WO2018181756A1 - 円すいころ軸受 - Google Patents
円すいころ軸受 Download PDFInfo
- Publication number
- WO2018181756A1 WO2018181756A1 PCT/JP2018/013337 JP2018013337W WO2018181756A1 WO 2018181756 A1 WO2018181756 A1 WO 2018181756A1 JP 2018013337 W JP2018013337 W JP 2018013337W WO 2018181756 A1 WO2018181756 A1 WO 2018181756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tapered roller
- oil
- diameter
- oil groove
- roller bearing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/467—Details of individual pockets, e.g. shape or roller retaining means
- F16C33/4676—Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/467—Details of individual pockets, e.g. shape or roller retaining means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
- F16C33/6681—Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
- F16C37/007—Cooling of bearings of rolling bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/61—Toothed gear systems, e.g. support of pinion shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/4629—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from metal, e.g. cast or machined window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/4635—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/38—Constructional details
- F16H48/40—Constructional details characterised by features of the rotating cases
- F16H2048/405—Constructional details characterised by features of the rotating cases characterised by features of the bearing of the rotating case
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/38—Constructional details
- F16H48/42—Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
- F16H2048/423—Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement
Definitions
- This invention relates to a tapered roller bearing.
- the tapered roller bearing includes an outer ring, an inner ring arranged inside the outer ring, a cage having a plurality of pockets arranged between the outer ring and the inner ring, and a plurality of tapered rollers arranged in the pockets.
- the cage has a pillar portion between the large-diameter annular portion and the small-diameter annular portion, and a pocket is formed by the pillar portion, the large-diameter annular portion, and the small-diameter annular portion.
- the space formed between the outer ring and the inner ring is an oil passage through which lubricating oil flows from the small collar part to the large collar part of the inner ring (Patent Document 1, Paragraph 0018 to (See 0034, FIGS. 1 and 2, Patent Document 2 below, Paragraphs 0012 to 0028, and FIGS. 1 to 6).
- the tapered roller bearings of Patent Documents 1 and 2 usually have a configuration in which the tapered roller is held in the column portion of the cage, so that the contact area between the tapered roller and the column portion is large. Therefore, the shear torque of the lubricating oil located between the tapered roller and the column portion is increased, which causes an increase in the rotational torque of the bearing.
- Patent Document 1 As a configuration in which lubricating oil is actively flowed from the small collar portion side of the inner ring to the large collar portion, a large diameter from the small-diameter annular portion is formed on the inner surface of the pocket among the pillar portions of the cage. It is conceivable to form an oil induction slit that opens toward the radial annular portion.
- Patent Document 1 has a shape in which a cage exists in the space between the rollers, there is a concern that the cooling capacity by the lubricating oil is reduced and the temperature inside the bearing is increased. There is a possibility that seizure occurs between the large end face and the inner ring large collar.
- This invention makes it a subject to provide the suitable tapered roller bearing which improved the seizure resistance between the large end surface of a tapered roller and the large collar part of an inner ring in view of the above actual condition.
- the present invention includes an outer ring, an inner ring disposed inside the outer ring, a cage disposed between the outer ring and the inner ring, and a plurality of tapered rollers held by the cage.
- the inner ring has a raceway surface on which the tapered roller rolls, a small collar portion formed on the small diameter side of the raceway surface, and a large collar portion formed on the large diameter side of the raceway surface, and is held.
- the vessel has a large-diameter annular portion, a small-diameter annular portion, a column portion extending in the axial direction by connecting the large-diameter annular portion and the small-diameter annular portion, and a pocket in which a tapered roller is disposed, and an outer ring and an inner ring
- the space formed between the small flange portion and the large flange portion is an oil flow path through which lubricating oil flows, and an oil groove through which lubricating oil flows is formed on the inner diameter surface of the column portion.
- a slanted oil groove extending obliquely from one end of the large-diameter side toward one side in the circumferential direction. Configurations for it was adopted.
- the oil groove has a slanted oil groove extending from the end on the large diameter side toward the one side in the circumferential direction among the straight oil grooves extending along the column part, so that the large end surface of the tapered roller Lubricating oil is easily supplied to the side.
- the oil groove has a function of retaining lubricating oil when the bearing is not rotating, and prevents seizure by supplying lubricating oil between the large end surface of the tapered roller and the large collar portion of the inner ring when rotating. .
- the oil flow path is provided between an inner peripheral surface of the outer ring and an outer diameter surface of the cage, and the cage guides the flow of the lubricating oil to the column portion inward in the radial direction.
- a slit may be further provided, and the slit may be configured to communicate with the oil groove. If it does in this way, the lubricating oil will accumulate not less than that slit. For this reason, along with the rotation of the cage, the lubricating oil is fed into the oil groove communicating from the slit and the lubricating oil is ejected in the same manner as the oil groove. It adheres between the flanges and can further enhance the seizure resistance of the tapered roller bearing. Further, since the contact area between the tapered roller and the column portion is reduced by forming the slit, the rotational torque of the bearing is also reduced.
- the slit may be configured to communicate the outer diameter surface of the cage and the inner diameter surface of the cage. For this reason, the lubricating oil flowing into the outer diameter surface of the column portion is easily guided by the slit. Therefore, the amount of lubricating oil that flows into the oil groove tends to increase, and the seizure resistance of the tapered roller bearing can be further improved.
- the inclined oil groove branches off from the end on the large diameter side of the straight oil groove to both sides in the circumferential direction and opens to the side surface of the column part, the inclined oil groove is directed toward the large diameter annular part on both sides in the circumferential direction of the column part Lubricating oil is scattered. For this reason, there is an advantage that the seizure prevention function is not affected by the rotation direction of the bearing. It is preferable that the branched inclined oil groove has a symmetrical shape with respect to the axial direction of the column portion. This is to eliminate the difference in the scattering action of the lubricating oil due to the difference in the rotation direction of the bearing.
- the inner diameter on the small diameter side of the cage is made small so that the gap between the opposing inner ring collars is narrowed to the limit. If it does in this way, lubricating oil supply to an inner ring large collar part will become effective.
- the clearance between the outer diameter surface of the small collar portion of the inner ring and the inner diameter surface of the small-diameter side annular portion of the cage is preferably 1.5% or less with respect to the outer diameter dimension of the small collar portion.
- a suitable tapered roller bearing having improved seizure resistance between the large end face of the tapered roller and the large collar portion of the inner ring can be provided.
- FIG. 1 is a longitudinal sectional view of a tapered roller bearing according to a first embodiment of the present invention.
- the principal part cutting perspective view of the cage of the embodiment Front view of the cage of the same embodiment
- Sectional drawing of the transmission of the motor vehicle incorporating the tapered roller bearing according to the present invention Cutaway perspective view of main parts of a cage of a tapered roller bearing of another second embodiment
- FIGS. 1 to 2C A tapered roller bearing according to a first embodiment of the present invention is shown in FIGS. 1 to 2C, and the embodiment will be described based on the drawings.
- 1 is a longitudinal sectional view of the same embodiment
- FIG. 2A is a cut perspective view of the main part
- FIG. 2B is a front view
- FIG. 2C is a plan view.
- a tapered roller bearing (hereinafter sometimes simply referred to as “bearing”) 10 includes a ring-shaped outer ring 11, a ring-shaped inner ring 20 disposed on the inner peripheral side of the outer ring 11, and It consists of a ring-shaped cage 30 disposed between the outer ring 11 and the inner ring 20 and a plurality of tapered rollers 40 held by the cage 30.
- the outer ring 11, the inner ring 20, and the tapered roller 40 are all made of a metal material.
- the direction parallel to the central axis c of the tapered roller bearing 10 is “axial direction”
- the direction orthogonal to the central axis c is “radial direction”
- the direction along the arc centered on the central axis c is defined. This is called “circumferential direction”.
- the cage 30 is made of resin.
- the resin material of the cage 30 can be appropriately selected.
- PPS polyphenylene sulfide
- PEEK polyetheretherketone
- PA polyamide
- PPA polyphthalamide
- PAI polyamideimide
- the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than the steel plate cage.
