CN108447903B - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN108447903B
CN108447903B CN201810151457.0A CN201810151457A CN108447903B CN 108447903 B CN108447903 B CN 108447903B CN 201810151457 A CN201810151457 A CN 201810151457A CN 108447903 B CN108447903 B CN 108447903B
Authority
CN
China
Prior art keywords
region
semiconductor substrate
distance
extension
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810151457.0A
Other languages
English (en)
Other versions
CN108447903A (zh
Inventor
三塚要
小野泽勇一
田村隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN108447903A publication Critical patent/CN108447903A/zh
Application granted granted Critical
Publication of CN108447903B publication Critical patent/CN108447903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

本发明提供一种半导体装置,其具备:半导体基板,形成有有源部和边缘部;上部电极,设置在半导体基板的上方;绝缘膜,设置在半导体基板与上部电极之间,并形成有接触孔;第一导电型的漂移区,形成在半导体基板的内部;第二导电型的基区,形成在有源部,并经由接触孔与上部电极连接;第二导电型的阱区,形成在边缘部,并与上部电极分离;以及第二导电型的延长区,从基区向阱区的方向延伸地形成,并通过绝缘膜与上部电极分离,从接触孔的阱区侧的端部到延长区的阱区侧的端部为止的第一距离与从延长区的阱区侧的端部到阱区为止的第二距离之和小于有源部中的半导体基板的厚度。

Description

半导体装置
技术领域
本发明涉及半导体装置。
背景技术
以往,已知在与绝缘栅双极型晶体管(IGBT)等功率器件并联连接的FWD(FreeWheeling Diode:续流二极管)的二极管等半导体装置中,将P型区延长到比半导体基板的上表面的与阳极电极的接触部分更靠外侧的结构(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2013-179342号公报
发明内容
技术问题
期望半导体装置的反向恢复耐量高。
技术方案
在本发明的一个形态中,提供一种具备形成有流通主电流的有源部和缓和电场的边缘部的半导体基板的半导体装置。半导体装置可以具备设置在半导体基板的上方的上部电极。半导体装置可以具备设置在半导体基板与上部电极之间,并形成有接触孔的绝缘膜。半导体装置可以具备形成在半导体基板的内部的第一导电型的漂移区。半导体装置可以具备在有源部中形成在半导体基板的上表面侧,并经由接触孔与上部电极连接的第二导电型的基区。半导体装置可以具备在边缘部中形成在半导体基板的上表面侧,并与上部电极分离的第二导电型的阱区。半导体装置可以具备在半导体基板的上表面侧从基区向阱区的方向延伸地形成,并通过绝缘膜与上部电极分离的第二导电型的延长区。在与半导体基板的上表面平行的面中,从接触孔的阱区侧的端部到延长区的阱区侧的端部为止的第一距离与从延长区的阱区侧的端部到阱区为止的第二距离之和可以小于有源部中的半导体基板的厚度。
第一距离与第二距离之和可以大于50μm。第一距离与第二距离之和可以小于100μm。
延长区中的掺杂浓度NA可以满足下式:
【数学式1】
Figure BDA0001580014970000021
其中,Jrate为额定电流密度(A/cm2),q为基本电荷(C),vsat_P为空穴的饱和速度(cm/sec)。
延长区中的掺杂浓度可以为5×1016/cm3以上且3.0×1017/cm3以下。
延长区的深度与阱区的深度可以相同。延长区的掺杂浓度与阱区的掺杂浓度可以相同。
半导体装置可以具备:第一导电型的阴极区,在半导体基板的内部设置在漂移区与半导体基板的下表面之间,且掺杂浓度比漂移区的掺杂浓度高。阴极区的边缘部侧的端部可以配置在比阱区更靠有源部侧的位置。阴极区的边缘部侧的端部可以配置在比延长区的阱区侧的端部更靠有源部侧的位置。阴极区的边缘部侧的端部可以配置在比接触孔的阱区侧的端部更靠有源部侧的位置。在半导体基板的角部中,接触孔的俯视时的端部的曲率半径可以大于延长区的俯视时的端部的曲率半径。
上述发明概要并未列举本发明的全部特征。这些特征组的子组合也构成发明。
附图说明
图1是示出本发明的一个实施方式的半导体装置100的一例的截面图。
图2是说明第一距离L1与第二距离L2之和L1+L2比半导体基板10的厚度Wt足够大的半导体装置的反向恢复时的动作的图。
图3是示出图2的例子中的耗尽层的扩展的一例的图。
图4是说明第一距离L1与第二距离L2之和L1+L2比半导体基板10的厚度Wt小的半导体装置100的反向恢复时的动作的图。
图5是示出图4的例子中的耗尽层的扩展的一例的图。
图6是示出延长区30的长度L1(μm)与半导体装置100的反向恢复耐量Pmax之间的关系的图。
图7是示出杂质向延长区30的注入浓度(/cm2)与半导体装置100的反向恢复耐量Pmax之间的关系的图。
图8是延长区30和阱区94的附近的放大图。
图9是延长区30和阱区94的附近的放大图的其他例。
图10A是示出半导体装置100的其他例的截面图。
图10B是示出半导体装置100的其他例的截面图。
图11是示出半导体装置100的上表面的结构的概要的图。
图12是示出角部110的上表面的图。
图13是示出其他实施例的半导体装置200的上表面的结构的概要的图。
图14是将图13中的区域130的附近放大的图。
图15是示出图13中的A-A截面的一例的图。
图16是示出图13中的B-B截面的一例的图。
图17是示出角部110的其他例的图。
具体实施方式
以下,通过发明的实施方式来说明本发明,但以下实施方式并不限定权利要求所涉及的发明。此外,实施方式中所说明的特征的全部组合并不一定是发明的解决方案所必须的。
在本说明书中,将与半导体基板的深度方向平行的方向上的一侧称为“上”,将另一侧称为“下”。基板、层或其他部件的两个主面中,将一侧的面称为上表面,将另一侧的面称为下表面。“上”、“下”的方向并不限定于重力方向或半导体装置实际安装时的方向。在本说明书中,有时使用X轴、Y轴和Z轴的直角坐标轴来说明技术事项。在本说明书中,将与半导体基板的上表面平行的面设为XY面,将与半导体基板的上表面垂直的深度方向设为Z轴。
在各实施例中示出了以第一导电型为n型、以第二导电型为p型的例子,但是也可以以第一导电型为p型、以第二导电型为n型。在此情况下,各实施例中的基板、层、区域等的导电性分别成为相反的极性。
图1是示出本发明的一个实施方式的半导体装置100的一例的截面图。在图1中,示出与形成半导体装置100的半导体基板10的上表面垂直的方向上的截面。
半导体装置100具备半导体基板10。半导体基板10是由硅、碳化硅、氮化镓等半导体材料形成的基板。半导体基板10的至少一部分可以通过外延生长等形成。半导体基板10具有n-型的漂移区18。
在半导体基板10的内部,在漂移区18与半导体基板10的下表面之间形成有掺杂浓度比漂移区18高的n+型的阴极区24。阴极区24在半导体基板10的下表面露出。阴极区24可以形成在半导体基板10的整个下表面,也可以局部形成。
