WO2021039532A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2021039532A1
WO2021039532A1 PCT/JP2020/031268 JP2020031268W WO2021039532A1 WO 2021039532 A1 WO2021039532 A1 WO 2021039532A1 JP 2020031268 W JP2020031268 W JP 2020031268W WO 2021039532 A1 WO2021039532 A1 WO 2021039532A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
diameter side
oil
groove
cage
Prior art date
Application number
PCT/JP2020/031268
Other languages
English (en)
French (fr)
Inventor
誠 前佛
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2021039532A1 publication Critical patent/WO2021039532A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Definitions

  • the present invention relates to a tapered roller bearing, and more particularly to a tapered roller bearing in which lubricating oil is supplied to the inside of the bearing.
  • an outer ring 111 having an outer ring raceway surface 111a on the inner peripheral surface
  • an inner ring 112 having an inner ring raceway surface 112a on the outer peripheral surface
  • an outer ring raceway surface 111a It is known that a plurality of tapered rollers 113 provided so as to be rollable between the inner ring raceway surface 112a and a cage 114 for holding the plurality of tapered rollers 113 at substantially equal intervals in the circumferential direction ( For example, see Patent Document 1).
  • the cage 114 includes a large diameter side annular portion 115, a small diameter side annular portion 116 arranged coaxially with the large diameter side annular portion 115, and a large diameter side annular portion 115 and a small diameter side annular portion 116.
  • the large-diameter annulus 115 and the small-diameter annulus 116 are between a plurality of pillars 117 provided at substantially equal intervals in the circumferential direction and pillars 117 adjacent to each other in the circumferential direction. It has a pocket 118, which is formed by being surrounded by a conical roller 113 and holds the cone 113 in a rollable manner.
  • the tapered roller 113 is provided on a rolling surface 113a provided on the peripheral surface of the tapered roller 113, a large-diameter side end surface 113b provided on the large-diameter side end of the tapered roller 113, and a small-diameter side end of the tapered roller 113. It has a small diameter side end surface 113c provided.
  • the radial width of the oil groove 120 is set to 1/3 of the radial width of the large diameter side annular portion 115. That is, for example, when the radial width of the large diameter side annular portion 115 is 9 mm, the radial width of the oil groove 120 is 3 mm. In this case, since the oil groove 120 alone cannot generate the capillary phenomenon and hold the lubricating oil, it is necessary to cover the oil groove 120 with the tapered rollers 113 as described in Patent Document 1 above. there were.
  • the large-diameter side end surface of the tapered roller is described as a flat surface, but as shown in FIGS. 23 to 25, the large-diameter side end surface 113b of the tapered roller 113 has a convex spherical shape.
  • a recess 113d may be formed in the center of the large-diameter side end surface 113b.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to hold a lubricating oil by itself in an oil groove, and to supply a lubricating oil in an intermittent lubricating environment or to lubricate. It is an object of the present invention to provide tapered roller bearings capable of preventing seizure even in a lubricating environment in which a small amount of oil is used.
  • a cage that holds the plurality of tapered rollers at substantially equal intervals in the circumferential direction is provided, and the cage has a large-diameter side annular portion and a small diameter arranged coaxially with the large-diameter side annular portion.
  • the side annular portion, the large-diameter side annular portion, and the small-diameter side annular portion are connected in the axial direction, and a plurality of pillar portions provided at substantially equal intervals in the circumferential direction are adjacent to each other in the circumferential direction.
  • a tapered roller bearing having a pocket formed between columns and holding the tapered roller so as to be rollable, wherein the cage is an axial inner end surface of the small diameter side annular portion and the tapered roller.
  • the cage is an axial inner end surface of the small diameter side annular portion and the tapered roller.
  • a plurality of oil grooves are provided so as to be movable along a predetermined range, and a plurality of oil grooves for holding lubricating oil by capillary force are provided on the axial inner end surface of the large diameter side annular portion, and the cage is the tapered roller.
  • the plurality of oil grooves come into contact with the large-diameter side end faces of the tapered roller and the cage moves axially to the large-diameter side of the tapered roller.
  • a tapered roller bearing characterized in that the plurality of oil grooves are separated from the large-diameter side end face of the tapered roller.
  • the plurality of oil grooves each have a groove end portion that can come into contact with the large-diameter side end face of the tapered roller, and the large-diameter side end face of the tapered roller is formed at the center of the large-diameter side end face.
  • Each of the plurality of oil grooves has a tapered concave portion and an annular contact surface provided around the concave portion and capable of contacting the axial inner end surface of the large diameter side annular portion.
  • the groove end portion is provided so as to fit in a region where the annular contact surface and the axial inner end surface of the large diameter side annular portion overlap in the longitudinal direction of the tapered roller (2). Described tapered roller bearings.
  • the axial inner end surface of the large-diameter annulus portion is formed in a concave spherical shape
  • the large-diameter side end surface of the cone is formed in a convex spherical shape
  • the axial inner end surface of the large-diameter annulus portion is formed.
  • the plurality of oil grooves are each formed in an annular fan shape, and a pair of end connecting sides, which are both ends in the longitudinal direction of the plurality of oil grooves, are provided so as to be aligned with a pair of straight lines.
  • the oil grooves do not need to be covered with tapered rollers.
  • the lubricating oil can be held by the oil groove alone.
  • the cage moves axially to the small diameter side of the tapered roller, the oil groove contacts the large diameter side end face of the tapered roller, so that the lubricating oil is supplied intermittently in a lubricating environment or lubrication. Even in a lubricating environment where a small amount of oil is present, seizure of the bearing can be prevented.
  • the cage moves axially to the large diameter side of the tapered roller
  • the oil groove is separated from the large diameter side end face of the tapered roller, and the large diameter side annular portion does not always contact the tapered roller, so that the bearing It is possible to suppress an increase in frictional resistance during rotation, and further, it is possible to suppress wear of the large diameter side annular portion.
  • FIG. 3 is a plan view of the cage and tapered rollers shown in FIG. 23 as viewed from the outside in the radial direction. It is a schematic diagram which shows the contact positional relationship between the oil groove shown in FIG. 23, and the end face on the large diameter side of a tapered roller.
  • the tapered roller bearing 10 of the present embodiment has an outer ring 11 having an outer ring raceway surface 11a on the inner peripheral surface, an inner ring 12 having an inner ring raceway surface 12a on the outer peripheral surface, and an outer ring raceway surface 11a and an inner ring.
  • a plurality of tapered rollers 13 provided so as to be rollable between the raceway surface 12a and a cage 14 for holding the plurality of tapered rollers 13 at substantially equal intervals in the circumferential direction are provided.
  • the lubricating oil circulating inside the housing H (see FIG. 21) is appropriately supplied to the inside of the bearing by the lubricating oil pump P (see FIG. 21) or the like.
  • the inner ring 12 has a large collar portion 12b provided at the large diameter side end portion of the inner ring 12 and a small collar portion 12c provided at the small diameter side end portion of the inner ring 12.
  • the outer peripheral surface of the inner ring 12 is formed in a substantially conical shape.
  • the tapered roller 13 is provided on a rolling surface 13a provided on the peripheral surface of the tapered roller 13, a large-diameter side end surface 13b provided on the large-diameter side end of the tapered roller 13, and a small-diameter side end of the tapered roller 13. It has a small diameter side end surface 13c. Further, the large-diameter side end surface 13b is formed in a convex spherical shape having a radius of curvature Ra, and a circular recess 13d is formed in the central portion thereof. The center of the convex spherical surface is located on the rotation axis of the tapered roller 13.
  • the cage 14 is made of synthetic resin and is injection-molded by an axial draw.
  • the large-diameter ring portion 15 and the small-diameter annulus 16 arranged coaxially with the large-diameter annulus 15 are large.
  • a large number of pillars 17 are connected in the axial direction by connecting the radial ring portion 15 and the small diameter ring portion 16 at substantially equal intervals in the circumferential direction, and between the pillar portions 17 adjacent to each other in the circumferential direction. It is formed by being surrounded by a radial side annular portion 15 and a small diameter side annular portion 16, and has a pocket 18 for holding a conical roller 13 so as to be rollable.
  • the cage 14 has a first gap S1 between the axial inner end surface 16a of the small diameter side annular portion 16 of the cage 14 and the small diameter side end surface 13c of the tapered roller 13. Further, the cage 14 has a second gap S2 between the axial inner end surface 15a of the large diameter side annular portion 15 of the cage 14 and the large diameter side end surface 13b of the tapered roller 13.
  • the cage 14 is provided so as to be movable within a predetermined range along the axial direction.
  • the tapered roller 13 and the cage 14 are shown in a state where they are positioned in the middle in the axial direction with respect to the outer ring 11.
  • the roller axial dimension of the first gap S1 is D1
  • the roller axial dimension of the second gap S2 is D2
  • the length dimension of the tapered roller 13 is D1
  • the length dimension of the pocket 18 of the cage 14 in the roller axis direction is LP
  • the total dimension of the entire gap in the roller axis direction is Dt
  • the roller axis direction dimensions D1 and D2, the length dimension LR of the tapered roller 13, and the roller axis direction length dimension LP of the pocket 18 are dimensions along the central axis (rotation axis) direction of the tapered roller 13. ..
  • the cage 14 can freely move along the axial direction within the range of the total dimension Dt of the gap.
  • the roller axial dimension D1 of the first gap S1 and the roller axial dimension D2 of the second gap S2 do not require strict dimensional control, and in consideration of the general machining accuracy of the cage. , It is set to 0.05 mm or more, which is a general gap size.
  • the surface of the axial inner end surface (hereinafter, also simply referred to as “pocket surface”) 15a of the large diameter side annular portion 15 of the cage 14 is roughly formed, and the specific surface roughness of the pocket surface 15a is formed. (Arithmetic mean roughness) is set to 3 ⁇ m to 20 ⁇ m.