- the retainer 30 can suppress the occurrence of wear due to contact with the outer ring 11 in combination with the effect of the lubricating oil interposed in the bearing 10.
- these resins are lighter and have a smaller friction coefficient than steel plates, they are suitable for reducing torque loss at the time of starting the bearing 10 or wear amount of the cage.
- the cage 30 may be made of metal (for example, iron).
- Engineering plastic includes general-purpose engineering plastic and super engineering plastic. Typical examples are listed below, but these are examples of engineering plastics, and engineering plastics are not limited to the following.
- General-purpose engineering plastics include polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate ( GF-PET) and ultra high molecular weight polyethylene (UHMW-PE).
- PC polycarbonate
- PA6 polyamide 6
- PA66 polyamide 66
- POM polyacetal
- m-PPE modified polyphenylene ether
- PBT polybutylene terephthalate
- GF-PET GF reinforced polyethylene terephthalate
- UHMW-PE ultra high molecular weight polyethylene
- Super engineering plastics include polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide, polyetherimide (PEI), polyetheretherketone, liquid crystal polymer (LCP), thermoplastic polyimide (TPI), polybenzimidazole (PBI), polymethylbenten (TPX), poly1,4-cyclohexanedimethylene terephthalate (PCT), polyamide 46 (PA46), polyamide 6T (PA6T), Examples thereof include polyamide 9T (PA9T), polyamide 11,12PA (PA11,12), fluororesin, polyphthalamide and the like.
- An outer ring side raceway surface 12 that is inclined with respect to the axis of the outer ring 11 is formed on the inner peripheral surface of the outer ring 11.
- an inner ring side raceway surface 22 that is inclined with respect to the axis of the inner ring 20 is formed on the outer circumferential surface of the inner ring 20.
- a small flange portion 23 projecting in the outer diameter direction is formed on one of both axial sides of the inner ring side raceway surface 22, and a large collar portion 24 projecting in the outer diameter direction is formed on the other side.
- a small-diameter side inner end surface 23 a that is in sliding contact with the small-diameter side end surface 42 of the tapered roller 40 is formed on the end surface of the small flange portion 23 on the tapered roller 40 side.
- a large-diameter inner end surface 24 a that is in sliding contact with the large-diameter end surface 43 of the tapered roller 40 is formed on the end surface of the large-diameter annular portion 24 on the tapered roller 40 side.
- the large-diameter side end surface 43 of the tapered roller 40 is in contact with and guided by the inner end surface 24 a of the large collar annular portion 24 of the inner ring 20.
- the retainer 30 has a large-diameter annular portion 31, a small-diameter annular portion 32, a plurality of column portions 33, and a plurality of pockets 34.
- the large-diameter annular portion 31 is annular when viewed from the axial direction, and overlaps the large flange portion 24 of the inner ring 20 in the axial direction.
- the small-diameter annular portion 32 is annular as viewed from the axial direction, and overlaps the small flange portion 23 of the inner ring 20 in the axial direction.
- the column portions 33 are provided between the large-diameter annular portion 31 and the small-diameter annular portion 32 at equal intervals in the circumferential direction.
- the column portion 33 connects the large-diameter annular portion 31 and the small-diameter annular portion 32.
- the pocket 34 is formed by the column portion 33, the large-diameter annular portion 31, and the small-diameter annular portion 32.
- the column portion 33 has a required thickness in the radial direction from the outer diameter side to the vicinity of the outer ring side raceway surface 12 and from the inner diameter side to the vicinity of the inner ring side raceway surface 22, in other words, corresponding to the large diameter side inner end face 24a. It has the required thickness up to the position where The thickness is appropriately set according to the place where the bearing 10 is used. Further, if the width of the column part 33 (vertical direction in FIG. 2C) is 40 to 50% (preferably 45%) of the small diameter of the tapered roller 40, the contact area between the cage 30 and the tapered roller 40 can be reduced. . Therefore, the shear torque and the agitation torque of the lubricating oil can be reduced, and the rotational torque of the bearing 10 can be reduced.
- An oil groove 35 is formed in the inner diameter surface 33a of the column portion 33 of the cage 30 (see FIGS. 2A to 2C).
- the oil groove 35 has a square groove shape, extends from a substantially central portion in the axial direction of the column portion 33 toward the large-diameter annular portion 31, and branches into two branches at the end portion.
- the oil groove 35 includes a straight oil groove 35a and a pair of branch oil grooves 35b.
- the straight oil groove 35 a extends from the substantially central portion in the axial direction of the column portion 33 toward the large-diameter annular portion 31.
- Each of the pair of branch oil grooves 35b branches off from the end of the straight oil groove 35a on the large-diameter annular portion 31 side.
- the branch oil groove 35b is an inclined oil groove extending inclinedly from one end of the linear oil groove 35a on the large diameter side toward the one circumferential side.
- the pair of branch oil grooves 35 b are open toward the axially inner surface (inner surface) 31 a constituting the pocket 34 in the large-diameter annular portion 31.
- the lubricating oil in the oil groove 35 is scattered from the branch oil groove 35b toward the inner surface 31a of the large-diameter annular portion 31 by the centrifugal force accompanying the rotation of the bearing 10 (see arrows in FIGS. 2A and 2C). .
- lubricating oil is sent in between the tapered roller 10 and the inner surface which forms the pocket 34 among the large diameter annular parts 31.
- the branched branch oil grooves 35 b and 35 b are symmetrical with respect to the axial direction of the column portion 33.
- a plurality of slits 36 for guiding the flow of the lubricating oil radially inward are formed on the inner side surface (side surfaces on both sides in the circumferential direction of the column portion 33) 33b constituting the pocket 34 in the cage 30.
- the slit 36 is inclined and extended on the side surface 33 b of the column portion 33.
- the slit 36 communicates with the oil groove 35 (a pair of branch oil grooves 35b). Two are provided on both side surfaces 33 b of the column 33.
- the number of the slits 36 is arbitrary.
- the slit 36 includes a first slit 36a that communicates with the straight oil groove 35a and a second slit 36b that communicates with the branch oil groove 35b.
- the first slit 36 a extends from the small-diameter side end portion of the inner side surface 33 b of the column portion 33 toward the linear oil groove 35 a.
- the first slit 36a extends from a portion of the inner side surface 33b of the pillar portion 33 that is slightly away from the outer diameter surface 33c toward the straight oil groove 35a. That is, the first slit 36 a does not communicate (open) with the outer diameter surface 33 c of the cage 33.
- the second slit 36 b extends so as to penetrate the side surface 33 b of the column part 33.
- the second slit 36 b communicates the branch oil groove 35 b and the outer diameter surface 33 c of the column portion 33.
- the slits 36a and 36b have a function of retaining lubricating oil when the bearing is not rotating, and have a function of supplying the retained lubricating oil to the oil groove 35 when the bearing is in operation.
- the widths of the slits 36 a and 36 b are 25% or more and 50% or less with respect to the width of the column part 33.
- the width of the slits 36a and 36b exceeds 50% with respect to the width of the column portion 33, the effect of retaining the lubricating oil is reduced. This is because the amount of lubricating oil supplied is reduced.
- An oil retaining groove 37 for holding lubricating oil is formed on the inner side surface 31a of the large-diameter annular portion 31.
- the oil retaining grooves 37 are formed on both sides in the circumferential direction with respect to the column portion 33, and communicate with the inner side surface 33 b of the column portion 33.
- the oil retaining groove 37 replenishes the lubricating oil to the large collar end face 24a when the scattered lubricating oil from the oil groove 35 does not reach the large collar end face 24a of the inner ring 20 sufficiently (not induced). Secure). For this reason, the holding
- the cage 30 eliminates the play of the cage 30 by reducing the inner diameter on the small diameter side and narrowing the gap with the small flange portion 23 of the opposed inner ring 20. Moreover, if it does in this way, the amount of lubricating oil which penetrate
- the gap t between the outer diameter surface of the small flange portion 23 of the inner ring 20 and the inner diameter surface of the small diameter side annular portion 32 is 1.5% or less with respect to the outer diameter dimension L of the small flange portion 23 (FIG. 1). FIG. 3). If the gap t is eliminated, the retainer 30 comes into contact with the small brim portion 23 and drag torque is generated, so the gap t does not include zero.
