WO2021045116A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021045116A1
WO2021045116A1 PCT/JP2020/033285 JP2020033285W WO2021045116A1 WO 2021045116 A1 WO2021045116 A1 WO 2021045116A1 JP 2020033285 W JP2020033285 W JP 2020033285W WO 2021045116 A1 WO2021045116 A1 WO 2021045116A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
fwd
igbt
layer
base layer
Prior art date
Application number
PCT/JP2020/033285
Other languages
English (en)
French (fr)
Inventor
征典 宮田
祐麻 利田
裕貴 薬師川
賢 妹尾
博司 細川
昂哉 永井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080062127.XA priority Critical patent/CN114342087A/zh
Publication of WO2021045116A1 publication Critical patent/WO2021045116A1/ja
Priority to US17/682,395 priority patent/US20220181471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Definitions

  • the present disclosure relates to a semiconductor device having an IGBT region in which an insulated gate bipolar transistor (hereinafter referred to as IGBT) element having an insulated gate structure is formed and an FWD region in which a freewheel diode (hereinafter referred to as FWD) element is formed. ..
  • IGBT insulated gate bipolar transistor
  • FWD freewheel diode
  • this semiconductor device has a semiconductor substrate constituting an N- type drift layer, and a base layer is formed on the drift layer. Then, in the IGBT region and the FWD region, a plurality of trenches are formed so as to penetrate the base layer, and in each trench, a gate insulating film is formed so as to cover the wall surface, and a gate electrode is formed on the gate insulating film. Is formed. Further, in the IGBT region, an N + type emitter region is formed so as to be in contact with the trench.
  • An upper electrode electrically connected to the base layer and the emitter region is formed on one surface side of the semiconductor substrate on the base layer side.
  • a P-type collector layer and an N-type cathode layer are formed on the other surface side opposite to one surface of the semiconductor substrate, and a lower electrode electrically connected to the collector layer and the cathode layer is formed. ..
  • the region where the collector layer is formed on the other surface side of the semiconductor substrate is the IGBT region
  • the region where the cathode layer is formed is the FWD region.
  • an N-type barrier region is formed between the drift layer and the base layer.
  • a pillar region is formed on the base layer so as to reach the barrier region from one surface of the semiconductor substrate, and the pillar region is also connected to the upper electrode.
  • the pillar region is formed between adjacent trenches, and is formed over the entire IGBT region and FWD region.
  • the barrier region and the pillar region are formed, the injection of holes is suppressed when the FWD region is operated by a diode. Therefore, the recovery current can be reduced and the recovery time can be shortened. Therefore, the switching loss can be reduced.
  • An object of the present disclosure is to provide a semiconductor device capable of suppressing a decrease in short-circuit tolerance while reducing a switching loss.
  • a semiconductor device having an IGBT region that functions as an IGBT element and an FWD region that functions as an FWD element is formed on a first conductive type drift layer and a surface layer portion of the drift layer.
  • the first conductive type emitter region and the IGBT region formed on the surface layer of the base layer apart from the drift layer and having a higher impurity concentration than the drift layer.
  • the second conductive type collector layer formed on the side opposite to the base layer side of the drift layer and the first conductive type formed on the side opposite to the base layer side of the drift layer in the FWD region.
  • a semiconductor substrate having a cathode layer, a gate insulating film arranged on the surface of a base layer located between an emitter region and a drift layer, a gate electrode arranged on the gate insulating film, a base layer and an emitter. It includes a first electrode that is electrically connected to the region and a second electrode that is electrically connected to the collector layer and the cathode layer.
  • the IGBT region has a first region and a second region different from the first region, and in the FWD region and the first region of the IGBT region, an FWD element is provided between the first electrode and the second electrode.
  • the switching loss can be reduced by the FWD region and the first region in which the carrier extraction portion is formed. Further, it is possible to suppress a decrease in the short-circuit withstand capacity due to the second region in which the carrier drawing portion is not formed.
  • the semiconductor device of this embodiment is preferably used as a power switching element used in a power supply circuit such as an inverter or a DC / DC converter.
  • the semiconductor device has a cell region 10 and an outer peripheral region 20 surrounding the cell region 10.
  • the semiconductor device of this embodiment has two cell regions 10.
  • Each cell region 10 is formed with an IGBT region 11 that functions as an IGBT element and an FWD region 12 that is adjacent to the IGBT region 11 and functions as an FWD element. That is, the semiconductor device of this embodiment is an RC (abbreviation of Reverse Conducting) -IGBT in which an IGBT region 11 and an FWD region 12 are formed in the same chip.
  • RC abbreviation of Reverse Conducting
  • the IGBT region 11 and the FWD region 12 are alternately formed in each cell region 10 along one direction. That is, the IGBT region 11 and the FWD region 12 are alternately formed along one direction in the plane direction of the semiconductor substrate 30, which will be described later. Specifically, the IGBT region 11 and the FWD region 12 are rectangular regions having a longitudinal direction, respectively, and are formed alternately along a direction intersecting the longitudinal direction. Further, the IGBT regions 11 and the FWD regions 12 are alternately arranged so that the IGBT regions 11 are located at both ends in the arrangement direction.
  • the IGBT region 11 and the FWD region 12 have a rectangular shape with the left-right direction of the paper surface as the longitudinal direction, and are formed alternately along the vertical direction of the paper surface.
  • the arrangement direction of the IGBT region 11 and the FWD region 12 is also referred to as a width direction
  • the length along the arrangement direction of the IGBT region 11 and the FWD region 12 is also referred to as a width.
  • the IGBT region 11 has a width of 800 ⁇ m
  • the FWD region 12 has a width of 250 ⁇ m.
  • the semiconductor device has a semiconductor substrate 30 that constitutes an N-type drift layer 31.
  • the semiconductor substrate 30 is made of a silicon substrate, and the thickness, which is the length between one surface 30a and the other surface 30b, is 120 ⁇ m. That is, the thickness of the semiconductor substrate 30 is thinner than the width of the FWD region 12.
  • a P-shaped base layer 32 is formed on the drift layer 31. In other words, the base layer 32 is formed on the one side 30a side of the semiconductor substrate 30.
  • a plurality of trenches 33 are formed in the semiconductor substrate 30 so as to penetrate the base layer 32 from the one surface 30a side and reach the drift layer 31. As a result, the base layer 32 is separated into a plurality of pieces by the trench 33.