  • the roughness of the pocket surface 15a of the large-diameter annular portion 15 functions to guide the lubricating oil stored in the oil groove 20 described later to the tapered rollers 13. As a result, the oil retention capacity and the oil supply capacity of the pocket surface 15a can be enhanced. Further, it is preferable that the inner surface of the oil groove 20 described later is also roughly formed in order to enhance the oil retention capacity. Further, since the pocket surface 15a is substantially perpendicular to the die-cutting direction during molding of the cage, even if the pocket surface 15a is roughly formed, it does not hinder the mold release after molding. The surface roughness of the pocket surface 15a may be set for all pockets 18 or for some pockets 18.
  • the pocket surface 15a of the large diameter side annular portion 15 is formed in a concave spherical shape having a radius of curvature SRy.
  • the concave spherical radius of curvature SRy of the pocket surface 15a is set within ⁇ 10% of the convex spherical radius of curvature Ra of the large diameter side end surface 13b of the cone 13 (0.9Ra ⁇ SRy ⁇ 1). .1Ra).
  • the degree of adhesion between the pocket surface 15a and the large diameter side end surface 13b of the tapered roller 13 is improved, so that a high oil retention and oil supply effect can be obtained.
  • a plurality of (two in this embodiment) fine oil grooves 20 are formed on the pocket surface 15a of the large diameter side annular portion 15 of the cage 14. ..
  • the two oil grooves 20 are bottomed grooves, and are formed in parallel in the respective pockets 18 along the circumferential direction of the cage 14.
  • the oil groove 20 is a groove capable of holding the lubricating oil by capillary force, and enhances the oil holding capacity of the cage 14 and promotes the propagation of the lubricating oil to the tapered rollers 13.
  • the oil groove 20 may be provided for all the pockets 18 or may be provided for some of the pockets 18.
  • the number of oil grooves 20 may be two or more, and the number of oil grooves 20 to be installed is arbitrary.
  • FIG. 4 is a schematic view showing the contact positional relationship between the groove end portion 20a in the circumferential direction of the oil groove 20 and the large diameter side end surface 13b of the tapered roller 13.
  • the large-diameter side end surface 13b of the tapered roller 13 has a circular recess 13d formed in the center of the large-diameter side end surface 13b and an annular contact surface provided around the recess 13d and capable of contacting the pocket surface 15a. It has 13e and.
  • each of the two oil grooves 20 is a region where the annular contact surface 13e and the pocket surface 15a overlap in the longitudinal direction of the tapered roller 13 (a region where the annular contact surface 13e overlaps when viewed in the longitudinal direction of the tapered roller 13). ) Is provided. As a result, it is possible to lubricate the tapered roller 13 by the capillary force with the tapered roller 13 without leaving the lubricating oil collected in the groove end portion 20a by the mechanism described later using FIGS. 7 to 9.
  • Reference numeral L in FIGS. 4 and 7 to 9 is a lubricating oil (a portion to which a dot pattern is provided).
  • the two oil grooves 20 are each formed in an annular fan shape, and the pair of end connecting sides 21 which are both ends in the longitudinal direction of the two oil grooves 20 are formed. , They are provided so as to be aligned with a pair of straight lines 21L.
  • the pair of straight lines 21L are inclined lines such that the circumferential distance between the large-diameter ring portions 15 increases toward the inside in the radial direction.
  • the capillary force described in this description is a force that a solid tries to attract a liquid.
  • the surface tension of the solid (retainer) is greater than the surface tension of the liquid (lubricating oil)
  • capillary force is generated and the liquid is attracted to the solid surface.
  • Liquids also try to reduce the surface that comes into contact with air due to surface tension. That is, the lubricating oil tries to increase the area in contact with the cage while reducing the area in contact with the air. Therefore, the thinner the oil groove of the cage (the smaller the radial width dimension of the oil groove 20), the higher the capillary force. Utilizing this principle, in the present invention, a thin oil groove 20 is formed on the pocket surface 15a.
  • the oil groove 20 is characterized in that lubricating oil is supplied from the groove end portion 20a connected to the pocket surface 15a of the large diameter side annular portion 15 to the large diameter side end surface 13b of the tapered roller 13.
  • the groove end portion 20a is an end portion in the circumferential direction (longitudinal direction) of the oil groove 20.
  • the groove central portion 20b described later is a central portion in the circumferential direction (longitudinal direction) of the oil groove 20.
  • the oil groove 20 needs to have a fine shape capable of retaining oil and supplying oil to the conical roller 13 by the action of capillary force.
  • the radial width and depth of the oil groove 20 are required. (Axial width) is set to be constant or the groove end 20a becomes shallow (the axial width becomes small), and the oil retention property of the lubricating oil of the oil groove 20, the strength of the cage 14, and general injection molding are set.
  • the radial width D3 of the oil groove 20 is set to 0.5 mm or less at the maximum portion, and more preferably 0.2 mm or less in consideration of the accuracy of the oil groove 20 and the like.
  • the depth D4 of the oil groove 20 is set in a range of 0.05 mm at the maximum to 1/5 or less of the length dimension LR of the tapered roller 13.
  • the radial width D3 of the oil groove 20 is a width in a direction orthogonal to the extending direction of the oil groove 20. Further, the oil groove 20 formed by the axial draw extends in the same direction (axial direction) as the central axis of the cage 14, which is the direction in which the molding die moves (releases) during injection molding.
  • the cage 14 is made of synthetic resin and can be injection-molded by, for example, an axial draw.
  • the surface roughness of the pocket surface 15a of the large diameter side annular portion 15 and the oil groove 20 can also be formed at the same time by this injection molding. In this case, it is not necessary to add a processing process, special molding such as two-color molding (double molding), and bonding of a separately manufactured oil-retaining member. Therefore, the seizure resistance can be improved without increasing the manufacturing cost.
  • the material of the cage 14 is not particularly limited, but may be a synthetic resin material having a lipophilic property having a high surface tension and generating capillary force with respect to the lubricating oil used, and is generally used, for example, nylon. Cage resin material can be mentioned.
  • the synthetic resin of the cage 14 may contain fibers as a reinforcing agent. It is also possible to use a resin material having low lipophilicity, but in this case, it is preferable to perform lipophilic treatment.
  • FIG. 7A and 7B are explanatory views showing the positional relationship between the longitudinal direction (circumferential direction) of the oil groove 20 and the tapered rollers 13, and cut one portion of the oil groove 20 of the cage 14 along the circumferential direction. It is a cross-sectional view.
  • the cage 14 is characterized in that the lubricating oil stored inside the oil groove 20 by the capillary force is supplied to the large diameter side end surface 13b of the tapered roller 13 by the action of the capillary force with the roller surface. In order to make this action effective, it is important that the oil groove 20 generates a high capillary force at the portion where the tapered roller 13 and the pocket surface 15a are in contact with each other. Then, as one of the methods, in the present embodiment, as shown in FIG.
  • the groove end portion 20a having a higher capillary force than the intermediate portion of the oil groove 20 is configured to be in contact with the tapered roller 13.
  • the lubricating oil inside the oil groove 20 can be sucked up from the corner portion 20d of the groove end portion 20a by the capillary force with the large diameter side end surface 13b of the tapered roller 13.
  • FIG. 7B since the groove end portion 20a does not come into contact with the tapered rollers 13, the amount of lubricating oil sucked up is reduced.
  • the depth of the oil groove 20 is enlarged and shown in order to facilitate the understanding of the explanation.
  • FIG. 8A and 8B are explanatory views showing a cross-sectional shape of the oil groove 20 in the radial direction, and is a cross-sectional view of one oil groove 20 portion of the cage 14 cut along the radial direction.
  • the capillary force works stronger in a narrower space. Therefore, even if the radial width D3 of the oil groove 20 is narrow, it becomes weak when the opening is widened as shown in FIG. 8B. Therefore, in the present embodiment, as shown in FIG. 8A, the corner portion 20d connecting the wall surface of the oil groove 20 (at least one of the radial wall surface and the circumferential wall surface of the oil groove 20) 20c and the pocket surface 15a is formed.
  • a sharp edge (arc-shaped chamfer with a radius of 0.1 mm or less, preferably arc-shaped chamfer with a radius of 0.05 mm or less, or a linear chamfer with a side of 0.1 mm and 45 degrees).
  • the groove bottom corner 20e in the radial cross section of the oil groove 20 is formed in an arc shape, and when the radius Rw of the arc shape of the groove bottom corner 20e is small, the capillary force is increased and the lubricating oil is supplied to the groove bottom corner 20e. Acts to stay in. Therefore, the radius Rw of the arc shape of the groove bottom corner 20e in the radial cross section of the oil groove 20 is 1 of the radial width D3 of the oil groove 20 at the groove center portion 20b which is the center in the longitudinal direction of the oil groove 20. It is desirable to set it to / 4 to 1/2. Further, in order to increase the capillary force on the groove end portion 20a, as shown in FIG.
  • the arcuate radius Rw of the groove bottom corner 20e in the radial cross section of the oil groove 20 is set to the groove center portion 20b of the oil groove 20. It is more desirable to make the size smaller (Rw1> Rw2> Rw3) toward the groove end portion 20a. As a result, the lubricating oil accumulated in the groove central portion 20b can be sucked up to the groove end portion 20a having a higher capillary force and guided to the pocket surface 15a.
  • FIG. 9A and 9B are explanatory views showing a cross-sectional shape of the oil groove 20 in the longitudinal direction (circumferential direction), and are cross-sectional views of one oil groove 20 portion of the cage 14 cut along the circumferential direction. ..
  • FIG. 9B when the groove bottom corner 20f in the circumferential cross section of the oil groove 20 is close to a right angle, the lubricating oil stays in the groove bottom corner 20f, and it becomes difficult to lubricate the tapered rollers 13. Therefore, it is desirable to set the depth D4 of the groove end portion 20a to be smaller (shallow) than the depth D4 of the groove central portion 20b. Specifically, as shown in FIG.
  • the groove bottom corner 20f in the circumferential cross section of the oil groove 20 is formed in an arc shape, and the depth D4 of the oil groove 20 is set from the groove center portion 20b of the oil groove 20. It is made smaller toward the groove end 20a.
  • the capillary force of the portion of the groove end portion 20a connected to the pocket surface 15a can be increased, and the lubricating oil accumulated in the groove bottom can be efficiently sucked up to lubricate the tapered rollers 13.
  • the depth of the oil groove 20 is shown enlarged from the actual one in order to facilitate the understanding of the explanation.
  • FIGS. 11 to 14 are schematic views illustrating an example in which the radial width D3 of the oil groove 20 is made smaller (thinner) at both ends in the longitudinal direction. That is, in the oil grooves 20 shown in FIGS. 11 to 14, the radial width D3 of the groove end portion 20a is set to be smaller than the radial width D3 of the groove central portion 20b.
  • the radial width D3 of the groove end portion 20a is set to be smaller than the radial width D3 of the groove central portion 20b.
  • the oil groove 20 shown in FIG. 11 has a shape (annular fan shape) in which a linear chamfer Cx is provided on one side of the longitudinal end of the oil groove 20 in the radial direction.
  • the oil groove 20 shown in FIG. 12 has a shape (substantially hexagonal shape) in which linear chamfered Cx is provided on both radial sides of the longitudinal end portion of the oil groove 20.
  • the oil groove 20 shown in FIG. 13 is an annular fan-shaped oil groove 20 shown in FIG. 11 having an arc-shaped chamfer Rx at the end in the longitudinal direction thereof.
  • the oil groove 20 shown in FIG. 14 is an annular fan-shaped oil groove 20 shown in FIG.
  • FIGS. 15 and 16 are schematic views illustrating an example in which the radial width D3 of the oil groove 20 is reduced (thinner) from the groove center portion 20b toward the groove end portion 20a.
  • the oil groove 20 shown in FIG. 16 has a substantially crescent shape with a pointed groove end portion 20a. Further, in the oil groove 20 shown in FIGS. 15 and 16, the depth D4 of the oil groove 20 becomes shallower from the groove center portion 20b toward the groove end portion 20a, and the arc of the groove bottom corner 20e in the radial cross section of the oil groove 20.
  • the radius Rw of the shape is reduced (Rw1> Rw2> Rw3) from the groove center portion 20b of the oil groove 20 toward the groove end portion 20a.
  • the capillary force of the portion of the groove end portion 20a connected to the pocket surface 15a can be increased, and the lubricating oil accumulated in the groove bottom can be efficiently sucked up to lubricate the tapered roller 13. It will be possible.
  • the degree of change in the radius Rw and the continuity / discontinuity of the change can be freely set. Moreover, only a part of the above items may be adopted. Further, in the case of the oil groove 20 of the shape example shown in FIG. 11, the radial width D3 of the oil groove 20 is gradually reduced from the groove center portion 20b toward the groove end portion 20a in the vicinity of the groove end portion 20a. ..
  • the angle ⁇ 20a formed by the corner portion 20d of the portion constituting the groove end portion 20a is an acute angle in the range of 30 to 60 degrees (45 degrees in the case of FIG. 11). Is set to.
  • the ratio of the dimensions at the groove end portion 20a to the groove center portion 20b is approximately 50% for the radial width D3 and approximately 25% for the depth D4. ..
  • the ratio of the depth D4 in the vicinity of the groove end portion 20a to the groove center portion 20b is set to about 25%, and the angle ⁇ 20a formed by the groove end portion 20a is 30 to 30 to. It is set to an acute angle in the range of 60 degrees (30 degrees in the case of FIG. 16).
  • the large-diameter annular portion 15 does not always come into contact with the tapered rollers 13, so that an increase in frictional resistance during bearing rotation is suppressed. Further, the lubricating oil supplied to the bearing is stored inside the oil groove 20 by the capillary force.
  • the cage 14 is affected by the component force of its own weight.
  • the tapered roller bearing 10 of the present invention moves the cage 14 by utilizing the component force of the weight of the cage 14, it is used in a structure that supports a horizontally provided shaft (horizontal shaft). Is preferable.
  • a fine oil groove 20 for holding the lubricating oil by capillary force is provided on the pocket surface 15a of the large diameter side annular portion 15 of the cage 14. Therefore, the lubricating oil can be held by the oil groove 20 alone without covering the oil groove 20 with the tapered rollers 13. Further, when the cage 14 moves axially to the small diameter side of the conical roller 13, the oil groove 20 comes into contact with the large diameter side end surface 13b of the conical roller 13, so that the supply of lubricating oil is intermittent. It is possible to prevent seizure of the bearing 10 even in a lubricating environment where the amount of lubricating oil is small.
  • the cage 14 when the cage 14 is moved axially to the large diameter side of the tapered roller 13, the oil groove 20 is separated from the large diameter side end surface 13b of the tapered roller 13 and the large diameter side annular portion 15 is separated from the tapered roller 13. Since it does not always come into contact with the bearing, an increase in frictional resistance during bearing rotation can be suppressed, and further, wear of the large diameter side annular portion 15 can be suppressed. In addition, it is not necessary to manage high-level component dimensional accuracy, and it is possible to suppress an increase in manufacturing cost.
  • the large-diameter annular portion 15 on which the oil groove 20 is formed does not have a contact force (pressing force) set in advance, and is a tapered roller due to the component force of its own weight of the cage 14. Since it comes into contact with 13, almost no frictional resistance is generated, and wear deterioration of the large diameter side annular portion 15 can be minimized.
  • the cage 14 is made of synthetic resin, and the surface roughness of the pocket surface 15a of the large diameter side annular portion 15 of the cage 14 and the oil groove 20 are axial. Since the drawing is injection-molded at the same time as the cage 14, it is possible to suppress an increase in manufacturing cost.
  • the oil groove 20 is formed along the circumferential direction, and the direction of action of the centrifugal force during the rotation of the bearing and the formation direction of the oil groove 20 are orthogonal to each other. It is possible to prevent the lubricating oil held in the bearing from scattering due to centrifugal force.
  • the amount of lubricating oil can be significantly reduced, so that the stirring resistance of the lubricating oil can be reduced. Further, for example, if the structure is such that even a small amount of lubricating oil can be supplied by splashing with gears (see FIG. 22), the lubricating oil pump and the oil supply passage can be eliminated, thereby making the entire lubrication system lightweight and compact. , Cost reduction can be achieved.
  • the bearing is prevented from seizure even in a lubricating environment where lubricating oil is intermittently supplied into the bearing or the amount of lubricating oil in the bearing is very small. Performance and lubrication effect can be maintained for a long period of time. Therefore, the tapered roller bearing 10 of the present embodiment can be suitably used for a mechanism such as a transmission of some hybrid vehicles in which the lubricating oil pump is temporarily stopped when the engine is stopped, and also for an automobile. It is possible to deal with situations where it is difficult to supply sufficient lubricating oil because the lubricating oil pump does not operate when the vehicle is towed.
  • the outer ring 11 of the tapered roller bearing 10 is fitted inside the housing H, and the inner ring 12 is fitted outside the rotating shaft A.
  • a structure is generally known in which an oil supply passage R communicating with the bearing 10 is provided in H, and a lubricating oil pump P is connected to the oil supply passage R.
  • the lubricating oil pumped from the lubricating oil pump P is supplied to the bearing 10 via the oil supply passage R.
  • the outer ring 11 of the tapered roller bearing 10 is fitted inside the housing H, and the inner ring 12 is fitted outside the rotating shaft A to rotate.
  • a structure in which a gear G is provided on the shaft A adjacent to the inner ring 12 is generally known.
  • the lubricating oil adhering to the gear G is scattered by the centrifugal force accompanying the rotation of the shaft, and the scattered lubricating oil is adhering to the bearing 10 and refueled.
  • a lubricating oil amount of about 50 cc / min to 1000 cc / min is supplied in order to prevent seizure of the bearing. If the amount of the lubricating oil is less than 10 cc / min, heat generation and seizure are likely to occur due to insufficient oil film due to the lack of lubricating oil, and seizure occurs at 0 cc / min (non-lubricated oil).
  • the present invention corresponds to a dilute lubricated state rather than a non-lubricated state, and has a great effect in a lubricating environment where a small amount of lubricating oil is used, specifically, in a dilute lubricated state of about 0.01 cc / min to 10 cc / min. Demonstrate.
  • the non-lubricating application time can be significantly extended from several tens of minutes to several hours by increasing the amount of lubricating oil. It is possible.
  • the increase in the amount of lubricating oil can be dealt with, for example, by increasing the number of oil grooves or increasing the depth of the oil grooves.
  • a passenger car may be towed as an auxiliary vehicle in the event of a breakdown or at a destination of a large vehicle such as a camper.
  • a passenger car may be towed as an auxiliary vehicle in the event of a breakdown or at a destination of a large vehicle such as a camper.
  • the load on the bearing is light because there is no drive transmission and there is no load idling.
  • tapered roller bearings since they are generally used with preload applied, the load for the preload is always acting.
  • the lubricating oil freezes, and a phenomenon occurs in which neither lubrication by the lubricating oil pump nor refueling by splashing occurs temporarily.
  • the lubrication must be covered by a small amount of oil adhering to the bearing itself until the frozen lubricating oil warms and melts.
  • the frozen lubricating oil since the frozen lubricating oil is stored in the oil groove, it is lubricated while gradually melting as the bearing generates heat, so that the seizure resistance can be dramatically improved.
  • two adjacent oil grooves 20 may be connected to each other by a connecting groove 22 extending in the radial direction.
  • the number of connection grooves 22 is not limited to one, and may be plural.
  • three oil grooves 20 are formed on the pocket surface 15a of the cage 14, and three adjacent oil grooves 20 are connected to extend in the radial direction. They may be connected to each other by a groove 22. Further, in this modification, the pair of end connecting sides 21 which are both ends in the circumferential direction of the three oil grooves 20 are aligned with the arcuate line 21C following the annular contact surface 13e of the tapered roller 13. Each is provided. According to this modification, since the amount of lubricating oil stored in the oil groove 20 can be increased, the seizure resistance of the bearing 10 in a lubricating environment of a small amount of lubricating oil can be further improved.
  • the number of connection grooves 22 is not limited to one, and may be plural.
  • lubricating oil can be supplied from the groove end portion 20a of the oil groove 20 to the large diameter side end surface 13b of the tapered roller 13, and the pocket surface 15a of the cage 14 comes into contact with the large diameter side end surface 13b of the tapered roller 13. It is possible to reduce the frictional resistance at the time of
  • the present invention is not limited to those exemplified in the above embodiments, and can be appropriately modified without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】油溝の単体で潤滑油を保持することができ、潤滑油の供給が断続的である潤滑環境下、或いは、微量潤滑油環境下でも焼付きを防止することができる円すいころ軸受を提供する。【解決手段】円すいころ軸受10の保持器14は、小径側円環部16の軸方向内端面16aと円すいころ13の小径側端面13cとの間に第1隙間S1を有すると共に、大径側円環部15の軸方向内端面15aと円すいころ13の大径側端面13bとの間に第2隙間S2を有して、軸方向に沿って所定の範囲で移動可能に設けられ、大径側円環部15の軸方向内端面15aには、毛管力で潤滑油を保持する複数の油溝20が設けられ、保持器14が円すいころ13の小径側に軸方向に移動したときに、複数の油溝20が円すいころ13の大径側端面13bに接触し、保持器14が円すいころ13の大径側に軸方向に移動したときに、複数の油溝20が円すいころ13の大径側端面13bから離れる。

