WO2018186346A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2018186346A1
WO2018186346A1 PCT/JP2018/014100 JP2018014100W WO2018186346A1 WO 2018186346 A1 WO2018186346 A1 WO 2018186346A1 JP 2018014100 W JP2018014100 W JP 2018014100W WO 2018186346 A1 WO2018186346 A1 WO 2018186346A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
cage
inner ring
roller bearing
annular portion
Prior art date
Application number
PCT/JP2018/014100
Other languages
English (en)
French (fr)
Inventor
知樹 松下
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018186346A1 publication Critical patent/WO2018186346A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Definitions

  • This invention relates to a tapered roller bearing.
  • tapered roller bearings are conventionally used in applications that support rotating shafts of various mechanical devices such as automobile transmission shafts and differential shafts.
  • An oil lubrication method using a liquid lubricating oil is generally used for lubrication inside the bearing.
  • a splash lubrication method in which the lubricating oil is splashed onto the bearing by agitation of the lubricating oil accompanying the rotation of the gear during operation of the mechanical device, or a part of the bearing in the oil bath.
  • An oil bath lubrication method that is soaked in water is common.
  • the tapered roller bearing disclosed in the following Patent Document 1 includes a resin cage retainer having an inner flange surrounding the inner ring, and a radial clearance set between the inner flange and the small collar portion of the inner ring. However, since it is set to 2.0% or less of the outer diameter of the small collar portion, the lubricating oil flowing into the raceway surface of the inner ring from between the cage and the inner ring is limited.
  • a cylindrical surface having a smaller diameter than the small flange portion is provided at a position on the outer side in the axial direction from the small flange portion of the inner ring, and the cylindrical surface and the cage
  • the inner ring of the inner ring is opposed to the inner ring in the radial direction with a narrow gap, and the inner ring and the small hook part are formed with a labyrinth that is opposed in the axial direction with a narrow gap.
  • the amount of lubricating oil flowing into the raceway surface can be further reduced.
  • Japanese Patent No. 503220 Japanese Patent Laying-Open No. 2015-194243 Japanese Patent No. 4314430
  • a rolling element guide type cage is generally adopted for a bearing of a size that can be incorporated into a transmission or a differential of an ordinary automobile.
  • the rolling element guide system is designed such that the cage is not in contact with the inner ring and the outer ring and is guided in the radial direction only by the tapered rollers. For this reason, even when the cage swings during the bearing operation, the cage must not be in sliding contact with the inner ring and the outer ring. There is a limit to restricting the amount of inflow.
  • the problem to be solved by the present invention is to reduce the bearing rotating torque by reducing the gap between the inner cage and the inner ring of the cage provided in the tapered roller bearing.
  • the present invention provides a tapered roller having a small end surface and a large end surface, a raceway surface provided on the outer periphery, a small flange portion that receives the small end surface of the tapered roller, and the tapered roller.
  • An inner ring having a large collar portion for guiding the large end surface, an outer ring having a raceway surface provided on an inner periphery, and provided coaxially with the inner ring, and a cage formed of resin,
  • the cage includes a first annular portion, a second annular portion having a diameter larger than that of the first annular portion, and a column portion that divides the first annular portion and the second annular portion into pockets.
  • the tapered roller is accommodated in the pocket, and the first annular portion of the retainer has a smaller diameter than the column portion and is continuous on the entire circumference, and has a conical shape having an inner flange surrounding the inner ring.
  • the cage protrudes from the inner flange toward the inner ring. They are arranged side by side in at exit shape circumferentially and in the inner ring and the fluid lubrication state is obtained by employing the structure having a plurality of inward projections which can slide contact.
  • the inward protrusions protruding at a plurality of locations in the circumferential direction of the inner collar can be in sliding contact with the inner ring.
  • the lubricating oil is dragged in the circumferential direction between the inner protrusion and the inner ring due to the difference in peripheral speed.
  • an oil film that separates the inner protrusion and the inner ring is formed by a wedge effect generated between the inner protrusion and the inner ring.
  • the inner protrusion of the retainer may be disposed so as to be in sliding contact with the outer diameter surface of the small collar portion of the inner ring in a fluid lubricated state. This eliminates the need for a special stepped inner ring.
  • the inward projection of the retainer has an arc shape in a cross section along the circumferential direction.
  • the first annular portion of the cage may have an end surface that is inclined from the position on the inner diameter of the inner flange toward the second annular portion toward the outer diameter side. If it does in this way, the lubricating oil supplied from the outside will become easy to flow to the outside diameter side along the end face of the 1st annular part. For this reason, it becomes difficult for the lubricating oil to enter the gap between the inner flange of the cage and the inner ring.
  • the first annular portion of the cage may have a shape that moves away from the small end face of the tapered roller in an axial direction in a region having a smaller diameter than a position facing the central axis of the tapered roller. If it does in this way, the shear resistance of the lubricating oil between the small end surface of a tapered roller and a holder
  • retainer can be reduced, and it is advantageous to the reduction of a bearing rotational torque.
  • the pillar portion of the cage has a roller guide surface that contacts the tapered roller in the circumferential direction, and a concave portion that is recessed in the circumferential direction from the roller guide surface, and at least a part of the concave portion is formed in the radial direction.
  • the shape may be open outward. If it does in this way, the shear resistance of the lubricating oil between a tapered roller and a pillar part can be reduced.
  • the lubricating oil flowing between the cage and the raceway surface of the inner ring from the gap between the inner cage and the inner ring of the cage can be quickly released from the recess to the outer ring side, facilitating the discharge by the pump action. it can.
  • the concave portion of the pillar portion has a shape along the second annular portion side in the axial direction in a region facing the first annular portion in the axial direction, and has a larger diameter than the first annular portion. It is preferable that the region has a shape along at least one side in the axial direction. If it is a recessed part of such a shape, the whole holder
  • ⁇ Inflow of lubricating oil may be positively restricted between the cage and the outer ring.
  • the retainer further includes an outer ring disposed coaxially with the inner ring, and the retainer has a plurality of outer protrusions arranged in a circumferential direction in a shape protruding from the first annular portion toward the outer ring. It is good to have. In this way, the slidable contact between the outer protrusion of the cage and the outer ring can be allowed when the cage swings, as in the case between the inner projection and the inner ring, so it is set between the first annular portion and the outer ring. It is possible to reduce the bearing rotational torque by reducing the radial gap.
  • the outward projection of the retainer has an arc shape in a cross section along the circumferential direction.
  • the tapered roller bearing according to the present invention is suitable for use in supporting a rotating shaft included in a power transmission path of an automobile, and for supplying lubricating oil from the outside to the inside of the bearing by splashing or oil bath lubrication. is there. Since the tapered roller bearing according to the present invention can reduce the rotational torque of the bearing as described above, it can contribute to a reduction in fuel consumption by reducing the power loss of the automobile.
  • the present invention can reduce the bearing rotational torque by adopting the above configuration and reducing the radial gap set between the inner cage and the inner ring of the cage provided in the tapered roller bearing.
  • a longitudinal front view showing a tapered roller bearing according to an embodiment of the present invention Left side view of tapered roller bearing in Fig. 1
  • the partial expansion perspective view which shows the external appearance of the outer diameter side of the holder
  • Partial expanded sectional view which shows the outline shape of the cut surface of the IV-IV line in FIG.
  • Partial expanded sectional view which shows the cut surface of the VV line in FIG.
  • the fragmentary sectional view which shows the metal mold
  • Sectional drawing which shows an example of the differential for motor vehicles incorporating the tapered roller bearing of FIG.
  • Sectional drawing which shows an example of the transmission for motor vehicles incorporating the tapered roller bearing of FIG.
  • the tapered roller bearing 1 shown in FIGS. 1 and 2 includes a predetermined number of tapered rollers 10, an inner ring 20, an outer ring 30, and a cage 40.
  • FIG. 1 shows a cross section on a virtual axial plane including a bearing center axis C1 that is a design center of rotation of the tapered roller bearing 1 and a center axis C2 that is a center of rotation of the tapered roller 10.
  • the state at the time of the whirling of the retainer 40 is shown.
  • the center axis C3 of the cage 40 is located at a position deviated downward in the figure from the bearing center axis C1.
  • the inner ring 20, the outer ring 30 and the cage 40 should originally be arranged coaxially with the bearing center axis C ⁇ b> 1.
  • the bearing central axis C1 may be considered as the central axis of the inner ring 20.
  • the direction along the bearing central axis C1 is simply referred to as “axial direction”.
  • This axial direction corresponds to the left-right direction in FIG.
  • the direction perpendicular to the bearing center axis C1 is simply referred to as “radial direction”.
  • This radial direction corresponds to the vertical direction of the drawing in FIG.
  • the circumferential direction around the bearing central axis C1 in the normal arrangement is simply referred to as “circumferential direction”.
  • the direction along the central axis C2 of the tapered roller 10 on the cross section of FIG. 1 is simply referred to as “roller central axis direction”.
  • the tapered roller 10 is a rolling element having a small end surface 11, a large end surface 12, and a rolling surface 13 formed in a conical shape.
  • the small end surface 11 is a side surface on the small diameter side of the tapered roller 10 and is a surface portion that does not roll on the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30.
  • the large end surface 12 is a large-diameter side surface of the tapered roller 10 and is a surface portion that does not roll on the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30.
  • the side surface of the tapered roller 10 is a surface portion of the tapered roller 10 exposed in the central axis direction of the tapered roller 10.
  • the inner ring 20 includes a raceway ring having a tapered inner ring raceway surface 21 on the outer periphery, a small flange portion 22 that receives the small end surface 11 of the tapered roller 10, and a large flange portion 23 that guides the large end surface 12 of the tapered roller 10. It has become.
  • the small collar part 22 and the large collar part 23 are all-around continuous parts along the circumferential direction.
  • the gavel portion 22 has a cylindrical outer diameter surface 24.
  • the outer ring 30 is a race ring having a conical outer ring raceway surface 31 on the inner periphery and a facing surface 32 facing the small collar portion 22 of the inner ring 20 in the radial direction.
  • the facing surface 32 is a cylindrical surface.
  • the outer ring 30 is disposed coaxially with the inner ring 20.