  • the plurality of trenches 33 are formed in the IGBT region 11 and the FWD region 12, respectively.
  • the plurality of trenches 33 are formed in a striped shape with the direction intersecting the arrangement direction of the IGBT region 11 and the FWD region 12 (that is, the left-right direction of the paper surface in FIG. 1) as the longitudinal direction.
  • the distance between adjacent trenches 33 (that is, the pitch distance) is, for example, about 6 ⁇ m.
  • Each trench 33 is embedded by a gate insulating film 34 formed so as to cover the wall surface of each trench 33, and a gate electrode 35 formed of polysilicon or the like formed on the gate insulating film 34. ing. As a result, a trench gate structure is constructed.
  • the gate electrode 35 arranged in the trench 33 formed in the IGBT region 11 is connected to a gate pad or the like formed in the outer peripheral region 20 via a gate wiring (not shown).
  • the gate pad is connected to the drive circuit via a variable resistor (not shown). Then, a predetermined pulsed gate voltage is applied to the gate electrode 35.
  • the gate electrode 35 arranged in the trench 33 formed in the FWD region 12 is electrically connected to the upper electrode 41 described later and is maintained at a predetermined potential.
  • An N + type emitter region 36 having a higher impurity concentration than the drift layer 31 is formed on the surface layer portion of the base layer 32. That is, the emitter region 36 is formed on one surface 30a side of the semiconductor substrate 30. Further, a P + type contact region 37 having a higher impurity concentration than the base layer 32 is formed on the surface layer portion of the base layer 32. Specifically, the emitter region 36 is formed so as to be terminated in the base layer 32 and to be in contact with the side surface of the trench 33. Further, the contact region 37 is formed so as to terminate in the base layer 32, similarly to the emitter region 36.
  • the emitter region 36 extends in a rod shape along the longitudinal direction of the trench 33 so as to contact the side surface of the trench 33 in the region between the adjacent trenches 33, and terminates inside the tip of the trench 33. It is said to be a structure. Further, the contact region 37 extends in a rod shape along the longitudinal direction of the trench 33 so as to be in contact with the emitter region 36.
  • the portion of the wall surface of the trench 33 located between the emitter region 36 and the drift layer 31 corresponds to the surface of the base layer located between the emitter region and the drift layer.
  • the contact region 37 is shown to have the same depth as the emitter region 36, but the contact region 37 may be formed deeper than the emitter region 36.
  • the base layer 32 is formed with an N-type barrier region 38 having a higher impurity concentration than the drift layer 31 so as to divide the base layer 32 in the depth direction of the trench 33. ing.
  • an N-type pillar region 39 is formed on the base layer 32 so as to reach the barrier region 38 from one surface 30a of the semiconductor substrate 30.
  • the pillar region 39 has substantially the same impurity concentration as the barrier region 38, and extends along the extending direction of the trench 33.
  • the region on the FWD region 12 side of the IGBT region 11 is referred to as the first region 11a, and the region different from the first region 11a of the IGBT region 11 is referred to as the second region 11b.
  • the second region 11b is sandwiched by the first region 11a.
  • the configuration is as follows. Further, in the IGBT region 11 located at both ends of the IGBT region 11 and the FWD region 12 in the arrangement direction, the entire region on the end side in the arrangement direction becomes the second region 11b.
  • the pillar region 39 is formed as a whole in the FWD region 12.
  • the pillar region 39 is formed only in the first region 11a, and the pillar region 39 is not formed in the second region 11b. That is, the IGBT region 11 is in a state in which a region in which the pillar region 39 is formed and a region in which the pillar region 39 is not formed are mixed. In other words, the IGBT region 11 has a configuration in which the pillar region 39 is thinned out.
  • the barrier region 38 and the pillar region 39 correspond to the carrier extraction portion.
  • the first region 11a extends to the portion of the pillar region 39 located farthest from the boundary with the FWD region 12 on the side opposite to the boundary. That is, the width of the first region 11a, which will be described later, is the length between the boundary with the FWD region 12 and the portion of the pillar region 39 located farthest from the boundary, which is opposite to the boundary.
  • An interlayer insulating film 40 made of BPSG (abbreviation of Borophosphosilicate Glass) or the like is formed on one surface 30a of the semiconductor substrate 30. Then, on the interlayer insulating film 40, an upper portion that is electrically connected to the emitter region 36, the contact region 37 (that is, the base layer 32), and the pillar region 39 through the contact hole 40a formed in the interlayer insulating film 40.
  • the electrode 41 is formed. That is, an upper electrode 41 that functions as an emitter electrode in the IGBT region 11 and functions as an anode electrode in the FWD region 12 is formed on the interlayer insulating film 40.
  • the upper electrode 41 may be ohmic-bonded to the base layer 32, the contact region 37, and the pillar region 39, or is ohmic-bonded to the base layer 32 and the contact region 37 and Schottky-bonded to the pillar region 39. May be.
  • the interlayer insulating film 40 is formed with a contact hole 40b that exposes the gate electrode 35 in the FWD region 12.
  • the upper electrode 41 is also connected to the gate electrode 35 through the contact hole 40b.
  • the gate electrode 35 formed in the FWD region 12 is maintained at the same potential as the upper electrode 41.
  • the upper electrode 41 corresponds to the first electrode.
  • An N-type buffer layer 42 having a higher impurity concentration than the drift layer 31 is formed on the side of the drift layer 31 opposite to the base layer 32 side (that is, the other surface 30b side of the semiconductor substrate 30). ..
  • a P + type collector layer 43 is formed on the side opposite to the drift layer 31 across the buffer layer 42, and in the FWD region 12, N is formed on the side opposite to the drift layer 31 across the buffer layer 42.
  • a + -shaped cathode layer 44 is formed. That is, the IGBT region 11 and the FWD region 12 are partitioned by whether the layer formed on the other surface 30b side of the semiconductor substrate 30 is the collector layer 43 or the cathode layer 44.
  • the region on the collector layer 43 is designated as the IGBT region 11, and the region on the cathode layer 44 is designated as the FWD region 12.