Description

円すいころ軸受
本発明は、円すいころ軸受に関し、特に、軸受内部に潤滑油が供給される円すいころ軸受に関する。
近年、一部のハイブリッド車のトランスミッションのように、エンジン停止時に潤滑油ポンプを停止する機構が登場しており、軸受の焼付き問題を生じさせやすい。また、自動車の被牽引時には潤滑油ポンプが作動せずにタイヤが空転するため、トランスミッション内の軸受に焼付きが生じることがある。このため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても焼付きを防止することができる軸受が求められている。 
従来の円すいころ軸受100として、図23~図26に示すように、内周面に外輪軌道面111aを有する外輪111と、外周面に内輪軌道面112aを有する内輪112と、外輪軌道面111aと内輪軌道面112aとの間に転動可能に設けられる複数の円すいころ113と、複数の円すいころ113を周方向に略等間隔に保持する保持器114と、を備えるものが知られている(例えば、特許文献1参照)。 
また、保持器114は、大径側円環部115と、大径側円環部115と同軸配置される小径側円環部116と、大径側円環部115と小径側円環部116とを軸方向で連結し、周方向に略等間隔に設けられる複数の柱部117と、周方向に互いに隣り合う柱部117間で、大径側円環部115及び小径側円環部116により囲まれて形成され、円すいころ113を転動可能に保持するポケット118と、を有する。また、円すいころ113は、円すいころ113の周面に設けられる転動面113aと、円すいころ113の大径側端部に設けられる大径側端面113bと、円すいころ113の小径側端部に設けられる小径側端面113cと、を有する。
特許第6354242号公報
そして、上記特許文献1に記載の円すいころ軸受100では、保持器114の大径側円環部115の軸方向内端面115aに、円周方向に沿った1つの油溝120が形成され、油溝120の内部に蓄えられる潤滑油量を多くするために、この油溝120の径方向幅が大径側円環部115の径方向幅の1/3に設定されている。つまり、例えば、大径側円環部115の径方向幅が9mmの場合、油溝120の径方向幅は3mmとなる。この場合、油溝120の単体で毛細管現象を発生させて潤滑油を保持することができないため、上記特許文献1に記載されているように、円すいころ113で油溝120に蓋をする必要があった。 
しかしながら、図23に示すように、保持器114が円すいころ113の大径側に軸方向に移動した場合、円すいころ113の大径側端面113bと大径側円環部115の軸方向内端面115aとの間の隙間が大きくなって、毛細管現象が働かずに油溝120から潤滑油が漏れ出てしまう。このため、上記特許文献1では、円すいころ113と保持器114との間の軸方向の隙間を極めて小さくする必要があり、円すいころ113の軸方向長さの管理と円すいころ113の保持器114への組み込みが困難であった。 
さらに、上記特許文献1の図面では、円すいころの大径側端面が平面状に記載されているが、図23~図25に示すように、円すいころ113の大径側端面113bが凸球面状に形成されると共に、大径側端面113bの中心部に凹部113dが形成されている場合がある。このような円すいころ113では、例え、円すいころ113と保持器114との間の軸方向の隙間を小さくしたとしても、円すいころ113の凹部113dと油溝120が重なり合う部分の隙間SP(図26参照)から潤滑油が漏れ出てしまっていた。 
本発明は、前述した課題に鑑みてなされたものであり、その目的は、油溝の単体で潤滑油を保持することができ、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても焼付きを防止することができる円すいころ軸受を提供することにある。 
本発明の上記目的は、下記の構成により達成される。(1)内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動可能に設けられる複数の円すいころと、前記複数の円すいころを周方向に略等間隔に保持する保持器と、を備え、前記保持器は、大径側円環部と、前記大径側円環部と同軸に配置される小径側円環部と、前記大径側円環部と前記小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う前記柱部間に形成され、前記円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、前記保持器は、前記小径側円環部の軸方向内端面と前記円すいころの小径側端面との間に第1隙間を有すると共に、前記大径側円環部の軸方向内端面と前記円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、前記大径側円環部の軸方向内端面には、毛管力で潤滑油を保持する複数の油溝が設けられ、前記保持器が前記円すいころの小径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面に接触し、前記保持器が前記円すいころの大径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面から離れることを特徴とする円すいころ軸受。(2)前記複数の油溝は、前記保持器の周方向に沿って平行に形成されることを特徴とする(1)に記載の円すいころ軸受。(3)前記複数の油溝は、前記円すいころの大径側端面と接触可能な溝端部をそれぞれ有し、前記円すいころの大径側端面は、前記大径側端面の中心部に形成される円形状の凹部と、前記凹部の周囲に設けられ、前記大径側円環部の軸方向内端面と接触可能な円環状の接触面と、を有し、前記複数の油溝のそれぞれの前記溝端部は、前記円環状の接触面と前記大径側円環部の軸方向内端面とが前記円すいころの長手方向において重なり合う領域に収まるように設けられることを特徴とする(2)に記載の円すいころ軸受。(4)前記大径側円環部の軸方向内端面が凹球面状に形成され、前記円すいころの大径側端面が凸球面状に形成され、前記大径側円環部の軸方向内端面の凹球面状の曲率半径SRyは、前記円すいころの大径側端面の凸球面状の曲率半径Raの±10%以内に設定されることを特徴とする(1)に記載の円すいころ軸受。(5)前記複数の油溝は、環状扇形状にそれぞれ形成され、前記複数の油溝の長手方向両端辺である一対の端部連結辺は、一対の直線に揃うようにそれぞれ設けられ、前記一対の直線は、前記大径側円環部の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線であることを特徴とする(2)に記載の円すいころ軸受。(6)隣接する前記複数の油溝は、少なくとも1つの接続溝により互いに接続されることを特徴とする(2)に記載の円すいころ軸受。(7)潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする(1)~(6)のいずれか1つに記載の円すいころ軸受。
本発明によれば、保持器の大径側円環部の軸方向内端面に、毛管力で潤滑油を保持する複数の油溝が設けられるため、円すいころで油溝に蓋をしなくても、油溝の単体で潤滑油を保持することができる。また、保持器が円すいころの小径側に軸方向に移動したときに、油溝が円すいころの大径側端面に接触するため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても軸受の焼付きを防止することができる。また、保持器が円すいころの大径側に軸方向に移動したときに、油溝が円すいころの大径側端面から離れて、大径側円環部が円すいころに常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、大径側円環部の摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。
本発明に係る円すいころ軸受の一実施形態を説明する断面図である。 保持器と円すいころを径方向外側から見た平面図である。 図1に示す保持器を径方向内側から見た模式図である。 油溝の周方向の溝端部と円すいころの大径側端面との接触位置関係を示す模式図である。 図1に示す保持器が円すいころの大径側に軸方向に移動したときを説明する断面図である。 図1に示す保持器が円すいころの小径側に軸方向に移動したときを説明する断面図である。 溝端部が円すいころと接する状態を示す説明図である。 溝端部が円すいころと接しない状態を示す説明図である。 油溝の角部がシャープエッジに形成される場合を示す説明図である。 油溝の角部が大きな円弧状に形成される場合を示す説明図である。 油溝の深さを油溝の溝中央部から溝端部に向かうに従って小さくした場合を示す説明図である。 油溝の深さを油溝の溝中央部から溝端部まで均一にした場合を示す説明図である。 油溝の径方向断面の溝底すみの円弧形状の半径を、油溝の溝中央部から溝端部に向かうに従って小さくすることを説明する模式図である。 油溝の径方向幅を長手方向両端部で小さくした第1例を説明する模式図である。 油溝の径方向幅を長手方向両端部で小さくした第2例を説明する模式図である。 油溝の径方向幅を長手方向両端部で小さくした第3例を説明する模式図である。 油溝の径方向幅を長手方向両端部で小さくした第4例を説明する模式図である。 油溝の径方向幅を溝中央部から溝端部に向かうに従って小さくした第1例を説明する模式図である。 油溝の径方向幅を溝中央部から溝端部に向かうに従って小さくした第2例を説明する模式図である。 保持器の第1変形例を説明する模式図である。 保持器の第2変形例を説明する模式図である。 保持器の第3変形例を説明する模式図である。 第3変形例の保持器を径方向外側から見た平面図である。 潤滑油ポンプによる軸受への給油を説明する断面図である。 歯車の跳ね掛けによる軸受への給油を説明する断面図である。 従来の円すいころ軸受において、保持器が円すいころの大径側に軸方向に移動したときを説明する断面図である。 図23に示す保持器が円すいころの小径側に軸方向に移動したときを説明する断面図である。 図23に示す保持器と円すいころを径方向外側から見た平面図である。 図23に示す油溝と円すいころの大径側端面との接触位置関係を示す模式図である。
以下、本発明に係る円すいころ軸受の一実施形態について、図面に基づいて詳細に説明する。 
本実施形態の円すいころ軸受10は、図1に示すように、内周面に外輪軌道面11aを有する外輪11と、外周面に内輪軌道面12aを有する内輪12と、外輪軌道面11aと内輪軌道面12aとの間に転動可能に設けられる複数の円すいころ13と、複数の円すいころ13を周方向に略等間隔に保持する保持器14と、を備える。なお、本実施形態では、ハウジングH(図21参照)の内部を循環する潤滑油が、潤滑油ポンプP(図21参照)などにより軸受内部に適宜供給される。 
内輪12は、内輪12の大径側端部に設けられる大鍔部12bと、内輪12の小径側端部に設けられる小鍔部12cと、を有する。内輪12の外周面は、略円すい状に形成されている。 
円すいころ13は、円すいころ13の周面に設けられる転動面13aと、円すいころ13の大径側端部に設け
られる大径側端面13bと、円すいころ13の小径側端部に設けられる小径側端面13cと、を有する。また、大径側端面13bは、曲率半径Raの凸球面状に形成されており、その中心部に円形状の凹部13dが形成されている。上記凸球面の中心は、円すいころ13の自転軸上に位置している。 
保持器14は、合成樹脂製であり、アキシアルドローにより射出成形されており、大径側円環部15と、大径側円環部15と同軸配置される小径側円環部16と、大径側円環部15と小径側円環部16とを軸方向で連結し、周方向に略等間隔に設けられる複数の柱部17と、周方向に互いに隣り合う柱部17間で、大径側円環部15及び小径側円環部16により囲まれて形成され、円すいころ13を転動可能に保持するポケット18と、を有する。 
また、保持器14は、保持器14の小径側円環部16の軸方向内端面16aと円すいころ13の小径側端面13cとの間に第1隙間S1を有する。また、保持器14は、保持器14の大径側円環部15の軸方向内端面15aと円すいころ13の大径側端面13bとの間に第2隙間S2を有する。これにより、保持器14は、軸方向に沿って所定の範囲で移動可能に設けられる。なお、図1では、円すいころ13及び保持器14が、外輪11に対して軸方向中間に位置した状態で図示されている。 
そして、本実施形態の円すいころ軸受10では、図1に示すように、第1隙間S1のころ軸方向寸法をD1、第2隙間S2のころ軸方向寸法をD2、円すいころ13の長さ寸法をLR、保持器14のポケット18のころ軸方向の長さ寸法をLP、隙間全体のころ軸方向の総和寸法をDtとしたとき、Dt=D1+D2=LP-LRの関係となる。なお、ころ軸方向寸法D1,D2、円すいころ13の長さ寸法LR、及びポケット18のころ軸方向の長さ寸法LPは、円すいころ13の中心軸(自転軸)方向に沿った寸法である。 
このように、円すいころ13と保持器14との間には軸方向の隙間が設けられるため、保持器14は、軸方向に沿って隙間の総和寸法Dtの範囲で自由に移動可能である。また、本実施形態では、第1隙間S1のころ軸方向寸法D1及び第2隙間S2のころ軸方向寸法D2は、厳密な寸法管理は不要で、保持器の一般的な加工精度を考慮して、一般的な隙間寸法である0.05mm以上に設定されている。 
また、保持器14の大径側円環部15の軸方向内端面(以下、単に「ポケット面」とも言う)15aの表面は、粗く形成されており、具体的なポケット面15aの表面粗さ(算術平均粗さ)は3μm~20μmに設定される。 
そして、大径側円環部15のポケット面15aの粗さは、後述する油溝20が蓄えた潤滑油を円すいころ13に導くように機能する。これにより、ポケット面15aの保油能力及び給油能力を高めることができる。また、後述する油溝20の内面も保油能力を高めるために粗く形成されていた方が好ましい。また、ポケット面15aが保持器成形時の型抜き方向に対してほぼ垂直なため、ポケット面15aを粗く形成したとしても、成形後の離型の際に支障になることはない。なお、ポケット面15aの表面粗さは、全てのポケット18に対して設定してもよいし、一部のポケット18に対して設定してもよい。 
大径側円環部15のポケット面15aは、曲率半径SRyの凹球面状に形成されている。そして、ポケット面15aの凹球面状の曲率半径SRyは、円すいころ13の大径側端面13bの凸球面状の曲率半径Raの±10%以内に設定されている(0.9Ra≦SRy≦1.1Ra)。これにより、ポケット面15aと円すいころ13の大径側端面13bとの密着度合いが向上するため、高い保油及び給油効果を得ることができる。しかしながら、SRyをRaに一致(SRy=Ra)させて全面当りにしてしまうと、摩擦抵抗が増加してしまうため、僅かに曲率半径をずらして完全密着させない状態が最適である。 
また、図1~図4に示すように、保持器14の大径側円環部15のポケット面15aには、複数(本実施形態では2つ)の微細な油溝20が形成されている。そして、2つの油溝20は、有底溝であり、それぞれのポケット18において、保持器14の周方向に沿って平行に形成されている。油溝20は、毛管力で潤滑油を保持可能な溝であり、保持器14の保油能力を高めると共に、円すいころ13への潤滑油の伝播を促進する。なお、油溝20は、全てのポケット18に対して設けられてもよいし、一部のポケット18に対して設けられてもよい。なお、油溝20は、2つ以上であればよく、設置数は任意である。 
図4は、油溝20の周方向の溝端部20aと円すいころ13の大径側端面13bとの接触位置関係を示す模式図である。円すいころ13の大径側端面13bは、大径側端面13bの中心部に形成される円形状の凹部13dと、凹部13dの周囲に設けられ、ポケット面15aと接触可能な円環状の接触面13eと、を有する。そして、2つの油溝20のそれぞれの溝端部20aは、円環状の接触面13eとポケット面15aとが円すいころ13の長手方向において重なり合う領域(円すいころ13の長手方向に見たときに重なり合う領域)に収まるように設けられる。これにより、図7~図9を用いて後述するメカニズムにより溝端部20aに集まった潤滑油を余す事なく、円すいころ13との毛管力によって円すいころ13に給油することが可能となる。なお、図4、図7~図9中の符号Lは潤滑油(ドット模様を付与した部分)である。 
また、図4に示すように、本実施形態では、2つの油溝20は環状扇形状にそれぞれ形成されており、2つの油溝20の長手方向両端辺である一対の端部連結辺21は、一対の直線21Lに揃うようにそれぞれ設けられている。そして、一対の直線21Lは、大径側円環部15の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線である。これにより、成形金型の加工を容易にすることができると共に、2つの油溝20のそれぞれの溝端部20aを円すいころ13の円環状の接触面13e内に容易に配置することができる。 
ここで、本説明で述べる毛管力とは、固体が液体を引き寄せようとする力のことである。固体(保持器)の表面張力が液体(潤滑油)の表面張力よりも大きなときに毛管力が生じ、液体は固体表面に引き寄せられる。また、液体は表面張力により空気と触れる面を減らそうともする。つまり、潤滑油は空気と接する面積を減少させながら、保持器と接する面積を増そうとする。このため、保持器の油溝は、細い(油溝20の径方向幅寸法が小さい)ほど毛管力が高まる。この原理を利用し、本発明では、ポケット面15aに、細い形状の油溝20を形成している。そして、油溝20は、大径側円環部15のポケット面15aと接続する溝端部20aから円すいころ13の大径側端面13bに潤滑油を供給することを特徴とする。なお、溝端部20aは、油溝20の周方向(長手方向)の端部のことである。また、後述する溝中央部20bは、油溝20の周方向(長手方向)の中央部のことである。 
また、油溝20は、毛管力の作用で保油及び円すいころ13への給油が可能な微細な形状であることが必要であり、本実施形態では、油溝20の径方向幅及び深さ(軸方向幅)は一定又は溝端部20aが浅くなる(軸方向幅が小さくなる)ように設定されており、油溝20の潤滑油の保油性、保持器14の強度及び一般的な射出成形の精度などを考慮して、例えば、油溝20の径方向幅D3は、最大部で0.5mm以下に設定されており、0.2mm以下に設定された方がより望ましい。油溝20の深さD4は、最大部で0.05mmから円すいころ13の長さ寸法LRの1/5以下の範囲に設定される。なお、油溝20の径方向幅D3は、油溝20の延在方向と直交する方向の幅である。また、アキシアルドローにより成形される油溝20は、射出成形時に成形金型が移動(離型)する方向である、保持器14の中心軸と同じ方向(軸方向)に延在している。 
保持器14は、合成樹脂製であり、例えば、アキシアルドローにより射出成形可能である。大径側円環部15のポケット面15aの表面粗さ及び油溝20もこの射出成形により同時に形成可能である。この場合、加工工程の追加、二色成形(ダブルモールド)のような特殊な成形、及び別途製作した保油部材の接着などが不要である。従って、製造コストをほぼ増大させることなく、耐焼付き性を向上することができる。 
また、保持器14の材料としては、特に制限はないが、使用される潤滑油に対して表面張力が高く毛管力を生じる親油性を有する合成樹脂材であればよく、例えば、ナイロンなどの一般的な保持器樹脂材を挙げることができる。なお、保持器14の合成樹脂に強化剤として繊維を含有させてもよい。また、親油性が低い樹脂材を使用することも可能であるが、この場合、親油処理を施した方が好ましい。 
図7A及び図7Bは、油溝20の長手方向(周方向)と円すいころ13との位置関係を示す説明図であり、保持器14の1つの油溝20の部分を周方向に沿って切断した断面図である。保持器14は、毛管力によって油溝20の内部に蓄えられた潤滑油を、同じくころ表面との毛管力の作用によって円すいころ13の大径側端面13bに供給することを特徴としている。この作用を効果的にさせるためには、油溝20は、円すいころ13とポケット面15aが接する部分に高い毛管力を発生させることが重要である。そして、その手法の1つとして、本実施形態では、図7Aに示すように、油溝20の中間部分よりも毛管力が高い溝端部20aが円すいころ13と接するように構成している。これにより、油溝20の内部の潤滑油を、溝端部20aの角部20dから円すいころ13の大径側端面13bとの毛管力で吸い上げることができる。なお、図7Bでは、溝端部20aが円すいころ13と接しないため、潤滑油を吸い上げる量が少なくなる。また、図7A及び図7Bでは、説明の理解を容易にするため、油溝20の深さを実際よりも拡大して表している。 
図8A及び図8Bは、油溝20の径方向の断面形状を示す説明図であり、保持器14の1つの油溝20の部分を径方向に沿って切断した断面図である。毛管力は毛細管現象などからも明白なように、狭い空間ほど強く働くため、油溝20の径方向幅D3が細くても、図8Bに示すように開口部が広がっていると弱くなる。そこで、本実施形態では、図8Aに示すように、油溝20の壁面(油溝20の径方向の壁面と周方向の壁面の少なくとも一方)20cとポケット面15aとを接続する角部20dがシャープエッジ(半径0.1mm以下の円弧状の面取り、好ましくは半径0.05mm以下の円弧状の面取り、又は1辺0.1mmで45度の直線状の面取り)に形成されている。角部20dをシャープエッジに形成することにより、潤滑油をポケット面15aまで導きやすくすることが可能となる。なお、図8Bでは、角部20dの円弧が大きいため、潤滑油の油面がポケット面15aに届かず、給油量が少なくなる。 
また、油溝20の径方向断面の溝底すみ20eは、円弧形状に形成されており、この溝底すみ20eの円弧形状の半径Rwが小さい場合、毛管力が高まり潤滑油が溝底すみ20eに留まるように作用する。このため、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwは、最大となる油溝20の長手方向中央である溝中央部20bにおいて油溝20の径方向幅D3の1/4~1/2に設定される方が望ましい。また、溝端部20aへの毛管力を高めるためには、図10に示すように、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さくする(Rw1>Rw2>Rw3)方が更に望ましい。これにより、溝中央部20bに溜まった潤滑油を、より毛管力の高い溝端部20aに吸い上げて、ポケット面15aに導くことが可能となる。 
図9A及び図9Bは、油溝20の長手方向(周方向
)の断面形状を示す説明図であり、保持器14の1つの油溝20の部分を周方向に沿って切断した断面図である。図9Bに示すように、油溝20の周方向断面の溝底すみ20fが直角に近い場合、潤滑油が溝底すみ20fに留まってしまい、円すいころ13への給油が難しくなる。このため、溝端部20aの深さD4を、溝中央部20bの深さD4よりも小さく(浅く)設定した方が望ましい。具体的には、図9Aに示すように、油溝20の周方向断面の溝底すみ20fを円弧形状に形成して、油溝20の深さD4を、油溝20の溝中央部20bから溝端部20aに向かうに従って小さくしている。これにより、溝端部20aのポケット面15aと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。なお、図9A及び図9Bでは、説明の理解を容易にするため、油溝20の深さを実際よりも拡大して表している。 
図11~図14は、油溝20の径方向幅D3を長手方向両端部で小さく(細く)した例を説明する模式図である。つまり、図11~図14に示す油溝20では、溝端部20aの径方向幅D3を、溝中央部20bの径方向幅D3よりも小さく設定している。このように油溝20の先端を細くすることにより、溝端部20aの毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。また、細くなっている部分が先端の一部に限られるため、溝全体の空間体積をあまり減らすことなく、多くの潤滑油を蓄えやすい形状でもある。 
そして、図11に示す油溝20は、油溝20の長手方向端部の径方向一方側に直線状の面取りCxを施した形状(環状扇形状)である。図12に示す油溝20は、油溝20の長手方向端部の径方向両側に直線状の面取りCxを施した形状(略六角形状)である。図13に示す油溝20は、図11に示す環状扇形状の油溝20において、その長手方向端部に円弧状の面取りRxを施した形状である。図14に示す油溝20は、図11に示す環状扇形状の油溝20において、その長手方向端部である溝端部20aに直線状の小面取りCxxを施した形状である。また、図11~図14に示す油溝20では、油溝20の深さD4を溝中央部20bから溝端部20aに向かうに従って浅く、且つ油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さく(Rw1>Rw2>Rw3)している。 
図15及び図16は、油溝20の径方向幅D3を溝中央部20bから溝端部20aに向かうに従って小さく(細く)した例を説明する模式図である。図16に示す油溝20は、溝端部20aが尖った略三日月形状である。また、図15及び図16に示す油溝20では、油溝20の深さD4を溝中央部20bから溝端部20aに向かうに従って浅く、且つ油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さく(Rw1>Rw2>Rw3)している。このような構造にすることにより、溝端部20aのポケット面15aと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。 
なお、油溝20の周方向長さ、油溝20の径方向幅D3の変化度合い、油溝20の深さD4の変化度合い、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwの変化度合い、及びその変化の連続・不連続は自由に設定可能である。また、上記項目の一部のみを採用してもよい。また、図11に示した形状例の油溝20の場合、油溝20の径方向幅D3は、溝端部20aの近傍において、溝中央部20bから溝端部20aに向かうに従い徐々に小さくされている。具体的には、溝端部20aを軸方向から見た場合、溝端部20aを構成する部分の角部20dの成す角度θ20aは、30~60度の範囲の鋭角(図11の場合は45度)に設定されている。また、図15に示した形状例の油溝20の場合、溝中央部20bに対する溝端部20aでの寸法の比率は、径方向幅D3を略50%とし、深さD4を略25%としている。また、図16に示した三日月形状の油溝20の場合、溝中央部20bに対する溝端部20a近傍での深さD4の比率を略25%とすると共に、溝端部20aの成す角度θ20aを30~60度の範囲の鋭角(図16の場合は30度)に設定している。 
このように構成された円すいころ軸受10では、軸受に潤滑油が供給され軸受内が潤滑油で満たされている場合、軸受回転のポンプ作用により潤滑油が内輪12の小径側から大径側へ流れる現象が起きる。従って、本実施形態では、図5に示すように、上記ポンプ作用による潤滑油の流れの力を受けて、保持器14が円すいころ13の大径側に軸方向に移動し、保持器14の大径側円環部15が円すいころ13から離れる側に移動する(Dt=D2、D1=0)。これにより、大径側円環部15が円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加が抑制される。また、軸受に供給された潤滑油は、毛管力により、油溝20の内部に蓄えられる。 
その一方、軸受に潤滑油が供給されず軸受内の潤滑油が微量である場合、ポンプ作用による潤滑油の流れは発生せず、図6に示すように、保持器14は自重の分力により円すいころ13の小径側に軸方向に移動し、保持器14の大径側円環部15のポケット面15aに形成された油溝20が円すいころ13の大径側端面13bに接触する(Dt=D1、D2=0)。これにより、油溝20に蓄えられた潤滑油が円すいころ13の大径側端面13bに供給される。つまり、軸受内の潤滑油が微量である場合にのみ、油溝20が円すいころ13の大径側端面13bに接触し、潤滑油が円すいころ13に供給される。なお、本発明の円すいころ軸受10は、保持器14の自重の分力を利用して保持器14を移動させるものであるため、水平に設けられる軸(横軸)を支持する構造に用いるのが好適である。 