在漂移区18与阴极区24之间可以形成掺杂浓度比漂移区18高的n+型的缓冲区20。缓冲区20可以作为防止从基区14扩展的耗尽层到达与阴极区24相同的深度的场截止区而发挥功能。基区14作为二极管的阳极区而发挥功能。
在半导体基板10的上表面的上方形成有上部电极52。上部电极52作为阳极电极而发挥功能。在半导体基板10的下表面形成有下部电极54。下部电极54作为阴极电极而发挥功能。上部电极52和下部电极54由铝、铜和钨等一种以上的金属材料形成。在本说明书中,半导体基板10的主面中,将形成有上部电极52的面称为上表面,将形成有下部电极54的面称为下表面。
在半导体基板10的上表面与上部电极52之间形成有绝缘膜26。绝缘膜26可以包含氧化膜、氮化膜和硅酸盐玻璃的一种以上。在绝缘膜26形成有贯通绝缘膜26的接触孔56。在接触孔56的内部也形成有上部电极52。上部电极52经由接触孔56而与半导体基板10的上表面连接。
在半导体基板10形成有有源部70、延长部80和边缘部90。有源部70是半导体装置100中的流通主电流的区域。主电流是指例如在上部电极52与下部电极54之间流通的电流。有源部70的至少一部分区域作为FWD等二极管而动作。在有源部70可以进一步形成有IGBT等晶体管。
在有源部70中的半导体基板10的上表面形成有p+型的基区14。基区14在半导体基板10的上表面露出。基区14经由接触孔56与上部电极52电连接。
边缘部90形成在比有源部70更靠近半导体基板10的边缘侧的位置。边缘部90缓和有源部70的端部的电场集中。在半导体基板10的上表面,边缘部90以包围有源部70的方式形成。边缘部90在半导体基板10的内部具有一个或多个p+型的阱区94。各个阱区94可以在半导体基板10的上表面露出。
各个阱区94可以设置为在与半导体基板10的上表面平行的面包围有源部70。阱区94可以作为使从有源部70延伸的耗尽层在与半导体基板10的上表面平行的方向上延伸到半导体基板10的边缘附近为止的保护环而发挥功能。
阱区94与上部电极52分离。本例的阱区94未与上部电极52电连接。本例的阱区94的上表面被绝缘膜26覆盖。
边缘部90可以还具有形成在半导体基板10的上方的一个或多个金属膜92。金属膜92可以由与上部电极52相同的材料形成。可以针对各个阱区94设置金属膜92。金属膜92以覆盖阱区94的方式设置。金属膜92可以作为场板而发挥功能。金属膜92可以经由形成在绝缘膜26的接触孔与阱区94连接。金属膜92与上部电极52分离地设置。
边缘部90可以在半导体基板10的端部还具有p+型或n+型的沟道截断环96。沟道截断环96的上表面可以设置有绝缘膜26。沟道截断环96可以与金属膜92连接。
延长部80设置在有源部70和边缘部90之间。延长部80可以设置在有源部70中的接触孔56的阱区94侧的端部60与边缘部90之间。作为一例,在半导体基板10的上表面,延长部80可以以包围有源部70的方式设置。在图1中示出了在有源部70中形成有二极管的端部、延长部80和边缘部90。
在本说明书中,将接触孔56的边缘部90侧的端部60(上部电极52与半导体基板10的正面的表面层接触的面的、最外周的端)作为有源部70与延长部80的边界。延长部80在半导体基板10的内部具有从基区14沿阱区94的方向延伸而形成的p+型的延长区30。延长区30通过绝缘膜26与上部电极52分离。本例的延长区30在半导体基板10的上表面露出。延长区30的上表面被绝缘膜26覆盖。在延长区30的上方可以经由绝缘膜26设置有上部电极52。
延长区30在半导体装置100的动作时作为高电阻区而发挥功能。通过设置延长区30,在半导体装置100的动作时,能够抑制从上部电极52向边缘部90的空穴注入。由于积累在边缘部90的过剩的空穴和/或电子的浓度被抑制,所以在半导体装置100的反向恢复动作时能够抑制从边缘部90向有源部70流通的电流。因此,能够缓和反向恢复动作时的电流集中。
如果在半导体装置100的反向恢复动作时在延长区30流通有大的空穴电流,则由于空穴浓度p的增加,延长区30的受主的电荷(-NA、NA为受主浓度)与空穴的电荷(+p)相抵消。其结果,延长区30的空间电荷密度的绝对值(︱p-NA︱)变小,空间电荷变得接近中性。因此,存在延长区30无法作为p+型区发挥功能的情况。在此情况下,在半导体装置100反向恢复时,存在耗尽层在延长部80的上表面终止,电场在延长部80的附近集中的情况。
在本例中,将在与半导体基板10的上表面平行的面,从接触孔56的阱区94侧的端部60起到延长区30的阱区94侧的端部62为止的距离设为第一距离L1。第一距离L1与延长区30的长度对应。此外,将在与半导体基板10的上表面平行的面,从延长区30的阱区94侧的端部62起到阱区94的延长区30侧的端部64为止的距离设为第二距离L2。距离L1和距离L2是指各自的最短距离。距离L1和距离L2可以是同一直线上的距离。在设置有多个阱区94的情况下,第二距离L2所涉及的阱区94是距延长区30最近的阱区94。
在半导体装置100中,第一距离L1与第二距离L2之和小于半导体基板10的厚度Wt。由此,即使在反向恢复动作时延长区30的受主与空穴相抵消的情况下,也能够使耗尽层从有源部70延伸到边缘部90。因此,能够使反向恢复耐量提高。半导体基板10的厚度Wt可以使用边缘部90的平均厚度。可以将延长区30的端部62的位置作为延长部80与边缘部90的边界位置。
图2是说明第一距离L1与第二距离L2之和L1+L2比半导体基板10的厚度Wt足够大的半导体装置的反向恢复时的动作的图。在半导体装置的反向恢复时从边缘部90向延长区30的端部注入大量空穴。其结果,延长区30的端部的受主与空穴相抵消,空间电荷密度的绝对值变小,实质的受主的功能下降。如果被注入的空穴浓度变高,则延长区30的端部无法作为p+型区而发挥功能。例如,在注入到延长区30的空穴浓度大的情况下,延长区30的一部分区域还存在以反转为n型区或中性区的方式发挥功能的情况。
特别地,在与接触孔56的端部60远离的延长区30的端部62,集中注入来自边缘部90的空穴、以及抽取被注入的空穴要花费一定时间。因此,如图2中虚线所示,能够作为p+型区发挥功能的延长区30暂时变短。
图3是示出图2的例子中的耗尽层的扩展的一例的图。如图2所示,如果能够作为p+型区发挥功能的延长区30变短,则延长区30与相邻的阱区94之间的距离变大。因此,存在耗尽层102在延长区30和阱区94之间的半导体基板10的上表面向有源部70侧收缩,或者终止的情况。在此情况下,电场集中在延长区30和阱区94之间,半导体装置的耐量下降。
图4是说明第一距离L1与第二距离L2之和L1+L2比半导体基板10的厚度Wt小的半导体装置100的反向恢复时的动作的图。与图2的例子同样,在半导体装置100反向恢复时,从边缘部90向延长区30注入空穴。其结果,延长区30的实质长度暂时变短。
图5是示出图4的例子中的耗尽层的扩展的一例的图。在本例中,第一距离L1与第二距离L2之和L1+L2足够小。通过减小L1+L2,即使延长区30的实质长度变小,从基区14侧扩展的耗尽层102与在与基区14相邻的阱区94的周边形成的耗尽层102也能够紧密连接。由此,能够抑制耗尽层102在延长区30和阱区94之间终止。
例如,在上部电极52的附近,能够较快地抽取注入到延长区30的空穴。因此,至少在上部电极52的附近,延长区30能够作为p+型区发挥功能。因此,通过使从接触孔56的端部60到阱区94为止的距离L1+L2足够小,即使在延长区30的一部分变得暂时无法作为p+型区发挥功能的情况下,也能够抑制耗尽层102在基板上表面露出,并抑制半导体装置100的耐量下降。
