WO2018079417A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018079417A1
WO2018079417A1 PCT/JP2017/037893 JP2017037893W WO2018079417A1 WO 2018079417 A1 WO2018079417 A1 WO 2018079417A1 JP 2017037893 W JP2017037893 W JP 2017037893W WO 2018079417 A1 WO2018079417 A1 WO 2018079417A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
base layer
igbt
contact
Prior art date
Application number
PCT/JP2017/037893
Other languages
English (en)
French (fr)
Inventor
浩一 村川
正清 住友
高橋 茂樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780065823.4A priority Critical patent/CN109964317B/zh
Publication of WO2018079417A1 publication Critical patent/WO2018079417A1/ja
Priority to US16/393,006 priority patent/US10763345B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0761Vertical bipolar transistor in combination with diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Definitions

  • the present invention includes an IGBT region in which an insulated gate field effect transistor (hereinafter referred to as an IGBT (Insulated Gate Bipolar Transistor)) is formed and a diode region in which a free wheel diode (hereinafter referred to as FWD (Free Wheeling Diode)) is formed.
  • IGBT Insulated Gate Bipolar Transistor
  • FWD Free Wheeling Diode
  • a switching element such as an inverter
  • a semiconductor device having an RC-IGBT (abbreviation for reverse-conducting IGBT (IGBT)) structure including an IGBT and an FWD in one chip has been used.
  • RC-IGBT abbreviation for reverse-conducting IGBT (IGBT)
  • Patent Document 1 since the IGBT region and the diode region are arranged adjacent to each other, holes are injected from a high-concentration P-type region such as a channel formed on the surface side of the IGBT region. It cannot be suppressed sufficiently. For this reason, switching loss cannot be sufficiently reduced. In addition, an increase in the carrier density on the cathode side leads to an increase in tail current, which may lead to recovery breakdown.
  • This disclosure is intended to provide a semiconductor device capable of further suppressing carrier injection from the IGBT region side to the diode region side during recovery.
  • a semiconductor device includes an IGBT region in which an IGBT is formed, a diode region in which a diode is formed, and a boundary region formed between the IGBT region and the diode region, and includes a first conductive layer.
  • a first conductive type cathode layer formed on the opposite side of the drift layer from the base layer side in the diode region.
  • a trench gate structure in which a gate insulating film and a gate electrode are arranged in a plurality of trenches is formed.
  • a first conductivity type emitter region formed in contact with the trench on at least a part of the first base layer divided into a plurality of trenches by using the base layer in the IGBT region as a first base layer;
  • a first contact region disposed in a portion different from the emitter region in one base layer is formed.
  • the second base layer is defined as the base layer in the diode region and the boundary region, and the second conductivity type impurity concentration is higher than that of the second base layer.
  • a second conductivity type third layer formed in the surface layer portion of the second base layer in the second conductivity type second contact region and the boundary region and having a second conductivity type impurity concentration higher than that of the second base layer.
  • a contact region is formed.
  • the upper electrode is electrically connected to the first contact region, the second contact region, and the third contact region, and the lower electrode is electrically connected to the collector layer and the cathode layer.
  • the formation area of the third contact region is smaller than the formation area of the second contact region per unit area of the surface of the semiconductor substrate.
  • the boundary region where the formation ratio of the high-concentration second conductivity type layer is smaller than that of the IGBT region is provided between the IGBT region and the diode region, that is, at a position adjacent to the diode region. For this reason, at the time of recovery, carrier injection from the IGBT region to the diode region can be suppressed, and since the formation ratio of the high concentration second conductivity type layer formed in the boundary region is small, the high concentration second conductivity type in the boundary region The amount of carriers injected from the layer can also be reduced. Therefore, it is possible to provide a semiconductor device that can further suppress carrier injection from the IGBT region side to the diode region side during recovery.
  • FIG. 1 is a top layout view of a semiconductor device according to a first embodiment.
  • FIG. 2 is a perspective cross-sectional view of the semiconductor substrate taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along the line IIIA-IIIA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line IIIB-IIIB of FIG. It is the figure which showed the flow of the hole at the time of IGBT operation
  • the semiconductor device according to the present embodiment is configured by an RC-IGBT structure in which a vertical IGBT and FWD that allow current to flow in the substrate thickness direction are provided on one substrate.
  • the semiconductor device is preferably used as a power switching element used in a power supply circuit such as an inverter or a DC / DC converter.
  • the semiconductor device according to the present embodiment is configured as follows.
  • the semiconductor device includes a cell region 1 and an outer peripheral region 2 surrounding the cell region 1.
  • the cell region 1 includes alternately formed IGBT regions 1a where IGBT elements are formed and diode regions 1b where FWDs are formed.
  • a boundary region 1c is formed between the IGBT region 1a and the diode region 1b.
  • the IGBT region 1a, the diode region 1b, and the boundary region 1c are formed on an N ⁇ type semiconductor substrate 10 that functions as the drift layer 11, as shown in FIGS. 2, 3A, and 3B. It is formed with one chip.
  • the IGBT region 1a, the diode region 1b, and the boundary region 1c are extended along one direction 10a of the one surface 10a of the semiconductor substrate 10, that is, the vertical direction on the paper surface in FIG.
  • the IGBT region 1a and the diode region 1b are alternately and repeatedly formed in a direction orthogonal to the extending direction, and a boundary region 1c is formed therebetween.
  • a P-type base layer 12 is formed on the drift layer 11, that is, on the one surface 10 a side of the semiconductor substrate 10.
  • a plurality of trenches 13 are formed so as to penetrate the base layer 12 and reach the drift layer 11, and the base layer 12 is separated into a plurality of trenches 13.
  • the plurality of trenches 13 extend along one of the surface directions of the one surface 10a of the semiconductor substrate 10, that is, along the depth direction of the paper surface in FIG. Is formed. Further, one surface 10 a of the semiconductor substrate 10 is configured by one surface of the base layer 12 opposite to the drift layer 11.
  • Base layer 12 has different P-type impurity concentrations in IGBT region 1a, diode region 1b, and boundary region 1c, and in IGBT region 1a, the P-type impurity concentration is higher than in diode region 1b and boundary region 1c. Yes.
  • the base layer 12 formed in the IGBT region 1a is referred to as a first base layer 12a
  • the base layer 12 formed in the diode region 1b and the boundary region 1c is referred to as a second base layer 12b.
  • the first base layer 12a functions as a body region while functioning as a channel region. As shown in FIGS. 2 and 3B, an N + -type emitter region 14 having a depth smaller than that of the first base layer 12a is formed in the surface layer portion of the first base layer 12a. Yes.
  • the emitter region 14 is configured to have a higher impurity concentration than the drift layer 11, is terminated in the first base layer 12 a, and is in contact with the side surface of the trench 13.
  • a plurality of emitter regions 14 are interspersed at equal intervals along the longitudinal direction of the trenches 13 between the trenches 13.
  • the emitter region 14 extends so as to intersect in more detail so as to intersect the longitudinal direction of the plurality of trenches 13 when viewed from the normal direction to the one surface 10a of the semiconductor substrate 10. .
  • Each emitter region 14 located between the plurality of trenches 13 is in contact with both side surfaces of the adjacent trenches 13.
  • each emitter region 14 is connected to each other to form a straight line.
  • each emitter region 14 has a rectangular shape because it is divided by each trench 13. ing.
  • Each emitter region 14 is in a state of being arranged on the inner side of both ends in the longitudinal direction of the trench 13.
  • the first base layer 12a is formed up to the one surface 10a side of the semiconductor substrate 10 in a portion where the emitter region 14 is not formed, and this portion is in ohmic contact with an upper electrode 19 described later. It is said.
  • the width of the first contact region 15a in the longitudinal direction of the trench 13 is, for example, equal to the width of the emitter region 14 in the same direction, and the area ratio thereof is 1: 1.
  • the first contact region 15a is constituted by a part of the first base layer 12a, but may be a region whose surface concentration is partially increased.
  • the first contact region 15a has a top surface layout similar to that of the emitter region 14 when viewed from the normal direction to the one surface 10a of the semiconductor substrate 10, and a portion that is not the emitter region 14 is the first contact region 15a.
  • One contact region 15a is provided.
  • the first contact region 15 a is extended so as to intersect in more detail so as to intersect with the longitudinal direction of the plurality of trenches 13, and each first contact located between the plurality of trenches 13.
  • the region 15 a is in contact with both side surfaces of the adjacent trenches 13.
  • each first contact region 15 a is connected to each other to form a straight line.
  • each first contact region 15 a It has a rectangular shape.
  • the second base layer 12b constitutes an anode layer that functions as a part of the anode in the diode region 1b.
  • the emitter region 14 like the IGBT region 1a is not formed in the second base layer 12b in the diode region 1b.
  • the P-type impurity concentration is higher than that of the second base layer 12b, and an ohmic contact with the upper electrode 19 to be described later.
  • a second contact region 15b to be contacted is formed. In the case of the present embodiment, a plurality of second contact regions 15 b are scattered along the longitudinal direction of the trench 13.
  • the second contact region 15b is extended so as to intersect in more detail so as to intersect with the longitudinal direction of the plurality of trenches 13 when viewed from the normal direction to the one surface 10a of the semiconductor substrate 10. ing.
  • the second contact regions 15b located between the plurality of trenches 13 are in contact with both side surfaces of the adjacent trenches 13.
  • the depth of each second contact region 15b is shallower than that of the second base layer 12b.
  • the width of each second contact region 15b that is, the dimension in the same direction as the longitudinal direction of the trench 13 is arbitrary, but in the present embodiment, it is made equal to the first contact region 15a.
  • the area ratio between the second contact region 15b and the portion of the second base layer 12b where the second contact region 15b is not formed is 1: 1.
  • the second base layer 12b in the boundary region 1c does not need to function in particular because it becomes a part constituting the boundary between the IGBT region 1a and the diode region 1b.
  • the boundary region 1c is formed, the energization amount per unit area decreases, and as a result, the ON voltage Von may increase and the ON resistance may increase.
  • the second base layer 12b in the boundary region 1c is caused to function as a hole passing layer during the IGBT operation. This will be described later.
  • the second base layer 12b in the boundary region 1c is also formed with a third contact region 15c having a P-type impurity concentration higher than that of the second base layer 12b and being brought into ohmic contact with the upper electrode 19 described later.
  • a plurality of third contact regions 15 c are scattered along the longitudinal direction of the trench 13.
  • the third contact region 15c is extended so as to intersect in more detail so as to intersect the longitudinal direction of the plurality of trenches 13 when viewed from the normal direction to the one surface 10a of the semiconductor substrate 10. ing.
  • the third contact regions 15 c located between the plurality of trenches 13 are in contact with both side surfaces of the adjacent trenches 13.
  • each third contact region 15c is the same as that of the second contact region 15b. Further, the width of each third contact region 15c, that is, the dimension in the same direction as the longitudinal direction of the trench 13 is arbitrary, but is narrower than that of the second contact region 15b. For example, here, the dimension of the third contact region 15c is set so that the area ratio of the third contact region 15c and the portion of the second base layer 12b where the third contact region 15c is not formed is 1: 2. It is set.
  • the second contact region 15b and the third contact region 15c are formed in the diode region 1b and the boundary region 1c. Then, by changing the formation area of the second contact region 15b and the third contact region 15c, the formation ratio of the high concentration P-type layer per unit area and the ohmic contact area ratio are changed.
  • the width of the third contact region 15c is narrower than that of the second contact region 15b, the boundary region 1c is formed with a higher concentration P-type layer per unit area than the diode region 1b. And the ohmic contact area ratio is reduced.
  • the second base layer 12b in the boundary region 1c has a lower P-type impurity concentration than the first base layer 12a formed in the IGBT region 1a, and the width of the third contact region 15c is also narrowed. For this reason, the boundary region 1c is less formed in the high concentration P-type layer per unit area and the ohmic contact area ratio than the IGBT region 1a.
  • Each trench 13 includes a gate insulating film 16 formed so as to cover the inner wall surface of each trench 13 and a gate electrode 17 made of polysilicon or the like formed on the gate insulating film 16. Embedded. Thereby, a trench gate structure is configured.
  • the gate electrode 17 is controlled to a desired gate voltage in the IGBT region 1a, and is connected to the emitter in the diode region 1b. Thereby, in the IGBT region 1a, when a high level voltage is applied as a gate voltage for the IGBT operation, a channel is formed on the side surface of the trench 13. In the diode region 1b, since the gate electrode 17 is set to the emitter potential, a channel is not formed even during the IGBT operation, and a predetermined FWD operation is performed.
  • the gate electrode 17 in the boundary region 1c is set to the same potential as the gate electrode 17 in the IGBT region 1a, and is controlled to a desired gate voltage. For this reason, in the boundary region 1c, a channel is formed on the side surface of the trench 13, and holes easily flow through the channel, and holes drawn toward the channel also flow through the second base layer 12b. Therefore, as described above, in the boundary region 1c, the second base layer 12b functions as a hole passage layer, and a decrease in the amount of energization per unit area due to the presence of the boundary region 1c can be suppressed. For this reason, an increase in the ON voltage Von can be suppressed, and an increase in the ON resistance can be suppressed.
  • an interlayer insulating film 18 made of BPSG or the like is formed on the base layer 12 on the one surface 10a side of the semiconductor substrate 10.
  • the interlayer insulating film 18 is formed with a contact hole 18a exposing a part of the emitter region 14 and the first contact region 15a in the IGBT region 1a.
  • contact holes 18b and 18c that expose the second base layer 12b, the second contact region 15b, and the third contact region 15c are formed in the diode region 1b and the boundary region 1c.
  • An upper electrode 19 is formed on the interlayer insulating film 18.
  • the upper electrode 19 is electrically connected to the emitter region 14 and the first contact region 15a through the contact hole 18a in the IGBT region 1a.
  • the upper electrode 19 is electrically connected to the second base layer 12b, the second contact region 15b, and the third contact region 15c through the contact holes 18b and 18c in the diode region 1b and the boundary region 1c. That is, the upper electrode 19 functions as an emitter electrode in the IGBT region 1a and functions as an anode electrode in the diode region 1b. Further, the upper electrode 19 may not particularly function in the boundary region 1c.
  • the gate electrode 17 is controlled to the same gate voltage as that in the IGBT region 1a in the boundary region 1c. Therefore, it functions as a hole extracting electrode.
  • the upper electrode 19 is in ohmic contact with the second contact region 15b and the third contact region 15c in the diode region 1b and the boundary region 1c, and is in Schottky contact with the second base layer 12b. For this reason, the ohmic contact area ratio is changed stepwise from the boundary region 1c adjacent to the IGBT region 1a to the diode region 1b further away. That is, the layout extends from the IGBT region 1a through the boundary region 1c having a small ohmic contact area ratio to the diode region 1b.
  • a field stop (hereinafter referred to as FS) layer having an N-type impurity concentration higher than that of the drift layer 11. 20 is formed on the opposite side of the drift layer 11 to the base layer 12 side, that is, on the other surface 10 b side of the semiconductor substrate 10.
  • FS field stop
  • this FS layer 20 is not essential, it improves the breakdown voltage and steady loss performance by preventing the depletion layer from spreading, and controls the injection amount of holes injected from the other surface 10b side of the semiconductor substrate 10. It is prepared to do.
  • a P-type collector layer 21 is formed on the opposite side of the drift layer 11 across the FS layer 20, and in the diode region 1b, the drift layer 11 An N-type cathode layer 22 is formed on the opposite side. That is, in the present embodiment, the IGBT region 1a, the boundary region 1c, and the diode region 1b are partitioned depending on whether the layer formed on the other surface 10b side of the semiconductor substrate 10 is the collector layer 21 or the cathode layer 22. ing.
  • a lower electrode 23 is formed on the surface of the collector layer 21 and the cathode layer 22 on the other surface 10 b of the semiconductor substrate 10.
  • the lower electrode 23 functions as a collector electrode in the IGBT region 1a and the boundary region 1c, and functions as a cathode electrode in the diode region 1b.
  • an IGBT element having the first base layer 12a as a base, the emitter region 14 as an emitter, and the collector layer 21 as a collector is formed.
  • a FWD element is formed in which the second base layer 12b and the second contact region 15b are used as anodes, and the drift layer 11 and the cathode layer 22 are used as cathodes.
  • the IGBT formed in the IGBT region 1a is turned on / off by controlling the voltage applied to the gate electrode 17 as in the prior art, that is, the current is passed between the emitter and the collector or cut off. Switching operation is performed. Moreover, about FWD formed in the diode area
  • the gate electrode 17 in the boundary region 1c is also controlled to have the same gate voltage as that in the IGBT region 1a as shown in FIG. A channel is formed on 13 side surfaces. For this reason, in the boundary region 1c, a channel is formed on the side surface of the trench 13, and holes easily flow through the channel, and holes drawn toward the channel also flow through the second base layer 12b. Therefore, in the boundary region 1c, the second base layer 12b functions as a hole passing layer, and the decrease in energization amount per unit area due to the presence of the boundary region 1c can be suppressed. It is possible to suppress an increase in on-resistance.
  • the high-concentration P-type layer on the one surface 10a side of the semiconductor substrate 10 is large at a position adjacent to the diode region 1b, the high-concentration P-type at the time of recovery when the IGBT is switched from OFF to ON.
  • the amount of holes injected from the layer toward the cathode increases. This causes an increase in the maximum reverse current Irr during recovery.
  • the carrier density on the cathode side increases, which increases the tail current, possibly leading to recovery breakdown.
  • the boundary region 1c in which the formation ratio of the high-concentration P-type layer is smaller than that of the IGBT region 1a is provided between the IGBT region 1a and the diode region 1b, that is, at a position adjacent to the diode region 1b. Provided. For this reason, at the time of recovery, hole injection from the IGBT region 1a to the diode region 1b can be suppressed, and since the formation ratio of the high concentration P-type layer formed in the boundary region 1c is small, the high concentration P-type of the boundary region 1c. The amount of holes injected from the layer can also be reduced.
  • the maximum reverse current Irr when the maximum reverse current Irr was examined for the semiconductor device having the conventional structure and the structure of the present embodiment, the result shown in FIG. 5 was obtained.
  • the maximum reverse current Irr could be reduced as compared with the case of the conventional structure indicated by the broken line in the drawing. Since the integrated value of the reverse current Ir in this figure, that is, the area of the region where the current value is negative, corresponds to the recovery loss Err, the recovery loss Err is reduced by reducing the maximum reverse current Irr. It becomes possible to reduce.
  • no lifetime killer is generated by He or electron beam irradiation. Since the recovery loss Err can be reduced, a lifetime killer is generally generated in the past, but it is difficult to place the He beam or electron beam irradiation at a precise position, which may deteriorate the characteristics of other elements. It may be invited.
  • it is conceivable to take measures such as reducing the impurity concentration of the drift layer 11 or the base layer 12. However, when the impurity concentration is reduced, the impurity concentration difference at the PN junction with the high concentration region where the impurity concentration is increased is increased correspondingly, thereby increasing the tail current and causing recovery breakdown.
  • the drift layer 11 and the base The impurity concentration of the layer 12 can be reduced. For this reason, it is not necessary to generate a lifetime killer by He-beam or electron beam irradiation, and deterioration of the characteristics of other elements can be suppressed.
  • the gate electrode 17 in the boundary region 1c is emitter-connected in the same manner as the gate electrode 17 in the diode region 1b.
  • the gate electrode 17 of the boundary region 1c is connected to the emitter, when the IGBT is turned on, no channel is formed on the side surface of the trench 13 in the boundary region 1c. Decrease. For this reason, the effect of suppressing the increase of the on-voltage Von and the effect of reducing the on-resistance cannot be obtained, but the other effects are the same as those of the first embodiment.
  • the emitter region 14 is laid out linearly along the longitudinal direction of the trench 13.
  • the emitter region 14 is disposed only on one side surface of the trench 13, specifically, on the left side surface in the drawing with respect to the trench 13, but a structure may be disposed on both side surfaces.
  • the first contact region 15a is also linearly arranged accordingly.
  • the second contact region 15b and the third contact region 15 c are laid out linearly along the longitudinal direction of the trench 13.
  • the second contact region 15b and the third contact region 15c are placed on one side surface of the trench 13, specifically on the side surface on the right side in the figure which is the side surface opposite to the side surface on which the emitter region 14 is formed. Only placed.
  • the second contact region 15b and the third contact region 15c may be disposed on both side surfaces, or may be disposed away from the trench 13.
  • the portion of the second base layer 12b that is in Schottky contact with the upper electrode 19 also has a linear layout. Yes.
  • the formation area of the second contact region 15b and the third contact region 15c that is, the formation ratio of the high-concentration P-type layer per unit area and the ohmic contact ratio are changed between the diode region 1b and the boundary region 1c. ing.
  • the second contact regions 15b are formed in all the second base layers 12b between the plurality of trenches 13.
  • the third contact regions 15c are not formed in all the second base layers 12b between the plurality of trenches 13, but one in each of the second base layers 12b. Among them, the third contact region 15c is formed at a rate of one in two.
  • the second contact region 15b and the third contact region 15c can also have a linear layout. Even with such a configuration, the same effect as in the first embodiment can be obtained.
  • the first contact region 15a, the second contact region 15b, and the third contact region 15c are all formed in a linear shape having the same width, but may have different widths. Further, with respect to the boundary region 1c, the third contact region is formed in all the second base layers 12b between the plurality of trenches 13 while the third contact region is more than the second contact region 15b formed in the diode region 1b. You may make it narrow the width
  • the formation area of the third contact region 15c can be changed stepwise in the boundary region 1c.
  • the formation pitch which is the interval at which the third contact region 15c is formed, is gradually reduced from the IGBT region 1a toward the diode region 1b. In this way, the formation area of the third contact region 15c can be made lower on the IGBT region 1a side than on the diode region 1b side.
  • the trade-off relationship between the forward voltage drop Vf of the FWD and the recovery loss Err can be adjusted by gradually changing the formation area of the third contact region 15c. For example, when the pitch of the third contact regions 15c is increased, the forward voltage drop Vf is increased and the recovery loss Err can be reduced. Conversely, if the pitch of the third contact regions 15c is reduced, the forward voltage drop Vf is reduced and the recovery loss Err is increased. Therefore, by setting the pitch of the third contact regions 15c according to the desired characteristics, the trade-off relationship between the forward voltage drop Vf and the recovery loss Err can be adjusted to a desired relationship.
  • a P-type discrete layer 24 partially formed of a P-type impurity layer is formed on the other surface 10b side in the diode region 1b and the boundary region 1c.
  • the P-type discrete layer 24 extends along the longitudinal direction of the trench 13, and a plurality of P-type discrete layers 24 are arranged at equal intervals.
  • the P-type impurity concentration of the P-type discrete layer 24 is arbitrary.
  • the P-type discrete layer 24 can also be formed in the diode region 1b and the boundary region 1c.
  • a P-type discrete layer 24 When such a P-type discrete layer 24 is formed, it can be used as an invalid carrier when holes injected from the high-concentration P-type layer on the one surface 10a side of the IGBT region 1a reach the P-type discrete layer 24. For this reason, holes can be further reduced, and even if the boundary region 1c is formed, sufficient hole injection cannot be suppressed, and even if the hole injection amount increases, the P-type discrete layer 24 can change the hole into an invalid carrier. Therefore, the effect described in the first embodiment can be further enhanced.
  • FIG. 10 A fifth embodiment will be described.
  • the present embodiment is different from the first to fourth embodiments in the configuration of the one surface 10a side in the diode region 1b and the boundary region 1c, and the rest is the same as the first to fourth embodiments. Only differences from the first to fourth embodiments will be described. Here, the case of changing the configuration on the one surface 10a side of the structure of the first embodiment will be described, but the structure of the second to fourth embodiments is also applicable.
  • an N-type discrete layer 25 composed of an N-type impurity layer is formed on the one surface 10a side in the diode region 1b and the boundary region 1c.
  • the N-type discrete layer 25 is formed at a position different from the second contact region 15b and the third contact region 15c in the surface layer portion of the second base layer 12b.
  • the N-type discrete layer 25 is formed in the entire surface layer portion of the second base layer 12b where the second contact region 15b and the third contact region 15c are not formed.
  • the N-type impurity concentration of the N-type discrete layer 25 is arbitrary, but when it is formed simultaneously with the emitter region 14, it has the same concentration as the emitter region 14.
  • the upper electrode 19 and the N-type discrete layer 25 can be brought into ohmic contact by forming the N-type discrete layer 25 in the surface layer portion of the second base layer 12b. That is, in order to reduce switching loss, it is desired to reduce the P-type impurity concentration of the second base layer 12b, the second contact region 15b, and the third contact region 15c in the diode region 1b and the boundary region 1c. 19 and Schottky contact. For this reason, by forming the N-type discrete layer 25 and making ohmic contact with the upper electrode 19, it becomes possible to make contact with the upper electrode 19 more reliably.
  • the device structures of IGBT and FWD shown in the first to fifth embodiments are merely examples, and other structures can be used.
  • the first base layer 12a functions not only as a channel region but also as a body region.
  • the IGBT functions only as a channel region, and in addition to the first base layer 12a, the body region May be formed.
  • an emitter region 14 is formed between the trench gate structures so as to be in contact with the trench 13, and a P-type body is formed on the opposite side of the trench 13 across the emitter region 14, that is, at a position away from the trench 13.
  • a structure in which a region is formed can be obtained.
  • the surface of the body region forms the first contact region 15a in the first base layer 12a.
  • the P-type impurity concentrations of the diode region 1b and the second base layer 12b in the boundary region 1c are the same, but they may be different concentrations.
  • the structures of the IGBT region 1a, the diode region 1b, and the boundary region 1c described in the first to fifth embodiments can be arbitrarily combined. That is, the structures of the IGBT region 1a, the diode region 1b, and the boundary region 1c can be combined in different embodiments.
  • a structure in which the contact region 15c is linear may be combined.
  • a structure in which the third contact regions 15 c are scattered along the longitudinal direction of the trench 13 may be combined.
  • the P-type discrete layer 24 is extended along the longitudinal direction of the trench 13.
  • the P-type discrete layer 24 may be formed in another top layout such as a structure interspersed in a desired pattern. good.
  • the IGBT has a structure in which the emitter regions 14 are formed in all the first base layers 12a between the adjacent trench gate structures, but the emitter region 14 is not formed and a thinning structure in which no channel is formed is provided. Also good. Further, a hole barrier layer may be formed in the first base layer 12a in a portion where a channel is not formed as a thinning structure.
  • a semiconductor device including an n-channel type IGBT in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example.
  • An inverted p-channel type IGBT may be used.

Abstract

IGBT領域(1a)とダイオード領域(1b)との間、つまりダイオード領域(1b)と隣接する位置に、IGBT領域(1a)よりも高濃度P型層の形成割合が少ない境界領域(1c)を設ける。これにより、リカバリ時に、IGBT領域(1a)からダイオード領域(1b)へのホール注入を抑制できると共に、境界領域(1c)に形成されている高濃度P型層の形成割合が少ないため、境界領域(1c)の高濃度P型層からのホール注入量も少なくできる。したがって、リカバリ時の最大逆方向電流Irrの増加を抑制できると共に、カソード側のキャリア密度を低くしてテール電流の増大を抑制することができる。これによって、スイッチング損失を低減することができるだけでなく、リカバリ破壊に対しても耐性の高い半導体装置とすることができる。

Description

半導体装置 関連出願への相互参照
 本出願は、2016年10月26日に出願された日本特許出願番号2016-209803号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本発明は、絶縁ゲート型電界効果トランジスタ(以下、IGBT(Insulated Gate Bipolar Transistor)という)が形成されたIGBT領域と還流ダイオード(以下、FWD(Free Wheeling Diode)という)が形成されたダイオード領域とを有する半導体装置に関する。
 従来より、例えば、インバータ等のスイッチング素子として、IGBTと共にFWDを1チップに備えたRC-IGBT(逆導通IGBT(Reverse-Conducting IGBT)の略称)構造を有する半導体装置が使用されている。
 このRC-IGBTでは、リカバリ動作時に、過渡的に大きな逆方向電流が流れる。特に、IGBT領域とダイオード領域との間の境界部においては、特許文献1に示されるように、IGBT領域の表面側に形成されたチャネルなどの高濃度のP型領域からダイオード領域の裏面側に形成されたN型のカソード層に向かってホールが注入される。このホールの注入がリカバリ時の最大逆方向電流Irrの増加を招くことから、ホールの注入量を抑制することが望ましい。このため、特許文献1に記載の半導体装置では、ダイオード領域における第1のアノード層内に、P型不純物濃度が一定値とされた第2のアノード層を備えるようにしている。この第2のアノード層のP型不純物濃度をある程度高くすることでラッチアップを抑制しつつ、あまり高くし過ぎないようにすることでホールの注入量を抑制し、高速スイッチングを可能としてスイッチング損失が低減されるようにしている。
特開2015-109341号公報
 しかしながら、特許文献1の構成では、IGBT領域とダイオード領域とが隣接した配置とされていることから、IGBT領域の表面側に形成されたチャネルなどの高濃度のP型領域からのホールの注入を十分に抑制することはできない。このため、スイッチング損失の低減を十分に行えない。また、カソード側のキャリア密度が高くなることはテール電流の増大につながり、リカバリ破壊を招く可能性もある。
 本開示は、リカバリ時にIGBT領域側からダイオード領域側へのキャリアの注入をより抑制することが可能な半導体装置を提供することを目的とする。
 本開示の1つの観点における半導体装置は、IGBTが形成されるIGBT領域とダイオードが形成されるダイオード領域、および、IGBT領域とダイオード領域との間に形成される境界領域を有し、第1導電型のドリフト層と、ドリフト層の表層部に形成された第2導電型のベース層と、IGBT領域および境界領域において、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層と、ダイオード領域において、ドリフト層のうちのベース層側と反対側に形成された第1導電型のカソード層と、を含む半導体基板を用いて構成される。
 IGBT領域とダイオード領域および境界領域には、複数のトレンチ内にゲート絶縁膜およびゲート電極が配置されたトレンチゲート構造が形成されている。また、IGBT領域におけるベース層を第1ベース層として、トレンチによって複数に分けられた第1ベース層のうちの少なくとも一部に、トレンチに接して形成された第1導電型のエミッタ領域と、第1ベース層のうちエミッタ領域と異なる部分に配置される第1コンタクト領域とが形成されている。さらに、ダイオード領域および境界領域におけるベース層を第2ベース層として、ダイオード領域において、第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第2コンタクト領域、および、境界領域において、第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第3コンタクト領域が形成されている。そして、エミッタ領域に加えて第1コンタクト領域と第2コンタクト領域および第3コンタクト領域に上部電極が電気的に接続され、コレクタ層およびカソード層に下部電極が電気的に接続されている。このような構成において、半導体基板の表面の単位面積当たりの第2コンタクト領域の形成面積に対して、第3コンタクト領域の形成面積の方が小さくされている。
 このように、IGBT領域とダイオード領域との間、つまりダイオード領域と隣接する位置に、IGBT領域よりも高濃度第2導電型層の形成割合が少ない境界領域を設けている。このため、リカバリ時に、IGBT領域からダイオード領域へのキャリア注入を抑制できると共に、境界領域に形成されている高濃度第2導電型層の形成割合が少ないため、境界領域の高濃度第2導電型層からのキャリア注入量も少なくできる。したがって、リカバリ時にIGBT領域側からダイオード領域側へのキャリアの注入をより抑制することが可能な半導体装置とすることが可能となる。
第1実施形態にかかる半導体装置の上面レイアウト図である。 半導体基板を図1のII-II線で切断した断面における斜視断面図である。 図2のIIIA-IIIA断面図である。 図2のIIIB-IIIB断面図である。 第1実施形態にかかる半導体装置のIGBT動作時のホールの流れを示した図である。 第1実施形態にかかる半導体装置と従来構造の半導体装置との逆方向電流特性を示した図である。 第2実施形態にかかる半導体装置を構成する半導体基板の斜視断面図である。 第3実施形態にかかる半導体装置を構成する半導体基板の斜視断面図である。 第3実施形態の変形例にかかる半導体装置を構成する半導体基板の斜視断面図である。 第4実施形態にかかる半導体装置を構成する半導体基板の斜視断面図である。 第5実施形態にかかる半導体装置を構成する半導体基板の斜視断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態にかかる半導体装置について説明する。本実施形態にかかる半導体装置は、基板厚み方向に電流を流す縦型のIGBTとFWDとが1つの基板に備えられたRC-IGBT構造により構成されている。この半導体装置は、例えば、インバータ、DC/DCコンバータ等の電源回路に使用されるパワースイッチング素子として利用されると好適である。具体的には、本実施形態にかかる半導体装置は、以下のように構成されている。
 図1に示されるように、半導体装置は、セル領域1と、このセル領域1を囲む外周領域2とを備えている。
 セル領域1は、図1、図2、図3Aおよび図3Bに示されるように、IGBT素子が形成されたIGBT領域1aおよびFWDが形成されたダイオード領域1bが交互に形成されている。また、IGBT領域1aとダイオード領域1bの間に境界領域1cが形成された構成とされている。
 具体的には、これらIGBT領域1aとダイオード領域1bおよび境界領域1cは、図2、図3Aおよび図3Bに示すように、ドリフト層11として機能するN型の半導体基板10に形成されることで1チップで形成されている。IGBT領域1aとダイオード領域1bおよび境界領域1cは、半導体基板10の一面10aの一方向、図1で言えば紙面上下方向に沿って延設されている。そして、IGBT領域1aとダイオード領域1bが延設方向と直交する方向に交互に繰り返し形成され、その間に境界領域1cが形成されている。
 ドリフト層11の上、つまり半導体基板10の一面10a側には、P型のベース層12が形成されている。そして、ベース層12を貫通してドリフト層11に達するように複数個のトレンチ13が形成され、このトレンチ13によってベース層12が複数個に分離されている。
 なお、本実施形態では、複数のトレンチ13は、半導体基板10の一面10aの面方向のうちの一方向、図2で言えば紙面奥行き方向に沿って延設され、図の左右方向において等間隔に形成されている。また、半導体基板10の一面10aは、ベース層12のうちのドリフト層11と反対側の一面などによって構成されている。
 ベース層12は、IGBT領域1aとダイオード領域1bおよび境界領域1cとでP型不純物濃度が変えられており、IGBT領域1aでは、ダイオード領域1bおよび境界領域1cよりもP型不純物濃度が高くされている。以下、IGBT領域1aに形成されたベース層12を第1ベース層12aといい、ダイオード領域1bおよび境界領域1cに形成されたベース層12を第2ベース層12bという。
 第1ベース層12aは、チャネル領域として機能しつつ、ボディ領域としても機能する。この第1ベース層12aの表層部には、図2および図3Bに示すように、部分的に、第1ベース層12aよりも深さが浅くされたN型のエミッタ領域14が形成されている。
 エミッタ領域14は、ドリフト層11よりも高不純物濃度で構成され、第1ベース層12a内において終端し、かつ、トレンチ13の側面に接するように形成されている。本実施形態の場合、エミッタ領域14は、各トレンチ13の間において、トレンチ13の長手方向に沿って等間隔に複数個点在させられている。換言すれば、エミッタ領域14は、半導体基板10の一面10aに対する法線方向から見て、複数のトレンチ13の長手方向に対して交差するように、より詳しくは直交するように延設されている。そして、複数のトレンチ13の間に位置する各エミッタ領域14が、隣り合うトレンチ13の両方の側面に接した状態となっている。
 なお、複数のトレンチ13の長手方向に対する垂直方向において、隣り合う各エミッタ領域14を繋げると直線状となっているが、各トレンチ13によって分断されているため、各エミッタ領域14は矩形状となっている。そして、各エミッタ領域14は、トレンチ13の長手方向両端よりも内側に配置された状態となっている。
 また、第1ベース層12aは、エミッタ領域14が形成されていない部分において半導体基板10の一面10a側まで形成されており、この部分が後述する上部電極19とオーミック接触させられる第1コンタクト領域15aとされる。トレンチ13の長手方向における第1コンタクト領域15aの幅は、例えば同方向におけるエミッタ領域14の幅と等しくされ、これらの面積比が1:1とされている。
 第1コンタクト領域15aは、第1ベース層12aの一部によって構成されるが、部分的に表面濃度が高くされた領域であっても良い。本実施形態の場合、第1コンタクト領域15aは、半導体基板10の一面10aに対する法線方向から見て、エミッタ領域14と同様の上面レイアウトとされており、エミッタ領域14とされていない部分が第1コンタクト領域15aとされている。すなわち、第1コンタクト領域15aは、複数のトレンチ13の長手方向に対して交差するように、より詳しくは直交するように延設されており、複数のトレンチ13の間に位置する各第1コンタクト領域15aが隣り合うトレンチ13の両方の側面に接した状態となっている。
 なお、複数のトレンチ13の長手方向に対する垂直方向において、隣り合う各第1コンタクト領域15aを繋げると直線状となっているが、各トレンチ13によって分断されているため、各第1コンタクト領域15aは矩形状となっている。
 第2ベース層12bは、ダイオード領域1bでは、アノードの一部として機能するアノード層を構成する。ダイオード領域1bにおける第2ベース層12bには、IGBT領域1aのようなエミッタ領域14は形成されていないが、第2ベース層12bよりもP型不純物濃度が高くされ、後述する上部電極19とオーミック接触させられる第2コンタクト領域15bが形成されている。本実施形態の場合、第2コンタクト領域15bは、トレンチ13の長手方向に沿って複数個点在させられている。換言すれば、第2コンタクト領域15bは、半導体基板10の一面10aに対する法線方向から見て、複数のトレンチ13の長手方向に対して交差するように、より詳しくは直交するように延設されている。そして、複数のトレンチ13の間に位置する各第2コンタクト領域15bが隣り合うトレンチ13の両方の側面に接した状態となっている。各第2コンタクト領域15bの深さは第2ベース層12bよりも浅くされている。また、各第2コンタクト領域15bの幅、つまりトレンチ13の長手方向と同方向の寸法は、任意であるが、本実施形態の場合は第1コンタクト領域15aと等しくされている。この場合、第2コンタクト領域15bと第2ベース層12bのうち第2コンタクト領域15bが形成されていない部分との面積比が1:1となる。
 さらに、境界領域1cの第2ベース層12bは、IGBT領域1aとダイオード領域1bの境界を構成する部分となるため、特に機能しなくてもよい。しかしながら、境界領域1cが形成されることによって単位面積当たりの通電量が減り、結果的にオン電圧Vonが増加してオン抵抗が上昇する可能性がある。これを抑制するために、本実施形態では、境界領域1cの第2ベース層12bをIGBT動作時のホール通過層として機能させている。これについては後で説明する。
 また、境界領域1cにおける第2ベース層12bにも、第2ベース層12bよりもP型不純物濃度が高くされ、後述する上部電極19とオーミック接触させられる第3コンタクト領域15cが形成されている。本実施形態の場合、第3コンタクト領域15cは、トレンチ13の長手方向に沿って複数個点在させられている。換言すれば、第3コンタクト領域15cは、半導体基板10の一面10aに対する法線方向から見て、複数のトレンチ13の長手方向に対して交差するように、より詳しくは直交するように延設されている。そして、複数のトレンチ13の間に位置する各第3コンタクト領域15cが隣り合うトレンチ13の両方の側面に接した状態となっている。各第3コンタクト領域15cの深さは第2コンタクト領域15bと同じ深さとされている。また、各第3コンタクト領域15cの幅、つまりトレンチ13の長手方向と同方向の寸法は、任意であるが、第2コンタクト領域15bよりも狭くされている。例えば、ここでは、第3コンタクト領域15cと第2ベース層12bのうち第3コンタクト領域15cが形成されていない部分との面積比が1:2となるように、第3コンタクト領域15cの寸法を設定してある。
 このように、ダイオード領域1bおよび境界領域1cには、第2コンタクト領域15bや第3コンタクト領域15cが形成されている。そして、第2コンタクト領域15bや第3コンタクト領域15cの形成面積を変えることで、単位面積当たりの高濃度P型層の形成割合やオーミック接触面積比を変えている。ここでは、第2コンタクト領域15bよりも第3コンタクト領域15cの方が幅を狭くしていることから、境界領域1cの方がダイオード領域1bよりも単位面積当たりの高濃度P型層の形成割合やオーミック接触面積比が少なくされている。また、IGBT領域1aに形成された第1ベース層12aと比較して境界領域1cの第2ベース層12bはP型不純物濃度が低いし、さらに第3コンタクト領域15cの幅も狭くされている。このため、境界領域1cの方がIGBT領域1aよりも単位面積当たりの高濃度P型層の形成割合やオーミック接触面積比が少なくされている。
 また、各トレンチ13内は、各トレンチ13の内壁表面を覆うように形成されたゲート絶縁膜16と、このゲート絶縁膜16の上に形成されたポリシリコン等により構成されるゲート電極17とにより埋め込まれている。これにより、トレンチゲート構造が構成されている。
 ゲート電極17は、IGBT領域1aでは所望のゲート電圧に制御され、ダイオード領域1bではエミッタ接続される。これにより、IGBT領域1aでは、IGBT動作のためにゲート電圧としてハイレベル電圧が印加されると、トレンチ13の側面においてチャネルが形成される。また、ダイオード領域1bでは、ゲート電極17がエミッタ電位とされることから、IGBT動作時にもチャネルは形成されず、所定のFWD動作を行う。
 さらに、本実施形態では、境界領域1cのゲート電極17は、IGBT領域1aのゲート電極17と同電位とされ、所望のゲート電圧に制御される。このため、境界領域1cでも、トレンチ13の側面にチャネルが形成され、このチャネルを通ってホールが流れ易くなると共に、チャネル側に引き寄せられたホールが第2ベース層12bを通じても流れる。したがって、上記したように、境界領域1cにおいて、第2ベース層12bがホール通過層として機能し、境界領域1cが存在することによる単位面積当たりの通電量の減少を抑制できる。このため、オン電圧Vonの増加を抑制でき、オン抵抗の上昇を抑制することが可能となっている。
 また、図3Aおよび図3Bに示すように、半導体基板10の一面10a側において、ベース層12の上にはBPSG等で構成される層間絶縁膜18が形成されている。そして、層間絶縁膜18には、IGBT領域1aにおいて、エミッタ領域14の一部および第1コンタクト領域15aを露出させるコンタクトホール18aが形成されている。また、層間絶縁膜18には、ダイオード領域1bや境界領域1cにおいて、第2ベース層12bや第2コンタクト領域15bおよび第3コンタクト領域15cを露出させるコンタクトホール18b、18cが形成されている。
 層間絶縁膜18上には上部電極19が形成されている。この上部電極19は、IGBT領域1aにおいて、コンタクトホール18aを介してエミッタ領域14および第1コンタクト領域15aと電気的に接続されている。また、上部電極19は、ダイオード領域1bや境界領域1cにおいて、コンタクトホール18b、18cを介して第2ベース層12bや第2コンタクト領域15bおよび第3コンタクト領域15cと電気的に接続されている。つまり、上部電極19は、IGBT領域1aにおいてはエミッタ電極として機能し、ダイオード領域1bにおいてアノード電極として機能する。また、上部電極19は、境界領域1cでは、特に機能しなくてもよいが、上記したように、本実施形態では境界領域1cにおいてゲート電極17をIGBT領域1aと同様のゲート電圧に制御されるようにしているため、ホール引き抜き電極として機能する。
 また、上部電極19は、ダイオード領域1bや境界領域1cでは、第2コンタクト領域15bや第3コンタクト領域15cとオーミック接触させられ、第2ベース層12bとはショットキー接触させられる。このため、IGBT領域1aに隣接する境界領域1cから更に離れたダイオード領域1bに至る間において、オーミック接触面積比が段階的に変更された構造となる。つまり、IGBT領域1aからオーミック接触面積比が小さい境界領域1cを経てからダイオード領域1bに至るレイアウトとなっている。
 一方、ドリフト層11のうちのベース層12側と反対側、つまり半導体基板10の他面10b側には、N型不純物濃度がドリフト層11よりも高くされたフィールドストップ(以下、FSという)層20が形成されている。このFS層20は、必須のものではないが、空乏層の広がりを防ぐことで耐圧と定常損失の性能向上を図ると共に、半導体基板10の他面10b側から注入されるホールの注入量を制御するために備えてある。
 また、IGBT領域1aおよび境界領域1cでは、FS層20を挟んでドリフト層11と反対側に、P型のコレクタ層21が形成され、ダイオード領域1bでは、FS層20を挟んでドリフト層11と反対側にN型のカソード層22が形成されている。つまり、本実施形態では、IGBT領域1aおよび境界領域1cとダイオード領域1bとは、半導体基板10の他面10b側に形成される層がコレクタ層21であるかカソード層22であるかによって区画されている。
 さらに、半導体基板10の他面10bにおいて、コレクタ層21やカソード層22の表面には下部電極23が形成されている。この下部電極23は、IGBT領域1aおよび境界領域1cにおいてはコレクタ電極として機能し、ダイオード領域1bにおいてはカソード電極として機能するものである。
 このように構成されていることにより、IGBT領域1aにおいては、第1ベース層12aをベース、エミッタ領域14をエミッタ、コレクタ層21をコレクタとするIGBT素子が構成される。また、ダイオード領域1bにおいては、第2ベース層12bおよび第2コンタクト領域15bをアノードとし、ドリフト層11、カソード層22をカソードとしてPN接合されたFWD素子が構成される。
 以上のように構成されたIGBT素子およびFWD素子を有する半導体装置の作動および効果について説明する。
 本実施形態の半導体装置は、IGBT領域1aに形成されたIGBTについては、従来と同様にゲート電極17に対する印加電圧が制御されることでオンオフ動作、つまりエミッタ-コレクタ間に電流を流したり遮断されるスイッチング動作を行う。また、ダイオード領域1bに形成されたFWDについては、IGBTのスイッチング動作に伴ってダイオード動作を行うことで、スイッチング時のサージ発生を抑制する。
 このような動作を行うに際し、IGBTのオン中には、図4に示すように、境界領域1cのゲート電極17も、IGBT領域1aと同様のゲート電圧に制御されるため、境界領域1cにおけるトレンチ13の側面にチャネルが形成される。このため、境界領域1cでも、トレンチ13の側面にチャネルが形成され、このチャネルを通ってホールが流れ易くなると共に、チャネル側に引き寄せられたホールが第2ベース層12bを通じても流れる。したがって、境界領域1cにおいて、第2ベース層12bがホール通過層として機能し、境界領域1cが存在することによる単位面積当たりの通電量の減少を抑制できるため、オン電圧Vonの増加を抑制でき、オン抵抗の上昇を抑制することが可能となる。
 また、仮に、ダイオード領域1bに隣接する位置において、半導体基板10の一面10a側の高濃度P型層の形成割合が大きいと、IGBTをオフからオンに切り替えたときのリカバリ時に、高濃度P型層からカソードに向かうホールの注入量が多くなる。これにより、リカバリ時の最大逆方向電流Irrの増加を招くことになる。また、カソード側のキャリア密度が高くなることでテール電流を増大させてしまい、リカバリ破壊を招く可能性もある。
 しかしながら、本実施形態の半導体装置では、IGBT領域1aとダイオード領域1bとの間、つまりダイオード領域1bと隣接する位置に、IGBT領域1aよりも高濃度P型層の形成割合が少ない境界領域1cを設けている。このため、リカバリ時に、IGBT領域1aからダイオード領域1bへのホール注入を抑制できると共に、境界領域1cに形成されている高濃度P型層の形成割合が少ないため、境界領域1cの高濃度P型層からのホール注入量も少なくできる。したがって、リカバリ時の最大逆方向電流Irrの増加を抑制できると共に、カソード側のキャリア密度を低くしてテール電流の増大を抑制することができる。これによって、スイッチング損失を低減することができるだけでなく、リカバリ破壊に対しても耐性の高い半導体装置とすることができる。
 具体的に、従来構造と本実施形態の構造の半導体装置について、最大逆方向電流Irrを調べたところ、図5に示す結果が得られた。図中破線で示される従来構造の場合と比較して、図中実線で示される本実施形態の構造の場合には、最大逆方向電流Irrを低下させることができていた。そして、この図中の逆方向電流Irの積分値、つまり電流値がマイナスとなる領域の面積がリカバリ損失Errに相当することから、最大逆方向電流Irrを低下させられることにより、リカバリ損失Errを低減することが可能となる。
 また、本実施形態においては、He線や電子線照射によるライフタイムキラーの生成を行っていない。リカバリ損失Errを小さくできることから、従来ではライフタイムキラーの生成が行われるのが一般的であるが、He線や電子線照射を的確な位置に打ち分けることが難しく、他の素子の特性悪化を招くこともある。このHe線や電子線照射によるライフタイムキラーの生成を行わなくても済むようにするには、ドリフト層11やベース層12の不純物濃度を薄くするなどの対策を採ることが考えられる。しかしながら、不純物濃度を薄くすると、その分、不純物濃度が高くされる高濃度領域とのPNジャンクションでの不純物濃度差が大きくなって、テール電流を増大させたり、リカバリ破壊を招いてしまう。
 これに対して、本実施形態の半導体装置のように、上記構成の境界領域1cを備えることで、リカバリ時に、IGBT領域1aからダイオード領域1bへのホール注入を抑制できることから、ドリフト層11やベース層12の不純物濃度を薄くすることが可能となる。このため、He線や電子線照射によるライフタイムキラーの生成を行わなくても良くなり、他の素子の特性を悪化させることも抑制できる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して境界領域1cのゲート電極17の接続形態を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図6に示すように、本実施形態では、境界領域1cのゲート電極17をダイオード領域1bのゲート電極17と同様に、エミッタ接続としている。このように、境界領域1cのゲート電極17をエミッタ接続とする場合、IGBTをオンする際に、境界領域1cではトレンチ13の側面にチャネルが形成されないため、境界領域1cを通じるホールの通過量が減少する。このため、オン電圧Vonの増加抑制効果やオン抵抗の低減効果が得られなくなるが、それ以外については、第1実施形態と同様の効果が得られる。
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対して各部の上面レイアウトを変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図7に示すように、エミッタ領域14をトレンチ13の長手方向に沿って直線状にレイアウトしている。ここでは、エミッタ領域14をトレンチ13の一方の側面、具体的にはトレンチ13に対して図中左側の側面にのみ配置しているが、両方の側面に配置した構造としても良い。また、エミッタ領域14が直線状とされたことから、それに伴って第1コンタクト領域15aも直線状のレイアウトになっている。
 ダイオード領域1bおよび境界領域1cについても同様であり、第2コンタクト領域15bおよび第3コンタクト領域15cがトレンチ13の長手方向に沿って直線状にレイアウトされている。本実施形態の場合、第2コンタクト領域15bおよび第3コンタクト領域15cをトレンチ13の一方の側面、具体的にはエミッタ領域14が形成された側面と反対側の側面となる図中右側の側面にのみ配置している。ただし、これも一例であり、第2コンタクト領域15bおよび第3コンタクト領域15cを両方の側面に配置していたり、トレンチ13から離れた位置に配置していてもよい。また、第2コンタクト領域15bおよび第3コンタクト領域15cが直線状とされたことから、それに伴って第2ベース層12bのうち上部電極19とショットキー接触させられる部分も直線状のレイアウトになっている。
 そして、本実施形態でも、ダイオード領域1bと境界領域1cとで第2コンタクト領域15bと第3コンタクト領域15cの形成面積、つまり単位面積当たりの高濃度P型層の形成割合やオーミック接触比を変えている。
 本実施形態の場合、ダイオード領域1bでは、複数のトレンチ13の間のすべての第2ベース層12bに第2コンタクト領域15bを形成している。これに対して、境界領域1cでは、複数のトレンチ13の間のすべての第2ベース層12bに第3コンタクト領域15cを形成するのではなく、第2ベース層12bの複数個に1つ、図中では2つに1つの割合で第3コンタクト領域15cを形成している。
 このように、エミッタ領域14および第1コンタクト領域15aに加えて、第2コンタクト領域15bや第3コンタクト領域15cを直線状のレイアウトとすることもできる。このような構成としても、第1実施形態と同様の効果を得ることができる。
 なお、ここでは、第1コンタクト領域15aや第2コンタクト領域15bおよび第3コンタクト領域15cをすべて同じ幅の直線状のもので構成したが、異なる幅とされていてもよい。また、境界領域1cについて、複数のトレンチ13の間のすべての第2ベース層12bに第3コンタクト領域15cを形成しつつ、ダイオード領域1bに形成される第2コンタクト領域15bよりも第3コンタクト領域15cの幅を狭くするようにしても良い。
 また、境界領域1c内においても、第3コンタクト領域15cの形成面積が段階的に変化するようにすることもできる。例えば、図8に示すように、IGBT領域1aからダイオード領域1bに向かうに連れて、第3コンタクト領域15cが形成される間隔である形成ピッチが徐々に小さくなるようにしている。このようにすれば、IGBT領域1a側の方がダイオード領域1b側よりも、第3コンタクト領域15cの形成面積が低くなるようにすることができる。
 なお、第3コンタクト領域15cの形成面積を段階的に変化させることで、FWDの順方向電圧降下Vfとリカバリ損失Errのトレードオフの関係を調整することができる。例えば、第3コンタクト領域15cのピッチを大きくすると順方向電圧降下Vfが大きくなり、リカバリ損失Errを小さくすることができる。逆に、第3コンタクト領域15cのピッチを小さくすると順方向電圧降下Vfが小さくなり、リカバリ損失Errが大きくなる。したがって、所望する特性に応じて、第3コンタクト領域15cのピッチを設定することで、順方向電圧降下Vfとリカバリ損失Errのトレードオフの関係を所望の関係に調整できる。
 (第4実施形態)
 第4実施形態について説明する。本実施形態は、第1~第3実施形態に対し、ダイオード領域1bおよび境界領域1cにおける他面10b側の構成を変更したものであり、その他については第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。なお、ここでは第1実施形態の構造について、他面10b側の構成を変更する場合について説明するが、第2、第3実施形態の構造についても適用可能である。
 図9に示すように、本実施形態では、ダイオード領域1bおよび境界領域1cにおいて、他面10b側に部分的にP型不純物層にて構成されるP型離散層24が形成されている。P型離散層24は、例えばトレンチ13の長手方向に沿って延設されており、複数本が等間隔に配置されている。P型離散層24のP型不純物濃度については任意であるが、コレクタ層21と同時に形成する場合、コレクタ層21と同じ濃度となる。
 このように、P型離散層24をダイオード領域1bや境界領域1cに形成することもできる。このようなP型離散層24を形成すると、IGBT領域1aの一面10a側の高濃度P型層から注入されたホールがP型離散層24に到達したときに、無効キャリアとすることができる。このため、よりホールを低減することが可能になるし、仮に、境界領域1cを形成しただけでは十分なホール注入抑制が行えず、ホール注入量が多くなってしまったとしても、P型離散層24によってホールを無効キャリアに変えることができる。したがって、より第1実施形態で説明した効果を高めることが可能となる。
 (第5実施形態)
 第5実施形態について説明する。本実施形態は、第1~第4実施形態に対し、ダイオード領域1bおよび境界領域1cにおける一面10a側の構成を変更したものであり、その他については第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。なお、ここでは第1実施形態の構造について、一面10a側の構成を変更する場合について説明するが、第2~第4実施形態の構造についても適用可能である。
 図10に示すように、本実施形態では、ダイオード領域1bおよび境界領域1cにおける一面10a側に、N型不純物層にて構成されるN型離散層25が形成されている。N型離散層25は、例えば第2ベース層12bの表層部のうち第2コンタクト領域15bおよび第3コンタクト領域15cと異なる位置に形成されている。本実施形態の場合、第2ベース層12bの表層部のうち第2コンタクト領域15bおよび第3コンタクト領域15cが形成されていない部分の全域にN型離散層25を形成している。N型離散層25のN型不純物濃度については任意であるが、エミッタ領域14と同時に形成する場合、エミッタ領域14と同じ濃度となる。
 このように、第2ベース層12bの表層部にN型離散層25を形成することで、上部電極19とN型離散層25とをオーミック接触させることができる。すなわち、スイッチング損失を低減するために、ダイオード領域1bや境界領域1cにおける第2ベース層12bや第2コンタクト領域15bおよび第3コンタクト領域15cのP型不純物濃度を低くしたいが、その場合、上部電極19とショットキー接触となり得る。このため、N型離散層25を形成して上部電極19とオーミック接触させることで、より確実に上部電極19とのコンタクトをとることが可能となる。
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記第1~第5実施形態で示したIGBTやFWDの素子構造は一例を示したに過ぎず、他の構造とすることもできる。具体的には、IGBTについて、第1ベース層12aをチャネル領域としてだけでなくボディ領域としても機能させるようにしているが、チャネル領域として機能するだけとし、第1ベース層12aに加えてボディ領域を形成するようにしてもよい。その場合、例えば、各トレンチゲート構造の間において、トレンチ13に接するようにエミッタ領域14を形成し、エミッタ領域14を挟んでトレンチ13と反対側、つまりトレンチ13から離れた位置にP型のボディ領域を形成した構造とすることができる。そして、ボディ領域の表面が第1ベース層12aにおける第1コンタクト領域15aを構成することになる。
 また、上記第1~第5実施形態では、ダイオード領域1bと境界領域1cの第2ベース層12bのP型不純物濃度を同じにしているが、異なった濃度であってもよい。
 さらに、第1~第5実施形態で記載したIGBT領域1a、ダイオード領域1bおよび境界領域1cの構造については、任意に組み合わせ可能である。すなわち、IGBT領域1a、ダイオード領域1bおよび境界領域1cの構造を異なる実施形態のもので組み合わせることもできる。例えば、第1、第2実施形態のように、エミッタ領域14をトレンチ13の長手方向に沿って点在させる構造と、第3、第4実施形態のように、第2コンタクト領域15bおよび第3コンタクト領域15cを直線状とする構造を組み合わせても良い。逆に、第3、第4実施形態のように、エミッタ領域14をトレンチ13の長手方向に沿って直線状に形成する構造と、第1、第2実施形態のように、第2コンタクト領域15bおよび第3コンタクト領域15cをトレンチ13の長手方向に沿って点在させる構造を組み合わせても良い。
 また、上記第4実施形態では、P型離散層24をトレンチ13の長手方向に沿って延設した構造としたが、所望のパターンに点在させる構造など、他の上面レイアウトで形成しても良い。
 また、IGBTを隣り合うトレンチゲート構造の間のすべての第1ベース層12aにエミッタ領域14を形成した構造としたが、エミッタ領域14を形成せずにチャネルを形成しない間引き構造を備えるようにしても良い。また、間引き構造としてチャネルを形成していない部分において、第1ベース層12aにホールバリア層を形成しても良い。
 また上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプのIGBTを備えた半導体装置を例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのIGBTとしても良い。

Claims (10)

  1.  IGBTおよびダイオードを有する半導体装置であって、
     前記IGBTが形成されるIGBT領域(1a)と前記ダイオードが形成されるダイオード領域(1b)、および、前記IGBT領域と前記ダイオード領域との間に形成される境界領域(1c)を有し、第1導電型のドリフト層(11)と、前記ドリフト層の表層部に形成された第2導電型のベース層(12)と、前記IGBT領域および前記境界領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(21)と、前記ダイオード領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第1導電型のカソード層(22)と、を含む半導体基板(10)と、
     前記IGBT領域と前記ダイオード領域および前記境界領域に形成され、一方向を長手方向とすると共に前記ベース層よりも深く形成されることで前記ベース層を複数に分けた複数のトレンチ(13)内に、ゲート絶縁膜(16)およびゲート電極(17)が配置されてなるトレンチゲート構造と、
     前記IGBT領域における前記ベース層を第1ベース層(12a)として、前記トレンチによって複数に分けられた前記第1ベース層のうちの少なくとも一部に、前記トレンチに接して形成された第1導電型のエミッタ領域(14)と、
     前記第1ベース層のうち前記エミッタ領域と異なる部分に配置される第1コンタクト領域(15a)と、
     前記ダイオード領域および前記境界領域における前記ベース層を第2ベース層(12b)として、前記ダイオード領域において、前記第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第2コンタクト領域(15b)、および、前記境界領域において、前記第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第3コンタクト領域(15c)と、
     前記エミッタ領域に加えて前記第1コンタクト領域と前記第2コンタクト領域および前記第3コンタクト領域に電気的に接続された上部電極(19)と、
     前記コレクタ層および前記カソード層に電気的に接続された下部電極(23)と、を有し、
     前記半導体基板の表面の単位面積当たりの前記第2コンタクト領域の形成面積に対して、前記第3コンタクト領域の形成面積の方が小さくされている半導体装置。
  2.  IGBTおよびダイオードを有する半導体装置であって、
     前記IGBTが形成されるIGBT領域(1a)と前記ダイオードが形成されるダイオード領域(1b)、および、前記IGBT領域と前記ダイオード領域との間に形成される境界領域(1c)を有し、第1導電型のドリフト層(11)と、前記ドリフト層の表層部に形成された第2導電型のベース層(12)と、前記IGBT領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(21)と、前記ダイオード領域および前記境界領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第1導電型のカソード層(22)および該カソード層内に部分的に配置された第2導電型離散層(24)と、を含む半導体基板(10)と、
     前記IGBT領域と前記ダイオード領域および前記境界領域に形成され、一方向を長手方向とすると共に前記ベース層よりも深く形成されることで前記ベース層を複数に分けた複数のトレンチ(13)内に、ゲート絶縁膜(16)およびゲート電極(17)が配置されてなるトレンチゲート構造と、
     前記IGBT領域における前記ベース層を第1ベース層(12a)として、前記トレンチによって複数に分けられた前記第1ベース層のうちの少なくとも一部に、前記トレンチに接して形成された第1導電型のエミッタ領域(14)と、
     前記第1ベース層のうち前記エミッタ領域と異なる部分に配置される第1コンタクト領域(15a)と、
     前記ダイオード領域および前記境界領域における前記ベース層を第2ベース層(12b)として、前記ダイオード領域において、前記第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第2コンタクト領域(15b)、および、前記境界領域において、前記第2ベース層の表層部に形成され、該第2ベース層よりも第2導電型不純物濃度が高くされた第2導電型の第3コンタクト領域(15c)と、
     前記エミッタ領域に加えて前記第1コンタクト領域と前記第2コンタクト領域および前記第3コンタクト領域に電気的に接続された上部電極(19)と、
     前記コレクタ層および前記カソード層に電気的に接続された下部電極(23)と、を有し、
     前記半導体基板の表面の単位面積当たりの前記第2コンタクト領域の形成面積に対して、前記第3コンタクト領域の形成面積の方が小さくされている半導体装置。
  3.  前記境界領域に形成された前記ゲート電極は、前記IGBT領域に形成された前記ゲート電極と同電位とされる請求項1または2に記載の半導体装置。
  4.  前記境界領域に形成された前記ゲート電極は、前記ダイオード領域に形成された前記ゲート電極と同電位とされる請求項1または2に記載の半導体装置。
  5.  前記IGBT領域に形成された前記第1ベース層は、前記ダイオード領域および前記境界領域に形成された前記第2ベース層よりも第2導電型不純物が高くされ、
     前記第1ベース層の表面によって前記第1コンタクト領域が構成されていると共に、前記第1ベース層がチャネルの形成されるチャネル領域として機能しつつ、ボディ領域としても機能する請求項1ないし4のいずれか1つに記載の半導体装置。
  6.  前記エミッタ領域は、複数の前記トレンチの間において、前記トレンチの長手方向に沿って複数個配置されており、隣り合う両方の前記トレンチの側面に接している請求項1ないし5のいずれか1つに記載の半導体装置。
  7.  前記エミッタ領域は、複数の前記トレンチの間において、前記トレンチの長手方向に沿って延設されている請求項1ないし5のいずれか1つに記載の半導体装置。
  8.  前記第2コンタクト領域および前記第3コンタクト領域は、複数の前記トレンチの間において、前記トレンチの長手方向に沿って延設されており、
     前記第2コンタクト領域は、複数の前記トレンチの間に配置される前記第2ベース層のすべてに形成されており、
     前記第3コンタクト領域は、複数の前記トレンチの間に配置される前記第2ベース層の複数個に1つの割合で形成されている請求項1ないし7のいずれか1つに記載の半導体装置。
  9.  前記第3コンタクト領域が形成されている間隔である形成ピッチは、前記IGBT領域から前記ダイオード領域に向かって段階的に変化しており、前記IGBT領域から前記ダイオード領域に向かうに連れて、前記形成ピッチが徐々に小さくされている請求項8に記載の半導体装置。
  10.  前記ダイオード領域および前記境界領域に形成された前記第2ベース層の表層部のうち前記第2コンタクト領域および前記第3コンタクト領域と異なる位置に、第1導電型離散層(25)が形成されており、前記上部電極が該第1導電型離散層とオーミック接触させられている請求項1ないし8のいずれか1つに記載の半導体装置。
PCT/JP2017/037893 2016-10-26 2017-10-19 半導体装置 WO2018079417A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780065823.4A CN109964317B (zh) 2016-10-26 2017-10-19 半导体装置
US16/393,006 US10763345B2 (en) 2016-10-26 2019-04-24 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209803A JP6589817B2 (ja) 2016-10-26 2016-10-26 半導体装置
JP2016-209803 2016-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/393,006 Continuation US10763345B2 (en) 2016-10-26 2019-04-24 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2018079417A1 true WO2018079417A1 (ja) 2018-05-03

Family

ID=62023378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037893 WO2018079417A1 (ja) 2016-10-26 2017-10-19 半導体装置

Country Status (4)

Country Link
US (1) US10763345B2 (ja)
JP (1) JP6589817B2 (ja)
CN (1) CN109964317B (ja)
WO (1) WO2018079417A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051973A1 (ja) * 2014-10-03 2016-04-07 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6954333B2 (ja) * 2016-10-26 2021-10-27 株式会社デンソー 半導体装置
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法
JP6946219B2 (ja) * 2018-03-23 2021-10-06 株式会社東芝 半導体装置
WO2020026401A1 (ja) * 2018-08-02 2020-02-06 三菱電機株式会社 ワイドバンドギャップ半導体装置、および、電力変換装置
JP6996461B2 (ja) * 2018-09-11 2022-01-17 株式会社デンソー 半導体装置
DE112019005209T5 (de) * 2018-10-18 2021-07-08 Rohm Co., Ltd. Halbleiterbauelement
EP3817068B1 (en) 2019-02-07 2023-10-18 Fuji Electric Co., Ltd. Semiconductor device and semiconductor module
DE112019003399T5 (de) * 2019-02-27 2021-03-18 Fuji Electric Co., Ltd. Halbleitervorrichtung
JP7283287B2 (ja) * 2019-07-23 2023-05-30 株式会社デンソー 半導体装置
JP7172920B2 (ja) * 2019-09-04 2022-11-16 株式会社デンソー 半導体装置
JP7319601B2 (ja) * 2019-11-01 2023-08-02 株式会社東芝 半導体装置
JP7247930B2 (ja) * 2020-03-10 2023-03-29 株式会社デンソー 半導体装置
JP7342742B2 (ja) * 2020-03-11 2023-09-12 三菱電機株式会社 半導体装置
JP7354897B2 (ja) * 2020-03-26 2023-10-03 三菱電機株式会社 半導体装置
JP7459694B2 (ja) 2020-07-08 2024-04-02 株式会社デンソー 半導体装置
JP7403401B2 (ja) * 2020-07-10 2023-12-22 三菱電機株式会社 半導体装置
CN111987089A (zh) * 2020-08-19 2020-11-24 株洲中车时代半导体有限公司 逆导型igbt功率集成模块
JP7471192B2 (ja) * 2020-10-01 2024-04-19 三菱電機株式会社 半導体装置
JP7446198B2 (ja) 2020-10-01 2024-03-08 三菱電機株式会社 半導体装置
JP7479315B2 (ja) 2021-03-08 2024-05-08 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2023139979A (ja) 2022-03-22 2023-10-04 株式会社東芝 半導体装置及び半導体回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103376A (ja) * 2012-09-24 2014-06-05 Toshiba Corp 半導体装置
WO2016080269A1 (ja) * 2014-11-17 2016-05-26 富士電機株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196606A (ja) 2000-01-11 2001-07-19 Mitsubishi Electric Corp ダイオード
JP4957840B2 (ja) * 2010-02-05 2012-06-20 株式会社デンソー 絶縁ゲート型半導体装置
JP5321669B2 (ja) 2010-11-25 2013-10-23 株式会社デンソー 半導体装置
JP5922886B2 (ja) * 2011-07-13 2016-05-24 株式会社豊田中央研究所 ダイオードおよび半導体装置
DE112012003111T5 (de) 2011-07-27 2014-04-10 Toyota Jidosha Kabushiki Kaisha Diode, Halbleitervorrichtung und Mosfet
JP2013197122A (ja) * 2012-03-15 2013-09-30 Toshiba Corp 半導体装置
JPWO2014188569A1 (ja) * 2013-05-23 2017-02-23 トヨタ自動車株式会社 ダイオード内蔵igbt
DE112013007576B4 (de) * 2013-11-05 2022-02-03 Denso Corporation Halbleitereinrichtung
JP6158058B2 (ja) 2013-12-04 2017-07-05 株式会社東芝 半導体装置
JP6221974B2 (ja) * 2014-07-14 2017-11-01 トヨタ自動車株式会社 半導体装置
JP6222702B2 (ja) 2014-09-11 2017-11-01 株式会社東芝 半導体装置
JP6197773B2 (ja) * 2014-09-29 2017-09-20 トヨタ自動車株式会社 半導体装置
JP6319057B2 (ja) * 2014-11-21 2018-05-09 三菱電機株式会社 逆導通型半導体装置
JP6641983B2 (ja) * 2015-01-16 2020-02-05 株式会社デンソー 半導体装置
JP6384425B2 (ja) * 2015-08-21 2018-09-05 株式会社デンソー 半導体装置
JP6443267B2 (ja) * 2015-08-28 2018-12-26 株式会社デンソー 半導体装置
US10192978B2 (en) * 2016-01-19 2019-01-29 Mitsubishi Electric Corporation Semiconductor apparatus
CN108447903B (zh) * 2017-02-16 2023-07-04 富士电机株式会社 半导体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103376A (ja) * 2012-09-24 2014-06-05 Toshiba Corp 半導体装置
WO2016080269A1 (ja) * 2014-11-17 2016-05-26 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
JP6589817B2 (ja) 2019-10-16
JP2018073911A (ja) 2018-05-10
US10763345B2 (en) 2020-09-01
CN109964317A (zh) 2019-07-02
CN109964317B (zh) 2021-11-30
US20190252534A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP6589817B2 (ja) 半導体装置
US10170607B2 (en) Semiconductor device
JP5103830B2 (ja) 絶縁ゲート型半導体装置
JP6022774B2 (ja) 半導体装置
WO2015145929A1 (ja) 半導体装置
JP6641983B2 (ja) 半導体装置
CN109155332B (zh) 半导体装置
JPWO2018220879A1 (ja) 半導体装置
JP6606007B2 (ja) スイッチング素子
WO2016114131A1 (ja) 半導体装置
JP2008091491A (ja) 絶縁ゲート型半導体装置
JP2017098359A (ja) 逆導通igbt
US11476355B2 (en) Semiconductor device
JP6954333B2 (ja) 半導体装置
JP7459694B2 (ja) 半導体装置
WO2018198575A1 (ja) 半導体装置
WO2021182352A1 (ja) 半導体装置
WO2016136230A1 (ja) 半導体装置
WO2021045116A1 (ja) 半導体装置
JP7294004B2 (ja) 半導体装置
JP2018182216A (ja) 半導体装置
JP2018125326A (ja) 半導体装置
JP2022181457A (ja) 半導体装置
JP2021174796A (ja) 半導体装置
JP2023136874A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864400

Country of ref document: EP

Kind code of ref document: A1