- the tapered roller bearing 10 of the present embodiment has the above-described configuration, and is used for a power transmission device of an automobile such as a differential or a transmission described later. That is, the tapered roller bearing 10 is a tapered roller bearing for automobiles.
- a power transmission device such as a differential or a transmission
- the lubricating oil therein is agitated and the lubricating oil is scattered on the tapered roller bearing 10.
- the inner ring 20 and the rollers 40 rotate in the tapered roller bearing 10.
- the lubricating oil a scattered on the tapered roller bearing 10 is an oil flow formed between the inner peripheral surface (the raceway surface 12) of the outer ring 11 and the outer diameter surface 33 c of the cage 30. It flows into the path and flows from the small diameter annular portion 32 side of the tapered roller 40 through the outer diameter side of the cage 30 into the bearing.
- the lubricating oil a flowing in flows along the raceway surface 12 of the outer ring 11 (arrow a1).
- a part of the lubricating oil a is guided from the outer diameter surface 33c of the column portion 33 to the side surface 33b of the column portion 33, and further to the oil groove 35 (straight oil groove 35a) through the first slit 36a. (Arrow a2).
- the lubricating oil a guided to the straight oil groove 35a is divided into two branches and scattered through the branch oil groove 35b (arrow a4).
- a part of the lubricating oil a flowing on the raceway surface 12 of the outer ring 11 passes through the second slit 36b through the outer diameter surface 33c of the column portion 33 and is then guided to the branch oil groove 35b (arrow a3).
- the lubricating oil a inside the tapered roller bearing 10 is held in the oil groove 35, the slit 36, and the oil retaining groove 37. That is, the oil groove 35, the slit 36, and the oil retaining groove 37 have a function of retaining lubricating oil.
- the lubricating oil held in the oil groove 35, the slit 36, and the oil retaining groove 37 causes the large-diameter end face 43 of the tapered roller 40 and the large ring of the inner ring 20. It can be easily supplied to the portion 24 in a short time, and the seizure resistance between the large-diameter side end face 43 and the large flange portion 24 can be further improved.
- the lubricating oil (arrows a2 and a3) reaching the slit 36 that extends while inclining radially inward is guided toward the large-diameter annular portion 31 and the oil groove 35 (straight oil groove 35a, branching).
- the oil groove 35b) is reached.
- the lubricating oil in the oil groove 35 is guided from the branch oil groove 35b and from the straight oil groove 35a to the pair of branch oil 35b and from the branch oil groove 35b to the large-diameter annular portion 31. It is scattered (sprayed) on the inner surface 31a.
- the lubricating oil accumulates due to the stirring of the lubricating oil a and the scattering from the oil groove 35 (branched oil groove 35b) due to the operation of the power transmission device of the automobile. Since the oil groove 35 has the branch oil groove 35b in addition to the straight oil groove 35a, the amount of lubricating oil that accumulates in the oil retaining groove 37 when the bearing is stopped can be increased.
- the lubricating oil a accumulated in the oil retaining groove 37 is supplied to lubrication between the inner surface 31 a of the large-diameter annular portion 31 and the large-diameter side end surface 43 of the tapered roller 40.
- the tapered roller bearing 10 according to the first embodiment is suitable for an application for supporting a shaft provided in a power transmission device of an automobile, for example, a differential, a transmission, or the like. This is because a low speed rotation habituation operation is performed in a state where a preload is applied to the tapered roller bearing supporting the shaft.
- An example of the tapered roller bearing 10 according to the above-described embodiment incorporated in the power transmission path of the automobile is shown in FIGS.
- FIG. 4 is an example of a differential that is a component of a power transmission device path of an automobile.
- the differential 50 includes a drive pinion 52 that is rotatably supported by two tapered roller bearings 10 with respect to the housing 51, and a ring gear 53 that meshes with the drive pinion 52.
- the ring gear 53 is attached to a differential gear case 54, and the differential gear case 54 is rotatably supported with respect to the housing 51 by a pair of tapered roller bearings 10 and 10.
- the differential gear case 54 includes a pinion 55 and a pair of side gears 56 that mesh with the pinion 55.
- Each tapered roller bearing 10 in the figure corresponds to the tapered roller bearing 10 of the first embodiment, and has an appropriate design change at the mounting location, but has the basic configuration of the present invention.
- FIG. 5 shows another example of the tapered roller bearing 10 according to the first embodiment incorporated in a power transmission device path of an automobile.
- FIG. 5 is an example of a transmission that is a component of a power transmission path of an automobile.
- a transmission 60 shown in FIG. 5 is a multi-stage transmission that changes a gear ratio stepwise, and a first bearing serving as a rolling bearing that rotatably supports its rotating shaft (for example, the input shaft 61 and the output shaft 62).
- a tapered roller bearing 10 according to the embodiment is provided. At this time, each tapered roller bearing 10 is appropriately changed in design at the mounting location, but has the basic configuration of the present invention.
- the transmission 60 includes an input shaft 61 to which engine rotation is input, an output shaft 62 provided in parallel with the input shaft 61, and a row of a plurality of gears 63 that transmit the rotation from the input shaft 61 to the output shaft 62. And a clutch (not shown) incorporated between the row of the gears 63 and the input shaft 61 or the output shaft 62.
- the transmission switches the gear train to be used by selectively engaging a clutch, and changes the transmission gear ratio transmitted from the input shaft 61 to the output 62.
- the rotation of the output shaft 62 is output to an output gear (not shown), and the rotation of the output gear is transmitted to a differential gear or the like.
- the input shaft 61 and the output shaft 62 are rotatably supported by the corresponding tapered roller bearings 10 respectively.
- the transmission 60 pumps the lubricating oil by splashing of the lubricating oil accompanying the rotation of the gear or from an oil pump driven by the engine, and the lubricating oil is supplied to a nozzle (inside the housing 65).
- the tapered roller bearing 10 can be lubricated by using the tapered roller bearing 10 in a state where a part of the tapered roller bearing 10 is immersed in the lubricating oil stored in the housing 64.
- the cage 30 captures the lubricating oil, the oil groove 35, the slit 36, and the oil retaining material. Since the groove 37 is provided, the oil groove 35 and the slit 36 having the function of retaining the lubricating oil even in an environment where the lubricating oil is not sufficiently supplied to the tapered roller bearing 10 even if the automobile starts suddenly. Lubricating oil is supplied from the oil retaining groove 37 between the large-diameter side end face 43 of the tapered roller 40 and the large collar portion 24 of the inner ring 20. Therefore, the seizure resistance of the tapered roller bearing 10 can be ensured.
- a low-viscosity lubricating oil used in an automobile power transmission device such as a transmission or a differential means a lubricating oil having a kinematic viscosity of 2 to 8 cSt at 100 ° C.
- the tapered roller bearing according to the second embodiment is obtained by partially deforming the shape of the cage from the tapered roller bearing according to the first embodiment. Below, a different point from a 1st embodiment is explained about a retainer of a tapered roller bearing concerning a 2nd embodiment.
- FIGS. 6A to 6C are views corresponding to FIGS. 2A to 2C of the retainer 30A of the tapered roller bearing according to the second embodiment.
- the cage 30A is different from the cage 30 of the first embodiment in that it does not have the slit 36. That is, the slit 36 is not necessarily formed.
- the lubricating oil is captured by the oil groove 35A.
- the oil retaining groove 37A is formed only on one side in the circumferential direction with respect to the column portion 33A. Specifically, the oil retaining groove 37A is formed on the front side in the rotational direction of the bearing 10 on the inner surface of the large-diameter annular portion 31A.
- the tapered roller bearing according to the third embodiment is obtained by partially deforming the shape of the cage from the tapered roller bearing 01 according to the first embodiment. Below, a different point from 1st Embodiment is demonstrated about the retainer 30B of the tapered roller bearing which concerns on 3rd Embodiment.