具体地,通过使距离L1+L2比半导体基板10的厚度Wt小,能够抑制半导体装置100的耐量下降。距离L1+L2可以是半导体基板10的厚度Wt的90%以下,也可以是半导体基板10的厚度Wt的80%以下。距离L2可以是5μm以下。此外,距离L2可以是阱区94彼此的平均间隔的80%以上且120%以下。
半导体基板10的厚度Wt根据半导体装置100的额定电压而不同。作为一例,额定电压为600V的半导体装置100中的半导体基板10的厚度Wt为60μm左右。额定电压越大则半导体基板10的厚度越大。距离L1+L2可以小于100μm,可以小于90μm,也可以小于80μm。
应予说明,如果距离L1+L2过短,则延长区30的长度受到限制,因此存在抑制空穴向边缘部90注入的效果变小的情况。距离L1+L2可以是半导体基板10的厚度Wt的50%以上,也可以是半导体基板10的厚度Wt的70%以上。此外,距离L1+L2可以大于50μm,可以大于60μm,也可以大于70μm。
此外,距离L1优选比距离L2大。例如,距离L1可以是距离L2的5倍以上,可以是距离L2的10倍以上,也可以是距离L2的20倍以上。由此,使延长区30形成得足够长,能够提高抑制空穴向边缘部90注入的效果。
此外,上部电极52的在绝缘膜26上从接触孔56的端部60向阱区94的方向延伸的长度L3可以是延长区30的长度L1的50%以上,也可以是延长区30的长度L1的70%以上。通过使上部电极52向阱区94侧延伸,即使延长区30实质上变短,也能够抑制耗尽层102在延长区30与阱区94之间终止。L3可以比从L1+L2中减去L3而得到的值小。
此外,延长区30中的掺杂浓度(在本例中为受主浓度NA)可以在下式的范围内。延长区30中的受主浓度NA可以是延长区30中的峰值。其中,Jrate为额定电流密度(A/cm2),q为基本电荷(=1.6e-19(C)),vsat_P为空穴的饱和速度(例如,对于硅而言,为7×106~1×107(cm/sec)左右,作为一例为7×106(cm/sec))。作为一例,额定电压600V的半导体装置中的额定电流密度为500A/cm2左右,额定电压越上升,则额定电流密度越下降。下式中的Jrate×30/q·vsat_P为与延长区30的受主浓度有关的浓度指标。由于从边缘部90侧向延长部80侧流动的空穴密度为额定电流密度的10倍左右,所以浓度指标是在该概算式Jrate×10/q·vsat_P上再乘以3倍的耐量余量而得到的值。因此,延长区30中的受主浓度NA相对于浓度指标可以在下式的范围内。
【数学式1】
Figure BDA0001580014970000081
如果延长区30中的掺杂浓度过低,则延长区30的电阻值上升。在此情况下,在半导体装置100反向恢复动作时,来自边缘部90的空穴不通过延长区30,而集中在接触孔56的端部60。因此,半导体装置100的耐量下降。
如果延长区30中的掺杂浓度过高,则延长区30的电阻值下降。在此情况下,在半导体装置100的动作时无法抑制载流子向边缘部90注入。因此,在半导体装置100的反向恢复动作时,大量的空穴从边缘部90向有源部70侧流动,半导体装置100的反向恢复耐量下降。
对于此,通过适当地设定延长区30中的掺杂浓度,能够在半导体装置100的反向恢复动作时经由延长区30抽取空穴,此外,能够抑制半导体装置100的动作时载流子向边缘部90注入。因此,能够提高半导体装置100的耐量。
应予说明,通过提高延长区30中的掺杂浓度,能够抑制上述的延长区30的反转。因此,数学式1中的Jrate×30/q·vsat_P可以大于1,可以大于2,也可以大于5。
图6是示出延长区30的长度L1(μm)与半导体装置100的反向恢复耐量Pmax之间的关系的图。在本例中,对延长区30以1.3×1013/cm2的浓度注入p型的杂质。图6的例子示出了耗尽层未在延长部80终止的条件下的特性。
如图6所示,在延长区30的长度L1为大于50μm且小于100μm的范围,反向恢复耐量Pmax成为150(kW)以上,被最大化。如果延长区30的长度L1小于50μm,则延长区30的电阻值上升,抑制空穴向边缘部90注入的效果变小。因此,反向恢复耐量Pmax下降。此外,如果延长区30的长度L1大于100μm,则延长区30的电阻值下降,反向恢复时电流集中在接触孔56的端部60。因此,反向恢复耐量Pmax下降。
图7是示出杂质向延长区30的注入浓度(/cm2)与半导体装置100的反向恢复耐量Pmax之间的关系的图。在本例中,将延长区30的长度设为50μm。图7的例子示出了耗尽层未在延长部80终止的条件下的特性。
如图7所示,在注入浓度为1.3×1013/cm2以上且6.0×1013/cm2以下的范围,反向恢复耐量Pmax成为150(kW)以上,被最大化。应予说明,与上述的注入浓度对应的延长区30的掺杂浓度为5×1016/cm3以上且3×1017/cm3以下。
如果杂质向延长区30的注入浓度比1.3×1013/cm2小,则延长区30的电阻值上升,抑制空穴向边缘部90注入的效果变小。此外,如果杂质向延长区30的注入浓度比6.0×1013/cm2大,则延长区30的电阻值下降,反向恢复时电流集中在接触孔56的端部60。因此,反向恢复耐量Pmax下降。
通过提高延长区30中的掺杂浓度,能够抑制延长区30的反转。因此,在延长区30的电阻值不会过小的范围内,可以将延长区30的掺杂浓度设置得尽可能高。延长区30的掺杂浓度可以为7×1016/cm3以上,也可以为1×1017/cm3以上。在此情况下,延长区30的掺杂浓度的上限值可以为3×1017/cm3以下。
图8是延长区30和阱区94的附近的放大图。从半导体基板10的上表面观察,将延长区30的下端的深度设为D1,将阱区94的深度设为D2。延长区30的下端的深度D1可以与阱区94的深度D2相同。应予说明,只要误差在10%以内,则深度可看作相同。
此外,延长区30和阱区94的掺杂浓度可以相同。应予说明,只要误差在10%以内,则掺杂浓度可看作相同。可以将各个区域的掺杂浓度的峰值作为掺杂浓度。
通过将延长区30和阱区94的深度及掺杂浓度设为相同,从而容易在同一工序中形成延长区30和阱区94。因此,能够降低制造成本。此外,能够将用于向延长区30和阱区94注入杂质的掩模在同一工序中形成。由此,延长区30的掩模的对准误差与阱区94的掩模的对准误差不被累加。因此,能够减小延长区30的掩模与阱区94的掩模之间的距离余量。因此,能够容易地减小距离L1+L2。
图9是延长区30和阱区94的附近的放大图的其他例。在本例中,在延长区30中与阱区94对置的端部31具有与阱区94相同的掺杂浓度和深度。在延长区30中,与基区14相邻的区域可以具有与基区14相同的掺杂浓度和深度。
图10A是示出半导体装置100的其他例的截面图。本例的半导体装置100相对于在图1~图9中说明的任一形态的半导体装置100不同之处在于阴极区24的结构。其他结构可以与在图1~图9中说明的任一形态的半导体装置100相同。
本例的阴极区24选择性地形成在半导体基板10的下表面侧。更具体地,阴极区24未形成在边缘部90的至少一部分区域。应予说明,在有源部70的至少一部分区域形成有阴极区24。
在本例中,在从有源部70朝向边缘部90的方向上,将阴极区24的边缘部90侧的端部的位置设为Xn。在分散地设置有阴极区24的情况下,将距离边缘部90最近的阴极区24的端部的位置设为Xn。
阴极区24的边缘部90侧的端部的位置Xn可以配置在比阱区94的有源部70侧的端部的位置Xa更靠有源部70侧的位置。即,在与阱区94重叠的位置和比阱区94更靠半导体基板10的端部侧的区域,可以不设置阴极区24。由此,在半导体装置100的动作时,能够抑制载流子向边缘部90注入。因此,能够提高半导体装置100的反向恢复耐量。
阴极区24的边缘部90侧的端部的位置Xn可以配置在比延长区30的阱区94侧的端部62的位置Xb更靠有源部70侧的位置。即,在边缘部90,可以不形成阴极区24。由此,能够进一步抑制载流子向边缘部90注入。
