WO2018061890A1 - 水溶性ヒドロキシエチルセルロースの製造方法 - Google Patents

水溶性ヒドロキシエチルセルロースの製造方法 Download PDF

Info

Publication number
WO2018061890A1
WO2018061890A1 PCT/JP2017/033789 JP2017033789W WO2018061890A1 WO 2018061890 A1 WO2018061890 A1 WO 2018061890A1 JP 2017033789 W JP2017033789 W JP 2017033789W WO 2018061890 A1 WO2018061890 A1 WO 2018061890A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyethyl cellulose
cellulose
ethylene oxide
water
alkali
Prior art date
Application number
PCT/JP2017/033789
Other languages
English (en)
French (fr)
Inventor
洋 山内
増田 剛
佑亮 西川
裕二 新開
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to US16/333,018 priority Critical patent/US20190263938A1/en
Priority to CN201780059308.5A priority patent/CN109790226B/zh
Priority to EP17855845.8A priority patent/EP3521317A4/en
Priority to KR1020197001639A priority patent/KR20190059889A/ko
Priority to JP2018542436A priority patent/JP7030705B2/ja
Publication of WO2018061890A1 publication Critical patent/WO2018061890A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/08Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with hydroxylated hydrocarbon radicals; Esters, ethers, or acetals thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • C08B11/22Isolation
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a method for producing water-soluble hydroxyethyl cellulose, and more particularly to a method for producing water-soluble hydroxyethyl cellulose by reacting ethylene oxide with alkali cellulose.
  • Water-soluble hydroxyethyl cellulose is a semi-synthetic polymer made from cellulose and has properties as a nonionic water-soluble polymer, so it has increased viscosity in various industrial fields including cosmetics, pharmaceuticals and toiletries. It is widely used as an agent, emulsion stabilizer, dispersant, water retention agent or protective colloid agent.
  • Water-soluble hydroxyethyl cellulose is usually produced by either a slurry method or an alkali cellulose method.
  • alkali cellulose is prepared by reacting cellulose with an alkali such as an alkali metal hydroxide in a hydrophilic organic solvent as a reaction solvent, and ethylene oxide is subsequently added to the reaction solvent containing the alkali cellulose.
  • an alkali such as an alkali metal hydroxide
  • a hydrophilic organic solvent as a reaction solvent
  • ethylene oxide is subsequently added to the reaction solvent containing the alkali cellulose.
  • Ketones In the slurry method, the preparation process of alkali cellulose and the reaction process of the prepared alkali cellulose and ethylene oxide can be continuously performed in the same reaction vessel, and in that respect, the production process of water-soluble hydroxyethyl cellulose Has been utilized as a general method for producing water-soluble hydroxyethyl cellulose.
  • the average added mole number of ethylene oxide per glucose unit of hydroxyethyl cellulose is controlled to be increased.
  • the average added mole number (molar substitution degree) of ethylene oxide is controlled to be 2.0 or more, and commercially available water-soluble hydroxyethyl cellulose produced by a slurry method is generally oxidized.
  • the average added mole number of ethylene is about 2.5.
  • the slurry method is advantageous in improving the efficiency and rationalization of the production process, but the amount of ethylene oxide used is increased because the average added mole number of ethylene oxide is controlled as described above.
  • alkali cellulose method cellulose and alkali are reacted by immersing cellulose in an alkali aqueous solution such as an alkali metal hydroxide to prepare alkali cellulose, and this alkali cellulose is reacted with ethylene oxide.
  • an alkali aqueous solution such as an alkali metal hydroxide
  • water-soluble hydroxyethyl cellulose is produced (see, for example, Patent Documents 3 and 4).
  • the water-soluble hydroxyethyl cellulose obtained by the alkali cellulose method has an average added mole number of ethylene oxide per glucose unit set to about 1.5, which is smaller than that of the slurry method.
  • the alkali cellulose prepared in the process of the alkali cellulose method retains excess alkali, impurities such as by-products are easily generated in the reaction with ethylene oxide. For this reason, a purification step for removing impurities such as by-products from the reaction system containing the produced water-soluble hydroxyethyl cellulose is necessary, but this purification step becomes complicated, and the burden is large. Therefore, the alkali cellulose method has been proposed to reduce the burden of the purification process.
  • Patent Document 3 uses a poorly water-soluble organic solvent as a reaction solvent for alkali cellulose and ethylene oxide, and uses a mixed solvent composed of the poorly water-soluble organic solvent, methanol and water as a cleaning solution for the produced hydroxyethyl cellulose.
  • Patent Document 4 proposes that the produced hydroxyethyl cellulose is washed with a mixed solvent composed of a poorly water-soluble organic solvent, methanol and water, and further washed with a mixed solvent of the mixed solvent and an acid. ing.
  • hydroxyethyl cellulose produced by suppressing the amount of ethylene oxide used shows water solubility because the average number of moles of ethylene oxide added decreases and the number of hydroxyethyl groups, which are hydrophilic groups, decreases accordingly. It becomes difficult.
  • the present invention makes it possible to produce water-soluble hydroxyethyl cellulose from alkali cellulose while suppressing the amount of ethylene oxide used.
  • the method for producing water-soluble hydroxyethyl cellulose according to the present invention comprises reacting alkali oxide with ethylene oxide so that the average added mole number of ethylene oxide per glucose unit is 0.1 to 1.0 mol. And a step of mechanically pulverizing the prepared hydroxyethyl cellulose.
  • the alkali cellulose used here is usually obtained by separating a liquid component from a slurry obtained by reacting cellulose and alkali by immersing cellulose in an aqueous alkali solution.
  • ethylene oxide is reacted with alkali cellulose so that the average added mole number of ethylene oxide per glucose unit is less than 0.7 mol.
  • the production method of the present invention includes a step of mechanically pulverizing hydroxyethyl cellulose prepared by reacting ethylene oxide with alkali cellulose, water-soluble hydroxyethyl cellulose is produced while suppressing the amount of ethylene oxide used. be able to.
  • the water-soluble hydroxyethyl cellulose according to the present invention has an average added mole number of ethylene oxide per glucose unit of 0.1 to 1.0 mole. In one form of this water soluble hydroxyethyl cellulose, the average added moles of ethylene oxide per glucose unit is less than 0.7.
  • the loss tangent (tan ⁇ ) of a 2% by mass aqueous solution is usually less than 1.0 in the frequency range of 0.1 to 100 rad / s.
  • the water-soluble hydroxyethyl cellulose according to the present invention is different from the conventional aqueous solution of hydroxyethyl cellulose because the average number of moles of ethylene oxide added per glucose unit is suppressed to 0.1 to 1.0 mol. Show the rheological properties.
  • hydroxyethyl cellulose having an average added mole number of ethylene oxide in a specific range is prepared.
  • This hydroxyethyl cellulose can be prepared by reacting ethylene oxide with alkali cellulose.
  • Alkali cellulose can be prepared by reacting alkali with cellulose.
  • examples of the cellulose used here include cotton linters such as sheet or powder and wood pulp.
  • alkali various substances can be used as long as they act on the hydroxyl group of cellulose and can form alkali cellulose.
  • alkali metal water such as sodium hydroxide, potassium hydroxide or lithium hydroxide can be used.
  • Oxides can be mentioned.
  • sodium hydroxide because it is inexpensive and versatile.
  • a method for reacting an alkali with cellulose a method in which cellulose is immersed in an aqueous alkali solution and mixed for about 20 minutes to 2 hours in a container equipped with a stirring blade can be employed.
  • the concentration of the alkaline aqueous solution used here is not particularly limited, but it is usually preferably set to 10 to 30% by mass.
  • the amount of the alkaline aqueous solution used is usually 100 parts by mass of cellulose in order to ensure the fluidity of the slurry produced by dispersing the cellulose in the alkaline aqueous solution and to increase the uniformity of the reaction between cellulose and alkali. It is preferably set to 1,000 to 6,000 parts by mass, more preferably 2,000 to 5,000 parts by mass. Further, the temperature during mixing is usually preferably set to 20 to 50 ° C.
  • the desired alkali cellulose can be obtained by separating the liquid containing surplus alkali from the slurry containing alkali cellulose prepared by the above method.
  • various solid-liquid separation methods such as pressure filtration, natural filtration, vacuum filtration, and centrifugal filtration can be employed.
  • pressure filtration it is particularly preferable to use pressure filtration because the solid content contained in the slurry can be squeezed, and thereby the liquid content containing excess alkali can be more effectively separated.
  • ethylene oxide is reacted with the obtained alkali cellulose.
  • alkali cellulose and ethylene oxide are charged into a reaction vessel and reacted while stirring.
  • the reaction solvent can be charged together in the reaction vessel, and the alkali cellulose and ethylene oxide can be reacted in the reaction solvent.
  • a reaction solvent is used, the uniform reaction of ethylene oxide with respect to each glucose unit of alkali cellulose can be promoted.
  • the amount of ethylene oxide used is such that the average number of moles of ethylene oxide added per glucose unit in the resulting hydroxyethyl cellulose is 0.1 to 1.0 mole (0.1 mole or more and 1.0 mole or less). Control.
  • the average added mole number of ethylene oxide is controlled to be 0.1 mol or more and less than 0.7 mol.
  • the addition reaction rate of ethylene oxide in glucose units varies depending on the reaction conditions, it is generally about 40 to 60%. Therefore, the above average added mole number of ethylene oxide is usually used for the preparation of alkali cellulose.
  • the average added mole number of ethylene oxide per glucose unit is 1 in accordance with the production method in order to impart water solubility to the produced hydroxyethyl cellulose. It is controlled to be about 5 to 2.5 mol.
  • the amount of ethylene oxide used is 100 to 150 parts by mass of ethylene oxide with respect to 100 parts by mass of raw material cellulose used for preparing alkali cellulose. Must be set to Therefore, the production method of the present invention can suppress the amount of ethylene oxide used as compared with conventional production methods.
  • reaction solvent When alkali cellulose and ethylene oxide are reacted in a reaction solvent, various kinds of reaction solvents can be used, and the kind is not particularly limited.
  • the reaction solvent is usually an alcohol such as ethanol, isopropyl alcohol, isobutyl alcohol, tert-butyl alcohol or isoamyl alcohol, an ether such as dioxane or 1,2-dimethoxyethane, acetone, methyl ethyl ketone or methyl isobutyl ketone.
  • the ketones are preferably used. Two or more of these reaction solvents may be used in combination.
  • the amount of the reaction solvent is usually controlled to 600 parts by mass or less with respect to 100 parts by mass of alkali cellulose. Is preferred.
  • the reaction is started after mixing the contents of the reaction vessel, that is, alkali cellulose, ethylene oxide and, if applicable, the reaction solvent, in order to promote a uniform reaction.
  • the temperature of the contents is controlled to 10 to 20 ° C. and 10 minutes to 1 hour. Stir to a certain extent. Then, the temperature of the contents is raised by heating the reaction vessel, and the reaction between alkali cellulose and ethylene oxide is started.
  • the reaction temperature is usually preferably set to 30 ° C. to 80 ° C. and more preferably 40 to 60 ° C.
  • a washing solvent is added to the reaction vessel to wash the reaction system, and impurities such as by-products and remaining alkali are removed from the hydroxyethyl cellulose by filtration to obtain the desired hydroxyethyl cellulose wet cake.
  • a solvent having a composition of 30 to 50% by weight of a hydrophobic organic solvent, 20 to 60% by weight of methanol and 10 to 30% by weight of water can be used.
  • the type of the hydrophobic organic solvent is not particularly limited, but usually a hydrophobic organic solvent having a solubility in water at 25 ° C. of about 3% by mass or less is preferable.
  • hydrophobic organic solvent Since such a hydrophobic organic solvent is easily separated from water, it can be easily recovered and purified from the cleaning solvent after use, and can be easily reused.
  • Preferred examples of the hydrophobic organic solvent include 6 carbon atoms such as methyl isobutyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, ethyl-n-butyl ketone, di-n-propyl ketone and diisobutyl ketone. ⁇ 10 aliphatic ketones.
  • methyl isobutyl ketone is preferred because it has a relatively low boiling point and can be easily recovered by distillation.
  • the acid for the neutralization treatment is not particularly limited, and may be either an organic acid or an inorganic acid.
  • the organic acid include formic acid, acetic acid, propionic acid, and the like.
  • inorganic acids include nitric acid, hydrochloric acid, sulfuric acid, and phosphoric acid. Of these, it is particularly preferable to use acetic acid or nitric acid because the salt produced by neutralization of the alkali is easily dissolved in a washing solvent.
  • a neutralization solvent is prepared by adding an acid to a solvent having the same composition as the above-described cleaning solvent, and the wet cake is put into the neutralization solvent. Can be used. In this case, it is preferable to repeatedly neutralize the wet cake using the neutralization solvent until the pH of the neutralization solvent removed by filtration from the wet cake becomes 6 to 8.
  • the amount of ethylene oxide used can be suppressed, the amount of impurities such as by-products in the reaction system and wet cake is small, and the reaction system is washed and wet cake as compared with the conventional production method. The burden required for the neutralization treatment is reduced.
  • a target hydroxyethyl cellulose having an average added mole number of ethylene oxide per glucose unit in the range of 0.1 to 1.0 mole is obtained. Since this hydroxyethyl cellulose has a small average added mole number of ethylene oxide, it has few hydroxyethyl groups which are hydrophilic groups and does not exhibit water solubility.
  • the criteria for determining water solubility here are as described in Examples below.
  • the obtained hydroxyethyl cellulose is then mechanically pulverized. Thereby, the target water-soluble hydroxyethyl cellulose is obtained.
  • the hydroxyethyl cellulose obtained in the previous step has a small average addition mole number of ethylene oxide, the addition of ethylene oxide to the glucose unit is relatively uniform. It is considered that when an impact is applied, the crystal structure of cellulose is easily crushed, thereby exhibiting water solubility.
  • the average added mole number of ethylene oxide in hydroxyethyl cellulose is usually the same before and after the grinding treatment in this step.
  • a rotary pulverizer such as a ball mill or a bead mill, a pulverizer, a high-pressure homogenizer, or a jet mill can be used.
  • the pulverization method is not particularly limited as long as it is a method that hardly causes alteration of hydroxyethyl cellulose, and basically any of a wet method and a dry method may be used. It is preferable to use a wet method because it is easy to suppress the alteration of hydroxyethyl cellulose due to heat generation and excessive impact.
  • the water-soluble hydroxyethyl cellulose obtained by the production method of the present invention has an average added mole number of ethylene oxide per glucose unit of 0.1 to 1.0 mole, and in a particularly preferred form, the average added mole number is smaller. It is 0.1 mol or more and less than 0.7 mol.
  • water-soluble hydroxyethyl cellulose obtained by the conventional production methods has the above average added mole number of ethylene oxide of about 1.5 to 2.5, the aqueous solution exhibits sol properties.
  • the water-soluble hydroxyethyl cellulose of the present invention has a loss tangent (tan ⁇ ) of less than 1.0 in the frequency range of 0.1 to 100 rad / s when an aqueous solution having a concentration of 2% by mass is prepared. Shows typical gel properties.
  • the water-soluble hydroxyethyl cellulose of the present invention has a uniform presence of hydroxyethyl groups, which are hydrophilic groups, throughout the molecule, while the added amount of hydroxyethyl groups is the same. It is presumed that the hydrophobic part is uniformly present in the whole molecule and the association by the hydrophobic part occurs in water because it is less than the above.
  • the water-soluble hydroxyethyl cellulose of the present invention is used in various industrial fields such as cosmetics, pharmaceuticals and toiletries as in the case of conventional water-soluble hydroxyethyl cellulose. It can be used as a colloid agent.
  • the water-soluble hydroxyethyl cellulose of the present invention is different in rheological properties from the conventional water-soluble hydroxyethyl cellulose, it can be expected to develop applications different from the conventional water-soluble hydroxyethyl cellulose.
  • the development of products with less sliminess is expected due to the rheological properties of gels.
  • medical agents is also anticipated, as a new functional agent, the utilization method different from the past and the expansion of use in an industrial field are anticipated.
  • the entire molecule has a hydrophilic portion and a hydrophobic property. It is possible to expect performance improvement or new function addition by having the portions uniformly.
  • 0.075 g (a) of hydroxyethylcellulose dried at 105 ° C. for 2 hours was placed in the decomposition flask B, and 5 mL of 57% by mass of hydroiodic acid was added thereto. Further, 1.0 g of red phosphorus was put into the gas scrubber D, and ion exchange water was added to the liquid so that the height of the liquid was 3 to 4 cm. Further, the ethyl iodide absorption tube E, the ethylene absorption tube F, and the bromine absorption tube G were charged with 10 mL of silver nitrate / ethanol test solution, 15 mL of bromine / acetic acid test solution, and 10 mL of potassium iodide solution, respectively.
  • the decomposition flask B was heated at 140 to 145 ° C. for 60 to 90 minutes while passing carbon dioxide through the carbon dioxide introduction tube A so as to form 1 to 2 bubbles per second.
  • the cloud in the air cooling tube C disappears and the solution in the ethyl iodide absorption tube E becomes substantially transparent, the ethyl iodide absorption tube E is heated to 50-60 ° C., and the ethyl iodide absorption tube E and ethylene
  • the connection between the absorption tubes F was removed.
  • the solution of the ethylene absorption tube F and the bromine absorption tube G was transferred to a 300 mL conical beaker containing 10 mL of potassium iodide, and the washing solution obtained by washing the ethylene absorption tube F and the bromine absorption tube G with water was adjusted to 150 mL. And left for 5 minutes. To this was added 2 mL of starch test solution as an indicator, and titrated with 0.05N sodium thiosulfate solution (c). A blank test was performed in the same manner and titrated with 0.05N sodium thiosulfate solution (b).
  • the solution of the ethyl iodide absorption tube E was moved to the 300 mL conical beaker, and the washing
  • a blank test was performed in the same manner and titrated with 0.05N ammonium thiocyanate solution (d).
  • the ignition residue (mass%) was determined by the following procedure. Hydroxyethylcellulose (4 g) was weighed into a 50 mL volume magnetic crucible of known mass, and 98 mL by mass of sulfuric acid (2 mL) was added thereto. This was overheated at 650 ° C. for 2 hours for ashing, and the mass X (g) of the obtained ash was weighed. Separately, 4 g of hydroxyethylcellulose was weighed, dried at 105 ° C. for 2 hours, weighed, and the water content Y (mass%) was determined from the loss on drying. Although the ash is sodium sulfate, this ignition residue is expressed in terms of sodium carbonate, and the ignition residue (mass%) was obtained from the following formula (1).
  • the average number of moles of ethylene oxide added per unit of glucose in hydroxyethyl cellulose was determined from the following formula (2).
  • Ox is an oxyethylene group (mass%), which is determined by the following formula (3).
  • a to f are as follows.
  • 1.547 is a value obtained by dividing the molecular weight 82 of sodium acetate by the value obtained by dividing the molecular weight 106 of sodium carbonate by 2.
  • Example 1 A 1 L volume kneader was charged with 150 g of wet cake-like alkali cellulose obtained in the production example, 3.5 g of ethylene oxide and 50 g of methyl isobutyl ketone while controlling the temperature at 15 ° C., and then stirred and mixed at the same temperature for 30 minutes. . Next, heating was continued while stirring and mixing, the temperature was raised to 50 ° C., and alkali cellulose and ethylene oxide were reacted for 3 hours.
  • a wet cake was obtained by filtering the reaction product in the kneader, and this wet cake was washed with a washing solvent having a composition of 100 g of methyl isobutyl ketone, 100 g of methanol and 50 g of water. Further, the wet cake was further washed with 50 g of a neutralizing solvent prepared by adding 2 g of acetic acid to a washing solvent having the same composition to obtain 180 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 50 g of hydroxyethyl cellulose.
  • hydroxyethyl cellulose was mechanically pulverized.
  • a 2% by mass aqueous dispersion (slurry) of hydroxyethyl cellulose was prepared, and this slurry was treated with a jet mill.
  • the jet mill the trade name “G-smasher” of Rix Co., Ltd. was used, and the processing conditions were set as follows.
  • the hydroxyethyl cellulose after pulverization was 0.1 mol when the average number of moles of ethylene oxide added per glucose unit was measured.
  • Air pressure 0.6 MPa Collision plate: Flat plate Slurry amount: 300mL Slurry supply amount: 100 mL / min Number of passes: 10
  • Example 2 The same operation as in Example 1 was carried out except that the amount of ethylene oxide used was changed to 6.5 g to obtain 190 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 52 g of hydroxyethyl cellulose. The obtained hydroxyethyl cellulose was mechanically pulverized in the same manner as in Example 1. The hydroxyethyl cellulose after pulverization was 0.2 mol when the average number of added moles of ethylene oxide per glucose unit was measured.
  • Example 3 The same operation as in Example 1 was performed except that the amount of ethylene oxide used was changed to 16 g to obtain 200 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 54 g of hydroxyethyl cellulose. The obtained hydroxyethyl cellulose was mechanically pulverized in the same manner as in Example 1. The hydroxyethyl cellulose after pulverization was 0.5 mol when the average number of moles of ethylene oxide added per glucose unit was measured.
  • Example 4 Except that the amount of ethylene oxide used was changed to 25 g, the same operation as in Example 1 was performed to obtain 212 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 58 g of hydroxyethyl cellulose. The obtained hydroxyethyl cellulose was mechanically pulverized in the same manner as in Example 1. The hydroxyethyl cellulose after pulverization was 0.7 mol when the average number of moles of ethylene oxide added per glucose unit was measured.
  • Example 5 The same operation as in Example 1 was performed except that the amount of ethylene oxide used was changed to 35 g to obtain 230 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 62 g of hydroxyethyl cellulose. The obtained hydroxyethyl cellulose was mechanically pulverized in the same manner as in Example 1. The hydroxyethyl cellulose after pulverization was 1.0 mole when the average number of moles of ethylene oxide added per glucose unit was measured.
  • Example 2 The same operation as in Example 1 was performed except that the amount of ethylene oxide used was changed to 50 g to obtain 220 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 68 g of hydroxyethyl cellulose. This hydroxyethyl cellulose was 1.5 moles when the average number of moles of ethylene oxide added per glucose unit was measured.
  • a wet cake was obtained by filtering the reaction product in the kneader, and this wet cake was washed with a washing solvent having a composition of 100 g of methyl isobutyl ketone, 100 g of methanol and 50 g of water. Further, the wet cake was further washed with 50 g of a neutralizing solvent prepared by adding 2 g of acetic acid to a washing solvent having the same composition to obtain 200 g of a neutralized wet cake. The neutralized wet cake was dried to obtain 54 g of hydroxyethyl cellulose. The obtained hydroxyethyl cellulose was mechanically pulverized in the same manner as in Example 1. The hydroxyethyl cellulose after pulverization was 0.5 mol when the average number of moles of ethylene oxide added per glucose unit was measured.
  • the loss tangent (tan ⁇ ) obtained by dividing (G ′′ / G ′) the loss elastic modulus (G ′′) of the aqueous solution by the storage elastic modulus (G ′) is less than 1.0 (ie, In the case where the storage elastic modulus (G ′) is larger than the loss elastic modulus (G ′′).)
  • the aqueous solution is evaluated to exhibit gel properties. Also in this evaluation, the frequency is 0.1 to 100 rad / s.
  • the slurry of Example 3 and the aqueous solution of hydroxyethyl cellulose obtained in Comparative Example 2 were determined from the storage elastic modulus (G ′) and loss elastic modulus (G ′′) in the frequency range of 0.1 to 100 rad / s.
  • the value of the loss tangent (tan ⁇ ) (that is, G ′′ / G ′) is shown in FIG. According to FIG.
  • the slurry of Example 3 shows gel properties because the loss tangent (tan ⁇ ) is less than 1.0 in the above frequency range, whereas the aqueous solution of hydroxyethyl cellulose obtained in Comparative Example 2 is It can be seen that the loss tangent (tan ⁇ ) is 1.0 or more in the same frequency range, indicating sol properties.
  • the water-soluble hydroxyethyl cellulose of the present invention typified by the water-soluble hydroxyethyl cellulose obtained in Example 3 is nonionic, and according to FIG. 3, there is little change in viscosity due to the influence of the electrolyte in the aqueous solution. It is expected to show good stability when used in applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

アルカリセルロースに対し、そのグルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルになるよう酸化エチレンを反応させてヒドロキシエチルセルロースを調製し、調製したヒドロキシエチルセルロースを機械的に粉砕することで水溶性のヒドロキシエチルセルロースを製造する。この製造方法によると、酸化エチレンの使用量を抑えてアルカリセルロースから水溶性のヒドロキシエチルセルロースを製造することができる。また、この製造方法により製造される水溶性ヒドロキシエチルセルロースは、通常、2質量%水溶液の損失正接(tanδ)が周波数0.1~100rad/sの範囲で1.0未満であり、ゲル物性を示す。

Description

水溶性ヒドロキシエチルセルロースの製造方法
 本発明は、水溶性ヒドロキシエチルセルロースの製造方法、特に、アルカリセルロースに対して酸化エチレンを反応させることで水溶性ヒドロキシエチルセルロースを製造するための方法に関する。
 水溶性ヒドロキシエチルセルロースは、セルロースを原料とした半合成高分子であり、ノニオン系水溶性高分子としての特性を有することから、化粧品、医薬品およびトイレタリー製品をはじめとする種々の産業分野において、増粘剤、乳化安定剤、分散剤、保水剤または保護コロイド剤等として幅広く利用されている。
 水溶性ヒドロキシエチルセルロースは、通常、スラリー法またはアルカリセルロース法のいずれかの方法により製造されている。
 スラリー法は、反応溶媒としての親水性有機溶剤中でセルロースとアルカリ金属水酸化物等のアルカリとを反応させてアルカリセルロースを調製し、このアルカリセルロースを含む反応溶媒に引き続き酸化エチレンを添加して反応させることで水溶性ヒドロキシエチルセルロースを製造する方法である(例えば、特許文献1および2参照。)。ここで用いられる親水性有機溶剤は、例えば、エタノール、イソプロピルアルコール、イソブチルアルコール、tert-ブチルアルコール若しくはイソアミルアルコール等の脂肪族アルコール類、ジオキサン若しくは1,2-ジメトキシエタン等のエーテル類またはアセトン若しくはメチルエチルケトン等のケトン類である。スラリー法は、アルカリセルロースの調製工程と、調製されたアルカリセルロースと酸化エチレンとの反応工程とを同一の反応容器内で連続的に実行することができ、その点において水溶性ヒドロキシエチルセルロースの製造工程を効率化、合理化することができることから、水溶性ヒドロキシエチルセルロースの一般的な製造方法として利用されている。
 スラリー法による水溶性のヒドロキシエチルセルロースの製造では、ヒドロキシエチルセルロースのグルコース単位当りの酸化エチレンの平均付加モル数が多くなるよう制御されている。例えば、特許文献2において、酸化エチレンの平均付加モル数(モル置換度)は2.0以上になるよう制御されており、また、スラリー法により製造された市販の水溶性ヒドロキシエチルセルロースは、一般に酸化エチレンの平均付加モル数が2.5程度である。これは、親水性有機溶剤を反応溶媒とするアルカリセルロースの調製過程において、セルロースの各グルコース単位とアルカリとが均一に反応しにくいことから、生成するアルカリセルロースに組成の偏りが生じ、そのためにアルカリセルロースに対する酸化エチレンの付加反応が不均一になったり、酸化エチレンが重合状態で付加した状態になりやすいことによるものと推察される。
 したがって、スラリー法は、製造工程の効率化や合理化を進める上で有利であるが、酸化エチレンの平均付加モル数を上記のように制御することから、酸化エチレンの使用量が多くなる。
 一方、アルカリセルロース法は、セルロースをアルカリ金属水酸化物等のアルカリの水溶液に浸漬することでセルロースとアルカリとを反応させてアルカリセルロースを調製し、このアルカリセルロースに対して酸化エチレンを反応させることで水溶性ヒドロキシエチルセルロースを製造する方法である(例えば、特許文献3および4参照。)。アルカリセルロース法により得られる水溶性ヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数がスラリー法よりも少ない1.5程度に設定されている。これは、この製造方法においてセルロースの各グルコース単位とアルカリとを均一に反応させやすいことから生成するアルカリセルロースに組成の偏りが生じにくく、そのためにアルカリセルロースに対する酸化エチレンの付加反応が均一になりやすいためと推察される。
 しかし、アルカリセルロース法の過程において調製されたアルカリセルロースは、過剰なアルカリが残存するため、酸化エチレンとの反応において副生成物等の不純物が生じやすい。このため、生成した水溶性ヒドロキシエチルセルロースを含む反応系から副生成物等の不純物を取り除くための精製工程が必要となるが、この精製工程が煩雑となることから負担が大きい。そこで、アルカリセルロース法は、精製工程の負担を軽減するための提案がされている。例えば、特許文献3は、アルカリセルロースと酸化エチレンとの反応溶媒として難水溶性有機溶媒を用いるとともに、生成したヒドロキシエチルセルロースの洗浄溶液として当該難水溶性有機溶媒、メタノールおよび水からなる混合溶媒を用いることを提案している。また、特許文献4は、生成したヒドロキシエチルセルロースを難水溶性有機溶媒、メタノールおよび水からなる混合溶媒を用いて洗浄後、当該混合溶媒と酸との混合溶媒を用いてさらに洗浄することを提案している。
 なお、アルカリセルロース法は、酸化エチレンの使用量を抑制すれば副生成物等の不純物の生成量を抑えることができ、その結果として精製工程の負担を軽減可能である。しかし、酸化エチレンの使用量を抑えて製造したヒドロキシエチルセルロースは、酸化エチレンの平均付加モル数が低下し、それに伴って親水性基であるヒドロキシエチル基の数が減少することから、水溶性を示しにくくなる。
特開昭59-75902号公報 特開平1-123801号公報 特開平6-199902号公報 特開2003-12535号公報
 本発明は、酸化エチレンの使用量を抑えてアルカリセルロースから水溶性のヒドロキシエチルセルロースを製造できるようにするものである。
 本発明に係る水溶性ヒドロキシエチルセルロースの製造方法は、アルカリセルロースに対し、そのグルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルになるよう酸化エチレンを反応させてヒドロキシエチルセルロースを調製する工程と、調製したヒドロキシエチルセルロースを機械的に粉砕する工程とを含む。
 ここで用いられるアルカリセルロースは、通常、セルロースをアルカリの水溶液に浸漬することでセルロースとアルカリとを反応させて得られるスラリーから液分を分離することで得られるものである。
 本発明の製造方法の一形態では、アルカリセルロースに対し、そのグルコース単位当たりの酸化エチレンの平均付加モル数が0.7モル未満になるよう酸化エチレンを反応させる。
 本発明の製造方法は、アルカリセルロースに対して酸化エチレンを反応させて調製されたヒドロキシエチルセルロースを機械的に粉砕する工程を含むため、酸化エチレンの使用量を抑えて水溶性のヒドロキシエチルセルロースを製造することができる。
 本発明に係る水溶性ヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルである。この水溶性ヒドロキシエチルセルロースの一形態において、グルコース単位当たりの酸化エチレンの平均付加モル数は0.7未満である。
 本発明に係る水溶性ヒドロキシエチルセルロースは、通常、2質量%水溶液の損失正接(tanδ)が周波数0.1~100rad/sの範囲で1.0未満である。
 本発明に係る水溶性ヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルに抑えられていることから、その水溶液が従来のヒドロキシエチルセルロースの水溶液とは相違したレオロジー物性を示す。
 本発明の他の目的または効果は、以下の詳細な説明において触れる場合がある。
実施例等において用いた、日本国厚生省薬務局審査課監修、医薬品添加物規格1993、薬事日報社、250項-254項「ヒドロキシエチルセルロース、定量法」に記載された装置図。 実施例3および比較例2で得られたヒドロキシエチルセルロースをそれぞれ用いて調製した2質量%水溶液について、周波数0.1~100rad/sの範囲の損失正接(tanδ)を求めた結果を示すグラフ。 実施例3で得られたヒドロキシエチルセルロースについて耐塩性を評価した結果を示すグラフ。
 本発明に係る水溶性ヒドロキシエチルセルロースの製造方法では、先ず、酸化エチレンの平均付加モル数が特定の範囲にあるヒドロキシエチルセルロースを調製する。このヒドロキシエチルセルロースは、アルカリセルロースに対して酸化エチレンを反応させることで調製することができる。
 アルカリセルロースは、セルロースにアルカリを反応させることで調製することができる。ここで用いられるセルロースとしては、例えば、シート状または粉末状等のコットンリンターおよび木材パルプ等を例示することができる。
 アルカリとしては、セルロースのヒドロキシル基に作用し、アルカリセルロースを形成可能なものであれば、各種のものを用いることができ、例えば、水酸化ナトリウム、水酸化カリウムまたは水酸化リチウム等のアルカリ金属水酸化物を挙げることができる。特に、安価で汎用的なことから、水酸化ナトリウムを用いるのが好ましい。
 セルロースにアルカリを反応させる方法として、アルカリの水溶液にセルロースを浸漬し、攪拌翼を備えた容器内で20分~2時間程度混合する方法を採用することができる。ここで使用されるアルカリ水溶液の濃度は、特に限定されるものではないが、通常は10~30質量%に設定するのが好ましい。また、アルカリ水溶液の使用量は、アルカリ水溶液中でセルロースが分散することにより生成するスラリーの流動性を確保し、セルロースとアルカリとの反応の均一性を高めるため、通常、セルロース100質量部に対して1,000~6,000質量部に設定するのが好ましく、2,000~5,000質量部に設定するのがより好ましい。また、混合時の温度は、通常、20~50℃に設定するのが好ましい。
 目的のアルカリセルロースは、以上の方法により調製したアルカリセルロースを含むスラリーから余剰のアルカリを含む液分を分離することで得られる。スラリーから液分を分離する方法としては、種々の固液分離法、例えば、加圧濾過、自然濾過、減圧濾過または遠心濾過等を採用することができる。このうち、スラリーに含まれる固形分を圧搾することができ、それによって余剰のアルカリを含む液分をより効果的に分離可能なことから、加圧濾過によるのが特に好ましい。
 目的のヒドロキシエチルセルロースの調製では、得られたアルカリセルロースに対して酸化エチレンを反応させる。ここでは、アルカリセルロースおよび酸化エチレンを反応容器に仕込み、これらを攪拌しながら反応させる。この際、反応容器に反応溶媒を併せて仕込み、反応溶媒中でアルカリセルロースと酸化エチレンとを反応させることもできる。反応溶媒を用いると、アルカリセルロースの各グルコース単位に対する酸化エチレンの均一な反応を促進させることができる。
 酸化エチレンの使用量は、生成するヒドロキシエチルセルロースにおいて、そのグルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モル(0.1モル以上、1.0モル以下)になるよう制御する。特に、この製造方法の好ましい一形態においては、酸化エチレンの上記平均付加モル数が0.1モル以上、0.7モル未満になるよう制御する。グルコース単位における酸化エチレンの付加反応率は、反応条件によって変動するものの、一般には40~60%程度であることから、酸化エチレンの上記平均付加モル数は、通常、アルカリセルロースの調製のために用いた原料セルロース100質量部に対する酸化エチレンの使用量を7~80質量部、或いは、多少の余裕を持たせた5~100質量部に設定することで上記範囲に制御可能である。
 なお、これまでのスラリー法やアルカリセルロース法によるヒドロキシエチルセルロースの製造においては、生成するヒドロキシエチルセルロースに水溶性を付与するために、そのグルコース単位当たりの酸化エチレンの平均付加モル数が製法に応じて1.5~2.5モル程度になるよう制御されている。この場合、グルコース単位における酸化エチレンの上記付加反応率を考慮すると、酸化エチレンの使用量は、アルカリセルロースの調製のために用いた原料セルロース100質量部に対する酸化エチレンの使用量を100~150質量部に設定する必要がある。したがって、本発明の製造方法は、これまでの製造方法に比べ、酸化エチレンの使用量の抑制が可能である。
 アルカリセルロースと酸化エチレンとを反応溶媒中で反応させる場合、反応溶媒は、各種のものを用いることができ、種類が特に限定されるものではない。但し、反応溶媒としては、通常、エタノール、イソプロピルアルコール、イソブチルアルコール、tert-ブチルアルコールまたはイソアミルアルコール等のアルコール類、ジオキサンまたは1,2-ジメトキシエタン等のエーテル類、アセトン、メチルエチルケトンまたはメチルイソブチルケトン等のケトン類を用いるのが好ましい。これらの反応溶媒は、二種以上のものが併用されてもよい。
 反応溶媒は、アルカリセルロースの各グルコース単位に対する酸化エチレンの均一な反応が促進されやすいようにするために、通常、アルカリセルロース100質量部に対して600質量部以下になるよう、使用量を制御するのが好ましい。
 アルカリセルロースと酸化エチレンとの反応では、均一な反応を進行させるため、反応容器の内容物、すなわち、アルカリセルロース、酸化エチレンおよび該当する場合は反応溶媒を充分に混合してから反応を開始させるのが好ましい。例えば、温度変化に伴うアルカリセルロースの結晶性の変化を抑えながら反応系内で酸化エチレンが均一に分散するようにするため、内容物の温度を10~20℃に制御し、10分~1時間程度攪拌する。その後、反応容器を加熱することで内容物を昇温させ、アルカリセルロースと酸化エチレンとの反応を開始させる。反応温度は、発熱反応による急激な上昇を抑えつつ、反応を円滑に促進させるため、通常、30℃~80℃に設定するのが好ましく、40~60℃に設定するのがより好ましい。アルカリセルロースと酸化エチレンとの反応の進行状況は反応温度等の反応条件により変動するため、反応時間を一概に決めるのが困難であるが、通常は1~10時間程度である。
 反応終了後、反応容器に洗浄溶剤を添加して反応系を洗浄し、反応による副生成物および残存するアルカリ等の不純物をヒドロキシエチルセルロースから濾別除去することで目的のヒドロキシエチルセルロースのウェットケーキを得る。洗浄溶剤として、例えば、疎水性有機溶剤30~50質量%、メタノール20~60質量%および水10~30質量%の組成のものを使用することができる。疎水性有機溶剤の種類は、特に限定されないが、通常、25℃での水への溶解度が約3質量%以下のものが好ましい。このような疎水性有機溶剤は、水との分離が容易なことから、使用後の洗浄溶剤からの回収・精製が容易であり、容易に再利用することができる。上記疎水性有機溶剤として好ましいものは、例えば、メチルイソブチルケトン、メチル-n-アミルケトン、メチル-n-ヘキシルケトン、エチル-n-ブチルケトン、ジ-n-プロピルケトンおよびジイソブチルケトン等の炭素数が6~10の脂肪族ケトンである。特に、比較的沸点が低く、蒸留による回収が容易であることから、メチルイソブチルケトンが好ましい。
 次に、得られたウェットケーキを酸で処理し、中和する。中和処理のための酸は、種類が特に限定されるものではなく、有機酸および無機酸のいずれであってもよい。有機酸としては、例えば、蟻酸、酢酸およびプロピオン酸等を挙げることができる。また、無機酸としては、例えば、硝酸、塩酸、硫酸およびリン酸等を挙げることができる。これらのうち、アルカリの中和によって生成する塩を洗浄溶剤に溶解させて洗い流し易いことから、酢酸または硝酸を用いるのが特に好ましい。
 酸を用いたウェットケーキの中和処理方法としては、例えば、上述の洗浄溶剤と同様の組成の溶剤に酸を添加することで中和溶剤を調製し、この中和溶剤にウェットケーキを投入して洗浄する方法を採ることができる。この場合、ウェットケーキから濾別除去された中和溶剤のpHが6~8になるまで、中和溶剤を用いてウェットケーキを繰返し中和処理するのが好ましい。
 本発明の製造方法では、酸化エチレンの使用量を抑制することができることから、反応系やウェットケーキにおいて副生成物等の不純物量が少なく、従来の製造方法に比べて反応系の洗浄やウェットケーキの中和処理に要する負担が軽減される。
 中和処理後のウェットケーキを乾燥すると、グルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルの範囲にある目的のヒドロキシエチルセルロースが得られる。このヒドロキシエチルセルロースは、酸化エチレンの上記平均付加モル数が少ないことから親水性基であるヒドロキシエチル基が少なく、水溶性を示さない。なお、ここでの水溶性の判断基準は、後記の実施例に記載のとおりである。
 本発明の製造方法では、次に、得られたヒドロキシエチルセルロースを機械的に粉砕する。これにより、目的の水溶性のヒドロキシエチルセルロースが得られる。先の工程で得られたヒドロキシエチルセルロースは、酸化エチレンの上記平均付加モル数が少ないものの、グルコース単位への酸化エチレンの付加が比較的均一であることから、機械的に粉砕することで物理的な衝撃を加えると、セルロースの結晶構造が容易に解砕され、それによって水溶性を示すものと考えられる。なお、ヒドロキシエチルセルロースにおける酸化エチレンの上記平均付加モル数は、通常、この工程での粉砕処理の前後において同じである。
 ヒドロキシエチルセルロースの機械的な粉砕においては、通常、ボールミルやビーズミルなどの回転式粉砕機、石臼式摩砕機、高圧ホモジナイザーまたはジェットミル等の粉砕機を利用することができる。粉砕方法は、ヒドロキシエチルセルロースの変質を引き起こしにくい方法であれば特に限定されるものではなく、基本的に湿式法および乾式法のいずれであってもよいが、均一な粉砕効果を期待できるとともに、粉砕時の発熱や過度の衝撃によるヒドロキシエチルセルロースの変質を抑制しやすいことから、湿式法によるのが好ましい。
 本発明の製造方法により得られる水溶性ヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モル、特に好ましい形態では当該平均付加モル数がより少ない範囲である0.1モル以上、0.7モル未満である。
 これまでの製造方法により得られる水溶性ヒドロキシエチルセルロースは、酸化エチレンの上記平均付加モル数が1.5~2.5程度であることから、その水溶液はゾル物性を示す。これに対し、本発明の水溶性ヒドロキシエチルセルロースは、その濃度が2質量%の水溶液を調製したときの損失正接(tanδ)が周波数0.1~100rad/sの範囲で1.0未満であって典型的なゲル物性を示す。このようにレオロジー特性が相違する理由は詳らかではないが、本発明の水溶性ヒドロキシエチルセルロースは、分子全体に親水性基であるヒドロキシエチル基が均一に存在する一方、ヒドロキシエチル基の付加量がこれまでのものに比べて少ないことから分子全体に疎水性部分が均一に存在し、水中において疎水性部分による会合が生じることによるものと推察される。
 本発明の水溶性ヒドロキシエチルセルロースは、これまでの水溶性ヒドロキシエチルセルロースと同様に化粧品、医薬品およびトイレタリー製品をはじめとする種々の産業分野において、増粘剤、乳化安定剤、分散剤、保水剤または保護コロイド剤等として利用可能である。
 一方、本発明の水溶性ヒドロキシエチルセルロースは、これまでの水溶性ヒドロキシエチルセルロースとレオロジー特性が相違するため、これまでの水溶性ヒドロキシエチルセルロースとは異なる用途展開を期待することができる。例えば、化粧品分野において用いると、ゲルとしてのレオロジー特性により、ぬめり感の少ない製品の開発が見込まれる。また、各種の成分や薬剤の分離や沈降を防止する機能も見込まれることから、新たな機能剤として、これまでとは異なる利用方法や産業分野での利用拡大も期待される。さらに、これまでと同様の乳化安定剤、分散剤、保水剤または保護コロイド剤等としての利用においても、従来のノニオン系水溶性高分子としての特性に加え、分子全体に親水性部分と疎水性部分とを均一に有することによる性能向上または新たな機能付加を期待することができる。
 以下に実施例および比較例等を挙げ、本発明を具体的に説明するが、本発明は、これらの実施例等によってなんら限定されるものではない。
 実施例等において、ヒドロキシエチルセルロースのグルコース単位当たりの酸化エチレンの平均付加モル数は、日本国厚生省薬務局審査課監修、医薬品添加物規格1993、薬事日報社、250項-254項「ヒドロキシエチルセルロース、定量法」に記載された装置を用いて所要の項目を測定し、これらの測定項目から算出した。具体的には次のとおりである。なお、以下の説明におけるA~Hは、上記医薬品添加物規格1993に記載された上記装置の図(図1)に付された符号である。
 105℃で2時間乾燥したヒドロキシエチルセルロース0.075g(a)を分解フラスコBに入れ、それに57質量%のヨウ化水素酸5mLを加えた。また、赤りん1.0gをガス洗浄器Dに入れ、それに液の高さが3~4cmになる量のイオン交換水を加えた。さらに、ヨウ化エチル吸収管E、エチレン吸収管Fおよび臭素吸収管Gは、それぞれに硝酸銀・エタノール試液10mL、臭素・酢酸試液15mLおよびヨウ化カリウム溶液10mLを入れた。
 二酸化炭素導入管Aから二酸化炭素を1秒間に1~2気泡となるように通じながら分解フラスコBを140~145℃で60~90分間加熱した。空冷管C内のくもりが消え、ヨウ化エチル吸収管E内の溶液が略透明になったとき、ヨウ化エチル吸収管Eを50~60℃に加温し、ヨウ化エチル吸収管Eとエチレン吸収管Fの間の連結を取りはずした。ヨウ化カリウム10mLを入れた300mLコニカルビーカーにエチレン吸収管Fおよび臭素吸収管Gの溶液を移し、これにエチレン吸収管Fおよび臭素吸収管Gを水洗した洗液を合わせて150mLとした後、栓をして5分間放置した。これに指示薬としてデンプン試液2mLを入れ、0.05Nチオ硫酸ナトリウム溶液で滴定した(c)。同様の方法で空試験を行い、0.05Nチオ硫酸ナトリウム溶液で滴定した(b)。また、300mLコニカルビーカーにヨウ化エチル吸収管Eの溶液を移し、これにヨウ化エチル吸収管Eを水洗した洗液を合わせて150mLとした。これに希硫酸3mLと指示薬としての硫酸第二鉄アンモニウム試液3mLとを加え、0.05Nチオシアン酸アンモニウム溶液で滴定した(e)。同様の方法で空試験を行い、0.05Nチオシアン酸アンモニウム溶液で滴定した(d)。
 また、強熱残分(質量%)を次の手順により求めた。質量既知の50mL容の磁性るつぼにヒドロキシエチルセルロース4gを秤り入れ、これに98質量%硫酸2mLを添加した。これを650℃で2時間過熱して灰化させ、得られた灰分の質量X(g)を秤量した。これとは別にヒドロキシエチルセルロース4gを秤り、これを105℃で2時間乾燥させた後に秤量して乾燥減量から含水量Y(質量%)を求めた。灰分は、硫酸ナトリウムになっているが、本強熱残分は、炭酸ナトリウム換算表記とし、次の式(1)より強熱残分(質量%)を求めた。
Figure JPOXMLDOC01-appb-M000001
 ヒドロキシエチルセルロースのグルコース単位当たりの酸化エチレンの平均付加モル数は、次の式(2)より求めた。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、Oxはオキシエチレン基(質量%)であり、次の式(3)により求めたものである。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、a~fは次のとおりである。
 a:試料量(g)
 b:チオ硫酸ナトリウム空試験(mL)
 c:チオ硫酸ナトリウム滴定量(mL)
 d:チオシアン酸アンモニウム空試験(mL)
 e:チオシアン酸アンモニウム滴定量(mL)
 f:強熱残分(質量%)×1.547
 fの式中の1.547は、炭酸ナトリウムの分子量106を2で除した値で酢酸ナトリウムの分子量82を除した値である。
[製造例](アルカリセルロースの調製)
 5L容積のフラスコ内において20質量%水酸化ナトリウム水溶液2,000gにセルロース(日本製紙株式会社製のパルプ:商品名「NDPT」)50gを浸漬し、温度を30℃に維持して30分間攪拌混合した。これにより得られたスラリーを加圧濾過することで水酸化ナトリウム水溶液を除去し、150gのウエットケーキ状のアルカリセルロースを得た。
[実施例1]
 1L容積のニーダーに製造例で得られたウエットケーキ状のアルカリセルロース150g、酸化エチレン3.5gおよびメチルイソブチルケトン50gを15℃に温度を制御しながら仕込んだ後、同温度で30分間攪拌混合した。次に、攪拌混合を継続しながら加熱して50℃に昇温し、アルカリセルロースと酸化エチレンとを3時間反応させた。
 ニーダー内の反応物を濾別することでウェットケーキを得、このウェットケーキをメチルイソブチルケトン100g、メタノール100gおよび水50gの組成の洗浄溶剤で洗浄した。さらに、同じ組成の洗浄溶剤に酢酸2gを添加することで調製した中和溶剤50gによりウェットケーキをさらに洗浄することで中和し、180gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、50gのヒドロキシエチルセルロースを得た。
 次に、得られたヒドロキシエチルセルロースを機械的に粉砕した。ここでは、ヒドロキシエチルセルロースの2質量%水分散液(スラリー)を調製し、このスラリーをジェットミルで処理した。ジェットミルは、リックス株式会社の商品名「G-smasher」を用い、処理条件を下記のように設定した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、0.1モルであった。
 エア圧力    :0.6MPa
 衝突板     :平板
 スラリー量   :300mL
 スラリー供給量 :100mL/分
 パス回数    :10
[実施例2]
 酸化エチレンの使用量を6.5gに変更した点を除いて実施例1と同様に操作し、190gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、52gのヒドロキシエチルセルロースを得た。得られたヒドロキシエチルセルロースは、実施例1と同様の方法で機械的に粉砕した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、0.2モルであった。
[実施例3]
 酸化エチレンの使用量を16gに変更した点を除いて実施例1と同様に操作し、200gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、54gのヒドロキシエチルセルロースを得た。得られたヒドロキシエチルセルロースは、実施例1と同様の方法で機械的に粉砕した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、0.5モルであった。
[実施例4]
 酸化エチレンの使用量を25gに変更した点を除いて実施例1と同様に操作し、212gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、58gのヒドロキシエチルセルロースを得た。得られたヒドロキシエチルセルロースは、実施例1と同様の方法で機械的に粉砕した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、0.7モルであった。
[実施例5]
 酸化エチレンの使用量を35gに変更した点を除いて実施例1と同様に操作し、230gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、62gのヒドロキシエチルセルロースを得た。得られたヒドロキシエチルセルロースは、実施例1と同様の方法で機械的に粉砕した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、1.0モルであった。
[比較例1]
 製造例で得られたアルカリセルロースを酸化エチレンと反応させずにそのまま実施例1と同様の方法で機械的に粉砕処理した。
[比較例2]
 酸化エチレンの使用量を50gに変更した点を除いて実施例1と同様に操作し、220gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、68gのヒドロキシエチルセルロースを得た。このヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、1.5モルであった。
[比較例3]
 1L容積のニーダーにセルロース(日本製紙株式会社製のパルプ:商品名「NDPT」)50g、20質量%水酸化ナトリウム水溶液80gおよびtert-ブタノール300gを30℃に温度を制御しながら仕込み、同温度で30分間攪拌混合した。次に、温度を15℃に冷却して酸化エチレン16gを加え、同温度で30分間さらに攪拌混合した。その後、攪拌混合を継続しながら加熱して50℃に昇温し、3時間反応させた。
 ニーダー内の反応物を濾別することでウェットケーキを得、このウェットケーキをメチルイソブチルケトン100g、メタノール100gおよび水50gの組成の洗浄溶剤で洗浄した。さらに、同じ組成の洗浄溶剤に酢酸2gを添加することで調製した中和溶剤50gによりウェットケーキをさらに洗浄することで中和し、200gの中和ウェットケーキを得た。そして、この中和ウェットケーキを乾燥し、54gのヒドロキシエチルセルロースを得た。得られたヒドロキシエチルセルロースは、実施例1と同様の方法で機械的に粉砕した。粉砕後のヒドロキシエチルセルロースは、グルコース単位当たりの酸化エチレンの平均付加モル数を測定したところ、0.5モルであった。
[評価]
(1)水溶性
 実施例1~5および比較例3で得られた粉砕処理前のヒドロキシエチルセルロース並びに比較例2で得られたヒドロキシエチルセルロースの水溶性を調べた。ここでは、各ヒドロキシエチルセルロースの2質量%水分散液を調製し、その40gを透明なポリプロピレン樹脂製容器(外径29mm、高さ118mm)に入れた。そして、これを2,000rpmで5分間の条件で遠心分離器(株式会社コクサンの型番「N-40α」)により処理し、沈降分離の有無を目視により確認した。沈降分離が認められない場合は水溶性が有るものと判断し、沈降分離が認められる場合は水溶性が無いものと判断した。
 また、実施例1~5および比較例3で得られた粉砕処理後のヒドロキシエチルセルロース並びに比較例1で得られた粉砕処理後のアルカリセルロースの水溶性を調べた。ここでは、実施例1~5および比較例1、3での粉砕処理後のスラリーの40gを透明なポリプロピレン樹脂製容器(外径29mm、高さ118mm)に入れた。そして、これを2,000rpmで5分間の条件で遠心分離器(株式会社コクサンの型番「N-40α」)により処理し、沈降分離の有無を目視により確認した。沈降分離が認められない場合は水溶性が有るものと判断し、沈降分離が認められる場合は水溶性が無いものと判断した。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
(2)レオロジー物性
 水溶性の評価において水溶性有りと評価された、実施例1~5で得られた粉砕処理後のヒドロキシエチルセルロースおよび比較例2で得られたヒドロキシエチルセルロースについて、レオロジー物性を測定した。ここで、実施例1~5で得られた粉砕処理後のヒドロキシエチルセルロースについては、水溶性の評価のために用いたスラリー(すなわち、粉砕処理後のヒドロキシエチルセルロースの水溶液)を測定対象とした。また、比較例2で得られたヒドロキシエチルセルロースについては、水溶性の評価のために調製した2質量%水溶液を測定対象とした。測定装置および測定条件は次のとおりである。
 測定装置:
   レオメーター:TAインスツルメント社の型番「AR-2000」
   プレート  :60mm、1°コーンプレート
 測定温度   :25℃
 歪分散測定  :0.1%~1,000%(1Hz)
 周波数分散測定:300rad/s~0.1rad/s(歪み1%)
 一般に、水溶液の損失弾性率(G”)を貯蔵弾性率(G’)で除する(G”/G’)ことで求められる損失正接(tanδ)の値が、1.0未満の場合(すなわち、貯蔵弾性率(G’)が損失弾性率(G”)よりも大きい場合。)、当該水溶液はゲル物性を示すものと評価される。本評価においても、0.1~100rad/sの周波数範囲におけるtanδの値が1.0未満の場合、ゲル物性を示すものと評価した。結果を表2に示す。
 なお、実施例3のスラリーおよび比較例2で得られたヒドロキシエチルセルロースの水溶液については、周波数0.1~100rad/sの範囲における貯蔵弾性率(G’)および損失弾性率(G”)から求めた損失正接(tanδ)(すなわちG”/G’)の値を図2に示す。図2によると、実施例3のスラリーは、上記周波数範囲において損失正接(tanδ)が1.0未満であることからゲル物性を示すのに対し、比較例2で得られたヒドロキシエチルセルロースの水溶液は、同周波数範囲において損失正接(tanδ)が1.0以上であり、ゾル物性を示すことがわかる。
Figure JPOXMLDOC01-appb-T000005
(3)耐塩性
 実施例3で得られたスラリーの50gについて、温度を25℃に調整した状態で塩化ナトリウム(NaCl)を0.5質量%、1質量%または3質量%添加した場合の粘度をBM型粘度計(TOKIMEC社製)で測定した。この際、ロータNo.2の回転数を30rpmに設定した。結果を図3に示す。
 実施例3で得られた水溶性ヒドロキシエチルセルロースに代表される本発明の水溶性ヒドロキシエチルセルロースは、ノニオン系であり、図3によると水溶液中の電解質の影響による粘度の変化が少ないことから、種々の用途で用いられた場合において良好な安定性を示すものと期待される。

Claims (6)

  1.  アルカリセルロースに対し、そのグルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルになるよう酸化エチレンを反応させてヒドロキシエチルセルロースを調製する工程と、
     前記ヒドロキシエチルセルロースを機械的に粉砕する工程と、
    を含む水溶性ヒドロキシエチルセルロースの製造方法。
  2.  前記アルカリセルロースは、セルロースをアルカリの水溶液に浸漬することで前記セルロースと前記アルカリとを反応させて得られるスラリーから液分を分離することで得られるものである、請求項1に記載の水溶性ヒドロキシエチルセルロースの製造方法。
  3.  前記平均付加モル数が0.7モル未満になるよう酸化エチレンを反応させる、請求項1または2に記載の水溶性ヒドロキシエチルセルロースの製造方法。
  4.  グルコース単位当たりの酸化エチレンの平均付加モル数が0.1~1.0モルである水溶性ヒドロキシエチルセルロース。
  5.  前記平均付加モル数が0.7モル未満である、請求項4に記載の水溶性ヒドロキシエチルセルロース。
  6.  2質量%水溶液の損失正接(tanδ)が周波数0.1~100rad/sの範囲で1.0未満である、請求項4または5に記載の水溶性ヒドロキシエチルセルロース。
PCT/JP2017/033789 2016-09-29 2017-09-19 水溶性ヒドロキシエチルセルロースの製造方法 WO2018061890A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/333,018 US20190263938A1 (en) 2016-09-29 2017-09-19 Method for producing water-soluble hydroxyethyl cellulose
CN201780059308.5A CN109790226B (zh) 2016-09-29 2017-09-19 水溶性羟乙基纤维素的制造方法
EP17855845.8A EP3521317A4 (en) 2016-09-29 2017-09-19 PROCESS FOR PRODUCING WATER-SOLUBLE HYDROXYETHYL CELLULOSE
KR1020197001639A KR20190059889A (ko) 2016-09-29 2017-09-19 수용성 하이드록시에틸셀룰로오스의 제조 방법
JP2018542436A JP7030705B2 (ja) 2016-09-29 2017-09-19 水溶性ヒドロキシエチルセルロースの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191629 2016-09-29
JP2016-191629 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061890A1 true WO2018061890A1 (ja) 2018-04-05

Family

ID=61759685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033789 WO2018061890A1 (ja) 2016-09-29 2017-09-19 水溶性ヒドロキシエチルセルロースの製造方法

Country Status (7)

Country Link
US (1) US20190263938A1 (ja)
EP (1) EP3521317A4 (ja)
JP (1) JP7030705B2 (ja)
KR (1) KR20190059889A (ja)
CN (1) CN109790226B (ja)
TW (1) TWI780073B (ja)
WO (1) WO2018061890A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071461A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 粘性組成物
WO2022071463A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 粘性組成物
WO2022249748A1 (ja) * 2021-05-24 2022-12-01 住友精化株式会社 ゲル状組成物

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386750A (en) * 1976-11-18 1978-07-31 Union Carbide Corp Synthesis of hydroxyethyl cellulose having modified resistance to hydrolysis due to catalytic action of enzyme
JPS562302A (en) * 1979-06-15 1981-01-12 Hoechst Ag Method and device for continuously manufacturing waterrsoluble mixed ether as base of waterrsoluble hydroxyalkylcellulose or hydroxyalkylcellulose
JPS58196202A (ja) * 1982-05-05 1983-11-15 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト ヒドロキシアルキルメチルセルロ−スの製造方法
JPH0952903A (ja) * 1995-08-10 1997-02-25 Wolff Walsrode Ag マレイン酸付加生成物基を含む熱可塑性、生分解性多糖エステル類/多糖エーテルエステル類
JP2001510207A (ja) * 1997-07-14 2001-07-31 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト 新規なセルロースエーテル及びその製造法
JP2002512271A (ja) * 1998-04-20 2002-04-23 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト セルロースの活性化及び誘導体化の方法
JP2002265502A (ja) * 2001-03-15 2002-09-18 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースおよびその製造方法
JP2002536507A (ja) * 1999-02-10 2002-10-29 ハーキュリーズ・インコーポレイテッド 誘導微小繊維ポリサッカライド
JP2003012535A (ja) * 2001-07-02 2003-01-15 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースの製造方法
JP2003155301A (ja) * 2001-11-21 2003-05-27 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースの製造方法
JP2003171401A (ja) * 2001-12-10 2003-06-20 Sumitomo Seika Chem Co Ltd ヒドロキシアルキルセルロースの製造方法
JP2003231701A (ja) * 2002-02-13 2003-08-19 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロース粒子およびその製造法
JP2003252902A (ja) * 2002-03-04 2003-09-10 Shin Etsu Chem Co Ltd 低置換度セルロースエーテル粉末とその製造方法
JP2004307598A (ja) * 2003-04-04 2004-11-04 Nippon Synthetic Chem Ind Co Ltd:The 水溶性樹脂組成物およびフィルム
JP2005171089A (ja) * 2003-12-11 2005-06-30 Sumitomo Seika Chem Co Ltd カチオン化ヒドロキシアルキルセルロースの製造方法
JP2005179253A (ja) * 2003-12-19 2005-07-07 Shin Etsu Chem Co Ltd ゲル状シート及びその製造方法
JP2005529830A (ja) * 2002-06-12 2005-10-06 ダウ グローバル テクノロジーズ インコーポレイティド セメント組成物
JP2008534735A (ja) * 2005-04-04 2008-08-28 ハーキュリーズ・インコーポレーテッド 改善された未加工コットンリンター組成物、それらの製造方法および使用
JP2008535937A (ja) * 2005-02-17 2008-09-04 ハーキュリーズ・インコーポレーテッド むらのあるヒドロキシエチルセルロース、それらの誘導体、それらの製造方法および使用
JP2008536959A (ja) * 2005-03-02 2008-09-11 ハーキュリーズ・インコーポレーテッド 水溶性、低い置換度のヒドロキシエチルセルロース、それらの誘導体、それらの製造方法および使用
WO2009063856A1 (ja) * 2007-11-14 2009-05-22 Kao Corporation セルロースエーテル誘導体の製造方法
JP2009209361A (ja) * 2008-03-03 2009-09-17 Se Tylose Gmbh & Co Kg イオン性液体におけるセルロースエーテルの均質合成
WO2009123148A1 (ja) * 2008-03-31 2009-10-08 旭化成せんい株式会社 セルロース誘導体微粒子、その分散液、その分散体及び診断薬
WO2010095674A1 (ja) * 2009-02-20 2010-08-26 住友精化株式会社 ヒドロキシアルキルセルロースの製造方法
JP2012001579A (ja) * 2010-06-15 2012-01-05 Sumitomo Seika Chem Co Ltd ヒドロキシアルキルセルロースの製造方法
JP2016065227A (ja) * 2014-09-22 2016-04-28 信越化学工業株式会社 セルロースエーテルの連続的製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2308031A (en) * 1940-06-01 1943-01-12 Du Pont Separation apparatus
JPS5975902A (ja) 1982-10-22 1984-04-28 Daicel Chem Ind Ltd ヒドロキシエチルセルロ−スの製造法
JPH0794481B2 (ja) 1987-11-06 1995-10-11 ダイセル化学工業株式会社 セルロースエーテルの製造法
JP3167055B2 (ja) 1992-12-29 2001-05-14 住友精化株式会社 ヒドロキシエチルセルロースの製造方法
DE10009409A1 (de) * 2000-02-28 2001-08-30 Wolff Walsrode Ag Verfahren zur Herstellung von pulverförmigen wasserlöslichen Cellulosederivaten
SE0003125D0 (sv) * 2000-09-05 2000-09-05 Astrazeneca Ab Modified polymers
CN101864607A (zh) * 2010-06-23 2010-10-20 东华大学 一种羟乙基纤维素纤维的制备方法

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386750A (en) * 1976-11-18 1978-07-31 Union Carbide Corp Synthesis of hydroxyethyl cellulose having modified resistance to hydrolysis due to catalytic action of enzyme
JPS562302A (en) * 1979-06-15 1981-01-12 Hoechst Ag Method and device for continuously manufacturing waterrsoluble mixed ether as base of waterrsoluble hydroxyalkylcellulose or hydroxyalkylcellulose
JPS58196202A (ja) * 1982-05-05 1983-11-15 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト ヒドロキシアルキルメチルセルロ−スの製造方法
JPH0952903A (ja) * 1995-08-10 1997-02-25 Wolff Walsrode Ag マレイン酸付加生成物基を含む熱可塑性、生分解性多糖エステル類/多糖エーテルエステル類
JP2001510207A (ja) * 1997-07-14 2001-07-31 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト 新規なセルロースエーテル及びその製造法
JP2002512271A (ja) * 1998-04-20 2002-04-23 ヴオルフ・ヴアルスロデ・アクチエンゲゼルシヤフト セルロースの活性化及び誘導体化の方法
JP2002536507A (ja) * 1999-02-10 2002-10-29 ハーキュリーズ・インコーポレイテッド 誘導微小繊維ポリサッカライド
JP2002265502A (ja) * 2001-03-15 2002-09-18 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースおよびその製造方法
JP2003012535A (ja) * 2001-07-02 2003-01-15 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースの製造方法
JP2003155301A (ja) * 2001-11-21 2003-05-27 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロースの製造方法
JP2003171401A (ja) * 2001-12-10 2003-06-20 Sumitomo Seika Chem Co Ltd ヒドロキシアルキルセルロースの製造方法
JP2003231701A (ja) * 2002-02-13 2003-08-19 Sumitomo Seika Chem Co Ltd ヒドロキシエチルセルロース粒子およびその製造法
JP2003252902A (ja) * 2002-03-04 2003-09-10 Shin Etsu Chem Co Ltd 低置換度セルロースエーテル粉末とその製造方法
JP2005529830A (ja) * 2002-06-12 2005-10-06 ダウ グローバル テクノロジーズ インコーポレイティド セメント組成物
JP2004307598A (ja) * 2003-04-04 2004-11-04 Nippon Synthetic Chem Ind Co Ltd:The 水溶性樹脂組成物およびフィルム
JP2005171089A (ja) * 2003-12-11 2005-06-30 Sumitomo Seika Chem Co Ltd カチオン化ヒドロキシアルキルセルロースの製造方法
JP2005179253A (ja) * 2003-12-19 2005-07-07 Shin Etsu Chem Co Ltd ゲル状シート及びその製造方法
JP2008535937A (ja) * 2005-02-17 2008-09-04 ハーキュリーズ・インコーポレーテッド むらのあるヒドロキシエチルセルロース、それらの誘導体、それらの製造方法および使用
JP2008536959A (ja) * 2005-03-02 2008-09-11 ハーキュリーズ・インコーポレーテッド 水溶性、低い置換度のヒドロキシエチルセルロース、それらの誘導体、それらの製造方法および使用
JP2008534735A (ja) * 2005-04-04 2008-08-28 ハーキュリーズ・インコーポレーテッド 改善された未加工コットンリンター組成物、それらの製造方法および使用
WO2009063856A1 (ja) * 2007-11-14 2009-05-22 Kao Corporation セルロースエーテル誘導体の製造方法
JP2009209361A (ja) * 2008-03-03 2009-09-17 Se Tylose Gmbh & Co Kg イオン性液体におけるセルロースエーテルの均質合成
WO2009123148A1 (ja) * 2008-03-31 2009-10-08 旭化成せんい株式会社 セルロース誘導体微粒子、その分散液、その分散体及び診断薬
WO2010095674A1 (ja) * 2009-02-20 2010-08-26 住友精化株式会社 ヒドロキシアルキルセルロースの製造方法
JP2012001579A (ja) * 2010-06-15 2012-01-05 Sumitomo Seika Chem Co Ltd ヒドロキシアルキルセルロースの製造方法
JP2016065227A (ja) * 2014-09-22 2016-04-28 信越化学工業株式会社 セルロースエーテルの連続的製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cellulose no Jiten", 10 November 2000, ASAKURA PUBLISHING CO., LTD.,, pages: 490 *
See also references of EP3521317A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071461A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 粘性組成物
WO2022071463A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 粘性組成物
WO2022249748A1 (ja) * 2021-05-24 2022-12-01 住友精化株式会社 ゲル状組成物

Also Published As

Publication number Publication date
JPWO2018061890A1 (ja) 2019-07-11
EP3521317A4 (en) 2020-05-20
US20190263938A1 (en) 2019-08-29
JP7030705B2 (ja) 2022-03-07
TWI780073B (zh) 2022-10-11
KR20190059889A (ko) 2019-05-31
EP3521317A1 (en) 2019-08-07
CN109790226A (zh) 2019-05-21
CN109790226B (zh) 2022-05-03
TW201819420A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP4055914B2 (ja) セルロース誘導体とその製法
WO2018061890A1 (ja) 水溶性ヒドロキシエチルセルロースの製造方法
ES2553703T3 (es) Método para producir celulosa alcalina
EP2182009A1 (en) Process for production of silane-modified cationized cellulose
WO2011052733A1 (ja) カチオン性ヒドロキシプロピルセルロースの製造方法
WO2011108505A1 (ja) カチオン化セルロース及びカチオン化ヒドロキシアルキルセルロースの製造方法
JPH0242081B2 (ja)
JPS5975903A (ja) 水溶性ナトリウムカルボキシメチルセルロ−スの製造方法
JP2006241374A (ja) カルボキシメチルセルロース塩の製造方法
KR20150091081A (ko) 히드록시알킬 셀룰로오스의 제조 방법
WO2010095674A1 (ja) ヒドロキシアルキルセルロースの製造方法
JP2006348138A (ja) カルボキシメチルセルロースナトリウムの製造方法
JP5771360B2 (ja) 粉末状の多糖類誘導体の製造方法
EP4284842A1 (en) Method of preparation of carboxymethyl cellulose having improved storage stability
JP5489484B2 (ja) シラン変性カチオン化高分子化合物粉末の製造方法
JPH0143761B2 (ja)
JPWO2010140309A1 (ja) シラン変性カチオン化高分子化合物及びその製造方法
Bert et al. Substitution Patterns of Cellulose Ethers‐Influence of the Synthetic Pathway
MXPA02010035A (es) Metodo para la produccion de eteres de celulosa, no ionicos en povo, por lo menos alquilados solubles en agua y facilmente humedecibles.
JP2019059856A (ja) カルボキシメチルセルロースまたはその塩の製造方法
KR20160094987A (ko) 셀룰로오스 유도체와 액체 희석제의 혼합물의 제조 방법
JP2003231701A (ja) ヒドロキシエチルセルロース粒子およびその製造法
JP5814034B2 (ja) ヒドロキシアルキルセルロース組成物
JP6279869B2 (ja) カチオン化ヒドロキシアルキルセルロースの製造方法
JP2001114801A (ja) 耐塩水性に優れたカルボキシメチルセルロースアルカリ金属塩の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542436

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197001639

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855845

Country of ref document: EP

Effective date: 20190429