- FIG. 7 is a perspective cutaway view of a main part of a tapered roller bearing retainer 30B according to the third embodiment.
- the cage 30B is obtained by partially changing the shapes of the cage 30 and the slit 36B of the first embodiment.
- the cage 30B has a single slit 36B that extends toward the inside in the radial direction of the side surface of the pillar portion 33B.
- the slit 36B communicates the oil groove 35B (linear oil groove 35Ba) and the outer diameter surface 33Bc of the column portion 33B.
- the slit 36B communicates the small-diameter side end portion of the outer diameter surface 33Bc of the column portion 33B and the oil groove 35B (the slit 36B opens to the outer diameter surface 33Bc and the oil groove 35B of the column portion 33B. is doing).
- the lubricating oil which flowed into the outer diameter surface 33Bc of the pillar part 33B becomes easy to be guide
- the tapered roller bearing according to the fourth embodiment is obtained by partially deforming the shape of the cage from the tapered roller bearing according to the first embodiment. Below, a different point from 1st Embodiment is demonstrated about the retainer of the tapered roller bearing which concerns on 4th Embodiment.
- FIG. 8 is a perspective cutaway view of a main part of a tapered roller bearing retainer 30C according to the fourth embodiment.
- the slit 36C has only the first slit 36a communicating with the linear groove portion 35a, and does not have the second slit 36b, and the tapered roller of the first embodiment.
- the second slit 36b of the first embodiment is not necessarily formed.
- the tapered roller bearing according to the fifth embodiment is obtained by partially deforming the shape of the cage from the tapered roller bearing according to the first embodiment. Below, the difference from the first embodiment will be described for the cage of the tapered roller bearing according to the fifth embodiment.
- FIG. 9 is a perspective cutaway view of a main part of a tapered roller bearing retainer 30D of the fifth embodiment.
- an oil groove 35D is formed by denting the inner side surface 33Da of the column portion 33D to one side in the circumferential direction.
- the oil groove 35D includes a linear oil groove 35Da and an inclined oil groove 35Db extending from the large-diameter side end of the linear oil groove 35Da to the other side in the circumferential direction (the inner surface 33Da side of the column part 33D). is doing.
- the tapered roller bearings 30A, 30B, 30C, and 30D of the second to fifth embodiments are also suitable for applications such as supporting a shaft provided in a power transmission device of an automobile such as the differential and the transmission.
- the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. Therefore, the scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
複数の円すいころ(40)を支持する保持器(30)は、大径環状部(31)、小径環状部(32)、その両径環状部(31、32)を連結した柱部(33)と、円すいころ(40)を配置したポケット(34)とを有する。外輪(11)と内輪(20)との間の空間が、小鍔部(23)から大鍔部(24)へ潤滑油(a)が流れる油流路となる。柱部(33)の内径面(33a)の油溝(35)に潤滑油が溜まり、保持器(30)の回転と共に、その油溝(35)から油が飛び出し、円すいころ(40)の大端面と内輪(20)の大鍔部(24)間の焼き付きを防止する。
Description
この発明は、円すいころ軸受に関する。
円すいころ軸受は、外輪と、その外輪の内側に配置された内輪と、外輪及び内輪の間に配置され、複数のポケットを有する保持器と、ポケットに配置される複数の円すいころとを備える。保持器は、大径環状部と小径環状部の間に柱部を有しており、その柱部と大径環状部及び小径環状部とでポケットが形成されている。そして、外輪と内輪との間に形成される空間が、内輪の小鍔部から大鍔部へ潤滑油が流れる油流路とされた構成が一般的である(下記特許文献1、段落0018~同0034、図1~図2、下記特許文献2、段落0012~同0028、図1~図6参照)。
この特許文献1及び2の円すいころ軸受は、通常、保持器の柱部で円すいころを抱え込む構成のため、円すいころと柱部との接触面積が大きい。そのため、円すいころと柱部との間に位置する潤滑油のせん断トルクが大きくなり、軸受の回転トルク増加の要因となっている。
また、各ころの間に隙間無く保持器が存在する構成のため、その保持器と円すいころの間の潤滑油による円滑な冷却効果が望めず、軸受内部の昇温が懸念される。
このため、前記油流路において、内輪の小鍔部側から大鍔部へ潤滑油を積極的に流して、内輪の大径環状部の大径側内側端面と、円すいころの大径側端面とが滑り接触する部分の焼付き防止を図るようにしている。
ところで、今日の自動車の動力伝達装置であるトランスミッション又はデファレンシャル等においては、省燃費化のために、潤滑油(オイル)の粘度を低下させたり、少油量化を図ったりする傾向にあり、円すいころ軸受に十分な油膜が形成され難い場合がある。このため、トランスミッション等の自動車の動力伝達装置に使用される円すいころ軸受には、耐焼き付き性と低トルク化の性能が求められている。
そこで、内輪の小鍔部側から大鍔部へ潤滑油を積極的に流す構成として、特許文献1に開示されているように、保持器の柱部のうちポケット内側面に小径環状部から大径環状部に向かって開口する油誘導スリットを形成することが考えられる 。
しかしながら、特許文献1は、ころところとの間のスペースに隙間なく保持器が存在する形状となっている為、潤滑油による冷却能力が低下し、軸受内部の昇温が懸念されるため、ころ大端面と内輪大鍔部間で焼き付きが発生する可能性がある。
この発明は、以上の実状に鑑み、円すいころの大端面及び内輪の大鍔部間における耐焼き付き性を向上させた好適な円すいころ軸受を提供することを課題とする。
前記の課題を達成するために、この発明は、外輪と、外輪の内側に配置された内輪と、外輪及び内輪の間に配置される保持器と、保持器に保持される複数の円すいころと、を備え、内輪は、円すいころが転動する軌道面と、軌道面の小径側に形成された小鍔部と、軌道面の大径側に形成された大鍔部とを有し、保持器は、大径環状部と、小径環状部と、大径環状部と小径環状部を連結して軸方向に延びる柱部と、円すいころが配置されるポケットとを有し、外輪と内輪との間に形成された空間が小鍔部から大鍔部へ潤滑油が流れる油流路とされ、柱部の内径面に潤滑油が流れる油溝が形成され、前記油溝は、前記柱部に沿って延びる直線油溝と、前記直線油溝のうち大径側の端部から周方向一方側に向かって傾斜して延びる傾斜油溝とを有している構成を採用したのである。
このように構成すると、軸受回転時に、軸受内部を流れる潤滑油が油溝を介して円すいころの大端面と内輪の大鍔部との間へと流れるため、円すいころの大端面と内輪の大鍔部との間の焼き付きを防止する。また、油溝は、柱部に沿って延びる直線油溝のうち大径側の端部から周方向一方側に向かって傾斜して延びる傾斜油溝を有しているため、円すいころの大端面側へと潤滑油が供給され易くなる。更に、軸受停止時に油溝に潤滑油が溜まるため、保持器の回転と共に、その油溝から潤滑油が飛び出し、円すいころの大端面に付着して、円すいころの大端面と内輪の大鍔部との間の焼き付きを防止する。このように、油溝は、軸受の非回転時は潤滑油の保持機能を有し、回転時には、円すいころの大端面と内輪の大鍔部の間に潤滑油を供給して焼き付きを防止する。
前記構成において、前記油流路は、前記外輪の内周面と保持器の外径面との間に設けられ、前記保持器は、柱部に潤滑油の流れを径方向内向きに誘導するスリットを更に有し、前記スリットは、前記油溝と連通している構成とすることができる。このようにすれば、そのスリットにも、少なからず、潤滑油が溜まる。このため、保持器の回転と伴い、スリットから連通する前記油溝に潤滑油が送り込まれるとともに油溝と同様に潤滑油が飛び出し、円すいころの外周面及び、円すいころの大端面と内輪の大鍔部との間に付着して、円すいころ軸受の耐焼き付き性を更に高めることができる。
また、スリットの形成によって、円すいころと柱部との接触面積が少なくなるため、軸受の回転トルクも減少する。
また、スリットの形成によって、円すいころと柱部との接触面積が少なくなるため、軸受の回転トルクも減少する。
前記構成において、前記スリットは、前記保持器の外径面と前記保持器の内径面とを連通している構成とすることができる。このため、柱部の外径面に流入した潤滑油がスリットにより導かれ易くなる。そのため、油溝に流入する潤滑油も多くなり易く、円すいころ軸受の耐焼き付き性をさらに向上することができる。
さらに、傾斜油溝は、直線油溝のうち大径側の端部から周方向両側に分岐して柱部側面に開口していると、柱部の周方向両側の大径環状部に向かって潤滑油が飛散される。このため、軸受の回転方向にその焼き付き防止作用が左右されない利点がある。その枝分かれした傾斜油溝が、柱部の軸方向に対して対称形状となっていることが好ましい。軸受の回転方向の相違によって潤滑油の飛散作用に相違をなくすためである。
前記大径環状部のうちポケット側の側面に保油溝が形成されておれば、その保油溝に潤滑油が溜められるため、最も焼き付きの生じやすい、円すいころの大端面と内輪の大鍔部との間に潤滑油を送り込む作用をさらに行うことができる。
また、前記保持器の小径側内径を小さくして、対向する内輪小鍔部との隙間を限界まで狭くすることが好ましい。このようにすると、内輪大鍔部への潤滑油供給が効果的となる。
前記内輪の小鍔部の外径面と保持器の小径側環状部の内径面との隙間は、小鍔部の外径寸法に対して1.5%以下とするのが好ましい。
この発明は以上のように構成したので、円すいころの大端面及び内輪の大鍔部間における耐焼き付き性を向上させた好適な円すいころ軸受を提供することができる。
(第1実施形態)
この発明に係る円すいころ軸受の第1の実施形態を図1~図2Cに示し、その図に基づきその実施形態を説明する。図1は同実施形態の縦断面図、図2Aは同要部切断斜視図、図2Bは同正面図、図2Cは同平面図である。
この発明に係る円すいころ軸受の第1の実施形態を図1~図2Cに示し、その図に基づきその実施形態を説明する。図1は同実施形態の縦断面図、図2Aは同要部切断斜視図、図2Bは同正面図、図2Cは同平面図である。
図1に示すように、円すいころ軸受(以下、単に「軸受」と呼ぶことがある)10は、リング状の外輪11と、外輪11の内周側に配置されるリング状の内輪20と、外輪11と内輪20の間に配置されるリング状の保持器30と、保持器30に保持される複数の円すいころ40とからなっている。外輪11、内輪20、円すいころ40は、いずれも金属製の材料で構成されている。なお、以下の説明において、円すいころ軸受10の中心軸cに平行な方向を「軸方向」、中心軸cに直交する方向を「径方向」、中心軸cを中心とする円弧に沿う方向を「周方向」と呼ぶ。
保持器30は樹脂製である。保持器30の樹脂材料は、適宜に選択し得るが、例えばPPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)、PA(ポリアミド)、PPA(ポリフタルアミド)、PAI(ポリアミドイミド)等のスーパーエンプラで一体成形される。保持器30に、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴がある。このため、この保持器30は、軸受10内に介在する潤滑油の効果と相俟って、外輪11との接触による摩耗の発生を抑えることが可能になる。また、これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受10の起動時におけるトルク損失又は保持器の摩耗量の低減に好適である。なお、保持器30は、金属製(例えば、鉄製)であってもよい。
エンジニアリング・プラスチックは、汎用エンジニアリング・プラスチックとスーパー・エンジニアリング・プラスチックを含む。以下に代表的なものを掲げるが、これらはエンジニアリング・プラスチックの例示であって、エンジニアリング・プラスチックが以下のものに限定されるものではない。
汎用エンジニアリング・プラスチックには、ポリカーボネート(PC)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF-PET)、超高分子量ポリエチレン(UHMW-PE)等があげられる。
スーパー・エンジニアリング・プラスチックには、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、ポリベンズイミダゾール(PBI)、ポリメチルベンテン(TPX)、ポリ1,4-シクロヘキサンジメチレンテレフタレート(PCT)、ポリアミド46(PA46)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド11,12 (PA11,12)、フッ素樹脂、ポリフタルアミド等が挙げられる。
なお、保持器30の材料の例としてPPS、PEEK、PA、PPA、PAI等のスーパーエンプラを挙げたが、必要に応じて、強度増強のため、これら樹脂材料またはその他のエンジニアリング・プラスチックに、ガラス繊維または炭素繊維などを配合したものを使用してもよい。
外輪11の内周面には、外輪11の軸線に対して傾斜した外輪側軌道面12が形成されている。内輪20の外周面には、内輪20の軸線に対して傾斜した内輪側軌道面22が形成されている。内輪側軌道面22の軸方向両側のうち一方に外径方向へ突出した小鍔部23が形成され、他方に外径方向へ突出した大鍔部24が形成されている。小鍔部23の円すいころ40側の端面には、円すいころ40の小径側端面42に滑り接触する小径側内側端面23aが形成されている。大径環状部24の円すいころ40側の端面には、円すいころ40の大径側端面43に滑り接触する大径側内側端面24aが形成されている。軸受10の運転(回転)時に、円すいころ40の大径側端面43は内輪20の大鍔環状部24の内側端面24aに接触して案内される。
保持器30は、大径環状部31と、小径環状部32と、複数の柱部33と、複数のポケット34とを有している。大径環状部31は、軸方向から視て、環状であり、内輪20の大鍔部24と軸方向に重なっている。小径環状部32は、軸方向から視て、環状であり、内輪20の小鍔部23と軸方向に重なっている。柱部33は、大径環状部31と小径環状部32の間に周方向等間隔に設けられている。柱部33は、大径環状部31と小径環状部32とを連結している。ポケット34は、柱部33と大径環状部31及び小径環状部32とで形成されている。
柱部33は、その外径側が外輪側軌道面12の近傍まで、内径側が内輪側軌道面22の近傍まで径方向に所要の肉厚を有し、言い換えれば、大径側内側端面24aと対応する位置まで所要の肉厚を有する。その肉厚度合いは、軸受10の使用個所に応じて適宜に設定する。また、柱部33の幅(図2Cにおける紙面上下方向)を円すいころ40の小径の40~50%(好ましくは、45%)とすれば、保持器30と円すいころ40の接触面積を小さくできる。そのため、潤滑油のせん断トルクと撹拌トルクの軽減を図ることができ、軸受10の回転トルクを低下させることができる。
保持器30の柱部33の内径面33aには、油溝35が形成されている(図2A~図2C参照)。油溝35は角溝状であって、柱部33の軸方向略中央部から大径環状部31に向かって延び、その端部において二股に枝分かれしている。具体的には、油溝35は、直線油溝35aと、一対の分岐油溝35bを有している。直線油溝35aは、柱部33のうち軸方向略中央部から大径環状部31に向かって延びている。一対の分岐油溝35bはそれぞれ、直線油溝35aのうち大径環状部31側の端部から分岐している。分岐油溝35bは、直線油溝35aの大径側の端部から周方向一方側に向かって傾斜して延びる傾斜油溝である。一対の分岐油溝35bは、大径環状部31のうちポケット34を構成する軸方向内側の面(内側面)31aに向かって開口している。このため、油溝35内の潤滑油は、軸受10の回転に伴う遠心力によって分岐油溝35bから大径環状部31の内側面31aに向かって飛散する(図2A、図2Cの矢印参照)。これにより、円すいころ10と大径環状部31のうちポケット34を形成する内面との間に潤滑油が送り込まれる。枝分かれした分岐油溝35b、35bは、柱部33の軸方向に対して対称形状となっている。
また、保持器30のうちポケット34を構成する内側面(柱部33の周方向両側の側面)33bには、潤滑油の流れを径方向内側に誘導する複数のスリット36が形成されている。スリット36は、柱部33の側面33bにおいて傾斜して延びている。スリット36は、油溝35(一対の分岐油溝35b)と連通している。柱部33の両側面33bにそれぞれ、2本設けられている。なお、このスリット36の数は任意である。
具体的には、スリット36は、直線油溝35aと連通する第1スリット36aと、分岐油溝35bと連通する第2スリット36bとを有している。第1スリット36aは、柱部33の内側面33bのうち小径側端部から直線油溝35aに向かって延びている。また、第1スリット36aは、柱部33の内側面33bの小径側端部のうち外径面33cからやや離れた部分から直線油溝35aに向かって延びている。すなわち、第1スリット36aは、保持器33の外径面33cと連通(開口)していない。第2スリット36bは、柱部33の側面33bを貫通するように延びている。具体的には、第2スリット36bは、分岐油溝35bと柱部33の外径面33cとを連通している。スリット36a、36bは、軸受非回転時は潤滑油の保持機能を有し、軸受運転時には、その保持した潤滑油を油溝35に供給する機能を有する。
スリット36a、36bの幅(図2Aにおける上下斜め方向)は柱部33の幅に対して25%以上、50%以下である。スリット36a、36bの幅が柱部33の幅に対して50%を超えると、潤滑油の保持効果が小さくなり、25%未満であると、軸受回転時の内輪20の大鍔部端面24aへの潤滑油供給量が少なくなるためである。
スリット36a、36bの幅(図2Aにおける上下斜め方向)は柱部33の幅に対して25%以上、50%以下である。スリット36a、36bの幅が柱部33の幅に対して50%を超えると、潤滑油の保持効果が小さくなり、25%未満であると、軸受回転時の内輪20の大鍔部端面24aへの潤滑油供給量が少なくなるためである。
大径環状部31のうち内側面31aには、潤滑油を保持する保油溝37が形成されている。保油溝37は柱部33に対して周方向両側に形成されていて、柱部33の内側面33bと連通している。保油溝37は、油溝35からの飛散潤滑油が内輪20の大鍔部端面24aに十分に至らなかった(誘導されなかった)場合、当該大鍔部端面24aへの潤滑油を補充(確保)する機能を有している。このため、軸受非回転時における潤滑油の保持能力又は回転時における潤滑油の供給効果をさらに向上(上昇)させる。
保持器30は、その小径側の内径を小さくして、対向する内輪20の小鍔部23との隙間を狭くすることで、保持器30のガタを無くしている。また、このようにすると、軸受内部に侵入する潤滑油量が減少し、軸受内部の撹拌トルクが低減する。このとき、軸受内部に流入する潤滑油量が減少するが、油溝35やスリット36、保油溝37によって潤滑油は捕捉されて供給されるため、耐焼き付き性を確保することができる。
なお、内輪20の小鍔部23の外径面と小径側環状部32の内径面との隙間tは、小鍔部23の外径寸法Lに対して1.5%以下とする(図1、図3参照)。その隙間tをなくすと、保持器30が小鍔部23に接触して引き摺りトルクが発生するため、隙間tは、0を含まない。
なお、内輪20の小鍔部23の外径面と小径側環状部32の内径面との隙間tは、小鍔部23の外径寸法Lに対して1.5%以下とする(図1、図3参照)。その隙間tをなくすと、保持器30が小鍔部23に接触して引き摺りトルクが発生するため、隙間tは、0を含まない。
本実施形態の円すいころ軸受10は以上の構成であり、後述するデファレンシャル又はトランスミッション等の自動車の動力伝達装置に使用される。すなわち、円すいころ軸受10は、自動車用の円すいころ軸受である。デファレンシャル又はトランスミッション等の動力伝達装置が作動すると、その内部の潤滑油が撹拌されて円すいころ軸受10に潤滑油が飛散する。なお、本実施形態では、円すいころ軸受10において、内輪20及びころ40が回転する。
円すいころ軸受10の運転中における当該軸受内部の潤滑油の流れについて、図3を用いて説明する。図3に矢印で示すように、円すいころ軸受10に飛散した潤滑油aは、外輪11の内周面(軌道面12)と保持器30の外径面33cとの間で形成された油流路に流入し、円すいころ40の小径環状部32側から保持器30の外径側を通って軸受内部へ流入する。流入した潤滑油aは、外輪11の軌道面12に沿って流れる(矢印a1)。その潤滑油aの一部は、柱部33の外径面33cから柱部33の側面33bに導かれ、さらに、第1スリット36aを通って、油溝35(直線油溝35a)へと導かれる(矢印a2)。直線油溝35aに導かれた潤滑油aは、分岐油溝35bを介して二股に分かれて飛散する(矢印a4)。また、外輪11の軌道面12を流れる潤滑油aの一部は、柱部33の外径面33cを介して第2スリット36bを通った後、分岐油溝35bへと導かれる(矢印a3)。第1、第2スリット36a、36bから油溝35(直線油溝35a、分岐油溝35b)へ供給された潤滑油aは、円すいころ40の大径側端面43と内輪20の大鍔部24との間へと流れる(矢印a4)。なお、分岐油溝35bへと導かれた潤滑油aは、保油溝37にも飛散する。また、本実施形態では、潤滑油aの一部は、第1スリット36aからころ40の大端面43に直接に飛散する(矢印a5)。なお、潤滑油は、第2スリットからころの大端面に直接飛散してもよい。
すなわち、円すいころ軸受10内において、潤滑油aは、円すいころ40の大径側端面43と内輪20の大鍔部24との間に潤滑油が供給され易くなる。
すなわち、円すいころ軸受10内において、潤滑油aは、円すいころ40の大径側端面43と内輪20の大鍔部24との間に潤滑油が供給され易くなる。
円すいころ軸受10が運転後に停止した場合、円すいころ軸受10内部の潤滑油aは、油溝35、スリット36、保油溝37において保持される。すなわち、油溝35、スリット36、保油溝37は、潤滑油を保持する機能を有している。これにより、潤滑油の粘度が高い動力伝達装置の始動時に、油溝35、スリット36、保油溝37に保持された潤滑油が、円すいころ40の大径側端面43と内輪20の大鍔部24との間に短時間で供給され易く、大径側端面43と大鍔部24との間の耐焼き付き性を更に向上することができる。
このように、径方向内側に傾斜して延びているスリット36に至った潤滑油(矢印a2、a3)は、大径環状部31に向かって誘導されて油溝35(直線油溝35a、分岐油溝35b)内に至る。そして、遠心力によって、油溝35内の潤滑油は、分岐油溝35bから、また直線油溝35aから誘導されて一対の分岐油35bに至ってその分岐油溝35bから、大径環状部31の内側面31aに飛散する(吹き付けられる)。このため、大径環状部31の内側面31aと円すいころ40の大径側端面43との間の潤滑が円滑になされる。これにより、金属接触する箇所に潤滑油aが供給され易くなり、円すいころ軸受10の耐焼き付き性を向上させる(確保する)ことができる。
また、保油溝37には、自動車の動力伝達装置等が作動することによる潤滑油aの撹拌、及び油溝35(分岐油溝35b)からの飛散によって潤滑油が溜まる。油溝35が、直線油溝35aに加えて分岐油溝35bも有していることにより、軸受停止時に保油溝37に溜まる潤滑油の量を多くすることができる。保油溝37に溜まった潤滑油aは、大径環状部31の内側面31aと円すいころ40の大径側端面43の間の潤滑に供給される。
第1実施形態に係る円すいころ軸受10は、自動車の動力伝達装置、例えば、デファレンシャル、トランスミッション等に備わる軸を支持する用途等に好適である。これは、その軸を支持する円すいころ軸受に予圧が負荷された状態で低速回転の馴らし運転が行われるためである。自動車の動力伝達経路に組み込まれた上述の実施形態に係る円すいころ軸受10の一例を図4、図5に示す。
図4は、自動車の動力伝達装置経路の構成要素となるデファレンシャルの一例である。このデファレンシャル50は、ハウジング51に対して2つの円すいころ軸受10で回転自在に支持されたドライブピニオン52と、このドライブピニオン52に噛み合うリングギヤ53とを有する。リングギヤ53は差動歯車ケース54に取り付けられ、差動歯車ケース54は一対の円すいころ軸受10、10でハウジング51に対して回転自在に支持されている。差動歯車ケース54内には、ピニオン55と、ピニオン55と噛み合う一対のサイドギヤ56とを備えている。これらのドライブピニオン52、リングギヤ53、差動歯車ケース54、ピニオン55及びサイドギヤ56がギヤオイルの封入されたハウジング51内に収納されている。 このギヤオイルは、各円すいころ軸受10の潤滑油にもなっている。図中の各円すいころ軸受10は、第1の実施形態の円すいころ軸受10に該当するものであり、取り付け場所において適宜の設計変更をしているが、この発明の基本構成を有する。
自動車の動力伝達装置経路に組み込まれた第1の実施形態の円すいころ軸受10の別例を図5に示す。図5は、自動車の動力伝達経路の構成要素となるトランスミッションの一例である。
図5に示すトランスミッション60は、段階的に変速比を変化させる多段変速機になっており、その回転軸(例えば入力軸61および出力軸62)を回転可能に支持する転がり軸受として、第1の実施形態に係る円すいころ軸受10を備えている。このとき、各円すいころ軸受10は取り付け場所において適宜の設計変更をしているが、この発明の基本構成を有する。
このトランスミッション60は、エンジンの回転が入力される入力軸61と、入力軸61と平行に設けられた出力軸62と、入力軸61から出力軸62に回転を伝達する複数のギア63の列と、その各ギア63の列と入力軸61または出力軸62との間に組み込まれた図示しないクラッチとを有する。トランスミッションは、クラッチを選択的に係合させることで使用する前記ギア列を切り替え、入力軸61から出力62に伝達する回転の変速比を変化させるものである。
出力軸62の回転は出力ギア(図示省略)に出力され、その出力ギアの回転がディファレンシャルギヤ等に伝達される。入力軸61と出力軸62は、それぞれ対応の各円すいころ軸受10で回転可能に支持されている。また、このトランスミッション60は、ギアの回転に伴う潤滑油のはね掛けにより、又は、エンジンで駆動されるオイルポンプから潤滑油を圧送し、その潤滑油をハウジング65の内部に設けられたノズル(図示省略)からの潤滑油の噴射により、はね掛け又は噴射された潤滑油が各円すいころ軸受10に供給されるようになっている。さらに、ハウジング64内に溜められた潤滑油に円すいころ軸受10の一部が漬かった状態で円すいころ軸受10を使用することで円すいころ軸受10を潤滑することも可能である。
このように、本実施形態に係る円すいころ軸受10は、デファレンシャル、トランスミッション等の自動車の動力伝達装置に使用されると、保持器30が、潤滑油を捕捉する油溝35、スリット36、保油溝37を有するため、自動車が急発進を行ったとしても、すなわち、円すいころ軸受10に十分な潤滑油が供給されていない環境においても、潤滑油の保持器機能を有する油溝35、スリット36、保油溝37から円すいころ40の大径側端面43と内輪20の大鍔部24との間に潤滑油が供給される。よって、円すいころ軸受10の耐焼き付き性を確保することができる。また、自動車の動力伝達装置の内部において使用される潤滑油が低粘度である場合又は少油量である場合にも、油溝35、スリット36、保油溝37から円すいころ40の大径側端面43と内輪20の大鍔部24との間に潤滑油が供給される。ここで、例えば、トランスミッション又はデファレンシャル等の自動車動力伝達装置で用いられる低粘度の潤滑油は、100℃において2~8cStの動粘度を有する潤滑油を意味する。なお、CGS単位系における動粘度の単位:1センチストークス(cSt)は、SI単位系において、1平方ミリメートル毎秒(mm2/s)に相当する。
(第2実施形態)
第2実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第2実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
第2実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第2実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
図6A~図6Cは、第2実施形態に係る円すいころ軸受の保持器30Aの図2A~図2Cに対応する図面である。図6A~図6Cに示すように、保持器30Aは、第1実施形態の保持器30とスリット36を有していない点で異なる。すなわち、スリット36は必ずしも形成する必要はない。
本実施形態では、油溝35Aで潤滑油の捕捉を行うこととなる。また、図6Aに示すように、保油溝37Aは、柱部33Aに対して周方向一側のみに形成されている。具体的には、保油溝37Aは、大径環状部31Aの内側面のうち軸受10の回転方向前方側に形成されている。
本実施形態では、油溝35Aで潤滑油の捕捉を行うこととなる。また、図6Aに示すように、保油溝37Aは、柱部33Aに対して周方向一側のみに形成されている。具体的には、保油溝37Aは、大径環状部31Aの内側面のうち軸受10の回転方向前方側に形成されている。
(第3実施形態)
第3実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受01から保持器の形状を一部変形したものである。以下では、第3実施形態に係る円すいころ軸受の保持器30Bについて、第1実施形態と異なる点について説明する。
第3実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受01から保持器の形状を一部変形したものである。以下では、第3実施形態に係る円すいころ軸受の保持器30Bについて、第1実施形態と異なる点について説明する。
図7は、第3実施形態に係る円すいころ軸受の保持器30Bの要部切断斜視図である。図7に示すように、保持器30Bは、第1実施形態の保持器30とスリット36Bの形状を一部変更したものである。保持器30Bは、柱部33Bの側面を径方向内側に向けて延びる単一のスリット36Bを有している。スリット36Bは、油溝35B(直線油溝35Ba)と柱部33Bの外径面33Bcとを連通している。具体的には、スリット36Bは、柱部33Bの外径面33Bcの小径側端部と油溝35Bとを連通している(スリット36Bは柱部33Bの外径面33Bc及び油溝35Bに開口している)。これにより、第1実施形態の保持器30と比べて、柱部33Bの外径面33Bcに流入した潤滑油がスリット36Bにより導かれ易くなる。そのため、油溝35Bに流入する潤滑油も多くなり易く、円すいころ軸受10の耐焼き付き性をさらに向上することができる。
(第4実施形態)
第4実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第4実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
第4実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第4実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
図8は、第4実施形態に係る円すいころ軸受の保持器30Cの要部切断斜視図である。図8に示すように、保持器30Cでは、スリット36Cは、直線溝部35aと連通する第1スリット36aのみを有し、第2スリット36bを有していない点で、第1実施形態の円すいころ軸受10の保持器30と異なる。すなわち、第1実施形態の第2スリット36bは、必ずしも形成する必要はない。
(第5実施形態)
第5実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第5実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
第5実施形態に係る円すいころ軸受は、第1実施形態に係る円すいころ軸受から保持器の形状を一部変形したものである。以下では、第5実施形態に係る円すいころ軸受の保持器について、第1実施形態と異なる点について説明する。
図9は、第5実施形態の円すいころ軸受の保持器30Dの要部切断斜視図である。図9に示すように、保持器30Dでは、柱部33Dの内側面33Daを周方向一方側に凹ませることで油溝35Dが形成されている。油溝35Dは、直線油溝35Daと、直線油溝35Daの大径側端部から周方向他方側(柱部33Dの内側面33Da側)に向かって傾斜して延びる傾斜油溝35Dbとを有している。
なお、第2~第5の実施形態の円すいころ軸受30A、30B、30C、30Dも、前記デファレンシャル、トランスミッション等の自動車の動力伝達装置に備わる軸を支持する用途等に好適であることは言うまでもない。
今回開示された実施形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
今回開示された実施形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 円すいころ軸受(軸受)
11 外輪
20 内輪
22 内輪軌道面(軌道面)
23 小鍔部
24 大鍔部
30、30A、30B、30C、30D 保持器
31、31A 大径環状部
31a 大径環状部内側面
32 小径環状部
33 柱部
33a 内径面
33b 側面
33c 外径面
35、35A、35B、35C、35D 油溝
35a 直線油溝
35b 分岐油溝
36、36B、36C、36D スリット
37 保油溝
a a1、a2、a3、a4 潤滑油
t 内輪小鍔部内側端面と保持器小径側端面との隙間
L 内輪小鍔部外径寸法
11 外輪
20 内輪
22 内輪軌道面(軌道面)
23 小鍔部
24 大鍔部
30、30A、30B、30C、30D 保持器
31、31A 大径環状部
31a 大径環状部内側面
32 小径環状部
33 柱部
33a 内径面
33b 側面
33c 外径面
35、35A、35B、35C、35D 油溝
35a 直線油溝
35b 分岐油溝
36、36B、36C、36D スリット
37 保油溝
a a1、a2、a3、a4 潤滑油
t 内輪小鍔部内側端面と保持器小径側端面との隙間
L 内輪小鍔部外径寸法
Claims (7)
- 外輪と、
前記外輪の内側に配置された内輪と、
前記外輪及び前記内輪の間に配置される保持器と、
前記保持器に保持される複数の円すいころと、を備え、
前記内輪は、前記円すいころが転動する軌道面と、前記軌道面の小径側に形成された小鍔部と、前記軌道面の大径側に形成された大鍔部とを有し、
前記保持器は、大径環状部と、小径環状部と、前記大径環状部と前記小径環状部を連結して軸方向に延びる柱部と、前記円すいころが配置されるポケットとを有し、
前記外輪と前記内輪との間に形成された空間が、前記小鍔部から前記大鍔部へ潤滑油が流れる油流路とされ、
前記柱部の内径面に前記潤滑油が流れる油溝が形成され、
前記油溝は、前記柱部に沿って延びる直線油溝と、前記直線油溝のうち大径側の端部から周方向一方側に向かって傾斜して延びる傾斜油溝とを有している、円すいころ軸受。 - 前記油流路は、前記外輪の内周面と前記保持器の外径面との間に設けられ、
前記保持器は、前記柱部に前記潤滑油の流れを径方向内向きに誘導するスリットを更に有し、