  • the large end surface 12 of the tapered roller 10 and the large collar portion 23 of the inner ring 20 are brought into contact with the tapered roller bearing 1 in the direction of the center axis of the roller.
  • the tapered roller 10 is interposed between the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30, and the rolling surface 13 is rotated around the central axis C ⁇ b> 2 of the tapered roller 10. , Roll over 31.
  • the large end surface 12 of the tapered roller 10 slides in the circumferential direction with respect to the large collar portion 23 of the inner ring 20, and the large collar portion 23 guides the large end surface 12 in the circumferential direction.
  • the tapered roller 10, the inner ring 20 and the outer ring 30 are each integrally formed of steel, for example, bearing steel.
  • the cage 40 divides the first annular portion 41, the second annular portion 42 having a larger diameter than the first annular portion 41, and the pockets 43 between the first annular portion 41 and the second annular portion 42.
  • the cage 40 is made of synthetic resin.
  • the synthetic resin may be, for example, a fiber reinforced resin containing reinforced fibers.
  • the cage 40 is formed by a mold that is divided into two in the axial direction.
  • the first annular portion 41 is a cage portion that is continuous in the circumferential direction on the small diameter side of the cage 40.
  • the second annular portion 42 is a cage portion that is continuous in the circumferential direction on the large diameter side of the cage 40.
  • the outer diameter of the second annular portion 42 is larger than the outer diameter of the first annular portion 41.
  • the pocket 43 is a space formed in the cage 40 for accommodating the tapered roller 10.
  • the pillar portion 44 is a cage portion extending between the first annular portion 41 and the second annular portion 42 so as to separate the adjacent pockets 43, 43 in the circumferential direction.
  • the column portion 44 connects the first annular portion 41 and the second annular portion 42.
  • the number of pockets 43 in the retainer 40 is the same as the total number of tapered rollers 10 disposed between the raceway surface 21 of the inner ring 20 and the raceway surface 31 of the outer ring 30.
  • the tapered roller 10 is accommodated in the pocket 43 in such a posture that the large end surface 12 faces the second annular portion 42 side.
  • the cage 40 rotates while maintaining a predetermined interval in the circumferential direction between the tapered rollers 10 during the bearing operation.
  • the first annular portion 41 has an inner collar 45 that is smaller in diameter than the column portion 44 and continues around the entire circumference and surrounds the inner ring 20.
  • the inner collar 45 is in a position that always surrounds the outer diameter surface 24 of the small collar portion 22.
  • the first annular portion 41 has a conical end face 46 exposed toward the outside in the axial direction.
  • the end surface 46 has a shape inclined toward the second annular portion 42 from the position P1 on the inner diameter of the inner flange 45 toward the outer diameter side.
  • the position P1 is an edge portion that defines the inner diameter of the inner flange 45.
  • the end surface 46 continues to the position P2 near the outer diameter of the first annular portion 41.
  • the position P ⁇ b> 2 is on a conical extension that defines the outer diameter surface 47 of the column portion 44.
  • the first annular portion 41 has a shape that moves away from the small end face 11 of the tapered roller 10 in the axial direction in a region having a smaller diameter than the position P3 facing the central axis C2 of the tapered roller 10.
  • a region of the first annular portion 41 having a larger diameter than the position P3 includes a pocket surface 48 extending in a direction perpendicular to the roller central axis direction.
  • FIG. 3 shows a perspective view of the vicinity of the column portion 44 from the outer peripheral side of the cage 40.
  • FIG. 4 shows only the contour shape of the cross section obtained by cutting the column portion 44 along the line IV-IV in FIG.
  • FIG. 5 shows a cross section of the recess 50 taken along the line VV in the axial direction in FIG.
  • the direction toward the second annular portion 42 in the axial direction corresponds to the upward direction in FIG.
  • the column portion 44 is symmetrical in the circumferential direction, and has a roller guide surface 49, a recess 50, and a flat surface 51 on both sides in the circumferential direction.
  • the roller guide surface 49 is in contact with the rolling surface 13 of the tapered roller 10 in the circumferential direction.
  • the recess 50 is recessed in the circumferential direction from the roller guide surface 49 and does not contact the rolling surface 13 of the tapered roller 10.
  • the flat surface 51 extends from the position P4 having the same diameter as the inner peripheral edge of the second annular portion 42 on the first annular portion 41 side in the axial direction toward the first annular portion 41 and continues to the outer diameter surface 47.
  • the roller guide surface 49 is located at a position larger in diameter than the central axis C2 of the tapered roller 10, and can contact the rolling surface 13 of the tapered roller 10 in the circumferential direction within a predetermined range in the radial direction.
  • the roller guide surface 49 continues from the flat surface 51 and the outer diameter surface 47 to the inner diameter side.
  • the roller guide surface 49 has a planar shape opened in the axial direction toward the second annular portion 42 side. When viewed from the circumferential direction, the roller guide surface 49 has one end portion in the immediate vicinity of the inner periphery on the second annular portion 42 side, and continues from the one end portion to the first annular portion 41, and the first annular portion 41. Branching on the way to the outer diameter surface 47 of the column 44.
  • At least a part of the recess 50 has a shape that is opened radially outward.
  • the recess 50 shown in FIGS. 3 and 4 has a shape opened from the end on the small diameter side of the column portion 44 outward in the radial direction with a predetermined width in the axial direction.
  • the recess 50 is formed by a mold (male mold) different from the mold (female mold) forming the first annular portion 41.
  • the edge serving as the boundary between the recess 50 and the outer diameter surface 47 of the column portion 44 has a first outer diameter that is continuous with the end of the outer diameter surface 47 on the first annular portion 41 side. It consists of an edge e1 and a second outer diameter edge e2 that is continuous in the circumferential direction from the end of the first outer diameter edge e1 on the second annular portion 42 side.
  • the edge which becomes the boundary between the recess 50 and the guide surface 49 is an axial edge e3 extending from the second outer diameter edge e2 in the axial direction toward the second annular portion 42, and the second annular portion 42 side of the axial edge e3.
  • the concave portion 50 connects a plane inclined in the circumferential direction with respect to the roller guide surface 49 so as to connect the straight edge e4 and the first outer diameter edge e1, and the plane, the straight edge e4, and the second outer diameter edge e2. It consists of a plane. All of these two planes are along the axial direction.
  • along the axial direction means not only parallel to the axial direction but also includes a case where there is an inclination (draft) or undercut with respect to the axial direction within a range in which the mold can be separated in the axial direction. It is.
  • FIG. FIG. 6 shows a state where the mold surface to which the columnar shape is transferred is viewed from the circumferential direction.
  • the female mold Fd on the left side in FIG. 6 transfers substantially the entire shape of the surface appearing on the left side surface of the cage.
  • the left side surface portion that is not transferred by the left female die Fd in FIG. 6 is only the rib-shaped protrusion at the center of the inner periphery of the second annular portion 42 shown in FIGS.
  • the male mold Md on the right side in FIG. 6 transfers all of the cage surface portion that cannot be transferred by the female mold Fd.
  • the female mold Fd includes an inclined portion f1 that transfers the shape of the outer diameter surface 47 of the column portion 44, and a core portion f2 that protrudes from the inclined portion f1. And have.
  • the core portion f2 has the shape of the flat surface 51 of the column portion 44, the circumferential end surface portion of the column portion 44 having a larger diameter from the flat surface 51, and the left side portion of the second annular portion 42 having a diameter larger than the position P4. Transcript.
  • the male mold Md includes the right side surface of the cage 40, the entire inner peripheral surface of the cage 40, the entire right side surface of the first annular portion 41, the entire right side surface of the second annular portion 42, and the flat surface 51 of the column portion 44. Transfer the entire smaller area.
  • the male mold Md has an inclined portion m1 that transfers the shape of the inner diameter surface 52 of the column portion 44, and a core portion m2 that protrudes from the inclined portion m1.
  • the core portion m2 has a flat surface portion ms1 for transferring the shape of the roller guide surface 49, a protruding surface portion ms2 for transferring the shape of the concave portion 50, and an end face portion ms3 for transferring the shape of the right side surface of the first annular portion 41. .
  • the projecting surface portion ms2 of the core portion m2 can be separated without being caught in the axial direction.
  • the retainer 40 has a large number of inward protrusions 53 that protrude from the inner flange 45 toward the inner ring 20.
  • the inward protrusions 53 are arranged so as to be arranged at a constant interval d in the circumferential direction.
  • the inward protrusion 53 has a height h in the radial direction from the inner diameter of the inner flange 45.
  • a radial gap (g / 2) is set between the inner flange 45 and the outer diameter surface 24 of the small flange portion 22.
  • the gap (g / 2) corresponds to half of the difference in diameter between the inner diameter of the inner flange 45 and the outer diameter surface 24 of the small flange portion 22 of the inner ring 20.
  • the inward protrusion 53 forms a wedge-shaped gap with the small collar portion 22 of the inner ring 20.
  • the wedge-shaped gap refers to a gap that gradually narrows in the radial direction toward the inner protrusion 53 in the circumferential direction.
  • the inward projection 53 has an arcuate surface with a cross section along the circumferential direction.
  • the cross section along the circumferential direction is the inner projection 53 when the inner projection 53 is cut by a virtual plane that is orthogonal to the outer diameter surface 24 of the small collar portion 22 of the inner ring 20 and extends along the circumferential direction.
  • the aforementioned arc-shaped radius of curvature R can be set to be 0.1 mm or more and less than 9.0 mm, for example.
  • the height h of the inward protrusion 53 with respect to the inner diameter of the inner flange 45 is smaller than the curvature radius R described above, and can be set to, for example, 0.01 mm or more and less than 0.50 mm.
  • the distance d between the inner protrusions 53 adjacent to each other in the circumferential direction is set so as not to allow any direct contact between the inner flange 45 and the inner ring 20 in any circumferential region when the cage 40 swings.
  • This interval can be set to, for example, 0.0 mm or more and 3.0 mm or less.
  • Clearance ( ⁇ 1/2) is the inner diameter at the Tossaki end of the inner projection 53, which corresponds to half the diameter difference between the outer diameter of the outer surface 24 of the small rib portion 22. Clearance ( ⁇ 1/2) is, for example, 0.5mm or less.
  • the retainer 40 is in one direction in the radial direction from the bearing axis C1 (in the figure downwards In one example FIG.) ( ⁇ 1/2) by deflection Of the large number of inward projections 53, the inward projections 53 passing through a partial region in the circumferential direction that is 180 ° opposite to the deflection direction (inward projections in the vicinity of the uppermost portion in FIGS. 1 and 2). 53) is in direct contact with the outer diameter surface 24 of the small flange portion 22, while the inner protrusion 53 (in the vicinity of the lowermost portion in FIGS. 1 and 2) passes through a partial region in the circumferential direction corresponding to the deflection direction.
  • the gap ⁇ 1 is generated between the projection 53) and the outer diameter surface 24 of the small flange portion 22.