  • a lower electrode 45 electrically connected to the collector layer 43 and the cathode layer 44 is formed on the side opposite to the drift layer 31 (that is, the other surface 30b of the semiconductor substrate 30) with the collector layer 43 and the cathode layer 44 interposed therebetween. ing. That is, a lower electrode 45 that functions as a collector electrode in the IGBT region 11 and a cathode electrode in the FWD region 12 is formed. In this embodiment, the lower electrode 45 is ohmic-bonded to the collector layer 43 and the cathode layer 44. Further, in the present embodiment, the lower electrode 45 corresponds to the second electrode.
  • the base layer 32 and the contact region 37 are used as anodes, and the drift layer 31, buffer layer 42, and cathode layer 44 are used as cathodes for the PN junction. Is configured.
  • the N type, N + type, and N ⁇ type correspond to the first conductive type
  • the P type and P + type correspond to the second conductive type
  • the semiconductor substrate 30 has the collector layer 43, the cathode layer 44, the drift layer 31, the emitter region 36, the contact region 37, the barrier region 38, and the pillar region 39. It has a structure that includes it.
  • the operation of the IGBT element formed in the IGBT region 11 is the same as the conventional one. Briefly, in the IGBT element, the presence or absence of a channel formed in a portion of the base layer 32 in contact with the trench 33 is controlled by controlling the gate voltage applied to the gate electrode 35. As a result, the IGBT element performs a switching operation in which a current flows or is cut off between the emitter and the collector.
  • the FWD element formed in the FWD region 12 electrons are injected from the lower electrode 45 into the cathode layer 44 by applying a forward bias between the upper electrode 41 and the lower electrode 45, and the upper electrode is formed.
  • the diode operates by injecting holes from 41 into the contact region 37.
  • the pillar region 39 is formed in the first region 11a of the FWD region 12 and the IGBT region 11. Therefore, as shown in FIG. 4, the electrons injected from the lower electrode 45 escape from the pillar region 39 to the upper electrode 41 in a low resistance state. Therefore, it becomes difficult to apply a forward bias to the PN junction between the barrier region 38 and the pillar region 39 and the base layer 32, and the injection of holes from the upper electrode 41 can be reduced.
  • the electron is shown as "e".
  • the hole injection is suppressed, so that the recovery current can be reduced and the recovery time can be shortened. Therefore, the switching loss can be reduced.
  • it corresponds to a carrier in which electrons are injected from the second electrode.
  • the hole density increases in the FWD region 12 when the semiconductor device is operated by a diode.
  • the hole density is the same as that of the FWD region 12.
  • the lowering is in order from the boundary side to the center side. This is because during the diode operation, the electrons injected into the cathode layer 44 (that is, the other surface 30b of the semiconductor substrate 30) move while diffusing toward the one surface 30a side with a spread of about 45 °. Is. That is, in the IGBT region 11, it is difficult for electrons to reach a portion equal to or larger than the thickness of the semiconductor substrate 30 from the boundary with the FWD region 12, and it is difficult for holes to be injected.
  • the temperature distribution immediately after the semiconductor device is short-circuited and a short-circuit current, which is a large current, flows in the IGBT region 11 and the short-circuit current is cut off, is from the boundary side with the FWD region 12. It is confirmed that the height increases toward the center. This is because, in the region of the IGBT region 11 on the boundary side with the FWD region 12, the heat generated by the flow of a large current is dissipated to the FWD region 12 side.
  • the leak current increases as the temperature rises because electrons are more likely to escape to the upper electrode 41 side. Then, when the pillar region 39 is formed, electrons are more likely to escape to the upper electrode 41 side than when the pillar region 39 is not formed, so that it is confirmed that the leak current is likely to increase.
  • the temperature of the central region of the IGBT region 11 tends to be higher than that of the region on the boundary side with the FWD region 12, so that the pillar region 39 is formed in this region.
  • the short-circuit tolerance tends to decrease. Therefore, when the pillar region 39 is formed over the entire IGBT region 11 and the FWD region 12 as in a conventional semiconductor device, the short-circuit tolerance is reduced.
  • the pillar region 39 is formed in the first region 11a on the FWD region 12 side, and the pillar region 39 is provided in the second region 11b different from the first region 11a. I try not to form it. Therefore, the short-circuit tolerance can be improved while reducing the switching loss.
  • FIG. 8 is a diagram showing the experimental results in which the thickness of the semiconductor substrate 30 is 120 ⁇ m and the width of the FWD region 12 is 250 ⁇ m. Further, in FIG. 8, the boundary between the IGBT region 11 and the cathode layer 44 is used as a reference (that is, the width of the first region in FIG. 8 is 0).
  • the recovery loss sharply decreases until the width of the first region 11a is 120 ⁇ m, but does not change much in the range of 120 ⁇ m or more. That is, when the thickness of the semiconductor substrate 30 is 120 ⁇ m, the recovery loss does not change much even if the width of the first region 11a is equal to or larger than the thickness of the semiconductor substrate 30.
  • the short-circuit tolerance is almost constant until the width of the first region 11a is 250 ⁇ m, but decreases sharply when the width of the first region 11a is 250 ⁇ m or more. That is, when the width of the FWD region 12 is 250 ⁇ m, the short-circuit tolerance decreases sharply when the width of the first region 11a is equal to or greater than the width of the FWD region 12.
  • the width of the first region 11a is formed so as to be equal to or larger than the thickness of the semiconductor substrate 30 and equal to or smaller than the width of the FWD region 12.
  • the pillar region 39 is formed in the FWD region 12. Further, the IGBT region 11 has a first region 11a in which the pillar region 39 is formed and a second region 11b in which the pillar region 39 is not formed. Therefore, the switching loss can be reduced by the FWD region 12 and the first region 11a in which the pillar region 39 is formed. Further, the second region 11b in which the pillar region 39 is not formed can suppress a decrease in the short-circuit tolerance.
  • the first region 11a is formed on the boundary side with the FWD region 12.
  • the width of the first region 11a is equal to or greater than the thickness of the semiconductor substrate 30 and less than or equal to the width of the FWD region 12. Therefore, it is possible to suppress a decrease in short-circuit withstand while sufficiently reducing the switching loss.
  • the barrier region 38 and the pillar region 39 are not formed.
  • the first base layer 32a located in the first region 11a has a lower impurity concentration than the second base layer 32b located in the second region 11b.
  • the configuration of the semiconductor substrate 30 on the one side 30a side in the FWD region 12 is the same as that of the first region 11a.
  • the same effect as that of the first embodiment can be obtained even as a semiconductor device in which the ease of drawing electrons to the upper electrode 41 is changed by changing the impurity concentration of the base layer 32.
  • the first base layer 32a corresponds to the carrier drawing portion.
  • the first conductive type is N type and the second conductive type is P type has been described, but the first conductive type is P type and the second conductive type is N type. You can also do it.
  • a planar type semiconductor device in which the gate electrode 35 is arranged on one surface 30a of the semiconductor substrate 30 may be used.
  • the cell area 10 may be one, or may be three or more. Further, only one FWD region 12 may be formed in one cell region 10.
  • the first region 11a may not be formed on the FWD region 12 side. Further, the width of the first region 11a may be less than the thickness of the semiconductor substrate 30, or may be wider than the width of the FWD region 12. Even in such a semiconductor device, by configuring the IGBT region 11 to have a first region 11a and a second region 11b, it is possible to suppress a decrease in short-circuit tolerance while reducing a switching loss.
  • the barrier region 38 may be arranged between the drift layer 31 and the base layer 32. Further, in the first embodiment, although not particularly shown, the barrier region 38 may not be formed and the carrier extraction portion may be composed of only the pillar region 39. Further, in the first embodiment, the ease of pulling out the carrier may be changed by changing the impurity concentration in the pillar region 39. In this case, for example, the pillar region 39 formed in the first region 11a may have a higher impurity concentration than the pillar region 39 formed in the second region 11b.
  • the contact region 37 may not be formed or may be formed apart from the pillar region 39. That is, the semiconductor device may be configured such that the base layer 32 is exposed from one surface 30a of the semiconductor substrate 30.
  • the IGBT region 11 and the FWD region 12 may not be arranged adjacent to each other.
  • an area such as a connecting area may be arranged between the IGBT area 11 and the FWD area 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

IGBT領域(11)は、第1領域(11a)と、第1領域(11a)と異なる第2領域(11b)とを有する構成とする。そして、FWD領域(12)およびIGBT領域(11)の第1領域(11a)には、第1電極(41)と第2電極(45)との間にFWD素子をダイオード動作させる順バイアスが印加された際、第2領域(11b)よりも、第2電極(45)から注入されるキャリアが抜け易くなるキャリア引抜部(38、39)が形成された構成とする。

Description

半導体装置 関連出願への相互参照
 本出願は、2019年9月4日に出願された日本特許出願番号2019-161392号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、絶縁ゲート構造を有する絶縁ゲートバイポーラトランジスタ(以下では、IGBTという)素子が形成されたIGBT領域およびフリーホイールダイオード(以下では、FWDという)素子が形成されたFWD領域を有する半導体装置に関する。
 従来より、IGBT領域およびFWD領域を有する半導体装置において、FWD素子のスイッチング損失を低減した半導体装置が提案されている(例えば、特許文献1参照)。具体的には、この半導体装置は、N型のドリフト層を構成する半導体基板を有しており、ドリフト層上にベース層が形成されている。そして、IGBT領域およびFWD領域では、ベース層を貫通するように複数のトレンチが形成され、各トレンチには、壁面を覆うようにゲート絶縁膜が形成されていると共に、ゲート絶縁膜上にゲート電極が形成されている。また、IGBT領域には、トレンチと接するように、N型のエミッタ領域が形成されている。そして、半導体基板のうちのベース層側の一面側には、ベース層およびエミッタ領域と電気的に接続される上部電極が形成されている。
 半導体基板の一面と反対の他面側には、P型のコレクタ層およびN型のカソード層が形成されていると共に、コレクタ層およびカソード層と電気的に接続される下部電極が形成されている。そして、半導体装置は、半導体基板の他面側にコレクタ層が形成されている領域がIGBT領域とされ、カソード層が形成されている領域がFWD領域とされている。
 また、ドリフト層とベース層との間には、N型のバリア領域が形成されている。そして、ベース層には、半導体基板の一面からバリア領域に達するようにピラー領域が形成され、ピラー領域は、上部電極とも接続されている。なお、ピラー領域は、隣合うトレンチの間にそれぞれ形成され、IGBT領域およびFWD領域の全体に渡って形成されている。
 このような半導体装置では、バリア領域およびピラー領域が形成されていることにより、FWD領域をダイオード動作させる際、正孔の注入が抑制される。このため、リカバリ電流を小さくでき、リカバリ時間を短くできる。したがって、スイッチング損失を低減できる。
特許5919121号公報
 しかしながら、本発明者らが検討したところ、上記半導体装置では、短絡耐量が低下する可能性があることが確認された。
 本開示は、スイッチング損失を低減しつつ、短絡耐量が低下することを抑制できる半導体装置を提供することを目的とする。
 本開示の1つの観点によれば、IGBT素子として機能するIGBT領域と、FWD素子として機能するFWD領域とを有する半導体装置は、第1導電型のドリフト層と、ドリフト層の表層部に形成された第2導電型のベース層と、IGBT領域において、ベース層の表層部にドリフト層から離間して形成され、ドリフト層よりも高不純物濃度とされた第1導電型のエミッタ領域と、IGBT領域において、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層と、FWD領域において、ドリフト層のうちのベース層側と反対側に形成された第1導電型のカソード層と、を有する半導体基板と、エミッタ領域とドリフト層との間に位置するベース層の表面に配置されたゲート絶縁膜と、ゲート絶縁膜上に配置されたゲート電極と、ベース層およびエミッタ領域と電気的に接続される第1電極と、コレクタ層およびカソード層と電気的に接続される第2電極と、を備えている。そして、IGBT領域は、第1領域と、第1領域と異なる第2領域とを有し、FWD領域およびIGBT領域の第1領域には、第1電極と第2電極との間にFWD素子をダイオード動作させる順バイアスが印加された際、第2領域よりも、第2電極から注入されるキャリアが抜け易くなるキャリア引抜部が形成されている。
 これによれば、キャリア引抜部が形成されているFWD領域および第1領域により、スイッチング損失の低減を図ることができる。また、キャリア引抜部が形成されていない第2領域により、短絡耐量が低下することを抑制できる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態における半導体装置の平面図である。 図1中のII-II線に沿った断面図である。 図1中のIII-III線に沿った断面図である。 ダイオード動作している際の電子の流れを示す模式図である。 ダイオード動作している際の正孔密度に関するシミュレーション結果を示す図である。 短絡電流が遮断された直後の温度分布に関するシミュレーション結果を示す図である。 リーク電流とピラー領域の有無との関係に関するシミュレーション結果を示す図である。 第1領域の幅と短絡耐量との関係に関する実験結果を示す図である。 第2実施形態における半導体装置の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態について、図面を参照しつつ説明する。なお、本実施形態の半導体装置は、例えば、インバータ、DC/DCコンバータ等の電源回路に使用されるパワースイッチング素子として利用されると好適である。
 図1に示されるように、半導体装置は、セル領域10と、当該セル領域10を囲む外周領域20とを有している。本実施形態の半導体装置は、2つのセル領域10を有している。そして、各セル領域10には、IGBT素子として機能するIGBT領域11と、IGBT領域11に隣接し、FWD素子として機能するFWD領域12とが形成されている。つまり、本実施形態の半導体装置は、同じチップ内にIGBT領域11とFWD領域12とが形成されたRC(Reverse Conductingの略)-IGBTとされている。
 本実施形態では、IGBT領域11およびFWD領域12は、各セル領域10内において、一方向に沿って交互に形成されている。つまり、IGBT領域11およびFWD領域12は、後述する半導体基板30の面方向における一方向に沿って交互に形成されている。具体的には、IGBT領域11およびFWD領域12は、それぞれ長手方向を有する矩形状の領域とされており、当該長手方向と交差する方向に沿って交互に形成されている。また、IGBT領域11およびFWD領域12は、配列方向における両端部にIGBT領域11が位置するように、交互に配列されている。
 なお、図1中では、IGBT領域11およびFWD領域12は、紙面左右方向を長手方向とする矩形状とされており、紙面上下方向に沿って交互に形成されている。以下では、IGBT領域11およびFWD領域12において、IGBT領域11とFWD領域12との配列方向を幅方向ともいい、IGBT領域11とFWD領域12との配列方向に沿った長さを幅ともいう。そして、本実施形態では、IGBT領域11は、幅が800μmとされており、FWD領域12は、幅が250μmとされている。
 以下、本実施形態の半導体装置の具体的な構成について説明する。
 半導体装置は、図2および図3に示されるように、N型のドリフト層31を構成する半導体基板30を有している。なお、本実施形態では、半導体基板30は、シリコン基板で構成されており、一面30aと他面30bとの間の長さである厚さが120μmとされている。つまり、半導体基板30は、厚さがFWD領域12の幅よりも薄くされている。そして、ドリフト層31上には、P型のベース層32が形成されている。言い換えると、半導体基板30の一面30a側には、ベース層32が形成されている。
 半導体基板30には、一面30a側からベース層32を貫通してドリフト層31に達するように複数のトレンチ33が形成されている。これにより、ベース層32は、トレンチ33によって複数個に分離されている。本実施形態では、複数のトレンチ33は、IGBT領域11およびFWD領域12にそれぞれ形成されている。また、本実施形態では、複数のトレンチ33は、IGBT領域11およびFWD領域12の配列方向と交差する方向(すなわち、図1中の紙面左右方向)を長手方向としてストライプ状に形成されている。なお、隣合うトレンチ33同士の間隔(すなわち、ピッチ間隔)は、例えば、6μm程度とされる。
 そして、各トレンチ33は、各トレンチ33の壁面を覆うように形成されたゲート絶縁膜34と、このゲート絶縁膜34の上に形成されたポリシリコン等により構成されるゲート電極35とにより埋め込まれている。これにより、トレンチゲート構造が構成されている。
 なお、IGBT領域11に形成されたトレンチ33に配置されているゲート電極35は、図示しないゲート配線を介して外周領域20に形成されたゲートパッド等と接続される。ゲートパッドは、図示しない可変抵抗を介して駆動回路と接続される。そして、このゲート電極35には、所定のパルス状のゲート電圧が印加される。FWD領域12に形成されているトレンチ33に配置されたゲート電極35は、後述する上部電極41と電気的に接続され、所定電位に維持されるようになっている。
 ベース層32の表層部には、ドリフト層31よりも高不純物濃度とされたN型のエミッタ領域36が形成されている。すなわち、半導体基板30の一面30a側には、エミッタ領域36が形成されている。また、ベース層32の表層部には、ベース層32よりも高不純物濃度とされたP型のコンタクト領域37が形成されている。具体的には、エミッタ領域36は、ベース層32内において終端し、かつ、トレンチ33の側面に接するように形成されている。また、コンタクト領域37は、エミッタ領域36と同様に、ベース層32内において終端するように形成されている。
 より詳しくは、エミッタ領域36は、隣合うトレンチ33間の領域において、トレンチ33の長手方向に沿ってトレンチ33の側面に接するように棒状に延設され、トレンチ33の先端よりも内側で終端する構造とされている。また、コンタクト領域37は、エミッタ領域36と接するように、トレンチ33の長手方向に沿って棒状に延設されている。
 なお、本実施形態では、トレンチ33の壁面のうちのエミッタ領域36とドリフト層31との間に位置する部分が、エミッタ領域とドリフト層との間に位置するベース層の表面に相当する。また、図2および図3では、コンタクト領域37は、エミッタ領域36と同じ深さとされている図が示されているが、エミッタ領域36より深くまで形成されていてもよい。
 さらに、本実施形態では、ベース層32には、当該ベース層32をトレンチ33の深さ方向に分割するように、ドリフト層31よりも高不純物濃度とされたN型のバリア領域38が形成されている。
 そして、IGBT領域11およびFWD領域12には、ベース層32に、半導体基板30の一面30aからバリア領域38に達するようにN型のピラー領域39が形成されている。なお、ピラー領域39は、バリア領域38とほぼ同じ不純物濃度とされており、トレンチ33の延設方向に沿って延設されている。
 ここで、IGBT領域11のうちのFWD領域12側の領域を第1領域11aとし、IGBT領域11のうちの第1領域11aと異なる領域を第2領域11bとする。本実施形態では、上記のようにIGBT領域11およびFWD領域12が配列されているため、FWD領域12で挟まれている部分のIGBT領域11では、第2領域11bは、第1領域11aで挟まれた構成となる。また、IGBT領域11とFWD領域12との配列方向の両端部に位置するIGBT領域11では、配列方向の端部側の領域の全体が第2領域11bとなる。
 そして、FWD領域12には、全体的にピラー領域39が形成されている。一方、IGBT領域11では、第1領域11aのみにピラー領域39が形成されており、第2領域11bには、ピラー領域39が形成されていない。つまり、IGBT領域11は、ピラー領域39が形成されている領域と、ピラー領域39が形成されていない領域とが混在した状態となっている。言い換えると、IGBT領域11は、ピラー領域39が間引かれた構成となっている。
 なお、本実施形態では、バリア領域38およびピラー領域39がキャリア引抜部に相当している。また、本実施形態では、第1領域11aは、FWD領域12との境界から最も離れた位置のピラー領域39における当該境界と反対側の部分までとされている。つまり、後述する第1領域11aの幅とは、FWD領域12との境界と、境界から最も離れた位置のピラー領域39における当該境界と反対側の部分との間の長さのことである。
 半導体基板30の一面30a上には、BPSG(Borophosphosilicate Glassの略)等で構成される層間絶縁膜40が形成されている。そして、層間絶縁膜40上には、層間絶縁膜40に形成されたコンタクトホール40aを通じて、エミッタ領域36、コンタクト領域37(すなわち、ベース層32)、およびピラー領域39と電気的に接続される上部電極41が形成されている。つまり、層間絶縁膜40上には、IGBT領域11においてエミッタ電極として機能し、FWD領域12においてアノード電極として機能する上部電極41が形成されている。なお、上部電極41は、ベース層32、コンタクト領域37、およびピラー領域39とオーミック接合されていてもよいし、ベース層32およびコンタクト領域37とオーミック接合されると共にピラー領域39とショットキー接合されていてもよい。
 また、本実施形態では、層間絶縁膜40には、FWD領域12において、ゲート電極35を露出させるコンタクトホール40bが形成されている。そして、上部電極41は、このコンタクトホール40bを通じてゲート電極35とも接続されている。これにより、FWD領域12に形成されたゲート電極35は、上部電極41と同電位に維持される。本実施形態では、上部電極41が第1電極に相当している。
 ドリフト層31のうちのベース層32側と反対側(すなわち、半導体基板30の他面30b側)には、ドリフト層31よりも高不純物濃度とされたN型のバッファ層42が形成されている。
 そして、IGBT領域11では、バッファ層42を挟んでドリフト層31と反対側にP型のコレクタ層43が形成され、FWD領域12では、バッファ層42を挟んでドリフト層31と反対側にN型のカソード層44が形成されている。つまり、IGBT領域11とFWD領域12とは、半導体基板30の他面30b側に形成される層がコレクタ層43であるかカソード層44であるかによって区画されている。そして、コレクタ層43上の領域がIGBT領域11とされ、カソード層44上の領域がFWD領域12とされている。
 コレクタ層43およびカソード層44を挟んでドリフト層31と反対側(すなわち、半導体基板30の他面30b)には、コレクタ層43およびカソード層44と電気的に接続される下部電極45が形成されている。つまり、IGBT領域11においてはコレクタ電極として機能し、FWD領域12においてはカソード電極として機能する下部電極45が形成されている。本実施形態では、下部電極45は、コレクタ層43およびカソード層44とオーミック接合されている。また、本実施形態では、下部電極45が第2電極に相当している。
 そして、上記のように構成されていることにより、FWD領域12においては、ベース層32およびコンタクト領域37をアノードとし、ドリフト層31、バッファ層42、カソード層44をカソードとしてPN接合されたFWD素子が構成されている。
 以上が本実施形態における半導体装置の構成である。なお、本実施形態では、N型、N型、N型が第1導電型に相当しており、P型、P型が第2導電型に相当している。また、本実施形態では、上記のように構成されることにより、半導体基板30は、コレクタ層43、カソード層44、ドリフト層31、エミッタ領域36、コンタクト領域37、バリア領域38、ピラー領域39を含んだ構成となっている。
 次に、上記半導体装置の作動について説明しつつ、さらに半導体装置の詳細な構成について説明する。
 IGBT領域11に形成されたIGBT素子の作動については、従来と同様である。簡単に説明すると、IGBT素子は、ゲート電極35に印加されるゲート電圧が制御されることにより、ベース層32のうちのトレンチ33と接する部分に形成されるチャネルの有無が制御される。これにより、IGBT素子は、エミッタ-コレクタ間に電流を流したり、遮断したりするスイッチング動作を行う。
 そして、FWD領域12に形成されたFWD素子は、上部電極41と下部電極45との間に順バイアスが印加されることにより、下部電極45からカソード層44に電子が注入されると共に、上部電極41からコンタクト領域37に正孔が注入されることでダイオード動作する。この際、本実施形態では、FWD領域12およびIGBT領域11の第1領域11aには、ピラー領域39が形成されている。このため、図4に示されるように、下部電極45から注入された電子は、ピラー領域39から上部電極41へと低抵抗な状態で抜ける。したがって、バリア領域38およびピラー領域39と、ベース層32との間のPN接合に順バイアスが印加され難くなり、上部電極41からの正孔の注入を低減できる。なお、図4では、電子を「e」として示している。
 このため、上部電極41と下部電極45との間の電圧が順バイアスから逆バイアスに切り替わった際、正孔の注入が抑制されているため、リカバリ電流を小さくでき、リカバリ時間を短くできる。したがって、スイッチング損失を低減することができる。なお、本実施形態では、電子が第2電極から注入されるキャリアに相当する。
 ここで、ピラー領域39がIGBT領域11およびFWD領域12の全体に渡って形成された従来の半導体装置(以下では、単に従来の半導体装置ともいう)について、本発明者らが検討した結果を図5および図6を参照しつつ説明する。
 まず、図5に示されるように、半導体装置をダイオード動作させた際、正孔密度は、FWD領域12で高くなることが確認される。そして、IGBT領域11では、FWD領域12との境界側と反対側をIGBT領域11の幅方向における中心側(以下では、単に中心側ともいう)とすると、正孔密度は、FWD領域12との境界側から中心側に向かって順に低くなることが確認される。これは、ダイオード動作時においては、カソード層44(すなわち、半導体基板30の他面30b)に注入される電子は、一面30a側に向かって約45°の広がりを持って拡散しながら移動するためである。つまり、IGBT領域11では、元々、FWD領域12との境界から半導体基板30の厚さ以上の部分に電子が到達し難く、正孔が注入され難い状態となっている。
 また、図6に示されるように、半導体装置が短絡してIGBT領域11に大電流である短絡電流が流れ、当該短絡電流が遮断された直後の温度分布は、FWD領域12との境界側から中心側に向かって高くなることが確認される。これは、IGBT領域11のうちのFWD領域12との境界側の領域では、大電流が流れたことによって発生する熱がFWD領域12側へと放熱されるためである。
 さらに、本発明者らは、リーク電流と、ピラー領域39の有無との関係について鋭意検討を行い、図7に示す結果を得た。
 図7に示されるように、リーク電流は、温度が高くなるほど電子が上部電極41側へと抜け易くなるために大きくなる。そして、ピラー領域39が形成されている場合には、ピラー領域39が形成されていない場合よりも電子が上部電極41側へと抜け易くなるため、リーク電流が大きくなり易いことが確認される。
 つまり、半導体装置は、短絡時においては、IGBT領域11における中心側の領域がFWD領域12との境界側の領域より温度が高くなり易いため、この領域にピラー領域39が形成されていると、リーク電流が大きくなることによって短絡耐量が低下し易い。このため、従来の半導体装置のように、IGBT領域11およびFWD領域12の全体に渡ってピラー領域39が形成されている場合には、短絡耐量が低下する。
 したがって、本実施形態の半導体装置では、IGBT領域11は、FWD領域12側の第1領域11aにピラー領域39が形成されており、第1領域11aと異なる第2領域11bにはピラー領域39を形成しないようにしている。このため、スイッチング損失を低減しつつ、短絡耐量を向上させることができる。
 そして、本発明者らは、さらに、第1領域11aにおける幅について鋭意検討を行い、図8に示す実験結果を得た。なお、図8は、半導体基板30の厚さを120μmとし、FWD領域12の幅を250μmとした実験結果を示す図である。また、図8では、IGBT領域11とカソード層44との境界を基準(すなわち、図8中の第1領域の幅が0)としている。
 図8に示されるように、リカバリ損失(すなわち、スイッチング損失)は、第1領域11aの幅が120μmまでは急峻に低下するが、120μm以上の範囲ではあまり変化しない。すなわち、リカバリ損失は、半導体基板30の厚さが120μmとされている場合、第1領域11aの幅を半導体基板30の厚さ以上としてもあまり変化しない。
 一方、短絡耐量は、第1領域11aの幅が250μmまではほぼ一定であるが、第1領域11aの幅が250μm以上となると急峻に低下する。すなわち、短絡耐量は、FWD領域12の幅が250μmである場合、第1領域11aの幅をFWD領域12の幅以上とすると急峻に低下する。
 このため、本実施形態では、第1領域11aの幅は、半導体基板30の厚さ以上であって、FWD領域12の幅以下となるように形成されている。
 以上説明したように、本実施形態では、FWD領域12には、ピラー領域39が形成されている。また、IGBT領域11は、ピラー領域39が形成された第1領域11aと、ピラー領域39が形成されていない第2領域11bとを有している。このため、ピラー領域39が形成されているFWD領域12および第1領域11aにより、スイッチング損失の低減を図ることができる。また、ピラー領域39が形成されていない第2領域11bにより、短絡耐量が低下することを抑制できる。
 そして、本実施形態では、第1領域11aは、FWD領域12との境界側に形成されている。また、第1領域11aの幅は、半導体基板30の厚さ以上であって、FWD領域12の幅以下とされている。このため、スイッチング損失を十分に低減しつつ、短絡耐量が低下することを抑制できる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対し、IGBT領域11の構成を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図9に示されるように、バリア領域38およびピラー領域39は形成されていない。そして、ベース層32は、第1領域11aに位置する第1ベース層32aが、第2領域11bに位置する第2ベース層32bよりも不純物濃度が低くされている。なお、特に図示しないが、FWD領域12における半導体基板30の一面30a側の構成は、第1領域11aと同様の構成とされている。
 このように、ベース層32の不純物濃度を変化させることによって上部電極41への電子の引く抜き易さを変化させた半導体装置としても、上記第1実施形態と同様の効果を得ることができる。なお、本実施形態では、第1ベース層32aがキャリア引抜部に相当する。
 (他の実施形態)
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記各実施形態では、第1導電型をN型とし、第2導電型をP型とした例について説明したが、第1導電型をP型とし、第2導電型をN型とすることもできる。
 また、上記各実施形態において、トレンチゲート型の半導体装置ではなく、半導体基板30の一面30a上にゲート電極35が配置されるプレーナ型の半導体装置としてもよい。
 さらに、上記各実施形態において、セル領域10は、1つとされていてもよいし、3つ以上の複数とされていてもよい。また、FWD領域12は、1つのセル領域10内に1つのみ形成されるようにしてもよい。
 また、上記各実施形態において、第1領域11aは、FWD領域12側に形成されていなくてもよい。さらに、第1領域11aの幅は、半導体基板30の厚さ未満とされていてもよいし、FWD領域12の幅より広くされていてもよい。このような半導体装置としても、IGBT領域11を第1領域11aと第2領域11bとを有する構成とすることにより、スイッチング損失を低減しつつ、短絡耐量が低下することを抑制できる。
 そして、上記第1実施形態において、特に図示しないが、バリア領域38は、ドリフト層31とベース層32との間に配置されていてもよい。また、上記第1実施形態において、特に図示しないが、バリア領域38が形成されておらず、キャリア引抜部がピラー領域39のみで構成されるようにしてもよい。さらに、上記第1実施形態において、ピラー領域39の不純物濃度を変化させることにより、キャリアの引き抜き易さを変化させるようにしてもよい。この場合、例えば、第1領域11aに形成されるピラー領域39は、第2領域11bに形成されるピラー領域39よりも不純物濃度が高くなるようにするようにすればよい。
 さらに、上記第1実施形態において、コンタクト領域37は、形成されていなくてもよいし、ピラー領域39と離れて形成されていてもよい。つまり、半導体装置は、ベース層32が半導体基板30の一面30aから露出する構成とされていてもよい。
 また、上記第1、第2実施形態において、IGBT領域11とFWD領域12とは、隣接して配置されていなくてもよい。例えば、IGBT領域11とFWD領域12の間に、繋ぎ領域等の領域が配置されていてもよい。

Claims (5)

  1.  IGBT素子として機能するIGBT領域(11)と、FWD素子として機能するFWD領域(12)とを有する半導体装置であって、
     第1導電型のドリフト層(31)と、前記ドリフト層の表層部に形成された第2導電型のベース層(32)と、前記IGBT領域において、前記ベース層の表層部に前記ドリフト層から離間して形成され、前記ドリフト層よりも高不純物濃度とされた第1導電型のエミッタ領域(36)と、前記IGBT領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(43)と、前記FWD領域において、前記ドリフト層のうちの前記ベース層側と反対側に形成された第1導電型のカソード層(44)と、を有する半導体基板(30)と、
     前記エミッタ領域と前記ドリフト層との間に位置する前記ベース層の表面に配置されたゲート絶縁膜(34)と、
     前記ゲート絶縁膜上に配置されたゲート電極(35)と、
     前記ベース層および前記エミッタ領域と電気的に接続される第1電極(41)と、
     前記コレクタ層および前記カソード層と電気的に接続される第2電極(45)と、を備え、
     前記IGBT領域は、第1領域(11a)と、前記第1領域と異なる第2領域(11b)とを有し、
     前記FWD領域および前記IGBT領域の第1領域には、前記第1電極と前記第2電極との間に前記FWD素子をダイオード動作させる順バイアスが印加された際、前記第2領域よりも、前記第2電極から注入されるキャリアが抜け易くなるキャリア引抜部(32a、38、39)が形成されている半導体装置。
  2.  前記IGBT領域は、前記FWD領域側に前記第1領域が配置されている請求項1に記載の半導体装置。
  3.  前記IGBT領域および前記FWD領域の配列方向に沿った長さを幅とすると、
     前記IGBT領域は、前記第1領域の幅が前記半導体基板の厚さ以上とされている請求項2記載の半導体装置。
  4.  前記IGBT領域および前記FWD領域の配列方向に沿った長さを幅とすると、
     前記IGBT領域は、前記第1領域の幅が前記FWD領域の幅以下とされている請求項2または3に記載の半導体装置。
  5.  前記ベース層と前記ドリフト層との間、または前記ベース層内に形成された第1導電型のバリア領域(38)と、
     前記ベース層に形成され、前記バリア領域と接続されると共に前記第1電極と接続される第1導電型のピラー領域(39)と、を有する前記キャリア引抜部が形成された請求項1ないし4のいずれか1つに記載の半導体装置。
PCT/JP2020/033285 2019-09-04 2020-09-02 半導体装置 WO2021045116A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080062127.XA CN114342087A (zh) 2019-09-04 2020-09-02 半导体装置
US17/682,395 US20220181471A1 (en) 2019-09-04 2022-02-28 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161392A JP7172920B2 (ja) 2019-09-04 2019-09-04 半導体装置
JP2019-161392 2019-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,395 Continuation US20220181471A1 (en) 2019-09-04 2022-02-28 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2021045116A1 true WO2021045116A1 (ja) 2021-03-11

Family

ID=74847394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033285 WO2021045116A1 (ja) 2019-09-04 2020-09-02 半導体装置

Country Status (4)

Country Link
US (1) US20220181471A1 (ja)
JP (1) JP7172920B2 (ja)
CN (1) CN114342087A (ja)
WO (1) WO2021045116A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919121B2 (ja) * 1975-10-31 1984-05-02 タイトウ カブシキガイシヤ シンキノヤクリカツセイタトウブンカイブツノ セイゾウホウホウ
JP2016225345A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 逆導通igbt
JP2017059725A (ja) * 2015-09-17 2017-03-23 トヨタ自動車株式会社 半導体装置
JP2018073911A (ja) * 2016-10-26 2018-05-10 株式会社デンソー 半導体装置
WO2019117248A1 (ja) * 2017-12-14 2019-06-20 富士電機株式会社 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2442355B1 (en) * 2009-06-11 2014-04-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9520465B2 (en) * 2011-07-27 2016-12-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Diode, semiconductor device, and MOSFET
JP6126150B2 (ja) * 2015-03-06 2017-05-10 トヨタ自動車株式会社 半導体装置
JP6531589B2 (ja) * 2015-09-17 2019-06-19 株式会社デンソー 半導体装置
CN109891595B (zh) * 2017-05-31 2022-05-24 富士电机株式会社 半导体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919121B2 (ja) * 1975-10-31 1984-05-02 タイトウ カブシキガイシヤ シンキノヤクリカツセイタトウブンカイブツノ セイゾウホウホウ
JP2016225345A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 逆導通igbt
JP2017059725A (ja) * 2015-09-17 2017-03-23 トヨタ自動車株式会社 半導体装置
JP2018073911A (ja) * 2016-10-26 2018-05-10 株式会社デンソー 半導体装置
WO2019117248A1 (ja) * 2017-12-14 2019-06-20 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP2021040071A (ja) 2021-03-11
JP7172920B2 (ja) 2022-11-16
CN114342087A (zh) 2022-04-12
US20220181471A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN109964317B (zh) 半导体装置
JP5636808B2 (ja) 半導体装置
JP5103830B2 (ja) 絶縁ゲート型半導体装置
WO2016009616A1 (ja) 半導体装置
WO2017038389A1 (ja) 半導体装置
WO2015145929A1 (ja) 半導体装置
WO2017199679A1 (ja) 半導体装置
JP2009267116A (ja) ダイオードとそのダイオードを備えている半導体装置
US20230037409A1 (en) Semiconductor device
CN112673466B (zh) 半导体装置
JP7459694B2 (ja) 半導体装置
JP6869791B2 (ja) 半導体スイッチング素子及びその製造方法
JP6935731B2 (ja) 半導体装置
WO2021045116A1 (ja) 半導体装置
WO2021182352A1 (ja) 半導体装置
JP7338242B2 (ja) 半導体装置
JP6954333B2 (ja) 半導体装置
JP2013069871A (ja) 半導体装置
JP7294004B2 (ja) 半導体装置
JP7016437B2 (ja) 半導体スイッチング素子及びその製造方法
US20220310830A1 (en) Semiconductor device
JP2022181457A (ja) 半導体装置
JP2004266298A (ja) 縦型半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861741

Country of ref document: EP

Kind code of ref document: A1