前記スリットは、前記油溝と連通している、請求項1に記載の円すいころ軸受。 - 前記スリットは、前記柱部の外径面と前記油溝とを連通している、請求項2に記載の円すいころ軸受。
- 前記傾斜油溝は、前記直線油溝の大径側端部から周方向両側へと分岐して前記柱部の側面に開口している、請求項1~3の何れか1項に記載の円すいころ軸受。
- 前記大径環状部のうち前記ポケット側の側面に保油溝が形成されている、請求項1~4の何れか1項に記載の円すいころ軸受。
- 前記内輪の前記小鍔部の外径面と前記保持器の小径側環状部の内径面との隙間は、前記小鍔部の外径寸法に対して1.5%以下である、請求項1~5の何れか1項に記載の円すいころ軸受。
- 自動車の動力伝達装置に組み込まれた、請求項1~6の何れか1項に記載の円すいころ軸受。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/498,554 US10883536B2 (en) | 2017-03-30 | 2018-03-29 | Tapered roller bearing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-067631 | 2017-03-30 | ||
JP2017067631A JP6906341B2 (ja) | 2017-03-30 | 2017-03-30 | 円すいころ軸受 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181756A1 true WO2018181756A1 (ja) | 2018-10-04 |
Family
ID=63677632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013337 WO2018181756A1 (ja) | 2017-03-30 | 2018-03-29 | 円すいころ軸受 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10883536B2 (ja) |
JP (1) | JP6906341B2 (ja) |
WO (1) | WO2018181756A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018007959T5 (de) * | 2018-09-05 | 2021-06-02 | Bearingart | Lagerkäfig |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010003548A1 (en) * | 1999-12-10 | 2001-06-14 | Frank Straub | Cage for a rolling bearing |
JP2003287033A (ja) * | 2002-03-28 | 2003-10-10 | Ntn Corp | ころ軸受用保持器及びころ軸受 |
JP2007321848A (ja) * | 2006-05-31 | 2007-12-13 | Ntn Corp | 円錐ころ軸受 |
JP2008045711A (ja) * | 2006-08-21 | 2008-02-28 | Jtekt Corp | 円錐ころ軸受 |
JP2014202341A (ja) * | 2013-04-10 | 2014-10-27 | 日本精工株式会社 | 円すいころ軸受 |
JP2015183804A (ja) * | 2014-03-25 | 2015-10-22 | 株式会社ジェイテクト | 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425011A (en) * | 1982-06-07 | 1984-01-10 | The Timken Company | Polymer cage for a high speed tapered roller bearing |
JP4103501B2 (ja) * | 2002-08-27 | 2008-06-18 | 株式会社ジェイテクト | 円錐ころ軸受 |
JP5807384B2 (ja) * | 2011-05-24 | 2015-11-10 | 株式会社ジェイテクト | 円すいころ軸受 |
DE102014213994B4 (de) * | 2013-08-14 | 2023-02-16 | Aktiebolaget Skf | Käfig für ein Rollenlager und Rollenlager |
JP6459396B2 (ja) * | 2014-10-29 | 2019-01-30 | 株式会社ジェイテクト | 円すいころ軸受 |
-
2017
- 2017-03-30 JP JP2017067631A patent/JP6906341B2/ja active Active
-
2018
- 2018-03-29 US US16/498,554 patent/US10883536B2/en active Active
- 2018-03-29 WO PCT/JP2018/013337 patent/WO2018181756A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010003548A1 (en) * | 1999-12-10 | 2001-06-14 | Frank Straub | Cage for a rolling bearing |
JP2003287033A (ja) * | 2002-03-28 | 2003-10-10 | Ntn Corp | ころ軸受用保持器及びころ軸受 |
JP2007321848A (ja) * | 2006-05-31 | 2007-12-13 | Ntn Corp | 円錐ころ軸受 |
JP2008045711A (ja) * | 2006-08-21 | 2008-02-28 | Jtekt Corp | 円錐ころ軸受 |
JP2014202341A (ja) * | 2013-04-10 | 2014-10-27 | 日本精工株式会社 | 円すいころ軸受 |
JP2015183804A (ja) * | 2014-03-25 | 2015-10-22 | 株式会社ジェイテクト | 保持器ユニットおよび該保持器ユニットを備えた円錐ころ軸受 |
Also Published As
Publication number | Publication date |
---|---|
JP6906341B2 (ja) | 2021-07-21 |
US20200063792A1 (en) | 2020-02-27 |
US10883536B2 (en) | 2021-01-05 |
JP2018168981A (ja) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9316256B2 (en) | Liquid-lubricated bearing and vehicle pinion shaft support device | |
US9243667B2 (en) | Tapered roller bearing and power transmission device using tapered roller bearing | |
US11300155B2 (en) | Cage for a tapered roller bearing and tapered roller bearing | |
US20190219102A1 (en) | Sealed bearing | |
JP6672059B2 (ja) | 冠型保持器及び玉軸受 | |
WO2018181756A1 (ja) | 円すいころ軸受 | |
WO2018186346A1 (ja) | 円すいころ軸受 | |
JP2018003937A (ja) | 円すいころ軸受 | |
JP6324692B2 (ja) | 円すいころ軸受 | |
JP7195112B2 (ja) | 円すいころ軸受用保持器および円すいころ軸受 | |
JP5397505B2 (ja) | 円すいころ軸受 | |
WO2011096466A1 (ja) | 円錐ころ軸受 | |
US10871191B2 (en) | Rolling bearing and bearing structure including same | |
JP2018159411A (ja) | 円すいころ軸受 | |
JP2018168982A (ja) | 円すいころ軸受 | |
US20090028486A1 (en) | Tapered roller bearing | |
JP6171506B2 (ja) | 円すいころ軸受用保持器及び円すいころ軸受 | |
CN107588094B (zh) | 圆锥滚子轴承 | |
WO2016204220A1 (ja) | 円すいころ軸受及び遊星軸受装置 | |
JP2015117766A (ja) | 円すいころ軸受及び動力伝達装置 | |
JP5031219B2 (ja) | 円すいころ軸受 | |
JP5031220B2 (ja) | 円すいころ軸受 | |
JP2019031991A (ja) | 円すいころ軸受 | |
JP2018138797A (ja) | 玉軸受 | |
JP2015052348A (ja) | 円すいころ軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774204 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18774204 Country of ref document: EP Kind code of ref document: A1 |