以上説明したように、本実施形態の円すいころ軸受10によれば、保持器14の大径側円環部15のポケット面15aに、毛管力で潤滑油を保持する微細な油溝20が設けられるため、円すいころ13で油溝20に蓋をしなくても、油溝20の単体で潤滑油を保持することができる。また、保持器14が円すいころ13の小径側に軸方向に移動したときに、油溝20が円すいころ13の大径側端面13bに接触するため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても軸受10の焼付きを防止することができる。また、保持器14が円すいころ13の大径側に軸方向に移動したときに、油溝20が円すいころ13の大径側端面13bから離れて、大径側円環部15が円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、大径側円環部15の摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。 
更に詳細に説明すると、油溝20が形成された大径側円環部15は、事前に接触力(押付け力)が設定されているわけではなく、保持器14の自重の分力により円すいころ13に接触するため、摩擦抵抗を殆ど発生させず、大径側円環部15の摩耗劣化を最小限に抑えることができる。 
また、本実施形態の円すいころ軸受10によれば、保持器14が、合成樹脂製であり、保持器14の大径側円環部15のポケット面15aの表面粗さ及び油溝20がアキシアルドローにより保持器14と同時に射出成形されるため、製造コストの増大を抑制することができる。 
また、本実施形態の円すいころ軸受10によれば、油溝20が周方向に沿って形成され、軸受回転時の遠心力の作用方向と油溝20の形成方向が直交するため、油溝20に保持される潤滑油が遠心力により飛散するのを抑制することができる。 
また、本実施形態の円すいころ軸受10によれば、潤滑油量を大幅に減らすことができるので、潤滑油の攪拌抵抗を低減することができる。また、例えば、歯車による跳ね掛けなどによって潤滑油を微量でも供給できる構造(図22参照)とすれば、潤滑油ポンプや給油路を廃止することもでき、これにより、潤滑システム全体の軽量コンパクト化、低コスト化を図ることができる。 
また、本実施形態の円すいころ軸受10によれば、潤滑油が軸受内に断続的に供給される、或いは、軸受内の潤滑油が微量である潤滑環境下でも、焼付きを防止して軸受性能や潤滑効果を長期間に亘って維持することができる。このため、本実施形態の円すいころ軸受10は、例えば、一部のハイブリッド車のトランスミッションのようにエンジン停止時に潤滑油ポンプが一時的に停止する機構に好適に用いることができ、また、自動車の被牽引時に潤滑油ポンプが作動せずに潤滑油の十分な供給が困難な状況などに対応することができる。 
ここで、本明細書における潤滑油が微量である潤滑環境下について説明する。例えば、自動車などのトランスミッションの場合、潤滑油の供給方法として、図21に示す潤滑油ポンプPによる潤滑油の圧送と、図22に示す歯車Gによる潤滑油の跳ね掛けとの2通りが一般的に知られている。 
潤滑油ポンプPにより潤滑油を圧送する構造としては、図21に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、ハウジングHに軸受10に連通する給油路Rが設けられ、この給油路Rに潤滑油ポンプPが接続される構造が一般的に知られている。この構造の場合、潤滑油ポンプPから圧送された潤滑油が給油路Rを介して軸受10に供給される。 
また、歯車Gにより潤滑油を跳ね掛ける構造としては、図22に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、回転軸Aに内輪12と隣接して歯車Gが設けられる構造が一般的に知られている。この構造の場合、歯車Gに付着している潤滑油が軸回転に伴う遠心力により飛散し、飛散した潤滑油が軸受10に付着して給油される。 
上記した2通りの構造では、軸受の焼付きを防止するため、50cc/minから1000cc/min程度の潤滑油量が供給されている。そして、この潤滑油量が10cc/minを下回ると潤滑油不足に伴う油膜不足により発熱や焼付きが起こりやすくなり、0cc/min(無潤滑油)では焼付きが生じる。本発明は、無潤滑状態ではなく希薄潤滑状態への対応であり、潤滑油が微量である潤滑環境下、具体的には、0.01cc/min~10cc/min程度の希薄潤滑状態で大きな効果を発揮する。 
次に、本明細書における潤滑油が断続的に供給される環境について説明する。例えば、ハイブリッド車では、エンジンを停止したまま電動モータで走行するモードがある。このモード中は、エンジンと直結した潤滑油ポンプだけの構造では、軸受に潤滑油が給油されない状態で走行が行われる。このため、数分程度までの無給油走行状態が発生するが、軸受はこの間に焼付きを起こしてはならない。この電動走行時間はバッテリーの進化と共に延長させたいニーズがある。現状では焼付き防止のために一定間隔毎にエンジンを回し、潤滑油ポンプを作動させる制御を行っている車種もある。この課題を解決するには、電動潤滑油ポンプをシステムに追加するか、本発明のような無潤滑で焼付きにくい軸受の採用が必要となる。本発明では、焼付きまでの時間は油溝に蓄えられる潤滑油量と関連があることから、潤滑油量を増やすことで無潤滑適用時間を数十分から数時間と大幅に延長させることが可能である。潤滑油量の拡大には、例えば、油溝の数の増加や油溝深さの拡大で対応できる。 
また、乗用車は、故障時やキャンピングカーなどの大型車両での移動先での補助用車両として牽引されることがある。このようなときは、車両の駆
動輪を台車などに載せることで空転を防止することが可能であるが、現実には、駆動輪を空転させながら牽引される事例が起こっている。この場合、駆動伝達はなく無負荷空転のため軸受の負担も軽微であるが、円すいころ軸受の場合、一般的に予圧をかけて使用されるため、予圧分の負荷が常に作用している。そして、この空転状態では、エンジンや電動潤滑油ポンプが稼働せず、潤滑油ポンプは停止しているため、軸受は焼付きを起こしやすい。この対策のために、跳ね掛け給油が起こるように駆動装置に工夫を施している車種もある。本発明では、潤滑油ポンプが停止しても、油溝に蓄えられた潤滑油がなくなるまで軸受に給油を行えるため、跳掛けが不十分又は跳ね掛けがないような被牽引状態でも耐焼付き性を大幅に向上することができる。 
また、極寒環境での始動時には、潤滑油が凍結し、潤滑油ポンプによる給油も跳ね掛けによる給油も起こらない現象が一時的に発生する。この場合は、凍結した潤滑油が温まって溶けるまでの間、軸受自身に付着していた僅かな油分で潤滑を賄わなければならない。そして、本発明では、凍結した潤滑油が油溝に蓄えられているため、軸受の発熱に伴い徐々に溶けながら潤滑するため、耐焼付き性を飛躍的に向上することができる。 
次に、本実施形態の第1変形例として、図17に示すように、隣接する2つの油溝20を径方向に延びる接続溝22により互いに接続してもよい。本変形例によれば、油溝20に蓄えられる潤滑油を増やすことができるため、微量な潤滑油の潤滑環境下における軸受10の耐焼付き性を更に向上することができる。なお、接続溝22は、1つに限定されず、複数であってもよい。 
また、本実施形態の第2変形例として、図18に示すように、保持器14のポケット面15aに3つの油溝20を形成すると共に、隣接する3つの油溝20を径方向に延びる接続溝22により互いに接続してもよい。また、本変形例では、3つの油溝20の周方向両端辺である一対の端部連結辺21は、円すいころ13の円環状の接触面13eに倣った円弧状の線21Cに揃うようにそれぞれ設けられている。本変形例によれば、油溝20に蓄えられる潤滑油を増やすことができるため、微量な潤滑油の潤滑環境下における軸受10の耐焼付き性を更に向上することができる。なお、接続溝22は、1つに限定されず、複数であってもよい。 
また、本実施形態の第3変形例として、図19及び図20に示すように、保持器14のポケット面15aに、2つの油溝20の溝端部20aを通過する一対の直線21Lに沿って膨出部15bをそれぞれ形成してもよい。このため、保持器14が円すいころ13の小径側に移動した際、油溝20の溝端部20aが円すいころ13の大径側端面13bに接触し、油溝20の溝端部20a以外の部分は円すいころ13の大径側端面13bに接触しない。これにより、油溝20の溝端部20aから円すいころ13の大径側端面13bに潤滑油を供給することができると共に、保持器14のポケット面15aが円すいころ13の大径側端面13bに接触する際の摩擦抵抗を低減することができる。 
なお、本発明は、上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
10  円すいころ軸受  11  外輪  11a 外輪軌道面  12  内輪  12a 内輪軌道面  13  円すいころ  13a 転動面  13b 大径側端面  13c 小径側端面  13d 凹部  13e 円環状の接触面  14  保持器  15  大径側円環部  15a 軸方向内端面(ポケット面)  16  小径側円環部  16a 軸方向内端面  17  柱部  18  ポケット  20  油溝  20a 溝端部  20b 溝中央部  20c 壁面  20d 角部  20e 径方向断面の溝底すみ  20f 周方向断面の溝底すみ  21  端部連結辺  21L 一対の直線  L   潤滑油  S1  第1隙間  S2  第2隙間  D1  第1隙間のころ軸方向寸法  D2  第2隙間のころ軸方向寸法  D3  油溝の径方向幅  D4  油溝の深さ  Dt  隙間全体のころ軸方向の総和寸法  LR  円すいころの長さ寸法  LP  ポケットのころ軸方向の長さ寸法  Ra  円すいころの大径側端面の曲率半径  SRy ポケット面の曲率半径

Claims (7)

  1. 内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動可能に設けられる複数の円すいころと、前記複数の円いころを周方向に略等間隔に保持する保持器と、を備え、 前記保持器は、大径側円環部と、前記大径側円環部と同軸に配置される小径側円環部と、前記大径側円環部と前記小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う前記柱部間に形成され、前記円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、 前記保持器は、前記小径側円環部の軸方向内端面と前記円すいころの小径側端面との間に第1隙間を有すると共に、前記大径側円環部の軸方向内端面と前記円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、 前記大径側円環部の軸方向内端面には、毛管力で潤滑油を保持する複数の油溝が設けられ、 前記保持器が前記円すいころの小径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面に接触し、前記保持器が前記円すいころの大径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面から離れることを特徴とする円すいころ軸受。
  2. 前記複数の油溝は、前記保持器の周方向に沿って平行に形成されることを特徴とする請求項1に記載の円すいころ軸受。
  3. 前記複数の油溝は、前記円すいころの大径側端面と接触可能な溝端部をそれぞれ有し、 前記円すいころの大径側端面は、前記大径側端面の中心部に形成される円形状の凹部と、前記凹部の周囲に設けられ、前記大径側円環部の軸方向内端面と接触可能な円環状の接触面と、を有し、 前記複数の油溝のそれぞれの前記溝端部は、前記円環状の接触面と前記大径側円環部の軸方向内端面とが前記円すいころの長手方向において重なり合う領域に収まるように設けられることを特徴とする請求項2に記載の円すいころ軸受。
  4. 前記大径側円環部の軸方向内端面が凹球面状に形成され、前記円すいころの大径側端面が凸球面状に形成され、 前記大径側円環部の軸方向内端面の凹球面状の曲率半径SRyは、前記円すいころの大径側端面の凸球面状の曲率半径Raの±10%以内に設定されることを特徴とする請求項1に記載の円すいころ軸受。
  5. 前記複数の油溝は、環状扇形状にそれぞれ形成され、 前記複数の油溝の長手方向両端辺である一対の端部連結辺は、一対の直線に揃うようにそれぞれ設けられ、 前記一対の直線は、前記大径側円環部の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線であることを特徴とする請求項2に記載の円すいころ軸受。
  6. 隣接する前記複数の油溝は、少なくとも1つの接続溝により互いに接続されることを特徴とする請求項2に記載の円すいころ軸受。
  7. 潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする請求項1~6のいずれか1項に記載の円すいころ軸受。
PCT/JP2020/031268 2019-08-26 2020-08-19 円すいころ軸受 WO2021039532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153914A JP7351141B2 (ja) 2019-08-26 2019-08-26 円すいころ軸受
JP2019-153914 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021039532A1 true WO2021039532A1 (ja) 2021-03-04

Family

ID=74677191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031268 WO2021039532A1 (ja) 2019-08-26 2020-08-19 円すいころ軸受

Country Status (2)

Country Link
JP (1) JP7351141B2 (ja)
WO (1) WO2021039532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079790A1 (ja) * 2022-10-11 2024-04-18 株式会社ジェイテクト 円すいころ軸受

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074356A (ja) * 2021-11-17 2023-05-29 日本精工株式会社 円すいころ軸受

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200376A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd ころ軸受用の保持器
JP2015183804A (ja) * 2014-03-25 2015-10-22 株式会社ジェイテクト 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受
JP2017166641A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 円錐ころ軸受用保持器、円錐ころ軸受
JP2018159411A (ja) * 2017-03-22 2018-10-11 Ntn株式会社 円すいころ軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200376A (ja) * 1995-01-27 1996-08-06 Koyo Seiko Co Ltd ころ軸受用の保持器
JP2015183804A (ja) * 2014-03-25 2015-10-22 株式会社ジェイテクト 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受
JP2017166641A (ja) * 2016-03-17 2017-09-21 日本精工株式会社 円錐ころ軸受用保持器、円錐ころ軸受
JP2018159411A (ja) * 2017-03-22 2018-10-11 Ntn株式会社 円すいころ軸受

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079790A1 (ja) * 2022-10-11 2024-04-18 株式会社ジェイテクト 円すいころ軸受

Also Published As

Publication number Publication date
JP7351141B2 (ja) 2023-09-27
JP2021032353A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
EP3763958B1 (en) Tapered roller bearing
US10190637B2 (en) Sealed bearing assembly
WO2021039532A1 (ja) 円すいころ軸受
US8777759B2 (en) Universal joint and propeller shaft
US11300155B2 (en) Cage for a tapered roller bearing and tapered roller bearing
JP6672059B2 (ja) 冠型保持器及び玉軸受
JP7088286B2 (ja) 玉軸受
WO2018186346A1 (ja) 円すいころ軸受
JP7272175B2 (ja) 円すいころ軸受
WO2019172447A1 (ja) 円すいころ軸受
JP2002515105A (ja) 自己ポンプ作動ローラーベアリング
CN111757993B (zh) 圆锥滚子轴承用保持器和圆锥滚子轴承
JP2021032360A (ja) ラジアル型ころ軸受
JP7272176B2 (ja) 円すいころ軸受
JP2021060071A (ja) 円すいころ軸受
JP7466501B2 (ja) 円すいころ軸受
JP7294316B2 (ja) 円すいころ軸受
WO2023090208A1 (ja) 円すいころ軸受
JP2021085500A (ja) ラジアル型ころ軸受
JP2021025550A (ja) 円すいころ軸受
JP2021032359A (ja) ラジアル型ころ軸受
JP2021032358A (ja) ラジアル型ころ軸受
JP2021076185A (ja) 円錐ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856219

Country of ref document: EP

Kind code of ref document: A1