  • This tapered roller bearing 1 is used in a splashing or oil bath lubrication system.
  • Lubricating oil supplied from the outside during rotation of the bearing is a gap in the radial direction ( ⁇ / 2) set between the inner flange 45 and the outer diameter surface 24 of the small flange portion 22, or the inner protrusion 53 and the small amount. It flows between the cage 40 and the raceway surface 21 of the inner ring 20 through a wedge-shaped gap between the outer diameter surface of the flange portion 22.
  • the fluid lubrication state refers to a state in which a fluid film (oil film) of lubricating oil is formed between two surfaces according to the hydrodynamic principle, and no direct contact of the friction surface occurs.
  • the minimum oil film thickness between the two surfaces is larger than the root mean square roughness, generally three times or more, it can be regarded as a fluid lubrication state.
  • the sliding resistance becomes almost zero.
  • the root mean square roughness refers to the root mean square roughness Rq defined in JIS standard B0601: 2013.
  • the retainer 40 has a large number of outward projections 54 protruding from the first annular portion 41 toward the outer ring 30.
  • the outer protrusions 54 are arranged at regular intervals in the circumferential direction, have a cross-sectional arc-shaped surface, and are common to the inner protrusions 53 in that they have a height in the radial direction with respect to the first annular portion 41. The only difference is that the values of the interval, the arc-shaped curvature radius, and the height are different from those of the inward protrusion 53. For this reason, with reference to FIG. 6, the code
  • the outer protrusion 54 forms a wedge-shaped gap with the outer ring 30.
  • the distance d between the outer protrusions 54 is set so as not to allow direct contact between the first annular portion 41 and the outer ring 30 in any circumferential region when the cage 40 swings.
  • the circumferential interval and the arc-shaped radius of curvature of the outer protrusion 54 are larger than the interval and the radius of curvature of the inner protrusion 53, respectively.
  • the tapered roller bearing 1 is as described above.
  • the inward projection 53 protruding at the location can be slidably contacted with the inner ring 20 in a fluid lubrication state by the wedge effect (see FIGS. 1, 2, and 7).
  • drag torque is hardly generated at the sliding contact portion between the inward projection 53 and the inner ring 20. Since the height h of the inward projection 53 required for realizing the fluid lubrication state is very small, the radial gap (g / 2) set between the inner flange 45 and the inner ring 20 can be reduced.
  • this tapered roller bearing 1 improves the inflow restriction performance of the lubricating oil by reducing the gap between the inner flange 45 and the inner ring 20 of the retainer 40, thereby reducing the stirring resistance inside the bearing. As a result, the bearing rotational torque can be reduced.
  • the tapered roller bearing 1 is configured so that the inner protrusion of the cage and the outer diameter surface of the small collar portion of the inner ring abut each other when the cage swings (see FIG. 1). While permitting sliding contact between the inner protrusion 53 and the inner ring 20 at the time of swinging, the space between the inner flange 45 and the inner ring 20 can be reduced on the entire circumference, and power loss is suppressed particularly in a driving force transmission system of an automobile. It is possible to provide a tapered roller bearing suitable for the above.
  • the tapered roller bearing 1 is arranged so that the inner protrusion 53 of the cage 40 is in sliding contact with the outer diameter surface 24 of the small flange portion 22 of the inner ring 20 in a fluid lubricated state (FIGS. 1 and 2). , Refer to FIG. 7), and it is possible to improve the inflow restriction performance of the lubricating oil without adopting a special stepped inner ring.
  • the inner protrusion 53 of the cage 40 has an arc shape in a cross section along the circumferential direction (see FIGS. 2 and 7), so a wedge-shaped gap is formed between the inner ring 20 and the tapered roller bearing 1.
  • the fluid lubrication state can be realized by the wedge effect.
  • the tapered roller bearing 1 also has an end face 46 having a shape in which the first annular portion 41 of the cage 40 is inclined from the position P1 on the inner diameter of the inner flange 45 toward the second annular portion 42 toward the outer diameter side. Therefore (see FIG. 1), the lubricating oil supplied from the outside easily flows along the end face 46 of the first annular portion 41, and does not easily enter the gap between the inner flange 45 and the inner ring 20.
  • the tapered roller bearing 1 has a shape in which the first annular portion 41 of the retainer 40 moves away from the small end surface 11 of the tapered roller 10 in the axial direction in a region having a smaller diameter than the position P3 facing the central axis C2 of the tapered roller 10. Therefore (see FIG. 1), the shear resistance of the lubricating oil between the small end surface 11 of the tapered roller 10 and the first annular portion 41 of the cage 40 can be reduced.
  • the tapered roller bearing 1 includes a roller guide surface 49 in which the column portion 44 of the retainer 40 contacts the tapered roller 10 in the circumferential direction, and a recess 50 that is recessed from the roller guide surface 49 in the circumferential direction. Since at least a part of 50 has a shape opened radially outward (see FIGS. 1, 3, and 4), the shear resistance of the lubricating oil between the rolling surface 13 of the tapered roller 10 and the column portion 44. Can be reduced.
  • the lubricating oil that has flowed between the cage 40 and the raceway surface 21 of the inner ring 20 from the gap between the inner flange 45 of the cage 40 and the inner ring 20 is quickly released from the recess 50 to the outer ring 20 side, and the pump action Can be promoted.
  • the tapered roller bearing 1 has a shape in which the concave portion 50 is axially opposed to the first annular portion 41 and extends in the axial direction toward the second annular portion 42. Since the large-diameter region is open at least on one side in the axial direction, the entire retainer 40 can be integrally formed with the dies Fd and Md divided in the axial direction (FIGS. 1 and 5). FIG. 6).
  • the tapered roller bearing 1 is arranged so as to be aligned in the circumferential direction in a shape protruding from the first annular portion 41 of the cage 40 toward the outer ring 30 and is in sliding contact with the outer ring 30 in a fluid lubricated state. Since the protrusion 54 is provided (see FIGS. 1, 2, and 7), the sliding contact between the outer protrusion 54 and the outer ring 30 is allowed when the cage 40 swings, so that the first annular portion 41 and the outer ring 30 are It is possible to reduce the bearing rotational torque by reducing the radial gap set between them.
  • the outer protrusion 54 of the cage 40 has an arc shape in a cross section along the circumferential direction (see FIGS. 2 and 7), so that a wedge-shaped gap is formed between the outer roller 30 and the tapered roller bearing 1.
  • the fluid lubrication state can be realized by forming and the wedge effect.
  • the wedge effect is more likely to occur as the arcuate radius of curvature of the inner protrusion 53 or the outer protrusion 54 is increased.
  • the height h of the inner protrusion 53 or the outer protrusion 54 with respect to the first annular portion 41 is reduced, the gap between the first annular portion 41 and the inner ring 20 or the outer ring 30 can be reduced over the entire circumference. it can.
  • the distance d between the inner protrusions 53 adjacent to each other in the circumferential direction or the distance between the outer protrusions 54 is reduced, the inner protrusion 53 or the outer protrusion 54 passing through a partial region in the circumferential direction of the inner ring 20 or the outer ring 30. Since the number of passes per revolution of the motor increases, it becomes easy to maintain the fluid lubrication state.
  • the inner protrusion 53 and the outer protrusion 54 may be changed to appropriate surface shapes capable of forming a wedge-shaped gap such as a triangular shape or a trapezoidal shape in the circumferential cross section. It is preferable to adopt a shape that is symmetrical in the circumferential direction with a virtual axial plane (virtual plane including the bearing center axis C1) passing through the center in the circumferential direction of the inward projection or the outward projection as a circular arc shape of the lateral projection 54. . This is because the fluid lubrication state can be similarly realized regardless of the circumferential direction of the lubricating oil dragged between the first annular portion 41 of the cage 40 and the inner ring 20 or the outer ring 30. .
  • FIG. 8 shows an example of an automobile differential.
  • the differential shown in FIG. 8 has a drive pinion 104 rotatably supported by two tapered roller bearings 102 and 103 with respect to the housing 101, a ring gear 105 meshing with the drive pinion 104, and the ring gear 105 attached thereto.
  • a differential gear case 107 rotatably supported with respect to the housing 101 by a tapered roller bearing 106, a pinion 108 disposed in the differential gear case 107, and a pair of side gears 109 meshing with the pinion 108
  • This gear oil also serves as a lubricating oil for the tapered roller bearings 102, 103, and 106, and is supplied to the bearing side surface by splashing or oil bath lubrication.
  • the cone angle (full angle) on the raceway surface 31 of the outer ring 30 shown in FIG. 1 is set between 40 ° and 60 °. Since the low-viscosity lubricating oil (diff oil) flows into the tapered roller bearings 102 and 103 shown in FIG. 8, the agitation resistance inside the bearing increases and the bearing rotational torque tends to increase. For this reason, it is preferable to actively limit the inflow of the lubricating oil into the tapered roller bearings 102 and 103.
  • FIG. 9 shows an example of an automobile transmission.
  • the transmission shown in FIG. 9 is a multi-stage transmission that changes the gear ratio stepwise, and includes tapered roller bearings 203 and 204 that rotatably support the rotation shafts (for example, the input shaft 201 and the output shaft 202). ing.
  • the illustrated transmission includes an input shaft 201 to which engine rotation is input, an output shaft 202 provided in parallel with the input shaft 201, a plurality of gear trains 205 that transmit the rotation from the input shaft 201 to the output shaft 202,
  • the gear train 205 has a plurality of clutches (not shown) incorporated between the gear train 205 and the input shaft 201 or the output shaft 202, and the gear train 205 to be used by selectively engaging the clutches.
  • the rotation of the output shaft 202 is output to an output gear (not shown), and the rotation of the output gear is transmitted to a differential mechanism (not shown).
  • the differential mechanism has a ring gear (not shown) that meshes with the aforementioned output gear of the transmission, and distributes and transmits rotation input from the output gear to the ring gear to the left and right wheels.
  • the input shaft 201 and the output shaft 202 are rotatably supported by corresponding tapered roller bearings 203 and 204, respectively.
  • the lubricating oil is applied to the side surfaces of the tapered roller bearings 203 and 204 by splashing of the lubricating oil (mission oil) accompanying the rotation of the gear. Instead of splashing, lubricating oil is pumped from an oil pump driven by the engine, the lubricating oil is injected into the housing 206 from a nozzle (not shown), and the tapered roller bearing 203 is injected with the injected lubricating oil. It is also possible to lubricate 204 (pressure feed lubrication method). It is also possible to lubricate the tapered roller bearing by using the tapered roller bearing in a state where a part of the tapered roller bearing is immersed in the lubricating oil stored in the housing (oil bath lubrication method). *
  • the tapered roller bearings 102, 103, 106, 203 and 204 use the tapered roller bearings shown in FIGS. 1 to 7. Therefore, it is possible to restrict the lubricating oil supplied by splashing in the differential or transmission from flowing into the bearing, and to reduce the bearing rotating torque due to the stirring resistance and shear resistance of the lubricating oil generated inside the bearing. Therefore, it is possible to reduce the power loss of the automobile and contribute to the reduction in fuel consumption.

Abstract

円すいころ軸受(1)に備わる保持器(40)の内鍔(45)と内輪(20)との間の隙間を小さくして軸受回転トルクの低減を図る。保持器(40)の小径側の第一環状部(41)は、内輪(20)の小鍔部(22)を取り囲む内鍔(45)を有する。保持器(40)は、内鍔(45)から小鍔部(22)の外径面(24)に向けて突き出た形状で周方向に並ぶ複数の内方突起(53)を有する。内方突起(53)は、保持器(40)の振れ回り時、小鍔部(22)の外径面(24)と流体潤滑状態で摺接する。

Description

円すいころ軸受
 この発明は、円すいころ軸受に関する。
 例えば、自動車のトランスミッションの軸、デファレンシャルの軸等、各種機械装置の回転軸を支持する用途において、従来、円すいころ軸受が用いられている。軸受内部の潤滑には液体の潤滑油を用いる油潤滑方式が一般的である。その潤滑油の供給方式としては、機械装置の運転中、ギヤの回転に伴う潤滑油の撹拌などによって当該潤滑油が軸受にはね飛ばされる跳ね掛け潤滑法、又は軸受の一部をオイルバス中に浸ける油浴潤滑法が一般的である。
 円すいころ軸受では、運転中に軸受内部で生じるポンプ作用や遠心力の影響により、外部の潤滑油が軸受内部へ流入する。保持器と内輪との間の隙間から保持器と内輪の軌道面との間へ流入する潤滑油の量が多くなると、円すいころによる潤滑油の攪拌抵抗が大きくなり、軸受回転トルクが増加する。
 自動車のトランスミッションやデファレンシャルに使用される円すいころ軸受では、近年、自動車の省燃費化を目的に軸受の回転トルクの低減が求められている。この要求に応えるには、前述の攪拌抵抗を抑えることが有効である。このため、低粘度潤滑油の使用又は少油量化の傾向にある。少油量化を図る目的で、保持器と内輪との間の隙間から保持器と内輪の軌道面との間へ流入する潤滑油の量を制限することが行われている。
 下記特許文献1に開示された円すいころ軸受では、内輪を取り囲む内鍔を有する樹脂製のかご形保持器を備え、その内鍔と内輪の小鍔部との間に設定された径方向の隙間が、当該小鍔部の外径の2.0%以下に設定されていることにより、保持器と内輪との間から内輪の軌道面上へ流入する潤滑油が制限されている。
 また、下記特許文献2、3に開示された円すいころ軸受では、内輪の小鍔部よりも軸方向外部側の位置に小鍔部よりも小径な円筒面を有し、当該円筒面と保持器の内鍔とが狭い隙間で径方向に対向し、当該内鍔と小鍔部とが狭い隙間で軸方向に対向するラビリンスが形成されていることにより、保持器と内輪との間から内輪の軌道面上へ流入する潤滑油の量をより少なくすることができる。
特許第5031220号公報 特開2015-194243号公報 特許第4314430号公報
 しかしながら、軸受運転中に保持器の内鍔と内輪とが直接に接触すると、これらの間の周速差から引き摺りトルクが生じるため、軸受回転トルクを増加させることになる。これを避けるには、保持器の内鍔と内輪との間の隙間を径方向に小さく設定することが考えられるが、隙間の設定には限界がある。
 例えば、普通自動車のトランスミッション又はデファレンシャルに組み込まれるような大きさの軸受では、一般に、転動体案内方式の保持器が採用されている。転動体案内方式では、保持器が内輪、外輪と接触せず、円すいころのみで径方向に案内されるように設計されている。このため、軸受運転中に保持器の振れ回りが発生した場合でも、保持器が内輪、外輪と摺接しないようにしなければならず、保持器の内鍔と内輪との間の隙間で潤滑油の流入量を制限することに限界がある。
 また、特許文献2、3のように特殊な段付き内輪の採用によってラビリンスの流入制限性能を強化すると、内輪の加工費が高くなる問題がある。内輪の段付き加工費を無くす、又は軽減する上で、保持器の内鍔と内輪との間の隙間を小さくすることで流入制限性能を向上させることが好ましい。
 上述の背景に鑑み、この発明が解決しようとする課題は、円すいころ軸受に備わる保持器の内鍔と内輪との間の隙間を小さくして軸受回転トルクの低減を図ることにある。
 上記の課題を達成するため、この発明は、小端面と大端面とを有する円すいころと、外周に設けられた軌道面と、前記円すいころの前記小端面を受ける小鍔部と、前記円すいころの前記大端面を案内する大鍔部とを有する内輪と、内周に設けられた軌道面を有し、前記内輪と同軸に設けられる外輪と、樹脂によって形成された保持器と、を備え、前記保持器は、第一環状部と、当該第一環状部に比して大径な第二環状部と、当該第一環状部と当該第二環状部との間をポケットに区切る柱部とを有し、前記円すいころは、前記ポケットに収容されており、前記保持器の前記第一環状部は、前記柱部よりも小径で全周に連続すると共に前記内輪を取り囲む内鍔を有する円すいころ軸受において、前記保持器は、前記内鍔から前記内輪に向けて突き出た形状で周方向に並ぶように配置されかつ当該内輪と流体潤滑状態で摺接できる複数の内方突起を有する構成を採用したものである。
 上記構成によれば、保持器の振れ回り時、内鍔の周方向複数箇所で突き出た内方突起は、内輪と摺接することができる。その摺接の際、その内方突起と内輪との間の周速差により、これらの間で潤滑油が周方向に引き摺られる。軸受内部のポンプ作用で潤滑油が吸い込まれるような軸受回転速度では、その内方突起と内輪との間で生じるくさび効果によって、その内方突起と内輪とを分離する油膜が形成される。これにより、その内方突起と内輪とが直接接触しない流体潤滑状態を実現することが可能である。流体潤滑状態であれば、その摺接部で引き摺りトルクが殆ど発生しない。その流体潤滑状態の実現に要する内方突起の高さは微小なものでよい。このため、保持器の内鍔と内輪との間に設定する径方向の隙間を小さくすることが可能である。また、これら内方突起の体積は、保持器の内鍔と内輪との間において隙間を減らすことになる。このように保持器の内鍔と内輪との間の隙間を小さくして軸受回転トルクの低減を図ることができる。
 例えば、前記保持器の振れ回り時に、前記保持器の前記内方突起と前記内輪の前記小鍔部の外径面が当接する。このようにすると、保持器の振れ回り時に内方突起と内輪との摺接を許容しつつ、内鍔と内輪との間を全周で小さくすることができ、特に自動車の駆動力伝達系において動力損失を抑えるのに好適な円すいころ軸受とすることができる。
 前記保持器の前記内方突起は、前記内輪の前記小鍔部の外径面と流体潤滑状態で摺接するように配置されているとよい。このようにすると、特殊な段付き内輪の採用が不要になる。
 例えば、前記保持器の前記内方突起は、周方向に沿った断面で円弧状である。
 例えば、前記保持器の前記第一環状部は、前記内鍔の内径上の位置から外径側に向かって前記第二環状部側へ傾斜した形状の端面を有するとよい。このようにすると、外部から供給される潤滑油は、第一環状部の端面に沿って外径側へ流れ易くなる。このため、潤滑油が保持器の内鍔と内輪との間の隙間に入り難くなる。
 また、前記保持器の前記第一環状部は、前記円すいころの中心軸と対向する位置よりも小径な領域で当該円すいころの前記小端面から軸方向に遠ざかる形状であるとよい。このようにすると、円すいころの小端面と保持器との間での潤滑油のせん断抵抗を低減することができ、軸受回転トルクの低減に有利である。
 また、前記保持器の前記柱部は、前記円すいころと周方向に接触するころ案内面と、当該ころ案内面から周方向に凹んだ凹部とを有し、当該凹部の少なくとも一部分は、径方向外向きに開放した形状であるとよい。このようにすると、円すいころと柱部との間での潤滑油のせん断抵抗を低減することができる。また、保持器の内鍔と内輪との間の隙間から保持器と内輪の軌道面との間に流入した潤滑油を早期に凹部から外輪側へ逃がし、ポンプ作用での排出を促進することができる。
 例えば、前記柱部の前記凹部は、前記第一環状部と軸方向に対向する領域で軸方向に前記第二環状部側へ沿った形状であって、当該第一環状部よりも大径な領域で少なくとも軸方向一方側へ沿った形状であるとよい。このような形状の凹部であれば、保持器の全部を軸方向に二分割された金型で一体に形成することができる。
 保持器と外輪との間でも積極的に潤滑油の流入を制限してもよい。
 例えば、前記内輪と同軸に配置される外輪をさらに備え、前記保持器は、前記第一環状部から前記外輪に向けて突き出た形状で周方向に並ぶように配置された複数の外方突起を有するとよい。このようにすると、内方突起と内輪間の場合と同様に保持器の振れ回り時に保持器の外方突起と外輪の摺接を許容可能なため、第一環状部と外輪との間に設定する径方向の隙間を小さくして軸受回転トルクの低減を図ることができる。
 例えば、前記保持器の前記外方突起は、周方向に沿った断面で円弧状である。
 この発明に係る円すいころ軸受は、自動車の動力伝達経路に含まれた回転軸を支持する用途であって、跳ね掛け又は油浴潤滑法で潤滑油を外部から軸受内部へ供給する用途に好適である。この発明に係る円すいころ軸受は、前述のように軸受回転トルクを低減することが可能なため、自動車の動力損失を低減して低燃費化に貢献することができる。
 この発明は、上記構成の採用により、円すいころ軸受に備わる保持器の内鍔と内輪との間に設定する径方向の隙間を小さくして軸受回転トルクの低減を図ることができる。
この発明の実施形態に係る円すいころ軸受を示す縦断正面図 図1の円すいころ軸受の左側面図 図1の保持器の外径側の外観を示す部分拡大斜視図 図3中のIV-IV線の切断面の輪郭形状を示す部分拡大断面図 図1中のV-V線の切断面を示す部分拡大断面図 図1の保持器を射出成形する金型構造を示す部分断面図 図1の保持器の内方突起又は外方突起の流体潤滑状態を示す作用図 図1の円すいころ軸受を組み込んだ自動車用デファレンシャルの一例を示す断面図 図1の円すいころ軸受を組み込んだ自動車用トランスミッションの一例を示す断面図
 以下、この発明の実施形態に係る円すいころ軸受を添付図面の図1~図4に基づいて説明する。
 図1、図2に示す円すいころ軸受1は、所定数の円すいころ10と、内輪20と、外輪30と、保持器40とを備える。
 ここで、図1は、この円すいころ軸受1の設計上の回転中心である軸受中心軸C1と、円すいころ10の回転中心である中心軸C2とを含む仮想アキシアル平面上における断面を示し、特に、保持器40の振れ回り時の様子を示すものである。このため、保持器40の中心軸C3は、軸受中心軸C1から図中下方向に偏った位置にある。内輪20、外輪30及び保持器40は、本来、軸受中心軸C1と同軸に配置されるべきものである。内輪20が回転、外輪30が静止する状態の内輪回転方式で軸受回転がなされる場合、軸受中心軸C1は内輪20の中心軸と考えてよい。以下では、軸受中心軸C1に沿った方向のことを単に「軸方向」という。この軸方向は、図1中において、紙面左右方向に相当する。また、その正規配置において軸受中心軸C1に対して直角な方向のことを単に「径方向」という。この径方向は、図1中において、紙面上下方向に相当する。また、その正規配置におい軸受中心軸C1周りの円周方向のことを単に「周方向」という。また、図1の断面上において円すいころ10の中心軸C2に沿った方向のことを単に「ころ中心軸方向」という。
 図1、図2に示すように、円すいころ10は、小端面11と、大端面12と、円すい状に形成された転動面13とを有する転動体となっている。小端面11は、円すいころ10の小径側の側面であって、内輪20の軌道面21、外輪30の軌道面31を転がることのない表面部分である。大端面12は、円すいころ10の大径側の側面であって、内輪20の軌道面21、外輪30の軌道面31を転がることのない表面部分である。円すいころ10の側面は、円すいころ10の中心軸方向に露出する円すいころ10の表面部分である。
 内輪20は、外周に円すい状の内輪軌道面21と、円すいころ10の小端面11を受ける小鍔部22と、円すいころ10の大端面12を案内する大鍔部23とを有する軌道輪となっている。小鍔部22、大鍔部23は、それぞれ周方向に沿った全周連続部となっている。小鍔部22は、円筒状の外径面24を有する。
 外輪30は、内周に円すい状の外輪軌道面31と、内輪20の小鍔部22と径方向に対向する対向面32とを有する軌道輪となっている。本実施形態では、対向面32は、円筒面である。外輪30は、内輪20と同軸に配置される。
 円すいころ10の大端面12と内輪20の大鍔部23とは、この円すいころ軸受1に対する予圧により、ころ中心軸方向に接触する状態とされる。軸受運転中、円すいころ10は、内輪20の軌道面21と外輪30の軌道面31との間に介在し、円すいころ10の中心軸C2回りに回転しながら、転動面13が軌道面21、31上を転がる。この際、円すいころ10の大端面12は、内輪20の大鍔部23に対して周方向に滑り、大鍔部23は、当該大端面12を周方向に案内する。
 円すいころ10、内輪20及び外輪30は、それぞれ鋼、例えば軸受鋼によって一体に形成されている。
 保持器40は、第一環状部41と、第一環状部41に比して大径な第二環状部42と、第一環状部41と第二環状部42との間をポケット43に区切る複数の柱部44とを有する。
 保持器40は、合成樹脂により形成されている。その合成樹脂は、例えば、強化繊維が含まれた繊維強化樹脂であってもよい。保持器40は、軸方向に二分割された金型によって形成されている。
 第一環状部41は、保持器40の小径側で周方向に連続する保持器部分となっている。第二環状部42は、保持器40の大径側で周方向に連続する保持器部分となっている。第二環状部42の外径は、第一環状部41の外径よりも大径である。
 ポケット43は、保持器40に形成された、円すいころ10を収容するための空間である。 柱部44は、隣接するポケット43、43間を周方向に分離するように第一環状部41と第二環状部42間に亘る保持器部分となっている。柱部44は、第一環状部41と第二環状部42とを連結している。
 保持器40におけるポケット43の数は、内輪20の軌道面21と外輪30の軌道面31との間に配置される円すいころ10の総数と同数になっている。円すいころ10は、この大端面12を第二環状部42側へ向けた姿勢でポケット43に収容されている。保持器40は、軸受運転中、円すいころ10間の周方向間隔を柱部44で所定に保ちながら回転する。
 第一環状部41は、柱部44よりも小径で全周に連続すると共に内輪20を取り囲む内鍔45を有する。内鍔45は、小鍔部22の外径面24を常に取り囲む位置にある。
 第一環状部41は、軸方向外部側に向かって露出する円すい状の端面46を有する。この端面46は、内鍔45の内径上の位置P1から外径側に向かって第二環状部42側へ傾斜した形状である。この位置P1は、内鍔45の内径を規定する縁部分である。端面46は、第一環状部41の外径寄りの位置P2まで連続する。この位置P2は、柱部44の外径面47を規定する円すい状の延長上にある。
 第一環状部41は、図1に示すように、円すいころ10の中心軸C2と対向する位置P3よりも小径な領域で当該円すいころ10の小端面11から軸方向に遠ざかる形状である。第一環状部41のうち、位置P3よりも大径な領域には、ころ中心軸方向に直角な方向に延びるポケット面48が含まれている。
 保持器40の外周側から柱部44付近を視た斜視図を図3に示す。図3中のIV-IV線で柱部44を切断した断面の輪郭形状のみを図4に示す。図1中の軸方向のV-V線で凹部50を切断した断面を図5に示す。図1中において軸方向に第二環状部42側に向かう方向は、図5中の上方向に相当する。
 図1、図3、図4に示すように、柱部44は、周方向に対称形であり、その周方向の両側にころ案内面49と、凹部50、平坦面51とを有する。ころ案内面49は、円すいころ10の転動面13と周方向に接触する。凹部50は、ころ案内面49から周方向に凹んでおり、円すいころ10の転動面13と接触しない。平坦面51は、第二環状部42の第一環状部41側の内周縁と同径の位置P4から軸方向に第一環状部41側へ延びて外径面47まで連続する。
 ころ案内面49は、円すいころ10の中心軸C2よりも大径な位置にあり、径方向に所定の範囲内で円すいころ10の転動面13と周方向に接触することができる。ころ案内面49は、平坦面51及び外径面47から内径側へ連続する。ころ案内面49は、軸方向に第二環状部42側に向かって開放した平面状である。ころ案内面49は、周方向から視ると、第二環状部42側の内周の直近に一端部を有し、この一端部から第一環状部41まで連続すると共に、第一環状部41に向かう途中で分岐して柱部44の外径面47まで連続する。
 図1に示すような保持器40の振れ回りは、保持器40がころ案内面49と円すいころ10との間に設定されたポケットすきま分だけ径方向に動くことで発生する事象である。内輪20及び外輪30と保持器40とが所定範囲内の同軸性を有する状態で軸受が回転する通常の軸受回転時、保持器40は、柱部44のころ案内面49と円すいころ10の転動面13との接触によって径方向に案内される。軸受回転中、何らかの原因で保持器40に振れ回りが発生し、かつ、保持器40と内輪20とが摺接すると引き摺りトルクが発生するため、保持器40の耐久性を確保する必要がある。
 図3、図4に示すように、凹部50の少なくとも一部分は、径方向外向きに開放した形状である。
 より具体的には、図3、図4に示す凹部50は、柱部44の小径側の端から軸方向に所定幅をもって径方向外向きに開放した形状である。凹部50は、後述する通り、第1環状部41を形成する金型(雌型)とは、別の金型(雄型)によって形成される。
 図3~図5に示すように、凹部50と柱部44の外径面47との境界となる縁は、外径面47における第一環状部41側の端部に連続する第一外径縁e1と、第一外径縁e1の第二環状部42側の端から周方向に連続する第二外径縁e2とからなる。凹部50ところ案内面49との境界となる縁は、第二外径縁e2から軸方向に第二環状部42側へ延びる軸方向縁e3と、軸方向縁e3の第二環状部42側の端から第一外径縁e1に沿った方向に延びる直線縁e4とからなる。凹部50は、直線縁e4と第一外径縁e1とを繋ぐようにころ案内面49に対して周方向に傾斜した平面と、この平面と直線縁e4と第二外径縁e2とを繋ぐ平面とで構成されている。これら両平面の全部は、軸方向に沿う。ここで、軸方向に沿うとは、軸方向に平行な場合だけでなく、金型を軸方向に分離可能な範囲内で、軸方向に対する傾斜(抜き勾配)又はアンダーカットを有する場合を含む意味である。
 その金型を図6に示す。図6では、柱部形状を転写する金型表面を周方向から視た様子を描いている。図6中左側の雌金型Fdは、保持器左側面に現れる表面の略全部の形状を転写する。図6中左側の雌金型Fdで転写しない左側面部分は、図1、図3に示す第二環状部42の内周中央のリブ状突部のみである。図6中右側の雄金型Mdは、雌金型Fdで転写できない保持器表面部の全部を転写する。
 図3~図5と図6とを見比べると理解できるように、雌金型Fdは、柱部44の外径面47の形状を転写する傾斜部f1と、傾斜部f1から突出したコア部f2とを有する。また、コア部f2は、柱部44の平坦面51、平坦面51から大径な柱部44の周方向端面部分、及び位置P4より大径な第二環状部42の左側面部分の形状を転写する。
 一方、雄金型Mdは、保持器40の右側面、保持器40の内周全面、第一環状部41の右側面全部、第二環状部42の右側面全部、柱部44の平坦面51より小径な領域全部を転写する。雄金型Mdは、柱部44の内径面52の形状を転写する傾斜部m1と、傾斜部m1から突出したコア部m2とを有する。コア部m2は、ころ案内面49の形状を転写する平面部ms1と、凹部50の形状を転写する突面部ms2と、第一環状部41の右側面の形状を転写する端面部ms3とを有する。図6に示す雄金型Mdを軸方向(図中右方)に分離する際、コア部m2の突面部ms2は軸方向に引っ掛かることなく、分離可能である。
 図1、図2及び図7に示すように、保持器40は、内鍔45から内輪20に向けて突き出た形状の多数の内方突起53を有する。内方突起53は、周方向に一定の間隔dで並ぶように配置されている。内方突起53は、内鍔45の内径から径方向の高さhを有する。これら内方突起53は、内輪20の小鍔部22の外径面24と常に径方向に対向する位置にある。
 内鍔45と小鍔部22の外径面24との間には、径方向の隙間(g/2)が設定されている。隙間(g/2)は、内鍔45の内径と、内輪20の小鍔部22の外径面24との直径差の半分に相当する。
 内方突起53は、図7に示すように、内輪20の小鍔部22との間にくさび状の隙間を形成する。ここで、くさび状の隙間とは、周方向に当該内方突起53側に向かって次第に半径方向に狭くなる隙間のことをいう。
 内方突起53は、周方向に沿った断面で円弧状の表面を有する。ここで、周方向に沿った断面とは、内輪20の小鍔部22の外径面24に直交しかつ周方向に沿って延びる仮想面で内方突起53を切断したときの内方突起53の断面のことをいう。この断面形状において、前述の円弧状の曲率半径Rは、例えば、0.1mm以上、9.0mm未満に設定することができる。
 内鍔45の内径に対する内方突起53の高さhは、前述の曲率半径Rよりも小さく、例えば、0.01mm以上、0.50mm未満に設定することができる。
 周方向に隣り合う内方突起53間の間隔dは、保持器40の振れ回り時に内鍔45と内輪20との直接接触をどの周方向領域でも許すことのないように設定されている。この間隔は、例えば、0.0mm以上、3.0mm以下に設定することができる。
 図1、図2に示すように、内方突起53と小鍔部22の外径面24との間には、径方向の隙間(δ/2)が設定されている。隙間(δ/2)は、内方突起53の突先端における内径と、小鍔部22の外径面24の外径との直径差の半分に相当する。隙間(δ/2)は、例えば、0.5mm以下である。
 保持器40と内輪20間に介在する潤滑油が存在しない場合、保持器40が軸受中心軸C1から径方向の一方向(図1例では図中下方向)に(δ/2)だけ振れたとき、多数の内方突起53の中で、その振れ方向と周方向に180°反対の周方向一部領域を通過する内方突起53(図1、2中、最上部付近の内方突起53)のみが小鍔部22の外径面24と直接接触する一方、その振れ方向に対応の周方向一部領域を通過する内方突起53(図1、図2中、最下部付近の内方突起53)と小鍔部22の外径面24との間に隙間δが生じることになる。
 この円すいころ軸受1は、跳ね掛け又は油浴潤滑方式で使用される。軸受回転中、外部から供給される潤滑油は、内鍔45と小鍔部22の外径面24との間に設定された径方向の隙間(δ/2)や、内方突起53と小鍔部22の外径面との間のくさび状の隙間を通じて保持器40と内輪20の軌道面21との間へ流入する。外輪30の軌道面31と円すいころ10の転動面13間付近では、軸受回転速度が高くなる程、ポンプ作用が強くなり、また、内輪20の小鍔部22の外径面24と保持器40の内方突起53との間の周速差が大きくなる。保持器40の振れ回りが生じると、図1、図2例のように、内方突起53が小鍔部22の外径面24に接近する。そうすると、図6に示すように、前述の流入する潤滑油の一部は、当該接近する内方突起53と小鍔部22の外径面24との間のくさび状の隙間に引き摺り込まれる。このため、当該接近する内方突起53と小鍔部22の外径面24との間では、くさび効果により、油膜形成が促進される。軸受内部のポンプ作用で潤滑油が吸い込まれるような所定速度以上の軸受回転速度の場合、前述のくさび効果が強く、当該接近する内方突起53と小鍔部22の外径面24とを完全に分離する油膜の形成が可能である。このため、当該接近する内方突起53は、小鍔部22の外径面24と流体潤滑状態で摺接する。
 ここで、流体潤滑状態は、流体力学的な原理によって潤滑油の流体膜(油膜)を二面間に形成し、摩擦面の直接接触が生じていない状態のことをいう。二面間の最小油膜厚さが二乗平均粗さと比較して大きい、一般に三倍以上である場合に流体潤滑状態であるとみなすことができる。流体潤滑状態になると、摺動抵抗がほぼ零になる。ここで、二乗平均粗さは、JIS規格のB0601:2013で規定された二乗平均平方根粗さRqのことをいう。
 また、図1、図2に示すように、保持器40は、第一環状部41から外輪30に向けて突き出た形状の多数の外方突起54を有する。
 外方突起54は、周方向に一定の間隔で並び、断面円弧状の表面を有し、第一環状部41に対して径方向に高さを有する点で内方突起53と共通し、これら間隔、円弧状の曲率半径、高さの各値が内方突起53と異なる点で相違するだけである。このため、図6を参照し、同図中に外方突起54を理解する場合の符号を併記する。
 外方突起54は、外輪30との間にくさび状の隙間を形成する。外方突起54の間隔dは、保持器40の振れ回り時に第一環状部41と外輪30との直接接触をどの周方向領域でも許すことのないように設定されている。
 図2の外方突起54と内方突起53の比較から分かるように、外方突起54の周方向間隔と円弧状の曲率半径は、それぞれ内方突起53の間隔、曲率半径よりも大きい。
 図1に示すように、外方突起54と外輪30の円筒面32との間には、径方向の隙間(δ/2)が設定されている。(δ/2)>(δ/2)の関係にある。保持器40の振れ回り時、外方突起54と外輪30とが摺接するよりも前の時期に、内方突起53が内輪20に摺接し、保持器40が径方向に案内される。所定未満の軸受回転速度のとき、外方突起54が外輪30に摺接することはない。所定以上の高い軸受回転速度のとき、遠心力で第一環状部41が拡径し、外方突起54が外輪30に接近し、円筒面32と流体潤滑状態で摺接することができる(図7参照)。
 この円すいころ軸受1は、上述のようなものであり、軸受内部のポンプ作用で潤滑油が吸い込まれるような軸受回転速度で保持器40の振れ回りが生じたとき、内鍔45の周方向複数箇所で突き出た内方突起53は、くさび効果により、内輪20と流体潤滑状態で摺接することができる(図1、図2、図7参照)。これにより、内方突起53と内輪20との摺接部で引き摺りトルクが殆ど発生しない。その流体潤滑状態の実現に要する内方突起53の高さhは微小なものであるから、内鍔45と内輪20との間に設定する径方向の隙間(g/2)を小さくすることが可能である。また、これら内方突起53の体積は、内鍔45と内輪20との間において隙間を減らすことになる。このように、この円すいころ軸受1は、保持器40の内鍔45と内輪20との間の隙間を小さくして潤滑油の流入制限性能を向上させ、これにより軸受内部での攪拌抵抗を低減し、ひいては軸受回転トルクの低減を図ることができる。
 また、この円すいころ軸受1は、保持器の振れ回り時に、前記保持器の前記内方突起と前記内輪の前記小鍔部の外径面が当接するので(図1参照)、保持器40の振れ回り時に内方突起53と内輪20との摺接を許容しつつ、内鍔45と内輪20との間を全周で小さくすることができ、特に自動車の駆動力伝達系において動力損失を抑えるのに好適な円すいころ軸受とすることができる。
 また、この円すいころ軸受1は、保持器40の内方突起53が内輪20の小鍔部22の外径面24と流体潤滑状態で摺接するように配置されているので(図1、図2、図7参照)、特殊な段付き内輪を採用することなく、潤滑油の流入制限性能を向上させることができる。
 また、この円すいころ軸受1は、保持器40の内方突起53は、周方向に沿った断面で円弧状であるので(図2、図7参照)、内輪20との間にくさび状の隙間を形成し、くさび効果によって流体潤滑状態を実現することができる。
 また、この円すいころ軸受1は、保持器40の第一環状部41が内鍔45の内径上の位置P1から外径側に向かって第二環状部42側へ傾斜した形状の端面46を有するので(図1参照)、外部から供給される潤滑油が第一環状部41の端面46に沿って流れ易くなり、内鍔45と内輪20との間の隙間に入り難くなる。
 また、この円すいころ軸受1は、保持器40の第一環状部41が円すいころ10の中心軸C2と対向する位置P3よりも小径な領域で円すいころ10の小端面11から軸方向に遠ざかる形状であるので(図1参照)、円すいころ10の小端面11と保持器40の第一環状部41との間での潤滑油のせん断抵抗を低減することができる。
 また、この円すいころ軸受1は、保持器40の柱部44が円すいころ10と周方向に接触するころ案内面49と、ころ案内面49から周方向に凹んだ凹部50とを有し、凹部50の少なくとも一部分が径方向外向きに開放した形状であるので(図1、図3、図4参照)、円すいころ10の転動面13と柱部44との間での潤滑油のせん断抵抗を低減することができる。また、保持器40の内鍔45と内輪20との間の隙間から保持器40と内輪20の軌道面21との間に流入した潤滑油を早期に凹部50から外輪20側へ逃がし、ポンプ作用での排出を促進することができる。
 特に、この円すいころ軸受1は、その凹部50が第一環状部41と軸方向に対向する領域で軸方向に第二環状部42側へ沿った形状であって、第一環状部41よりも大径な領域で少なくとも軸方向一方側に開放した形状であるので、保持器40の全部を軸方向に二分割された金型Fd、Mdで一体に形成することができる(図1、図5、図6参照)。
 また、この円すいころ軸受1は、保持器40の第一環状部41から外輪30に向けて突き出た形状で周方向に並ぶように配置されかつ外輪30と流体潤滑状態で摺接する複数の外方突起54を有するので(図1、図2、図7参照)、保持器40の振れ回り時に外方突起54と外輪30の摺接を許容可能なため、第一環状部41と外輪30との間に設定する径方向の隙間を小さくして軸受回転トルクの低減を図ることができる。
 また、この円すいころ軸受1は、保持器40の外方突起54が周方向に沿った断面で円弧状であるので(図2、図7参照)、外輪30との間にくさび状の隙間を形成し、くさび効果によって流体潤滑状態を実現することができる。
 なお、内方突起53又は外方突起54における円弧状の曲率半径を大きくする程、くさび効果が発生し易くなる。また、第一環状部41に対する内方突起53又は外方突起54の高さhを小さくする程、第一環状部41と内輪20又は外輪30との間の隙間を全周で小さくすることができる。また、周方向に隣り合う内方突起53間又は外方突起54間の間隔dを小さくする程、内輪20又は外輪30のある周方向一部領域を通過する内方突起53又は外方突起54の1回転当りの通過回数が多くなるので、流体潤滑状態を維持し易くなる。
 また、内方突起53や外方突起54は、周方向断面において三角状、台形状等、くさび状の隙間を形成可能な適宜の表面形状に変更してもよいが、内方突起53や外方突起54の円弧状のように、内方突起又は外方突起の周方向中央を通る仮想アキシアル平面(軸受中心軸C1を含む仮想平面)を境界として周方向に対称な形状を採用するが好ましい。これは、保持器40の第一環状部41と内輪20又は外輪30間で潤滑油が引き摺られる方向が周方向のいずれであっても、同様に流体潤滑状態を実現することができるためである。
 また、内方突起53と内輪20との間に設定する径方向の隙間(δ/2)と、外方突起54と外輪30との間に設定する径方向の隙間(δ/2)とを同等に設定してもよいが、寸法管理が困難になるので、この円すいころ軸受1のように、攪拌抵抗の低減に有利な内方突起53を優先的に摺接させる方がよい。
 上述の実施形態に係る円すいころ軸受の使用例を図8に基づいて説明する。図8は、自動車用デファレンシャルの一例を示すものである。
 図8に示すデファレンシャルは、ハウジング101に対して2つの円すいころ軸受102、103で回転自在に支持されたドライブピニオン104と、このドライブピニオン104に噛み合うリングギヤ105と、このリングギヤ105が取り付けられ、一対の円すいころ軸受106でハウジング101に対して回転自在に支持された差動歯車ケース107と、この差動歯車ケース107の中に配設されたピニオン108と、ピニオン108と噛み合う一対のサイドギヤ109とを備え、これらがギヤオイルの封入されたハウジング101内に収納されている。このギヤオイルは、各円すいころ軸受102、103、106の潤滑油にもなっており、跳ね掛け又は油浴潤滑法により軸受側面に供給される。
 例えば、ドライブピニオン104のシャフトを支持する円すいころ軸受102、103では、図1に示す外輪30の軌道面31における円すい角(全角)が40°~60°の間に設定される。図8に示す円すいころ軸受102、103には、低粘度で潤滑な潤滑油(デフオイル)が流入するため、軸受内部での攪拌抵抗が大きくなり、軸受回転トルクが大きくなり易い。このため、円すいころ軸受102、103への潤滑油の流入制限を積極的に行うことが好ましい。
 上述の実施形態に係る円すいころ軸受の別の使用例を図9に基づいて説明する。図9は、自動車用トランスミッションの一例を示すものである。
 図9に示すトランスミッションは、段階的に変速比を変化させる多段変速機になっており、その回転軸(例えば入力軸201および出力軸202)を回転可能に支持する円すいころ軸受203、204を備えている。図示のトランスミッションは、エンジンの回転が入力される入力軸201と、入力軸201と平行に設けられた出力軸202と、入力軸201から出力軸202に回転を伝達する複数のギヤ列205と、これらのギヤ列205と入力軸201または出力軸202との間に組み込まれた複数のクラッチ(図示せず)とを有し、そのクラッチを選択的に係合させることで使用するギヤ列205を切り替え、これにより、入力軸201から出力軸202に伝達する回転の変速比を変化させるものである。出力軸202の回転は出力ギヤ(図示せず)に出力され、その出力ギヤの回転がディファレンシャル機構(図示せず)に伝達される。ディファレンシャル機構は、トランスミッションの前述の出力ギヤと噛み合うリングギヤ(図示せず)を有し、出力ギヤからリングギヤに入力される回転を、左右の車輪に分配して伝達する。入力軸201と出力軸202は、それぞれ対応の円すいころ軸受203、204で回転可能に支持されている。また、このトランスミッションは、ギヤの回転に伴う潤滑油(ミッションオイル)のはね掛けにより、潤滑油が各円すいころ軸受203、204の側面にかかるようになっている。なお、はね掛けに代えて、エンジンで駆動されるオイルポンプから潤滑油を圧送し、その潤滑油を図示しないノズルからハウジング206内に噴射し、その噴射される潤滑油で円すいころ軸受203、204を潤滑することも可能である(圧送潤滑方式)。また、ハウジング内に溜められた潤滑油に円すいころ軸受の一部が漬かった状態で円すいころ軸受を使用することで円すいころ軸受を潤滑することも可能である(油浴潤滑方式)。 
図8、図9に例示するように、この円すいころ軸受102、103、106、203、204は、図1~7に示す円すいころ軸受を使用している。そのため、デファレンシャル又はトランスミッション内で跳ね掛け等により供給される潤滑油が軸受内部へ流入することを制限し、軸受内部で生じる潤滑油の攪拌抵抗やせん断抵抗による軸受回転トルクを低減することができるものなので、自動車の動力損失を低減して低燃費化に貢献することができる。 
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 円すいころ
11 小端面
12 大端面
13 転動面
20 内輪
21 軌道面
22 小鍔部
23 大鍔部
30 外輪
40 保持器
41 第一環状部
42 第二環状部
43 ポケット
44 柱部
45 内鍔
46 端面
49 ころ案内面
50 凹部
53 内方突起
54 外方突起
1、102、103、106、203~208 円すいころ軸受

Claims (10)

  1.   小端面と大端面とを有する円すいころと、
     外周に設けられた軌道面と、前記円すいころの前記小端面を受ける小鍔部と、前記円すいころの前記大端面を案内する大鍔部とを有する内輪と、
     内周に設けられた軌道面を有し、前記内輪と同軸に設けられる外輪と、
     樹脂によって形成された保持器と、
     を備え、
     前記保持器は、第一環状部と、当該第一環状部に比して大径な第二環状部と、当該第一環状部と当該第二環状部との間をポケットに区切る柱部とを有し、
     前記円すいころは、前記ポケットに収容されており、
     前記保持器の前記第一環状部は、前記柱部よりも小径で全周に連続すると共に前記内輪を取り囲む内鍔を有する円すいころ軸受において、
     前記保持器は、前記内鍔から前記内輪に向けて突き出た形状で周方向に並ぶように配置されかつ当該内輪と流体潤滑状態で摺接できる複数の内方突起を有することを特徴とする円すいころ軸受。
  2.  前記保持器の振れ回り時に、前記保持器の前記内方突起と前記内輪の前記小鍔部の外径面が当接する請求項1に記載の円すいころ軸受。
  3.  前記保持器の前記内方突起は、前記内輪の前記小鍔部の外径面と流体潤滑状態で摺接できるように配置されている請求項1又は2に記載の円すいころ軸受。
  4.  前記保持器の前記内方突起は、周方向に沿った断面で円弧状である請求項1から3のいずれか1項に記載の円すいころ軸受。
  5.  前記保持器の前記第一環状部は、前記内鍔の内径上の位置から外径側に向かって前記第二環状部側へ傾斜した形状の端面を有する請求項1から4のいずれか1項に記載の円すいころ軸受。
  6.  前記保持器の前記第一環状部は、前記円すいころの中心軸と対向する位置よりも小径な領域で当該円すいころの前記小端面から軸方向に遠ざかる形状である請求項1から5のいずれか1項に記載の円すいころ軸受。
  7.  前記保持器の前記柱部は、前記円すいころと周方向に接触するころ案内面と、当該ころ案内面から周方向に凹んだ凹部とを有し、当該凹部の少なくとも一部分は、径方向外向きに開放した形状である請求項1から6のいずれか1項に記載の円すいころ軸受。
  8.  前記柱部の前記凹部は、前記第一環状部と軸方向に対向する領域で軸方向に第二環状部側へ沿った形状であって、当該第一環状部よりも大径な領域で少なくとも軸方向一方側へ沿った形状である請求項7に記載の円すいころ軸受。
  9.  前記保持器は、前記第一環状部から前記外輪に向けて突き出た形状で周方向に並ぶように配置された複数の外方突起を有する請求項1から8のいずれか1項に記載の円すいころ軸受。
  10.  前記保持器の前記外方突起は、周方向に沿った断面で円弧状である請求項9に記載の円すいころ軸受。
PCT/JP2018/014100 2017-04-05 2018-04-02 円すいころ軸受 WO2018186346A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075206A JP2018179039A (ja) 2017-04-05 2017-04-05 円すいころ軸受
JP2017-075206 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018186346A1 true WO2018186346A1 (ja) 2018-10-11

Family

ID=63712281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014100 WO2018186346A1 (ja) 2017-04-05 2018-04-02 円すいころ軸受

Country Status (2)

Country Link
JP (1) JP2018179039A (ja)
WO (1) WO2018186346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213988A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Axiallagerkäfig
US11300155B2 (en) * 2018-02-21 2022-04-12 Ntn Corporation Cage for a tapered roller bearing and tapered roller bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285139A (zh) * 2019-07-01 2019-09-27 洛阳新强联回转支承股份有限公司 一种低摩擦特大型双列圆锥滚子回转支承

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293730A (ja) * 2003-03-28 2004-10-21 Koyo Seiko Co Ltd 円すいころ軸受
JP2007100939A (ja) * 2005-10-07 2007-04-19 Ntn Corp 円錐ころ軸受
JP2007127269A (ja) * 2005-08-25 2007-05-24 Ntn Corp 円すいころ軸受
JP2010071321A (ja) * 2008-09-16 2010-04-02 Nsk Ltd 円すいころ軸受
JP2015194243A (ja) * 2013-12-25 2015-11-05 株式会社ジェイテクト 円すいころ軸受

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293730A (ja) * 2003-03-28 2004-10-21 Koyo Seiko Co Ltd 円すいころ軸受
JP2007127269A (ja) * 2005-08-25 2007-05-24 Ntn Corp 円すいころ軸受
JP2007100939A (ja) * 2005-10-07 2007-04-19 Ntn Corp 円錐ころ軸受
JP2010071321A (ja) * 2008-09-16 2010-04-02 Nsk Ltd 円すいころ軸受
JP2015194243A (ja) * 2013-12-25 2015-11-05 株式会社ジェイテクト 円すいころ軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300155B2 (en) * 2018-02-21 2022-04-12 Ntn Corporation Cage for a tapered roller bearing and tapered roller bearing
DE102019213988A1 (de) * 2019-09-13 2021-03-18 Minebea Mitsumi Inc. Lagerkäfig, insbesondere Axiallagerkäfig

Also Published As

Publication number Publication date
JP2018179039A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018186346A1 (ja) 円すいころ軸受
JP6256023B2 (ja) 円すいころ軸受及び動力伝達装置
WO2015076419A1 (ja) 円すいころ軸受及び動力伝達装置
EP2816247A1 (en) Tapered roller bearing and power transmission device using tapered roller bearing
WO2019172446A1 (ja) 円すいころ軸受
JP2014095431A (ja) 半割スラスト軸受
JP5125820B2 (ja) 円すいころ軸受
CN107559312B (zh) 圆锥滚子轴承
JP5109721B2 (ja) 円すいころ軸受
WO2019163809A1 (ja) 円すいころ軸受用保持器および円すいころ軸受
JP6672059B2 (ja) 冠型保持器及び玉軸受
JP5083622B2 (ja) 円錐ころ軸受
JP2015113972A (ja) 円すいころ軸受及び動力伝達装置
JP2008202785A (ja) 円すいころ軸受
JP7466501B2 (ja) 円すいころ軸受
JP5397505B2 (ja) 円すいころ軸受
JP7195112B2 (ja) 円すいころ軸受用保持器および円すいころ軸受
JP2010156399A (ja) トロイダル型無段変速機
JP6171506B2 (ja) 円すいころ軸受用保持器及び円すいころ軸受
JP2005098316A (ja) 円錐ころ軸受
JP2017187119A (ja) 転がり軸受
JP2015117766A (ja) 円すいころ軸受及び動力伝達装置
WO2018181756A1 (ja) 円すいころ軸受
JP2007078147A (ja) 円錐ころ軸受
JP2018091398A (ja) 軸受用保持器及び転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781647

Country of ref document: EP

Kind code of ref document: A1