阴极区24的边缘部90侧的端部的位置Xn可以配置在比上部电极52的边缘部90侧的端部的位置Xd更靠有源部70侧的位置。此外,也可以配置在比接触孔56的阱区94侧的端部的位置Xc更靠有源部70侧的位置。即,在边缘部90和延长部80,可以不形成阴极区24。由此,能够进一步抑制载流子向边缘部90注入。
此外,在半导体基板10的内部,可以还设置覆盖阴极区24的上表面的一部分的p+型的高浓度区25。高浓度区25是不与下部电极54接触的浮置区。高浓度区25的至少一部分可以形成在延长区30的下方,也可以形成在有源部70的端部。通过这样的构成,能够进一步抑制载流子向边缘部90注入。
本例特别对基区14为较低浓度的情况有效。具体地,可以是如下所述的基区14,相对于从基区14与漂移区18之间的pn结向基区14扩展的耗尽层在深度方向(从上表面朝向下表面的方向)上不穿通到上部电极52的最小的积分浓度nC,基区14的积分浓度nA为nC以上且小于nC的30倍,进一步地小于nC的10倍。
为了使耗尽层不穿通到上部电极52,将基区14的积分浓度nA设为积分浓度nC以上。积分浓度nC利用产生雪崩击穿的临界电场强度Ec、真空介电常数ε0、半导体的相对介电常数εr、基本电荷q表示为nC=Ec×(ε0εr/q)。例如,对于硅而言,由于临界电场强度Ec依赖于漂移区18的施主浓度而为1.6×105~2.4×105(V/cm),所以积分浓度nC为1.1×1012~1.6×1012(/cm2)左右。另一方面,为了使二极管的反向恢复特性为软恢复,需要抑制少数载流子(在本例为空穴)的注入,为此期望将基区14的积分浓度nA抑制得尽可能小。为此,如上所述,可以将基区14的积分浓度nA设为nC以上(1.6×1012(/cm2)以上),且设为小于nC的30倍(小于4.8×1013(/cm2)),进一步地小于nC的10倍(小于1.6×1013(/cm2))。若基于此,则基区14的峰浓度虽然取决于结深度,但可以为1.0×1016(/cm3)以上且5.4×1017(/cm3)以下。或者,可以是已经在前面描述过的范围。在将基区14设为这样的低浓度的情况下,通过使以与基区14相同的浓度和深度形成的延长区30为本例的构成,反向恢复耐量得到更加明显的提高。
在将基区14设为这样的低浓度的情况下,为了防止耗尽层向阳极电极穿通,可以在上部电极52与半导体基板10的正面接触的区域中以大致相同的结深度形成基区14。大致是指例如在形成有源部70的区域中,在半导体基板10的正面存在粗糙度,基于此可以将结深度分布在10%以内。此外,例如,在上部电极52与半导体基板10的正面接触的区域中形成有多个沟槽的情况下,在被夹在沟槽之间的台面区的内部,基区14的结深度可以分布在10%以内。进一步地,在多个台面区彼此中,基区14的结深度可以分布在10%以内。换言之,在上部电极52与半导体基板10的正面接触的区域中,可以以大致同样的结深度形成基区14。由此,能够抑制耗尽层穿通到上部电极52而使泄漏电流增加。
图10B是示出半导体装置100的其他例的截面图。本例的半导体装置100相对于在图10A中说明的半导体装置100还具备高浓度区66。在图10A所示的半导体装置100中,缓冲区20与下部电极54接触,但在图10B所示的半导体装置100中,在缓冲区20与下部电极54之间设置有高浓度区66。
本例的高浓度区66为p+型。高浓度区66的掺杂浓度可以与高浓度区25的掺杂浓度相同。高浓度区66可以设置在与阴极区24相同的深度位置。通过设置高浓度区66,能够进一步抑制载流子向边缘部90注入。
图11是示出半导体装置100的上表面的结构的概要的图。半导体装置100具备半导体基板10。应予说明,在图11中省略设置在半导体基板10的上表面的各焊盘。在本说明书中,将俯视时的半导体基板10的外周的端部作为外周端150。俯视是指从半导体基板10的上表面侧与Z轴平行地观察的情况。
半导体装置100具备有源部70和边缘部90。如上所述在有源部70设置有二极管。也可以在有源部70还设置有晶体管。有源部70也可以在俯视半导体基板10时划分为设置有上部电极52的区域和被夹在设置有上部电极52的区域之间的区域。
边缘部90在半导体基板10的上表面设置在有源部70与半导体基板10的外周端150之间。延长区30设置在边缘部90与有源部70之间。边缘部90和延长区30可以在半导体基板10的上表面以包围有源部70的方式配置为环状。本例的边缘部90沿着半导体基板10的外周端150而配置。边缘部90和延长区30在俯视时的半导体基板10的角部110形成为曲线状。
图12是示出角部110的上表面的图。在图12中一并示出与角部110对应的设置在半导体基板10的上表面侧的结构的截面120。在本例中,在角部110,接触孔56的俯视时的端部60的曲率半径比延长区30的俯视时的端部62的曲率半径大。端部60和端部62是接触孔56和延长区30的端部中的半导体基板10的外周端150侧的端部。
积累在漂移区18等的载流子在二极管的反向恢复时流向有源部70侧。角部110的附近的载流子集中流入到角部110的接触孔56,角部110的反向恢复耐量下降。对于此,通过增大接触孔56的曲率半径,能够增大接触孔56在角部110的俯视时的长度。因此,能够降低接触孔56的端部的每单位长度的电流密度,能够提高反向恢复耐量。
在图12中,利用虚线示出了与延长区30的端部62为相同的曲率半径的情况下的接触孔56的端部122。通过将曲率半径如端部60那样设置得更大,能够增大接触孔56的端部弯曲的区域的长度。由于电流容易集中在接触孔56的端部弯曲的区域,所以通过将弯曲部分加长,能够缓和电流集中。
与假想的端部122的圆弧中心O1相比,接触孔56的端部60的圆弧中心O1’配置为向半导体基板10的内侧方向偏离。将在俯视时边缘部90被形成为直线状的区域作为直线部111。延长区30在角部110的长度L1’可以比延长区30在直线部111的长度L1长。延长区30在角部110的长度L1’可以使用延长区30在角部110的最大的长度。延长区30的长度为在俯视时与端部60垂直的方向上的长度。长度L1’可以为长度L1的1.1倍以上,可以为长度L1的1.2倍以上,也可以为长度L1的1.5倍以上。
此外,将在角部110的延长区30与阱区94之间的距离设为L2’。距离L2’可以使用在角部110的延长区30与阱区94之间的最大的距离。该距离为在俯视时与端部62垂直的方向上的距离。在角部110的长度L1’与距离L2’之和可以比在直线部111的长度L1与距离L2之和大。
在角部110,接触孔56的端部60的曲率半径可以比上部电极52的端部123的曲率半径大。上部电极52的端部123是半导体基板10的外周端150侧的端部。在角部110,接触孔56的端部60的曲率半径可以比阱区94的端部64的曲率半径大。阱区94的端部64为距离有源部70最近的阱区94的有源部70侧的端部。
在角部110中,存在与直线部111相比延长区30的正的空间电荷密度变小的情况。通过增大接触孔56在角部110的曲率半径,即使在确保角部110的受主浓度而使延长区30的一部分变得暂时无法作为p+型区而发挥功能的情况下,也能够抑制耗尽层102在基板上表面露出,并抑制半导体装置100的耐量下降。
图13是示出其他实施例的半导体装置200的上表面的结构的概要的图。半导体装置200在有源部70具有晶体管部72和二极管部82,在这一点上与半导体装置100不同。此外,半导体装置200具有栅极焊盘116、栅极通道48和栅极金属层50。其他结构可以与半导体装置100相同。
晶体管部72包括IGBT等晶体管。二极管部82在半导体基板10的上表面在预先规定的X轴方向上与晶体管部72交替地配置。在本说明书中有时将X轴方向称为排列方向。
在各个二极管部82,在与半导体基板10的下表面接触的区域设置有n+型的阴极区24。在本例的半导体装置200中,与半导体基板10的下表面接触的区域中的除了阴极区以外的区域为p+型的集电极区。
二极管部82为将阴极区24在Z轴方向上投影而得到的区域。晶体管部72为周期性地形成单位结构而成的区域,所述单位结构为在半导体基板10的下表面形成集电极区且在半导体基板10的上表面包括n+型的发射极区的结构。在X轴方向上的二极管部82与晶体管部72之间的边界为阴极区24与集电极区之间的边界。在本说明书中,将阴极区24在Z轴方向上投影而得到的区域沿Y轴方向延伸到有源部70的端部为止的部分(在图13中,以将阴极区24的实线沿Y轴方向延长的虚线示出)也包含于二极管部82。
在有源部70,在X轴方向上的两端可以设置有晶体管部72。有源部70可以在Y轴方向上被栅极通道48分割。在有源部70的各个分割区域,在X轴方向上交替地配置有晶体管部72和二极管部82。
在半导体基板10的上表面,在边缘部90和有源部70之间设置有栅极金属层50。在栅极金属层50与半导体基板10之间设置有层间绝缘膜,但在图13中省略。
栅极金属层50可以设置为在半导体基板10的俯视时包围有源部70。栅极金属层50与设置在有源部70之外的栅极焊盘116电连接。栅极焊盘116可以配置在栅极金属层50与有源部70之间。在栅极金属层50与有源部70之间可以设置有与上部电极52电连接的焊盘。
栅极金属层50可以由铝或铝-硅合金形成。栅极金属层50与晶体管部72电连接,并向晶体管部72提供栅极电压。
栅极通道48与栅极金属层50电连接,并延伸到有源部70的上方。至少一个栅极通道48可以设置为在X轴方向上截断有源部70。栅极通道48向晶体管部72提供栅极电压。栅极通道48可以由掺杂有杂质的多晶硅等半导体材料形成,也可以由金属形成。栅极通道48形成在半导体基板10的上方或内部,半导体基板10与栅极通道48之间由绝缘膜进行绝缘。
图14是将图13中的区域130的附近放大的图。本例的半导体装置200具备设置在半导体基板10的内部且在半导体基板10的上表面露出的栅极沟槽部43、虚拟沟槽部33、延长区30、n+型的发射极区12、p-型的基区14和p+型的接触区15。在本说明书中,有时将栅极沟槽部43或虚拟沟槽部33简称为沟槽部。此外,本例的半导体装置200具备设置在半导体基板10的上表面的上方的上部电极52、栅极金属层50和金属膜92。金属膜92、上部电极52和栅极金属层50相互分离地设置。
在栅极金属层50的外侧(Y轴方向正侧)配置有边缘部90。边缘部90如上所述可以具有一个以上的金属膜92。此外,在金属膜92的下方的半导体基板10的内部设置有阱区94,但在图14中省略。金属膜92和阱区94在栅极金属层50的外侧包围有源部70而设置为环状。
在金属膜92、上部电极52和栅极金属层50与半导体基板10的上表面之间形成有绝缘膜26,但在图14中省略。在本例的绝缘膜26,接触孔56贯通绝缘膜26而形成。
上部电极52通过接触孔56与半导体基板10的上表面的发射极区12、接触区15和基区14接触。此外,上部电极52通过接触孔56与虚拟沟槽部33内的虚拟导电部连接。在上部电极52与虚拟导电部之间可以设置由掺杂有杂质的多晶硅等具有导电性的材料形成的连接部36。在连接部36与半导体基板10的上表面之间形成氧化膜等绝缘膜。
栅极金属层50通过接触孔56与栅极通道48接触。在有源部70的端部也可以不经由栅极通道48而使栅极金属层50与栅极沟槽部43连接。
栅极通道48由掺杂有杂质的多晶硅等形成。栅极通道48在半导体基板10的上表面与栅极沟槽部43内的栅极导电部连接。栅极通道48不与虚拟沟槽部33内的虚拟导电部连接。本例的栅极通道48从接触孔56的下方形成到栅极沟槽部43的前端部41为止。
在栅极通道48与半导体基板10的上表面之间形成有氧化膜等绝缘膜。在栅极沟槽部43的前端部41,栅极导电部在半导体基板10的上表面露出。在栅极导电部的上方的绝缘膜设置有将栅极导电部和栅极通道48连接的接触孔。应予说明,在图14中,俯视时上部电极52与栅极通道48未重叠,但上部电极52与栅极通道48也可以重叠。在此情况下,在上部电极52与栅极通道48之间设置有绝缘膜。
上部电极52和栅极金属层50由含有金属的材料形成。例如,各电极的至少一部分区域由铝或铝-硅合金形成。各电极可以在由铝等形成的区域的下层具有由钛和/或钛化合物等形成的势垒金属,也可以在接触孔内具有由钨等形成的插塞。
一个以上的栅极沟槽部43和一个以上的虚拟沟槽部33在半导体基板10的上表面沿预定的排列方向(在本例中为X轴方向)以预定的间隔排列。在本例的晶体管部72沿排列方向交替地形成有一个以上的栅极沟槽部43和一个以上的虚拟沟槽部33。
本例的栅极沟槽部43可以具有沿与排列方向垂直的长度方向(在本例中为Y轴方向)以直线状延伸的两个直线部39和将两个直线部39连接的前端部41。前端部41的至少一部分优选在半导体基板10的上表面形成为曲线状。通过在栅极沟槽部43的两个直线部39,前端部41将沿长度方向的直线形状的一端、即端部彼此连接,能够缓和在直线部39的端部的电场集中。在本说明书中,将栅极沟槽部43的各个直线部39作为一个栅极沟槽部43来处理。
至少一个虚拟沟槽部33设置在栅极沟槽部43的各个直线部39之间。这些虚拟沟槽部33可以与栅极沟槽部43同样具有直线部29和前端部35。在其他例子中,虚拟沟槽部33也可以具有直线部29,且不具有前端部35。在图14所示的例子中,在晶体管部72中,在栅极沟槽部43的两个直线部39之间配置有虚拟沟槽部33的两个直线部29。
在二极管部82中,多个虚拟沟槽部33在半导体基板10的上表面沿X轴方向配置。二极管部82中的虚拟沟槽部33在XY面上的形状可以与设置在晶体管部72的虚拟沟槽部33同样。
虚拟沟槽部33的前端部35和直线部29具有与栅极沟槽部43的前端部41和直线部39同样的形状。设置在二极管部82的虚拟沟槽部33与设置在晶体管部72的直线形状的虚拟沟槽部33在Y轴方向上的长度可以相同。
上部电极52形成在栅极沟槽部43、虚拟沟槽部33、延长区30、发射极区12、基区14和接触区15的上方。延长区30与接触孔56的长度方向的端部中的设置栅极金属层50侧的端部在XY面内分离地设置。延长区30的扩散深度可以比栅极沟槽部43和虚拟沟槽部33的深度深。栅极沟槽部43和虚拟沟槽部33的栅极金属层50侧的一部分区域形成在延长区30。栅极沟槽部43的前端部41的Z轴方向上的底部、虚拟沟槽部33的前端部35的Z轴方向上的底部可以被延长区30覆盖。
在晶体管部72和二极管部82分别设置有一个以上被夹在各沟槽部之间的台面部61。台面部61是指在被夹在沟槽部之间的半导体基板10的区域中,比沟槽部的最深的底部更靠上表面侧的区域。
在被夹在各沟槽部之间的台面部61形成有基区14。基区14为掺杂浓度比延长区30低的第二导电型(p-型)。
在台面部61的基区14的上表面形成有掺杂浓度比基区14高的第二导电型的接触区15。本例的接触区15为p+型。在半导体基板10的上表面,延长区30可以形成为从接触区15中的在Y轴方向上配置在最端部的接触区15向栅极金属层50的方向远离。在半导体基板10的上表面,在延长区30与接触区15之间露出基区14。
在晶体管部72中,在台面部61-1的上表面选择性地形成有掺杂浓度比形成在半导体基板10的内部的漂移区高的第一导电型的发射极区12。本例的发射极区12为n+型。发射极区12的在半导体基板10的深度方向(-Z轴方向)上相邻的基区14中的、与栅极沟槽部43接触的部分作为沟道部而发挥功能。如果向栅极沟槽部43施加导通电压,则在Z轴方向上在设置在发射极区12与漂移区之间的基区14中,在与栅极沟槽部43相邻的部分形成作为电子的反转层的沟道。通过在基区14形成沟道,从而在发射极区12与漂移区之间有载流子流动。
在本例中,在各台面部61的Y轴方向上的两端部,配置有基区14-e。在本例中,在各个台面部61的上表面,在台面部61的中央侧与基区14-e相邻的区域为接触区15。此外,在与接触区15相反的一侧与基区14-e接触的区域为延长区30。
在本例的晶体管部72的台面部61-1中,在被夹在Y轴方向两端的基区14-e之间的区域,沿Y轴方向交替地配置有接触区15和发射极区12。各个接触区15和发射极区12从相邻的一侧的沟槽部形成到另一侧的沟槽部为止。
在晶体管部72的台面部61中的、设置在与二极管部82之间的边界的一个以上的台面部61-2设置有面积比台面部61-1的接触区15大的接触区15。在台面部61-2可以不设置发射极区12。在本例的台面部61-2中,在被夹在基区14-e之间的整个区域设置有接触区15。
在本例的晶体管部72的各台面部61-1中,接触孔56形成在接触区15和发射极区12的各区域的上方。在台面部61-2中的接触孔56形成在接触区15的上方。在各台面部61中,接触孔56未形成在与基区14-e和延长区30对应的区域。在晶体管部72的各台面部61中的接触孔56可以在Y轴方向上具有相同的长度。
在二极管部82中,在与半导体基板10的下表面接触的区域形成n+型的阴极区24。在图14中利用虚线示出了形成阴极区24的区域。在与半导体基板10的下表面接触的区域中未形成有阴极区24的区域可以形成p+型的集电极区。
晶体管部72可以是在Z轴方向上与集电极区重叠的区域中的、设置有形成有接触区15和发射极区12的台面部61和与该台面部61相邻的沟槽部的区域。但是,在与二极管部82的边界中的台面部61-2可以代替发射极区12而设置有接触区15。
在二极管部82的台面部61-3的上表面配置有基区14。但是,在与基区14-e相邻的区域可以设置接触区15。接触孔56在接触区15的上方终止。应予说明,在图14的例子中二极管部82具有五个台面部61-3和夹着台面部61-3的七个虚拟沟槽部33,但二极管部82中的台面部61-3和虚拟沟槽部33的数量不限于此。在二极管部82可以设置更多的台面部61-3和虚拟沟槽部33。
图15是示出图13中的A-A截面的一例的图。A-A截面是包括晶体管部72和边缘部90的XZ截面。边缘部90的结构与在图1~图10B中说明的任一形态的边缘部90的结构相同。但是,在边缘部90中与半导体基板10的下表面接触的区域的至少一部分可以代替集电极区22而设置阴极区24。
晶体管部72在该截面中具有半导体基板10、绝缘膜26、上部电极52和下部电极54。绝缘膜26覆盖半导体基板10的上表面的至少一部分而形成。在绝缘膜26形成有接触孔56等贯通孔。半导体基板10的上表面因接触孔56而露出。
上部电极52形成在半导体基板10和绝缘膜26的上表面。上部电极52也形成在接触孔56的内部,并与因接触孔56而露出的半导体基板10的上表面接触。下部电极54形成在半导体基板10的下表面。下部电极54可以与半导体基板10的整个下表面接触。
在晶体管部72中的半导体基板10的上表面侧形成有p-型的基区14。在半导体基板10的内部,在基区14的下方配置有n-型的漂移区18。各个沟槽部设置为从半导体基板10的上表面贯通基区14而到达漂移区18。
在该截面中,在晶体管部72的各台面部61-1从半导体基板10的上表面侧依次配置有n+型的发射极区12和p-型的基区14。应予说明,在穿过晶体管部72的接触区15的XZ截面中,在晶体管部72的各台面部61-1代替发射极区12而设置有接触区15。接触区15可以作为抑制闩锁效应的闩锁效应抑制层而发挥功能。
在晶体管部72中,在与半导体基板10的下表面相邻的区域设置有p+型的集电极区22。在本例的半导体基板10,在漂移区18与集电极区22之间和漂移区18与阴极区24之间设置有n+型的缓冲区20。缓冲区20的掺杂浓度比漂移区18的掺杂浓度高。缓冲区20可以作为防止从基区14的下表面侧扩展的耗尽层到达p+型的集电极区22和n+型的阴极区24的场截止层而发挥功能。
在半导体基板10的上表面侧形成有一个以上的栅极沟槽部43和一个以上的虚拟沟槽部33。各沟槽部从半导体基板10的上表面贯通基区14而到达漂移区18。在设置有发射极区12或接触区15的区域中,各沟槽部还贯通这些区域而到达漂移区18。沟槽部贯通掺杂区并不限于按照在形成掺杂区之后形成沟槽部的顺序制造的方式。在形成沟槽部之后,在沟槽部之间形成掺杂区的方式也包含于沟槽部贯通掺杂区的方式。
栅极沟槽部43具有形成在半导体基板10的上表面侧的栅极沟槽、栅极绝缘膜42和栅极导电部44。栅极绝缘膜42覆盖栅极沟槽的内壁而形成。栅极绝缘膜42可以是将栅极沟槽的内壁的半导体氧化或氮化而形成。栅极导电部44在栅极沟槽的内部形成在比栅极绝缘膜42更靠内侧的位置。即,栅极绝缘膜42将栅极导电部44与半导体基板10绝缘。栅极导电部44由多晶硅等导电材料形成。
栅极导电部44在深度方向上包括隔着栅极绝缘膜42而至少与相邻的基区14对置的区域。该截面中的栅极沟槽部43在半导体基板10的上表面被绝缘膜26覆盖。如果向栅极导电部44施加预定的电压,则在基区14中的与栅极沟槽接触的界面的表层形成由电子的反转层产生的沟道。
虚拟沟槽部33在该截面中可以具有与栅极沟槽部43相同的结构。虚拟沟槽部33具有形成在半导体基板10的上表面侧的虚拟沟槽、虚拟绝缘膜32和虚拟导电部34。虚拟绝缘膜32覆盖虚拟沟槽的内壁而形成。虚拟导电部34形成在虚拟沟槽的内部,且形成在比虚拟绝缘膜32更靠内侧的位置。虚拟绝缘膜32将虚拟导电部34与半导体基板10绝缘。虚拟导电部34可以由与栅极导电部44相同的材料形成。例如,虚拟导电部34由多晶硅等导电材料形成。虚拟导电部34在深度方向上可以具有与栅极导电部44相同的长度。该截面中的虚拟沟槽部33在半导体基板10的上表面被绝缘膜26覆盖。应予说明,虚拟沟槽部33和栅极沟槽部43的底部可以是向下侧凸起的曲面状(在截面中为曲线状)。
在晶体管部72的延长部80侧的端部可以设置延长区30。延长区30形成得比基区14深。本例的延长区30形成得比各沟槽部深。晶体管部72的沟槽部的至少一个可以形成在延长区30的内部。
在晶体管部72的绝缘膜26设置有将延长区30与上部电极52连接的接触孔56。接触孔56可以在Y轴方向上呈直线状延伸。在X轴方向上,设置在最靠延长部80侧的接触孔56的端部60与延长区30的端部62之间相当于第一距离L1。
在延长部80设置栅极金属层50、绝缘膜26、栅极通道48和延长区30。栅极金属层50设置在半导体基板10的上表面的上方。在栅极金属层50与半导体基板10之间设置有绝缘膜26。
栅极通道48设置在栅极金属层50与半导体基板10之间。在栅极通道48与栅极金属层50之间和栅极通道48与半导体基板10之间设置有绝缘膜26。栅极通道48和栅极金属层50通过设置在绝缘膜26的接触孔56来连接。在接触孔56的内部可以形成栅极金属层50。
在栅极金属层50和栅极通道48的下方设置有延长区30。在X轴方向上设置有延长区30的范围优选比设置有栅极金属层50和栅极通道48的范围宽。
在本例中,第一距离L1与第二距离L2之和也可以小于半导体基板10的厚度Wt。由此,即使在反向恢复动作时延长区30的受主与空穴相抵消的情况下,也能够使耗尽层从有源部70延伸到边缘部90。因此,能够使反向恢复耐量提高。应予说明,图15所示的第一距离L1和第二距离L2可以满足与在图1~图10B中说明的第一距离L1和第二距离L2相同的条件。
图16是示出图13中的B-B截面的一例的图。B-B截面是包括二极管部82和边缘部90的YZ截面。该截面穿过了二极管部82的接触孔56。边缘部90的结构与在图1~图10B中说明的任一形态的边缘部90的结构相同。
二极管部82具有与在图1~图10B中说明的有源部70同样的结构。但是,在图16的例子中,基区14形成得比延长区30浅。
在本例的延长部80除了设置有图1所示的延长部80的结构之外,还设置有栅极金属层50和栅极通道48。在Y轴方向上,将二极管部82的接触孔56的端部60与延长区30的端部62之间的距离设为第一距离L10。在Y轴方向上,将延长区30的端部62与阱区94的端部64之间的距离设为第二距离L20。第一距离L10与第二距离L20之和可以小于半导体基板10的厚度Wt。由此,即使在反向恢复动作时延长区30的受主与空穴相抵消的情况下,也能够使耗尽层从有源部70延伸到边缘部90。因此,能够使反向恢复耐量提高。应予说明,图16所示的第一距离L10和第二距离L20可以满足与在图1~图10B中说明的第一距离L1和第二距离L2相同的条件。
此外,在Y轴方向上,将阴极区24的端部67与接触孔56的端部60之间的距离设为L30。距离L30可以小于距离L10。此外,将图15所示的X轴方向上的上部电极52的端部63与接触孔56的端部60之间的距离设为L4,并将图16所示的Y轴方向上的上部电极52的端部63与接触孔56的端部60之间的距离设为L40。距离L40可以大于距离L4。应予说明,在穿过晶体管部72的接触孔56的YZ截面中,第一距离L10和第二距离L20等各距离也可以满足与在图16中说明的各距离相同的条件。
图17是示出角部110的其他例的图。本例的角部110在有源部70具有虚拟沟槽部33等多个沟槽部和配置在沟槽部之间的接触孔56。
在Y轴方向上,将连结各沟槽部的前端的线设为曲线128,将连结接触孔56的前端的线设为曲线126。曲线126的曲率半径可以大于曲线128的曲率半径。通过增大接触孔56的曲线126的曲率半径,能够在角部110缓和电流向接触孔56的端部集中。曲线126的曲率半径可以大于栅极金属层50的有源部70侧的端部65的曲率半径。
在角部110中,存在与直线部111相比基区14的被夹在沟槽部之间的台面部61中的正的空间电荷密度变小的情况。如上所述,通过加长在角部110中从沟槽端部到接触孔56端部的长度,从而确保角部110的基区14的受主浓度。由此,即使在基区14的一部分变得暂时无法作为p+型区而发挥功能的情况下,也能够抑制耗尽层102在基板上表面露出,并抑制半导体装置100的耐量下降。
以上,使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所记载的范围。可以对上述实施方式进行各种变更或改进对本领域技术人员来说是显而易见的。根据权利要求书的记载,进行了那样的变更或改进而获得的实施方式显然也可以包括在本发明的技术范围内。

Claims (13)

1.一种半导体装置,其特征在于,具备:
半导体基板,其形成有流通主电流的有源部和缓和电场的边缘部;
上部电极,其设置在所述半导体基板的上方;
绝缘膜,其设置在所述半导体基板与所述上部电极之间,并形成有接触孔;
第一导电型的漂移区,其形成在所述半导体基板的内部;
第二导电型的基区,其在所述有源部中形成在所述半导体基板的上表面侧,并经由所述接触孔与所述上部电极连接;
第二导电型的阱区,其在所述边缘部中形成在所述半导体基板的上表面侧,并与所述上部电极分离;以及
第二导电型的延长区,其在所述半导体基板的上表面侧从所述基区向所述阱区的方向延伸地形成,并通过所述绝缘膜与所述上部电极分离,
在与所述半导体基板的上表面平行的面中,从所述接触孔的所述阱区侧的端部到所述延长区的所述阱区侧的端部为止的第一距离与从所述延长区的所述阱区侧的端部到所述阱区为止的第二距离之和小于所述有源部中的所述半导体基板的厚度,
在所述延长区的上方,隔着所述绝缘膜设置所述上部电极,所述上部电极的在所述绝缘膜上从所述接触孔的所述阱区侧的端部向所述阱区的方向延伸的第三距离短于所述第一距离。
2.一种半导体装置,其特征在于,具备:
半导体基板,其形成有流通主电流的有源部和缓和电场的边缘部;
上部电极,其设置在所述半导体基板的上方;
绝缘膜,其设置在所述半导体基板与所述上部电极之间,并形成有接触孔;
第一导电型的漂移区,其形成在所述半导体基板的内部;
第二导电型的基区,其在所述有源部中形成在所述半导体基板的上表面侧,并经由所述接触孔与所述上部电极连接;
第二导电型的阱区,其在所述边缘部中形成在所述半导体基板的上表面侧,并与所述上部电极分离;以及
第二导电型的延长区,其在所述半导体基板的上表面侧从所述基区向所述阱区的方向延伸地形成,并通过所述绝缘膜与所述上部电极分离,
在与所述半导体基板的上表面平行的面中,从所述接触孔的所述阱区侧的端部到所述延长区的所述阱区侧的端部为止的第一距离与从所述延长区的所述阱区侧的端部到所述阱区为止的第二距离之和小于所述有源部中的所述半导体基板的厚度,
所述第一距离与所述第二距离之和为所述半导体基板的厚度的50%以上且90%以下。
3.根据权利要求1或2所述的半导体装置,其特征在于,
所述第二距离为所述阱区彼此的平均间隔的80%以上且120%以下。
4.根据权利要求1或2所述的半导体装置,其特征在于,
所述第一距离与所述第二距离之和大于50μm。
5.根据权利要求1或2所述的半导体装置,其特征在于,
所述第一距离与所述第二距离之和小于100μm。
6.根据权利要求1或2所述的半导体装置,其特征在于,
所述延长区中的掺杂浓度NA满足下式:
数学式1
Figure FDA0004157099630000021
其中,Jrate为额定电流密度(A/cm2),q为基本电荷(C),vsat_P为空穴的饱和速度(cm/sec)。
7.根据权利要求1或2所述的半导体装置,其特征在于,
所述延长区中的掺杂浓度为5×1016/cm3以上且3.0×1017/cm3以下。
8.根据权利要求1或2所述的半导体装置,其特征在于,
所述延长区的深度与所述阱区的深度相同。
9.根据权利要求1或2所述的半导体装置,其特征在于,
所述延长区的掺杂浓度与所述阱区的掺杂浓度相同。
10.根据权利要求1或2所述的半导体装置,其特征在于,
所述半导体装置还具备:第一导电型的阴极区,其在所述半导体基板的内部设置在所述漂移区与所述半导体基板的下表面之间,且掺杂浓度比所述漂移区的掺杂浓度高,
所述阴极区的所述边缘部侧的端部配置在比所述阱区更靠所述有源部侧的位置。
11.根据权利要求10所述的半导体装置,其特征在于,
所述阴极区的所述边缘部侧的端部配置在比所述延长区的所述阱区侧的端部更靠所述有源部侧的位置。
12.根据权利要求10所述的半导体装置,其特征在于,
所述阴极区的所述边缘部侧的端部配置在比所述接触孔的所述阱区侧的端部更靠所述有源部侧的位置。
13.根据权利要求1或2所述的半导体装置,其特征在于,
在所述半导体基板的角部中,所述接触孔的俯视时的端部的曲率半径大于所述延长区的俯视时的端部的曲率半径。
CN201810151457.0A 2017-02-16 2018-02-14 半导体装置 Active CN108447903B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017026875 2017-02-16
JP2017-026875 2017-02-16
JP2017240871 2017-12-15
JP2017-240871 2017-12-15

Publications (2)

Publication Number Publication Date
CN108447903A CN108447903A (zh) 2018-08-24
CN108447903B true CN108447903B (zh) 2023-07-04

Family

ID=63105921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810151457.0A Active CN108447903B (zh) 2017-02-16 2018-02-14 半导体装置

Country Status (3)

Country Link
US (1) US10529800B2 (zh)
JP (1) JP7077648B2 (zh)
CN (1) CN108447903B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589817B2 (ja) * 2016-10-26 2019-10-16 株式会社デンソー 半導体装置
JP6804379B2 (ja) * 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
US11094815B2 (en) * 2017-05-12 2021-08-17 Mitsubishi Electric Corporation Semiconductor device and power conversion apparatus
JP7201288B2 (ja) * 2018-07-26 2023-01-10 ラピスセミコンダクタ株式会社 半導体装置
JP7296907B2 (ja) 2020-03-10 2023-06-23 株式会社東芝 半導体装置
JP2022051174A (ja) * 2020-09-18 2022-03-31 株式会社東芝 半導体装置
JP2022074323A (ja) * 2020-11-04 2022-05-18 ルネサスエレクトロニクス株式会社 半導体装置
JP2023114560A (ja) * 2022-02-07 2023-08-18 新電元工業株式会社 半導体装置及び半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232597A (ja) * 1996-02-28 1997-09-05 Hitachi Ltd ダイオード及び電力変換装置
CN104637994A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 半导体器件及制造方法
CN105006484A (zh) * 2015-06-12 2015-10-28 无锡新洁能股份有限公司 一种超结半导体器件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011748B2 (ja) * 2006-02-24 2012-08-29 株式会社デンソー 半導体装置
JP5381420B2 (ja) 2008-07-22 2014-01-08 富士電機株式会社 半導体装置
JP2012190873A (ja) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP5999748B2 (ja) * 2011-08-12 2016-09-28 ルネサスエレクトロニクス株式会社 パワーmosfet、igbtおよびパワーダイオード
EP2782121B1 (en) * 2011-11-15 2021-01-06 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
EP2800143B1 (en) * 2011-12-28 2020-04-08 Fuji Electric Co., Ltd. Semiconductor device and method for producing semiconductor device
US9547594B2 (en) 2013-03-15 2017-01-17 Intel Corporation Instructions to mark beginning and end of non transactional code region requiring write back to persistent storage
KR102197376B1 (ko) * 2013-03-25 2021-01-04 후지 덴키 가부시키가이샤 반도체 장치
JP2015177142A (ja) 2014-03-18 2015-10-05 株式会社日立製作所 半導体装置およびそれを用いた電力変換装置
JP6460127B2 (ja) * 2015-01-14 2019-01-30 富士電機株式会社 半導体装置
EP3353814B1 (en) * 2015-11-27 2019-07-10 ABB Schweiz AG Area efficient floating field ring termination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232597A (ja) * 1996-02-28 1997-09-05 Hitachi Ltd ダイオード及び電力変換装置
CN104637994A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 半导体器件及制造方法
CN105006484A (zh) * 2015-06-12 2015-10-28 无锡新洁能股份有限公司 一种超结半导体器件及其制造方法

Also Published As

Publication number Publication date
CN108447903A (zh) 2018-08-24
US20180233554A1 (en) 2018-08-16
JP2019096855A (ja) 2019-06-20
JP7077648B2 (ja) 2022-05-31
US10529800B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
CN108447903B (zh) 半导体装置
US9059284B2 (en) Semiconductor device
US11031471B2 (en) Semiconductor device
US9748229B2 (en) Semiconductor device
EP1168455B1 (en) Power semiconductor switching element
US7642597B2 (en) Power semiconductor device
US8232593B2 (en) Power semiconductor device
JP5787853B2 (ja) 電力用半導体装置
US8742534B2 (en) Semiconductor device having lateral diode
US20090302376A1 (en) Semiconductor device
JP6561611B2 (ja) 半導体装置
JP2008294214A (ja) 半導体装置
JP2013258327A (ja) 半導体装置及びその製造方法
TWI495100B (zh) 用於高壓半導體功率裝置的邊緣終接的新型及改良型結構
US9082810B2 (en) Semiconductor device
JP2010056510A (ja) 半導体装置
JP2013201237A (ja) 半導体装置
CN109314130B (zh) 绝缘栅极功率半导体器件以及用于制造这种器件的方法
JP2023065461A (ja) 半導体装置
WO2019116748A1 (ja) 半導体装置およびその製造方法
JP2019004060A (ja) 半導体装置および半導体装置の製造方法
CN112349766A (zh) 半导体装置
CN109564943B (zh) 半导体装置
US8030706B2 (en) Power semiconductor device
US10600867B2 (en) Semiconductor device having an emitter region and a contact region inside a mesa portion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant