型複列アンギュラ玉軸受、デファレンシャル装置、及び、自動車
WO2024111513A1 (ja) 保持器、その保持器を用いた保持器付き針状ころ及び軸受装置
EP3940252A1 (en) Rolling bearing
JP6051725B2 (ja) 自動車のデファレンシャル用のタンデム型複列アンギュラ玉軸受
JP2008014414A (ja) スラストころ軸受
JP2008025591A (ja) スラストころ軸受用保持器の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002229.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010807579

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059414

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE