WO2018029796A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018029796A1
WO2018029796A1 PCT/JP2016/073525 JP2016073525W WO2018029796A1 WO 2018029796 A1 WO2018029796 A1 WO 2018029796A1 JP 2016073525 W JP2016073525 W JP 2016073525W WO 2018029796 A1 WO2018029796 A1 WO 2018029796A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gate
source electrode
semiconductor device
source
Prior art date
Application number
PCT/JP2016/073525
Other languages
English (en)
French (fr)
Inventor
亮太 田中
林 哲也
威 倪
早見 泰明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2019106317A priority Critical patent/RU2705761C1/ru
Priority to BR112019002551-0A priority patent/BR112019002551B1/pt
Priority to MYPI2019000537A priority patent/MY183245A/en
Priority to CN201680088287.5A priority patent/CN109564876B/zh
Priority to KR1020197003462A priority patent/KR101988202B1/ko
Priority to US16/323,373 priority patent/US10937874B2/en
Priority to JP2018533350A priority patent/JP6620889B2/ja
Priority to PCT/JP2016/073525 priority patent/WO2018029796A1/ja
Priority to EP16912677.8A priority patent/EP3499549B1/en
Priority to MX2019001527A priority patent/MX2019001527A/es
Priority to CA3033462A priority patent/CA3033462C/en
Publication of WO2018029796A1 publication Critical patent/WO2018029796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/047Making n or p doped regions or layers, e.g. using diffusion using ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device in which a base layer forming a channel, an emitter layer, and a collector layer are formed in a surface layer portion of a drift layer. This semiconductor device has an insulating film on the back surface of the drift layer, and the gate electrode formed in the trench reaches the insulating film, thereby reducing electric field concentration at the end of the trench and improving the pressure resistance.
  • the gate wiring connected to the gate electrode is formed on the surface side of the drift layer and is positioned near the base layer forming the channel, the channel affects the potential of the gate wiring. And the threshold voltage may fluctuate.
  • an object of the present invention is to provide a semiconductor device that can reduce fluctuations in threshold voltage.
  • a semiconductor device includes a gate electrode groove formed in contact with a drift region, a well region, and a source region, a gate electrode formed on the surface of the gate electrode groove with an insulating film interposed therebetween, and a gate A source electrode groove in contact with the electrode groove; a source electrode electrically connected to the source region; and a gate wiring electrically insulated from the source electrode and formed in contact with the gate electrode in the source electrode groove.
  • a semiconductor device that can reduce variation in threshold voltage can be provided.
  • FIG. 1 is a perspective view illustrating a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view seen from the AA direction of FIG.
  • FIG. 5 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • 6 is a cross-sectional view seen from the direction BB in FIG.
  • FIG. 7 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 8 is a cross-sectional view seen from the BB direction of FIG. FIG.
  • FIG. 9 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • 10 is a cross-sectional view seen from the BB direction of FIG.
  • FIG. 11 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • 12 is a cross-sectional view seen from the BB direction of FIG.
  • FIG. 13 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • 14 is a cross-sectional view seen from the direction BB in FIG.
  • FIG. 15 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • 16 is a cross-sectional view seen from the direction BB in FIG. FIG.
  • FIG. 17 is a cross-sectional view for explaining a semiconductor device according to the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a semiconductor device according to a modification of the second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view for explaining a semiconductor device according to the third embodiment of the present invention.
  • FIG. 20 is a cross-sectional view for explaining a semiconductor device according to the fourth embodiment of the present invention.
  • the “first conductivity type” and the “second conductivity type” are opposite conductivity types. That is, if the first conductivity type is n-type, the second conductivity type is p-type. If the first conductivity type is p-type, the second conductivity type is n-type. In the following description, the first conductivity type is n-type and the second conductivity type is p-type. However, the first conductivity type may be p-type and the second conductivity type may be n-type. When the n-type and the p-type are switched, the polarity of the applied voltage is also reversed.
  • FIG. 1 is a perspective view schematically showing the configuration of the semiconductor device according to the first embodiment of the present invention.
  • a semiconductor device having a metal oxide semiconductor field effect transistor (MOSFET) as a plurality of semiconductor elements will be described as an example.
  • MOSFET metal oxide semiconductor field effect transistor
  • a large number of semiconductor elements can be arranged in each of two axial directions (X-axis direction and Z-axis direction) on the plane.
  • part of the electrodes and wiring are not shown for easy understanding.
  • the semiconductor device includes a substrate 1, a drift region 2, a well region 3, a source electrode trench 4, a source region 5, a source electrode 6, and a gate electrode trench. 7, a gate insulating film 8, a gate electrode 9, a gate wiring 10, a silicon oxide film 11, a drain region 12, and a drain electrode 13.
  • the substrate 1 is, for example, a flat plate made of a semi-insulator or an insulator.
  • the insulator means a material having a sheet resistance of several k ⁇ / ⁇ or more
  • the semi-insulator means a material having a sheet resistance of several tens of ⁇ / ⁇ or more.
  • polytype 4H silicon carbide (SiC) can be used as the insulator as the material of the substrate 1.
  • the substrate 1 has a thickness of, for example, about several tens of ⁇ m to several hundreds of ⁇ m in order to ensure the mechanical strength of the semiconductor device.
  • the drift region 2 is an n ⁇ type region formed on one main surface (hereinafter referred to as “first main surface”) of the substrate 1.
  • the impurity concentration of the drift region 2 is higher than that of the substrate 1 and is, for example, about 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the drift region 2 can be formed from the same material as the substrate 1.
  • the substrate 1 is made of polytype 4H SiC
  • the drift region 2 is an epitaxial growth layer made of polytype 4H SiC.
  • the drift region 2 has a thickness of about several ⁇ m to several tens of ⁇ m, for example.
  • the source electrode groove 4 drifts from the main surface (hereinafter referred to as “second main surface”) opposite to the main surface (hereinafter referred to as “first main surface”) in contact with the substrate 1 in the drift region 2 to the inside of the substrate 1.
  • second main surface opposite to the main surface (hereinafter referred to as “first main surface”) in contact with the substrate 1 in the drift region 2 to the inside of the substrate 1.
  • This is a groove formed in a direction perpendicular to the second main surface of the region 2 (y-axis direction). That is, the depth of the source electrode trench 4 is larger than the thickness of the drift region 2.
  • the dimensions of the source electrode trench 4 are determined based on design conditions such as the degree of integration of the semiconductor device and the accuracy in the process.
  • the width of the source electrode groove 4 is 2 ⁇ m, for example.
  • Source electrode groove 4 extends in one direction (z-axis direction) parallel to the second main surface of drift region 2.
  • the well region 3 is a p-type region formed in contact with the side surface of the source electrode trench 4 and at least partially formed in the drift region 2.
  • Well region 3 is formed from the second main surface of drift region 2 to the inside of substrate 1 in a direction perpendicular to the second main surface of drift region 2 (y-axis direction).
  • the depth of the well region 3 is smaller than the depth of the source electrode trench 4.
  • the well region 3 extends in the extending direction (z-axis direction) of the source electrode groove 4.
  • the impurity concentration of the well region 3 is, for example, about 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the source region 5 is an n + type region formed in the well region 3 in contact with the side surface of the source electrode trench 4.
  • Source region 5 is formed from the second main surface of drift region 2 to the inside of substrate 1 in a direction perpendicular to the second main surface of drift region 2 (y-axis direction).
  • the depth of the source region 5 is smaller than the depth of the well region 3.
  • the source region 5 extends in the extending direction (z-axis direction) of the source electrode groove 4.
  • the impurity concentration of the source region 5 is higher than that of the drift region 2 and is, for example, about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the source electrode 6 is electrically connected to the source region 5.
  • the source electrode 6 is formed in the source electrode groove 4 and is ohmically connected to the source region 5.
  • the source region 5 and the well region 3 have the same potential as the source electrode 6.
  • a material of the source electrode 6 for example, a conductor containing a metal material such as nickel silicide (NiSi), titanium (Ti), or molybdenum (Mo) can be used.
  • the source electrode 6 has a multilayer structure of a metal material ohmically connected to the source region 5 and a metal material such as aluminum (Al), copper (Cu), gold (Au), nickel (Ni), silver (Ag). May be.
  • the gate electrode groove 7 is a groove formed in a direction perpendicular to the second main surface of the drift region 2 (y-axis direction) from the second main surface of the drift region 2 to the inside of the substrate 1.
  • the gate electrode groove 7 is parallel to the second main surface of the drift region 2, and in the direction (x-axis direction) orthogonal to the extending direction of the source electrode groove 4, the source electrode groove 4, the drift region 2, the well region 3, and The film is stretched so as to be in contact with the source region 5.
  • the gate electrode trench 7 penetrates the well region 3 and the source region 5.
  • the depth of the gate electrode trench 7 is equal to the depth of the source electrode trench 4.
  • a plurality of gate electrode grooves 7 are arranged in a direction (z-axis direction) parallel to the second main surface of the drift region 2 and perpendicular to the extending direction.
  • the gate insulating film 8 is formed on the surface of the gate electrode trench 7.
  • the material of the gate insulating film 8 is an insulator such as silicon oxide (SiO 2 ).
  • the gate electrode 9 is formed on the surface of the gate insulating film 8. That is, the gate electrode 9 is formed in contact with the surface of the gate electrode trench 7 with the gate insulating film 8 interposed therebetween.
  • the material of the gate electrode 9 is, for example, polycrystalline silicon.
  • the gate electrode 9 is disposed in the gate electrode groove 7 with the surface covered with the gate insulating film 8.
  • the gate electrode 9 is also covered with the gate insulating film 8 in the opening of the gate electrode groove 7 in the second main surface of the drift region 2.
  • the gate wiring 10 is electrically insulated from the source electrode 6 and is formed in the source electrode 6 in contact with the gate electrode 9.
  • the gate wiring 10 is positioned below the source electrode trench 4 with a silicon oxide film 11 as an insulating film formed on the surface.
  • the silicon oxide film 11 insulates the gate wiring 10 and the source electrode 6 from each other.
  • a space excluding the gate wiring 10 and the silicon oxide film 11 in the source electrode trench 4 is filled with the source electrode 6.
  • the silicon oxide film 11 is not formed in the region in contact with the gate electrode 9 on the surface of the gate wiring 10.
  • the gate insulating film 8 is not formed in a region in contact with the gate wiring 10 on the surface of the gate electrode 9.
  • the drain region 12 is an n + type region formed in the drift region 2 away from the well region 3.
  • the drain region 12 is formed from the second main surface of the drift region 2 in a direction perpendicular to the second main surface of the drift region 2 (y-axis direction).
  • the depth of the drain region 12 is smaller than the thickness of the drift region 2.
  • the drain region 12 extends in the extending direction (z-axis direction) of the source electrode groove 4.
  • Drain region 12 has the same conductivity type as drift region 2.
  • the impurity concentration of the drain region 12 is higher than that of the drift region 2 and about the same as that of the source region 5, for example, about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the drain electrode 13 is electrically connected to the drain region 12.
  • the drain electrode 13 is formed on the second main surface of the drift region 2 and is in contact with the drain electrode 13 exposed on the second main surface.
  • the drain electrode 13 can be made of, for example, the same material as that of the source electrode 6.
  • FIG. 2 is a diagram illustrating a configuration of the semiconductor device according to the first embodiment, the illustration of which is omitted in FIG. As shown in FIG. 2, the semiconductor device according to the first embodiment further includes an interlayer insulating film 14, a source wiring 15, and a drain wiring 16.
  • Interlayer insulating film 14 is formed on the second main surface of drift region 2.
  • the interlayer insulating film 14 is made of an insulator containing a ceramic material such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ).
  • the interlayer insulating film 14 includes a groove 21 and a groove 22 penetrating from one surface of the interlayer insulating film 14 to the other surface.
  • the groove 21 extends in the extending direction of the source electrode groove 4 above the source electrode groove 4.
  • the upper part of the source electrode 6 (not shown in FIG. 1) is inserted into the groove 21.
  • Source electrode 6 is formed in contact with source region 5 and well region 3 on the second main surface of drift region 2 and away from drift region 2.
  • the groove 22 extends in the extending direction of the drain region 12 above the drain region 12.
  • the drain electrode 13 is inserted into the groove 22.
  • the source wiring 15 is formed on the upper surface of the interlayer insulating film 14 so as to cover the source electrode 6 exposed in the trench 21.
  • the upper surface of the interlayer insulating film 14 is a main surface opposite to the second main surface of the drift region 2 and is parallel to the second main surface of the drift region 2.
  • the source wiring 15 extends in the extending direction of the groove 21.
  • the drain wiring 16 is formed on the upper surface of the interlayer insulating film 14 so as to cover the drain electrode 13 exposed in the trench 22.
  • the drain wiring 16 extends in the extending direction of the groove 22.
  • the source wiring 15 and the drain wiring 16 are separated from each other and are formed in parallel.
  • FIG. 3 is a diagram illustrating an example of a configuration in which the semiconductor device according to the first embodiment is connected to the potentials of the gate electrode 9 and the gate wiring 10.
  • FIG. 4 is a cross-sectional view seen from the AA direction of FIG.
  • FIGS. 3 and 4 are diagrams showing a part of the semiconductor device according to the first embodiment which is different from the range shown in FIG. 1 or 2 and selectively shows a part in the z-axis direction.
  • the semiconductor device further includes a gate pad 17 formed on a part of the interlayer insulating film 14.
  • the interlayer insulating film 14 has a through hole 23 formed above at least one gate electrode 9 among the plurality of gate electrodes 9.
  • the gate insulating film 8 formed on the upper surface of the gate electrode 9 located below the through hole 23 is removed in a range corresponding to the through hole 23.
  • the gate pad 17 is electrically connected to the lower gate electrode 9 and the gate wiring 10 through the through hole 23. Since the plurality of gate electrodes 9 are all electrically connected to the gate wiring 10, the potentials of all the gate electrodes 9 can be adjusted by adjusting the potentials of the gate pads 17.
  • a substrate 1 having a drift region 2 formed on an upper surface (first main surface) is prepared.
  • the substrate 1 is an insulating substrate made of non-doped SiC.
  • the drift region 2 is an n ⁇ type region formed on the substrate 1 by epitaxial growth.
  • a mask material 18 is formed on the upper surface (second main surface) of the drift region 2.
  • a silicon oxide film is formed by depositing SiO 2 on the upper surface of the drift region 2 by chemical vapor deposition (CVD), and the mask material 18 is formed by patterning the silicon oxide film.
  • the silicon oxide film is patterned by a photolithography method and a dry etching method. That is, a resist is applied to the upper surface of the silicon oxide film, and only the regions where the source electrode trench 4 and the gate electrode trench 7 are to be formed are selectively removed.
  • a mask material 18 for forming the source electrode trench 4 and the gate electrode trench 7 is formed. Is done. Note that the resist that is no longer needed is appropriately removed by oxygen plasma, sulfuric acid, or the like. Thereafter, the source electrode groove 4 and the gate electrode groove 7 are formed by a dry etching method using the mask material 18 as a mask.
  • RIE reactive ion etching
  • a p-type well region 3, an n + -type source region 5 and a drain region 12 are formed.
  • a resist is applied to the exposed surfaces of the substrate 1 and the drift region 2 by photolithography, and the region corresponding to the source electrode groove 4 is removed.
  • p-type impurities such as boron (B) are perpendicular to the extending direction of the gate electrode trench 7 (parallel to the xy plane) and the second main surface of the drift region 2 Is injected in a direction having a predetermined angle with respect to.
  • the predetermined angle is, for example, 10 ° to 20 °.
  • a resist is applied on the mask material 18 by a photolithography method, and only a region corresponding to a region where the drain region 12 is to be formed is selectively removed.
  • the mask material 18 is patterned by dry etching using the remaining resist as a mask.
  • An n-type impurity is implanted in a predetermined direction by ion implantation using the patterned mask material 18 and the resist used for boron implantation as a mask.
  • the n-type impurity is, for example, phosphorus (P), and the implantation direction is the same as the p-type impurity implantation direction.
  • the n-type impurity implantation energy is smaller than the p-type impurity implantation energy so that the source region 5 is formed in the well region 3.
  • the mask material 18 is removed by wet etching.
  • the ion-implanted impurities are activated by heat treatment (annealing).
  • the well region 3, the source region 5, and the drain region 12 are formed by the activation.
  • a thin silicon oxide film 20 is formed on all exposed surfaces by thermal oxidation. The thickness of the silicon oxide film 20 is, for example, about several tens of nm.
  • polycrystalline silicon 19 which is a material of the gate electrode 9 and the gate wiring 10 is deposited in the source electrode groove 4 and the gate electrode groove 7 by the CVD method.
  • CVD chemical vapor deposition
  • a polycrystalline silicon layer grows from the exposed surface regardless of the orientation of the surface. Therefore, if the width of the source electrode groove 4 and the gate electrode groove 7 is 2 ⁇ m, respectively, the source electrode groove 4 and the gate electrode groove 7 are filled with the polycrystalline silicon 19 by setting the deposited thickness to 1 ⁇ m. .
  • the polycrystalline silicon 19 is etched by 1 ⁇ m by a dry etching method, so that the polycrystalline silicon 19 deposited in the source electrode groove 4 and the gate electrode groove 7 is left, and above the second main surface of the drift region 2.
  • the deposited polycrystalline silicon 19 is selectively removed.
  • a resist is applied to the upper surfaces of the silicon oxide film 20 and the polycrystalline silicon 19 by a photolithography method, and only the region of the source electrode groove 4 is selectively removed.
  • the polycrystalline silicon 19 deposited in the source electrode trench 4 is removed by dry etching, leaving a region of several ⁇ m from the bottom.
  • the polycrystalline silicon 19 left at the bottom of the source electrode trench 4 functions as the gate wiring 10.
  • the silicon oxide film 20 formed on the side surface of the source electrode trench 4 is removed by a sacrificial oxidation method.
  • a gate insulating film 8 covering the surface of the gate electrode 9 and a silicon oxide film 11 covering the gate wiring 10 are formed.
  • a silicon oxide film is formed on all exposed surfaces by thermal oxidation.
  • polycrystalline silicon has a higher oxidation rate than SiC
  • a hot silicon oxide film is formed on the surfaces of the gate electrode 9 and the gate wiring 10 as compared with other surfaces made of SiC.
  • the silicon oxide film is selected in such a processing time that only the silicon oxide film formed on the surface composed of SiC is removed by the wet etching method, and the silicon oxide film formed on the surface of the polycrystalline silicon 19 is left. To remove.
  • the gate insulating film 8 is formed on the surface of the gate electrode 9 and the silicon oxide film 11 is formed on the surface of the gate wiring 10.
  • a source electrode 6, a source wiring 15, a drain electrode 13, and a drain wiring 16 are formed.
  • a metal material that is a material of the source electrode 6 and the drain electrode 13 is deposited in the source electrode groove 4 and on the second main surface of the drift region 2 by sputtering.
  • a resist is applied to the surface of the metal material by photolithography, and the resist in the region excluding the regions where the source electrode 6 and the drain electrode 13 are to be formed in the region above the second main surface of the drift region 2 is selectively selected.
  • the source electrode 6 and the drain electrode 13 are formed by selectively removing the metal material located on the second main surface of the drift region 2 by a sputter etching method using the remaining resist as a mask.
  • SiO 2 is deposited on the second main surface of the drift region 2 and the upper surface of the remaining metal material by the CVD method to form an interlayer insulating film 14.
  • a resist is applied to the upper surface of the interlayer insulating film 14 by photolithography, and the regions of the source electrode 6 and the drain electrode 13 are selectively removed.
  • the interlayer insulating film 14 is patterned by dry etching using the remaining resist as a mask. Thereby, the upper ends of the groove 21 into which the source electrode 6 is inserted and the groove 22 into which the drain electrode 13 is inserted are opened.
  • a metal material that is a material of the source wiring 15 and the drain wiring 16 is deposited by a sputtering method.
  • a resist is applied to the upper surface of the metal material by a photolithography method, and the resist in a region excluding regions where the source wiring 15 and the drain wiring 16 are to be formed is selectively removed.
  • the source wiring 15 and the drain wiring 16 are formed by selectively removing the metal material by a sputter etching method using the remaining resist as a mask.
  • a part of the gate electrode 9 enters the source electrode groove 4, but the mask pattern for etching the polycrystalline silicon 19 deposited in the source electrode groove 4 is adjusted.
  • the shape of the gate electrode 9 can be changed.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 9 with a positive potential applied to the drain electrode 13 with the potential of the source electrode 6 as a reference. That is, when the voltage between the gate electrode 9 and the source electrode 6 is set to a predetermined threshold value or more, an inversion layer serving as a channel is formed in the well region 3 located on the side surface of the gate electrode 9 and is turned on. A current flows to 6. Specifically, electrons flow from the source electrode 6 to the source region 5 and from the source region 5 to the drift region 2 through the channel. The electrons further flow from the drift region 2 to the drain region 12 and finally to the drain electrode 13.
  • the inversion layer in the well region 3 disappears and is turned off, and the current between the drain electrode 13 and the source electrode 6 is cut off.
  • a high voltage of several hundred volts to several thousand volts can be applied between the drain and the source.
  • the gate wiring connected to the gate electrode is arranged near the well region.
  • the potential of the gate wiring may affect the formation of the inversion layer, and the threshold value may fluctuate. If the threshold value fluctuates, an unintended operation such as erroneous turn-on may occur, which may reduce the reliability of the device.
  • the gate wiring 10 is formed in the source electrode trench 4, the gate wiring 10 is located at a location away from the well region 3. Therefore, since the influence of the channel formed in the well region 3 from the gate wiring 10 is reduced, variation in threshold value can be reduced.
  • the gate electrode 9 since the gate electrode 9 is in contact with the gate wiring 10 formed in the source electrode groove 4, the metal wiring and the contact hole are unnecessary on the upper surface side of the gate electrode 9. . Therefore, the width of the gate electrode 9 can be reduced, and the degree of integration of the semiconductor device can be improved. Thereby, since the number of gate electrodes 9 can be increased, the channel width is increased and the on-resistance can be reduced.
  • the gate wiring 10 is formed in the source electrode trench 4, the widths of the source wiring 15 and the drain wiring 16 formed on the upper surface of the interlayer insulating film 14 are reduced. There is no limit. Therefore, it is possible to suppress deterioration of on-resistance and switching loss due to increase in resistance of the source wiring 15 and the drain wiring 16.
  • the gate wiring 10 since the gate wiring 10 is in contact with the substrate 1 through the silicon oxide film 11, it can be formed from the drift region 2 to the substrate 1. Therefore, since the cross-sectional area of the gate wiring 10 can be increased, the resistance and switching loss of the gate wiring 10 can be reduced.
  • the source wiring 15 and the drain wiring 16 are respectively formed on the upper surface of the interlayer insulating film 14, the flatness is improved as compared with the case where both wirings have a multilayer structure. Can be improved. Therefore, it is possible to avoid the deterioration of the pressure resistance due to the electric field concentration in the local portion of the insulating film between the wirings.
  • the substrate 1 is made of an insulator or a semi-insulator, at least one end of the well region 3, the gate electrode 9, and the gate wiring 10 is in the substrate 1.
  • electric field concentration at the end can be reduced. Therefore, pressure resistance can be improved.
  • the gate electrode 9 and the gate wiring 10 are made of the same material, they can be formed by the same process, and further, there is a process for electrically connecting each other. It is unnecessary. Therefore, the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced. Further, it is possible to avoid the occurrence of resistance at the interface between the gate electrode 9 and the gate wiring 10.
  • the gate wiring 10 made of polycrystalline silicon is insulated from the source electrode 6 by the silicon oxide film 11 formed on the surface. Therefore, the silicon oxide film 11 covering the gate wiring 10 can be prepared by thermal oxidation. Furthermore, since the drift region 2 is made of a material such as SiC whose oxidation rate is slower than that of SiO 2 , the silicon oxide film 11 can be selectively formed on the surface of the gate wiring 10 by an isotropic etching method. Therefore, compared to the case where an oxide film is selectively formed on the gate wiring 10 using a mask formed of a material that does not oxidize such as silicon nitride, the number of manufacturing steps can be reduced and the manufacturing cost can be reduced. it can.
  • the drift region 2 is made of a wide band gap semiconductor such as SiC, the dielectric breakdown strength can be improved. For this reason, if the space between the drain electrode 13 and the source electrode 6 is narrow, even if a steep electric field distribution occurs, the degree of integration can be improved while ensuring the pressure resistance.
  • the gate wiring 10 is formed away from the drift region 2, an increase in capacitance between the gate and the drain can be suppressed. If the gate wiring is formed near the drift region, the potential of the drift region is almost equal to that of the drain electrode, so that the capacitance between the gate and the drain increases. On the other hand, in the semiconductor device according to the first embodiment, an increase in capacitance between the gate and the drain is suppressed, so that switching loss can be reduced.
  • the substrate 1 and the drift region 2 are formed of the same material, the possibility of warping due to stress is reduced, and the reliability of the element is improved. Can do.
  • FIG. 17 is a cross-sectional view for explaining a semiconductor device according to the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of the semiconductor device according to the second embodiment cut along an xy plane passing through the gate electrode 9.
  • the semiconductor device according to the second embodiment is different from the first embodiment described above in that the source electrode groove 4 is formed deeper than the gate electrode groove 7. Configurations, operations, and effects that are not described in the second embodiment are substantially the same as those in the first embodiment and are omitted because they are duplicated.
  • the source electrode groove 4 since the depth of the source electrode groove 4 is smaller than the thickness of the drift region 2, the source electrode groove 4 does not contact the substrate 1. Further, the depth of the gate electrode trench 7 is shallower than the depth of the source electrode trench 4.
  • the mask for forming the source electrode groove 4 and the gate electrode groove 7 is thinned by the dry etching method, and the strength is lowered.
  • the depths of the source electrode trench 4 and the gate electrode trench 7 are smaller than the thickness of the drift region 2.
  • the silicon oxide film which becomes a mask when forming the source electrode groove 4 and the gate electrode groove 7 can be made thinner than the mask material 18 in the first embodiment.
  • the source electrode groove 4 can be formed deeper than the gate electrode groove 7 by designing the width of the source electrode groove 4 to be larger than the width of the gate electrode groove 7.
  • the gate wiring 10 can be formed deeper, and the sectional view of the gate wiring 10 is increased. be able to. Therefore, the resistance of the gate wiring 10 can be reduced and the switching loss can be reduced.
  • the gate electrode groove 7 is formed shallower than the thickness of the drift region 2, a channel is also formed on the bottom side of the gate electrode groove 7 in the well region 3. The Thus, the channel width can be increased and the on-resistance can be reduced.
  • FIG. 18 is a cross-sectional view illustrating a semiconductor device according to a modification of the second embodiment of the present invention.
  • the semiconductor device according to the modification of the second embodiment differs from the second embodiment described above in that the bottom of the source electrode groove 4 is located in the substrate 1.
  • the configurations, operations, and effects that are not described in the modification of the second embodiment are substantially the same as those in the second embodiment described above, and are omitted because they are duplicated.
  • the source electrode groove 4 is formed deeper than the gate electrode groove 7 and in contact with the substrate 1.
  • the gate wiring 10 is in contact with the substrate 1 through the silicon oxide film 11. That is, the end portion of the gate wiring 10 is located in the substrate 1.
  • the end portion means a portion where a surface perpendicular to the second main surface of the drift region 2 and an end surface facing the second main surface of the drift region 2 intersect.
  • the depth of the trench is increased by making the silicon oxide film that becomes a mask when forming the source electrode trench 4 and the gate electrode trench 7 thicker than the mask material 18 in the first embodiment. be able to. Further, by adjusting the ratio of the widths of the source electrode groove 4 and the gate electrode groove 7, the ratio of the depths of the source electrode groove 4 and the gate electrode groove 7 can be adjusted.
  • the gate wiring 10 can be formed deeper, and the cross section of the gate wiring 10 can be formed. The figure can be increased. Therefore, the resistance of the gate wiring 10 can be reduced and the switching loss can be reduced.
  • the bottom of the source electrode groove 4 is in contact with the substrate 1, so that the electric field concentration at the end of the source electrode groove 4 is reduced and the pressure resistance is improved. Can do.
  • FIG. 19 is a cross-sectional view for explaining a semiconductor device according to the third embodiment of the present invention.
  • the semiconductor device according to the third embodiment differs from the second embodiment in that the bottom of the gate electrode groove 7 is in contact with the substrate 1.
  • Configurations, operations, and effects that are not described in the third embodiment are substantially the same as those in the first and second embodiments, and are omitted because they overlap.
  • the source electrode groove 4 is deeper than the gate electrode groove 7, and the source electrode groove 4 and the gate electrode groove 7 are formed in contact with the substrate 1.
  • the gate wiring 10 is in contact with the substrate 1 through the silicon oxide film 11.
  • the gate electrode 9 is in contact with the substrate 1 through the gate insulating film 8.
  • the depth of the trench can be increased by making the silicon oxide film that becomes a mask when forming the source electrode trench 4 and the gate electrode trench 7 thicker than the mask in the second embodiment. Further, by adjusting the ratio of the widths of the source electrode groove 4 and the gate electrode groove 7, the ratio of the depths of the source electrode groove 4 and the gate electrode groove 7 can be adjusted.
  • the semiconductor device since the end of the gate electrode groove 7 is in contact with the substrate 1, the electric field concentration at the end of the gate electrode groove 7 is reduced, and the dielectric breakdown of the gate insulating film 8 is suppressed. Thus, pressure resistance can be improved.
  • FIG. 20 is a cross-sectional view for explaining a semiconductor device according to the fourth embodiment of the present invention.
  • the semiconductor device according to the fourth embodiment differs from the first to third embodiments in that it includes a drain electrode groove 25 in which the drain electrode 13 is formed.
  • the configurations, operations, and effects that are not described in the fourth embodiment are substantially the same as those in the first to third embodiments and are omitted because they are duplicated.
  • the drain electrode trench 25 is formed in the well region 3 and the drift region 2 away from the well region 3.
  • the drain electrode groove 25 is formed from the second main surface of the drift region 2 to the inside of the substrate 1 with respect to the second main surface of the drift region 2 (y-axis direction).
  • the drain region 12 is in contact with the side surface of the drain electrode groove 25.
  • the drain region 12 is formed from the second main surface of the drift region 2 to the inside of the substrate 1 with respect to the second main surface of the drift region 2 (in the y-axis direction).
  • the drain electrode trench 25 is deeper than the drain region 12.
  • the drain electrode groove 25 can be formed by selectively removing the silicon oxide film to be the mask material 18 from the region where the drain electrode groove 25 is to be formed. is there. Using this mask material 18 as a mask, the source electrode trench 4, the gate electrode trench 7 and the drain electrode trench 25 can be simultaneously formed by dry etching.
  • the drain region 12 can be formed to a deep position in the manufacturing process of the drain region 12 without the need to implant impurities with a higher implantation energy than in the first embodiment. it can.
  • the drain electrode groove 25 is formed deeper than the drift region 2, the electric field distribution in the depth direction (y-axis direction) of the drift region 2 can be reduced. Therefore, the electric field concentration is reduced and the pressure resistance can be improved.
  • the drain region 12 having a higher impurity concentration than the drift region 2 is formed deeper than the drift region 2, so that the current path is replaced from the drift region 2 to the drain region 12. be able to. Thus, on-resistance can be reduced.
  • the semiconductor device is manufactured on the substrate 1 and the drift region 2 made of SiC has been described, but the material is not limited to SiC.
  • the wide band gap semiconductor used as the material of the substrate 1 and the drift region 2 include gallium nitride (GaN), diamond, zinc oxide (ZnO), and aluminum gallium nitride (AlGaN).
  • the drift region 2 is formed by epitaxial growth.
  • the drift region 2 may be formed by implanting an n-type impurity into an insulating substrate such as SiC.
  • the substrate 1 may be made of an n-type semiconductor having an impurity concentration lower than that of the drift region 2.
  • the semiconductor device when the semiconductor device is in an ON state, a current flows in the substrate 1 and the current path increases, so that the current increases.
  • the substrate 1 is a p-type semiconductor, the depletion layer spreads so as to narrow the current path in the drift region 2, so that the current is reduced. That is, when the substrate 1 has the same conductivity type as the drift region 2, the current increases and the loss is reduced.
  • the bottom surfaces of the gate electrode groove 7 and the source electrode groove 4 may be higher or lower than the first main surface of the drift region 2 and coincide with the first main surface. May be. Further, the position of the gate wiring 10 in the source electrode trench 4 may be higher than the bottom surface of the gate electrode trench 7.
  • the MOSFET is described as an example of the semiconductor device.
  • the semiconductor device according to the embodiment of the present invention can be applied to an insulated gate bipolar transistor (IGBT) and a thyristor. is there.
  • IGBT insulated gate bipolar transistor
  • expressions such as “parallel”, “vertical”, and “orthogonal” do not mean a complete topology, but are incomplete for photolithography and other process reasons. Tolerant topologies.
  • the present invention includes various embodiments and the like that are not described here, such as a configuration in which the above-described configurations are mutually applied. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

半導体装置は、ドリフト領域、ウェル領域及びソース領域と接するように形成されたゲート電極溝と、ゲート電極溝の表面に絶縁膜を介して形成されたゲート電極と、ゲート電極溝に接するソース電極溝と、ソース領域に電気的に接続されたソース電極と、ソース電極と電気的に絶縁され、ソース電極溝内にゲート電極に接して形成されたゲート配線とを備える。

Description

半導体装置
 本発明は、半導体装置に関する。
 特許文献1は、チャネルを形成するベース層と、エミッタ層及びコレクタ層とが、ドリフト層の表層部に形成された半導体装置を開示する。この半導体装置は、ドリフト層の裏面に絶縁膜を有し、トレンチに形成されたゲート電極が絶縁膜に達することにより、トレンチ端部の電界集中を低減し、耐圧性を向上する。
特開2013-183071号公報
 しかしながら、特許文献1に記載の半導体装置は、ゲート電極に接続するゲート配線が、ドリフト層の表面側に形成され、チャネルを形成するベース層付近に位置するため、チャネルがゲート配線の電位に影響され、しきい値電圧が変動する可能性がある。
 上記問題点を鑑み、本発明は、しきい値電圧の変動を低減することができる半導体装置を提供することを目的とする。
 本発明の一態様に係る半導体装置は、ドリフト領域、ウェル領域及びソース領域と接するように形成されたゲート電極溝と、ゲート電極溝の表面に絶縁膜を介して形成されたゲート電極と、ゲート電極溝に接するソース電極溝と、ソース領域に電気的に接続されたソース電極と、ソース電極と電気的に絶縁され、ソース電極溝内にゲート電極に接して形成されたゲート配線とを備える。
 本発明の一態様によれば、しきい値電圧の変動を低減することができる半導体装置を提供することができる。
図1は、本発明の第1実施形態に係る半導体装置を説明する斜視図である。 図2は、本発明の第1実施形態に係る半導体装置を説明する斜視図である。 図3は、本発明の第1実施形態に係る半導体装置を説明する斜視図である。 図4は、図3のA-A方向から見た断面図である。 図5は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図6は、図5のB-B方向から見た断面図である。 図7は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図8は、図7のB-B方向から見た断面図である。 図9は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図10は、図9のB-B方向から見た断面図である。 図11は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図12は、図11のB-B方向から見た断面図である。 図13は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図14は、図13のB-B方向から見た断面図である。 図15は、本発明の第1実施形態に係る半導体装置の製造方法を説明する平面図である。 図16は、図15のB-B方向から見た断面図である。 図17は、本発明の第2実施形態に係る半導体装置を説明する断面図である。 図18は、本発明の第2実施形態の変形例に係る半導体装置を説明する断面図である。 図19は、本発明の第3実施形態に係る半導体装置を説明する断面図である。 図20は、本発明の第4実施形態に係る半導体装置を説明する断面図である。
 以下、図面を参照して、本発明の第1乃至第4実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、各寸法の関係や比率などは実際のものとは異なる場合がある。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。
 また、以下の実施形態において、「第1導電型」と「第2導電型」とは互いに反対導電型である。即ち、第1導電型がn型であれば、第2導電型はp型であり、第1導電型がp型であれば、第2導電型はn型である。以下の説明では第1導電型がn型、第2導電型がp型の場合を説明するが、第1導電型がp型、第2導電型がn型でもあっても良い。n型とp型を入れ替える場合には、印加電圧の極性も逆転する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る半導体装置の構成を模式的に示す斜視図である。第1実施形態では、複数の半導体素子として金属酸化膜半導体電界効果トランジスタ(MOSFET)を有する半導体装置を例示的に説明する。半導体素子は、平面における2軸方向(X軸方向及びZ軸方向)それぞれに更に多数配列され得る。なお、図1では分かり易くするため、電極の一部及び配線は図示を省略している。
 第1実施形態に係る半導体装置は、図1に示すように、基板1と、ドリフト領域2と、ウェル領域3と、ソース電極溝4と、ソース領域5と、ソース電極6と、ゲート電極溝7と、ゲート絶縁膜8と、ゲート電極9と、ゲート配線10と、シリコン酸化膜11と、ドレイン領域12と、ドレイン電極13とを備える。
 基板1は、例えば、半絶縁体又は絶縁体からなる平板である。ここで、絶縁体とは、シート抵抗が数kΩ/□以上の材料を意味し、半絶縁体とは、シート抵抗が数十Ω/□以上の材料を意味する。基板1の材料となる絶縁体としては、例えばポリタイプ4Hの炭化ケイ素(SiC)が採用可能である。基板1は、半導体装置の機械的強度を確保するため、例えば、数十μm~数百μm程度の厚さを有する。
 ドリフト領域2は、基板1の片側の主面(以下「第1主面」という)に形成されたn型の領域である。ドリフト領域2の不純物濃度は基板1よりも高く、例えば1×1014cm-3~1×1018cm-3程度である。ドリフト領域2は、基板1と同じ材料から形成され得る。例えば、基板1がポリタイプ4HのSiCからなる場合、ドリフト領域2は、ポリタイプ4HのSiCからなるエピタキシャル成長層である。ドリフト領域2は、例えば、数μm~数十μm程度の厚さを有する。
 ソース電極溝4は、ドリフト領域2の、基板1と接する主面(以下「第1主面」という)の反対側の主面(以下「第2主面」という)から基板1内まで、ドリフト領域2の第2主面に対して垂直方向(y軸方向)に形成された溝である。すなわち、ソース電極溝4の深さは、ドリフト領域2の厚さより大きい。ソース電極溝4の寸法は、半導体装置の集積度、プロセス上の精度等の設計条件に基づいて決定される。ソース電極溝4の幅は、例えば2μmである。ソース電極溝4は、ドリフト領域2の第2主面に対して平行な一方向(z軸方向)に延伸する。
 ウェル領域3は、ソース電極溝4の側面に接して、少なくとも一部がドリフト領域2内に形成されたp型の領域である。ウェル領域3は、ドリフト領域2の第2主面から基板1内まで、ドリフト領域2の第2主面に対して垂直方向(y軸方向)に形成される。ウェル領域3の深さは、ソース電極溝4の深さより小さい。ウェル領域3は、ソース電極溝4の延伸方向(z軸方向)に延伸する。ウェル領域3の不純物濃度は、例えば、1×1015cm-3~1×1019cm-3程度である。
 ソース領域5は、ソース電極溝4の側面に接して、ウェル領域3内に形成されたn型の領域である。ソース領域5は、ドリフト領域2の第2主面から基板1内まで、ドリフト領域2の第2主面に対して垂直方向(y軸方向)に形成される。ソース領域5の深さは、ウェル領域3の深さより小さい。ソース領域5は、ソース電極溝4の延伸方向(z軸方向)に延伸する。ソース領域5の不純物濃度は、ドリフト領域2よりも高く、例えば、1×1018cm-3~1×1021cm-3程度である。
 ソース電極6は、ソース領域5に電気的に接続される。ソース電極6は、ソース電極溝4内に形成されることにより、ソース領域5にオーミック接続する。ソース領域5及びウェル領域3は、ソース電極6と同電位をとる。ソース電極6の材料としては、例えば、ニッケルシリサイド(NiSi)、チタン(Ti)又はモリブデン(Mo)等の金属材料を含む導電体が使用可能である。ソース電極6は、ソース領域5とオーミック接続する金属材料と、アルミニウム(Al)、銅(Cu)、金(Au)、ニッケル(Ni)、銀(Ag)等の金属材料との多層構造を有してもよい。
 ゲート電極溝7は、ドリフト領域2の第2主面から基板1内まで、ドリフト領域2の第2主面に対して垂直方向(y軸方向)に形成された溝である。ゲート電極溝7は、ドリフト領域2の第2主面に平行であり、ソース電極溝4の延伸方向に直交する方向(x軸方向)において、ソース電極溝4、ドリフト領域2、ウェル領域3及びソース領域5に接するように延伸する。ゲート電極溝7は、ウェル領域3及びソース領域5を貫通する。ゲート電極溝7の深さは、ソース電極溝4の深さに等しい。ゲート電極溝7は、ドリフト領域2の第2主面に平行且つ延伸方向に直交する方向(z軸方向)に複数配列される。
 ゲート絶縁膜8は、ゲート電極溝7の表面に形成される。ゲート絶縁膜8の材料は、例えば酸化ケイ素(SiO)等の絶縁体である。ゲート電極9は、ゲート絶縁膜8の表面に形成される。すなわち、ゲート電極9は、ゲート絶縁膜8を介して、ゲート電極溝7の表面に接するように形成される。ゲート電極9の材料は、例えば多結晶シリコンである。ゲート電極9は、表面がゲート絶縁膜8に被覆された状態でゲート電極溝7内に配置される。ゲート電極9は、ドリフト領域2の第2主面におけるゲート電極溝7の開口部においてもゲート絶縁膜8に被覆される。
 ゲート配線10は、ソース電極6と電気的に絶縁され、ソース電極6内にゲート電極9に接して形成される。ゲート配線10は、表面に絶縁膜であるシリコン酸化膜11が形成された状態で、ソース電極溝4の下部に位置する。シリコン酸化膜11は、ゲート配線10とソース電極6とを互いに絶縁させる。ソース電極溝4内のゲート配線10及びシリコン酸化膜11を除く空間は、ソース電極6で充填される。ゲート配線10の表面において、ゲート電極9と接する領域は、シリコン酸化膜11が形成されない。同様に、ゲート電極9の表面において、ゲート配線10と接する領域は、ゲート絶縁膜8が形成されない。
 ドレイン領域12は、ドリフト領域2内に、ウェル領域3から離れて形成されたn型の領域である。ドレイン領域12は、ドリフト領域2の第2主面から、ドリフト領域2の第2主面に対して垂直方向(y軸方向)に形成される。ドレイン領域12の深さは、ドリフト領域2の厚さより小さい。ドレイン領域12は、ソース電極溝4の延伸方向(z軸方向)に延伸する。ドレイン領域12は、ドリフト領域2と同じ導電型である。ドレイン領域12の不純物濃度は、ドリフト領域2よりも高く且つソース領域5と同程度であり、例えば、1×1018cm-3~1×1021cm-3程度である。
 ドレイン電極13は、ドレイン領域12と電気的に接続される。ドレイン電極13は、ドリフト領域2の第2主面に形成され、第2主面において露出されたドレイン電極13に接する。ドレイン電極13は、例えばソース電極6と同様の材料から構成可能である。
 図2は、第1実施形態に係る半導体装置の、図1において図示を省略した構成を説明する図である。図2に示すように、第1実施形態に係る半導体装置は、層間絶縁膜14と、ソース配線15と、ドレイン配線16とを更に備える。
 層間絶縁膜14は、ドリフト領域2の第2主面に形成される。層間絶縁膜14は、酸化ケイ素(SiO)、窒化ケイ素(Si)等のセラミック材料を含む絶縁体からなる。層間絶縁膜14は、層間絶縁膜14の一面から他面にそれぞれ貫通する溝21及び溝22を有する。溝21は、ソース電極溝4の上方においてソース電極溝4の延伸方向に延伸する。溝21は、図1において図示を省略したソース電極6の上部が挿入される。ソース電極6は、ドリフト領域2の第2主面においてソース領域5及びウェル領域3と接し、ドリフト領域2から離れて形成される。溝22は、ドレイン領域12の上方において、ドレイン領域12の延伸方向に延伸する。溝22は、ドレイン電極13が挿入される。
 ソース配線15は、溝21において露出したソース電極6を被覆するように、層間絶縁膜14の上面に形成される。層間絶縁膜14の上面は、ドリフト領域2の第2主面と反対側の主面であり、ドリフト領域2の第2主面に対して平行である。ソース配線15は、溝21の延伸方向に延伸する。ドレイン配線16は、溝22において露出したドレイン電極13を被覆するように、層間絶縁膜14の上面に形成される。ドレイン配線16は、溝22の延伸方向に延伸する。ソース配線15及びドレイン配線16は、互いに離れ、平行に形成される。
 図3は、第1実施形態に係る半導体装置において、ゲート電極9及びゲート配線10の電位に接続する構成の一例を説明する図である。図4は、図3のA-A方向から見た断面図である。図3及び図4は、第1実施形態に係る半導体装置のうち、図1又は図2に示す範囲と異なる範囲であり、z軸方向における一部を選択的に示す図である。
 第1実施形態に係る半導体装置は、層間絶縁膜14上の一部に形成されたゲートパッド17を更に備える。図4に示すように、層間絶縁膜14は、複数のゲート電極9のうち、少なくとも1つのゲート電極9の上方に形成された貫通孔23を有する。貫通孔23の下方に位置するゲート電極9の上面に形成されたゲート絶縁膜8は、貫通孔23に対応する範囲において除去される。ゲートパッド17は、貫通孔23を介して下方のゲート電極9と、ゲート配線10とに電気的に接続される。複数のゲート電極9は、全てゲート配線10と電気的に接続されているため、ゲートパッド17の電位を調整することにより、全てのゲート電極9の電位が調整可能である。
 次に、図5~図16を参照し、第1実施形態に係る半導体装置の製造方法の一例を説明する。
 まず、図5及び図6に示すように、上面(第1主面)にドリフト領域2が形成された基板1を用意する。基板1は、ノンドープのSiCからなる絶縁性基板である。ドリフト領域2は、基板1にエピタキシャル成長により形成されたn型の領域である。
 次に、図7及び図8に示すように、ドリフト領域2の上面(第2主面)にマスク材18を形成する。化学気相成長(CVD)法によりドリフト領域2の上面にSiOを堆積してシリコン酸化膜を形成し、シリコン酸化膜をパターニングすることによりマスク材18が形成される。シリコン酸化膜は、フォトリソグラフィ法及びドライエッチング法によりパターニングされる。すなわち、シリコン酸化膜の上面にレジストを塗布し、ソース電極溝4及びゲート電極溝7を形成する予定の領域のみを選択的に除去する。残されたレジストをマスクとする反応性イオンエッチング(RIE)等のドライエッチング法により、シリコン酸化膜をパターニングすることにより、ソース電極溝4及びゲート電極溝7を形成するためのマスク材18が形成される。なお、不要になったレジストは酸素プラズマや硫酸等により適宜除去される。その後、マスク材18をマスクとするドライエッチング法により、ソース電極溝4及びゲート電極溝7が形成される。
 次に、図9及び図10に示すように、p型のウェル領域3と、n型のソース領域5及びドレイン領域12とを形成する。フォトリソグラフィ法により、基板1及びドリフト領域2の露出された表面にレジストを塗布し、ソース電極溝4に対応する領域を除去する。残されたレジストをマスクとして、イオン注入法により、ホウ素(B)等のp型不純物を、ゲート電極溝7の延伸方向に直交(x-y平面に平行)且つドリフト領域2の第2主面に対して所定角度を有する方向に注入する。所定角度は、例えば10°~20°である。
 そして、フォトリソグラフィ法により、マスク材18上にレジストを塗布し、ドレイン領域12を形成する予定の領域に対応する領域のみを選択的に除去する。残されたレジストをマスクとして、ドライエッチング法により、マスク材18をパターニングする。パターニングされたマスク材18及びホウ素の注入に用いられたレジストをマスクとして、イオン注入法により、n型不純物を所定方向に注入する。n型不純物は、例えばリン(P)であり、注入方向は、p型不純物の注入方向と同様である。但し、ソース領域5がウェル領域3内に形成されるように、n型不純物の注入エネルギーは、p型不純物の注入エネルギーより小さい。
 その後、ウェットエッチング法により、マスク材18を全て除去する。また、熱処理(アニール)することでイオン注入した不純物を活性化する。活性化によって、ウェル領域3、ソース領域5及びドレイン領域12が形成される。また、熱酸化法により、露出された全ての表面に、薄いシリコン酸化膜20を形成する。シリコン酸化膜20の厚さは、例えば数十nm程度である。
 次に、図11及び図12に示すように、CVD法により、ソース電極溝4及びゲート電極溝7に、ゲート電極9及びゲート配線10の材料である多結晶シリコン19を堆積する。CVD法により多結晶シリコンを堆積する場合、面の向きに関わらず露出された表面から多結晶シリコン層が成長する。この為、ソース電極溝4及びゲート電極溝7の幅がそれぞれ2μmであれば、堆積する厚さを1μmとすることにより、ソース電極溝4及びゲート電極溝7が多結晶シリコン19により充填される。その後、ドライエッチング法により、多結晶シリコン19を1μmエッチングすることで、ソース電極溝4及びゲート電極溝7に堆積された多結晶シリコン19を残して、ドリフト領域2の第2主面より上に堆積された多結晶シリコン19が選択的に除去される。
 その後、フォトリソグラフィ法により、シリコン酸化膜20及び多結晶シリコン19の上面にレジストを塗布し、ソース電極溝4の領域のみを選択的に除去する。残されたレジストをマスクとして、ドライエッチング法により、ソース電極溝4内に堆積された多結晶シリコン19を、底面から数μmの領域を残して除去する。ソース電極溝4の底部に残された多結晶シリコン19は、ゲート配線10として機能する。また、犠牲酸化法により、ソース電極溝4の側面に形成されたシリコン酸化膜20を除去する。
 次に、図13及び図14に示すように、ゲート電極9の表面を被覆するゲート絶縁膜8及びゲート配線10を被覆するシリコン酸化膜11を形成する。熱酸化法により、露出されたすべての表面にシリコン酸化膜を形成する。このとき、多結晶シリコンはSiCより酸化速度が大きいため、ゲート電極9及びゲート配線10の表面には、SiCから構成される他の面に比べて熱いシリコン酸化膜が形成される。ウェットエッチング法により、SiCから構成される面に形成されたシリコン酸化膜のみが全て除去され、多結晶シリコン19の表面に形成されたシリコン酸化膜が残されるような処理時間でシリコン酸化膜を選択的に除去する。これにより、ゲート電極9の表面にゲート絶縁膜8が形成され、ゲート配線10の表面にシリコン酸化膜11が形成される。
 次に、図15及び図16に示すように、ソース電極6、ソース配線15、ドレイン電極13及びドレイン配線16を形成する。スパッタリング法により、ソース電極溝4内及びドリフト領域2の第2主面に、ソース電極6及びドレイン電極13の材料である金属材料を堆積する。フォトリソグラフィ法により、金属材料の表面にレジストを塗布し、ドリフト領域2の第2主面より上の領域における、ソース電極6及びドレイン電極13を形成する予定の領域を除く領域のレジストを選択的に除去する。残されたレジストをマスクとして、スパッタエッチング法により、ドリフト領域2の第2主面に位置する金属材料を選択的に除去することにより、ソース電極6及びドレイン電極13が形成される。
 その後、CVD法により、ドリフト領域2の第2主面及び残された金属材料の上面にSiOを堆積して層間絶縁膜14を形成する。フォトリソグラフィ法により、層間絶縁膜14の上面にレジストを塗布し、ソース電極6及びドレイン電極13の領域を選択的に除去する。残されたレジストをマスクとして、ドライエッチング法により、層間絶縁膜14をパターニングする。これにより、ソース電極6が挿入される溝21及びドレイン電極13が挿入される溝22のそれぞれ上端が開口する。
 更に、スパッタリング法により、ソース配線15及びドレイン配線16の材料である金属材料を堆積する。フォトリソグラフィ法により、金属材料の上面にレジストを塗布し、ソース配線15及びドレイン配線16を形成する予定の領域を除く領域のレジストを選択的に除去する。残されたレジストをマスクとして、スパッタエッチング法により、金属材料を選択的に除去することにより、ソース配線15及びドレイン配線16が形成される。以上の工程を経て、図2に示す半導体装置が完成する。
 なお、図1に示す例においては、ゲート電極9の一部がソース電極溝4に入り込んでいるが、ソース電極溝4に堆積された多結晶シリコン19をエッチングする際のマスクパターンを調整することにより、ゲート電極9は形状が変更され得る。
 次に、第1実施形態に係る半導体装置の基本的な動作について説明する。
 第1実施形態に係る半導体装置は、ソース電極6の電位を基準として、ドレイン電極13に正の電位を印加した状態でゲート電極9の電位を制御することにより、トランジスタとして機能する。すなわち、ゲート電極9とソース電極6間の電圧を所定の閾値以上にすると、ゲート電極9側面に位置するウェル領域3にチャネルとなる反転層が形成されてオン状態となり、ドレイン電極13からソース電極6へ電流が流れる。具体的には、電子がソース電極6からソース領域5に流れ、ソース領域5からチャネルを介してドリフト領域2に流れ込む。電子は更に、ドリフト領域2からドレイン領域12に流れ、最後にドレイン電極13に流れる。
 一方、ゲート電極9とソース電極6間の電圧を所定の閾値以下にすると、ウェル領域3の反転層が消滅してオフ状態となり、ドレイン電極13及びソース電極6間の電流が遮断される。この際、ドレイン-ソース間には数百V~数千Vの高電圧が印加され得る。
 一般に、ゲート電極に接続するゲート配線は、ウェル領域の近くに配置される。この場合、ゲート配線の電位が反転層の形成に影響を及ぼし、しきい値が変動してしまう可能性がある。しきい値が変動すると、誤ターンオンなど意図しない動作が生じ得るため、装置の信頼性が低下する可能性がある。
 第1実施形態に係る半導体装置によれば、ゲート配線10がソース電極溝4内に形成されるため、ウェル領域3から離れた箇所に位置する。よって、ウェル領域3に形成されるチャネルがゲート配線10から受ける影響が低減されるため、しきい値の変動を低減することができる。
 また、第1実施形態に係る半導体装置によれば、ゲート電極9がソース電極溝4内に形成されたゲート配線10に接するため、ゲート電極9の上面側において金属配線及びコンタクトホールが不要である。よって、ゲート電極9の幅を削減することができ、半導体装置の集積度を向上することができる。これにより、ゲート電極9の数を増加させることができるため、チャネル幅が増加され、オン抵抗を低減することができる。
 また、第1実施形態に係る半導体装置によれば、ゲート配線10が、ソース電極溝4内に形成されるため、層間絶縁膜14の上面に形成されたソース配線15及びドレイン配線16の幅を制限することがない。よって、ソース配線15及びドレイン配線16の抵抗の増大によるオン抵抗及びスイッチング損失の悪化を抑制することができる。
 第1実施形態に係る半導体装置によれば、ゲート配線10がシリコン酸化膜11を介して基板1に接するため、ドリフト領域2から基板1内まで形成可能である。よって、ゲート配線10の断面積を増加させることができため、ゲート配線10の抵抗及びスイッチング損失を低減することができる。
 また、第1実施形態に係る半導体装置によれば、ソース配線15及びドレイン配線16が層間絶縁膜14の上面にそれぞれ形成されるため、両配線を多層構造とする場合に比べて、平坦性を向上することができる。よって、配線間の絶縁膜の局部における電界集中による耐圧性の悪化を回避することができる。
 また、第1実施形態に係る半導体装置によれば、基板1が絶縁体又は半絶縁体からなるため、ウェル領域3、ゲート電極9及びゲート配線10の少なくともいずれかの端部が基板1内に位置する場合、端部における電界集中を低減することができる。よって、耐圧性を向上することができる。
 また、第1実施形態に係る半導体装置によれば、ゲート電極9及びゲート配線10が互いに同じ材料からなるため、同じ工程により形成可能であり、更に、互いを電気的に接続するための工程が不要である。よって、製造工数を低減することができ、製造コストを低減することができる。また、ゲート電極9とゲート配線10との界面における抵抗が生じることを回避することができる。
 また、第1実施形態に係る半導体装置によれば、多結晶シリコンからなるゲート配線10が、表面に形成されたシリコン酸化膜11によりソース電極6と絶縁される。よって、熱酸化法によりゲート配線10を被覆するシリコン酸化膜11を用意に形成することができる。更に、ドリフト領域2がSiOより酸化速度が遅いSiC等の材料からなるため、等方性エッチング法により、ゲート配線10の表面に選択的にシリコン酸化膜11を形成できる。よって、窒化ケイ素など酸化しない材料から形成されるマスクを用いて、ゲート配線10に選択的に酸化膜を形成する場合に比べて、製造工数を低減することができ、製造コストを低減することができる。
 また、第1実施形態に係る半導体装置によれば、ドリフト領域2がSiC等のワイドバンドギャップ半導体からなるため、絶縁破壊強度を向上することができる。このため、仮にドレイン電極13とソース電極6との間が狭く、急峻な電界分布が生じても耐圧性を確保しつつ集積度を向上することができる。
 また、第1実施形態に係る半導体装置によれば、ゲート配線10が、ドリフト領域2から離れて形成されるため、ゲート-ドレイン間の容量の増加を抑制することができる。仮に、ゲート配線がドリフト領域付近に形成される場合、ドリフト領域の電位はドレイン電極とほぼ等しいため、ゲート-ドレイン間の容量が増加してしまう。一方、第1実施形態に係る半導体装置では、ゲート-ドレイン間の容量の増加が抑制されるため、スイッチング損失を低減することができる。
 また、第1実施形態に係る半導体装置によれば、基板1とドリフト領域2とが互いに同じ材料から形成されるため、応力による反りが生じる可能性を低減し、素子の信頼性を向上することができる。
(第2実施形態)
 図17は、本発明の第2実施形態に係る半導体装置を説明する断面図である。なお、図17は、第2実施形態に係る半導体装置を、ゲート電極9を通るx-y平面で切断した断面図である。第2実施形態に係る半導体装置は、ソース電極溝4がゲート電極溝7よりも深く形成される点等で上述の第1実施形態と異なる。第2実施形態において説明しない構成、作用及び効果は、第1実施形態と実質的に同様であり重複するため省略する。
 第2実施形態において、ソース電極溝4の深さは、ドリフト領域2の厚さより小さいため、ソース電極溝4は、基板1に接しない。また、ゲート電極溝7の深さは、ソース電極溝4の深さより浅い。
 ソース電極溝4及びゲート電極溝7を形成する際のマスクは、ドライエッチング法により薄くなり、強度が低下してしまう。第2実施形態に係る半導体装置では、ソース電極溝4及びゲート電極溝7の深さがドリフト領域2の厚さより小さい。このため、製造工程において、ソース電極溝4及びゲート電極溝7を形成する際のマスクとなるシリコン酸化膜は、第1実施形態におけるマスク材18よりも薄くすることができる。なお、溝を掘るドライエッチング法において、ソース電極溝4の幅をゲート電極溝7の幅より大きく設計することにより、ソース電極溝4をゲート電極溝7よりも深く形成することができる。
 第2実施形態に係る半導体装置によれば、ソース電極溝4がゲート電極溝7よりも深く形成されるため、ゲート配線10をより深く形成することができ、ゲート配線10の断面図を増加させることができる。よって、ゲート配線10の抵抗を低減し、スイッチング損失を低減することができる。
 また、第2実施形態に係る半導体装置によれば、ゲート電極溝7がドリフト領域2の厚さよりも浅く形成されるため、ウェル領域3の、ゲート電極溝7の底面側においてもチャネルが形成される。よって、チャネル幅を増加させることができ、オン抵抗を低減させることができる。
(変形例)
 図18は、本発明の第2実施形態の変形例に係る半導体装置を説明する断面図である。第2実施形態の変形例に係る半導体装置は、ソース電極溝4の底部が基板1内に位置する点で上述の第2実施形態と異なる。第2実施形態の変形例において説明しない構成、作用及び効果は、上述の第2実施形態と実質的に同様であり重複するため省略する。
 第2実施形態の変形例では、ソース電極溝4がゲート電極溝7よりも深く、基板1に接するように形成される。ソース電極溝4の底部において、ゲート配線10は、シリコン酸化膜11を介して基板1に接する。すなわち、ゲート配線10の端部は、基板1内に位置する。ここで端部とは、ドリフト領域2の第2主面に垂直な面と、ドリフト領域2の第2主面に対向する端面とが交わる部分を意味する。なお、製造工程において、ソース電極溝4及びゲート電極溝7を形成する際のマスクとなるシリコン酸化膜を、第1実施形態におけるマスク材18よりも厚くすることにより、溝の深さを深くすることができる。また、ソース電極溝4及びゲート電極溝7の幅の比を調整することにより、ソース電極溝4及びゲート電極溝7の深さの比を調整することができる。
 第2実施形態の変形例に係る半導体装置によれば、ソース電極溝4がドリフト領域2の厚さよりも深く形成されるため、ゲート配線10を更に深く形成することができ、ゲート配線10の断面図を増加させることができる。よって、ゲート配線10の抵抗を低減し、スイッチング損失を低減することができる。
 また、第2実施形態の変形例に係る半導体装置によれば、ソース電極溝4の底部が基板1を接するため、ソース電極溝4の端部における電界集中を低減し、耐圧性を向上することができる。
(第3実施形態)
 図19は、本発明の第3実施形態に係る半導体装置を説明する断面図である。第3実施形態に係る半導体装置は、ゲート電極溝7の底部が基板1に接する点で第2実施形態と異なる。第3実施形態において説明しない構成、作用及び効果は、第1及び第2実施形態と実質的に同様であり重複するため省略する。
 第3実施形態において、ソース電極溝4がゲート電極溝7よりも深く、ソース電極溝4及びゲート電極溝7は基板1に接するように形成される。ソース電極溝4の底部において、ゲート配線10は、シリコン酸化膜11を介して基板1に接する。ゲート電極9は、ゲート絶縁膜8を介してなお、基板1に接する。製造工程において、ソース電極溝4及びゲート電極溝7を形成する際のマスクとなるシリコン酸化膜を、第2実施形態におけるマスクよりも厚くすることにより、溝の深さを深くすることができる。また、ソース電極溝4及びゲート電極溝7の幅の比を調整することにより、ソース電極溝4及びゲート電極溝7の深さの比を調整することができる。
 第3実施形態に係る半導体装置によれば、ゲート電極溝7の端部が基板1に接するため、ゲート電極溝7の端部における電界集中が低減され、ゲート絶縁膜8の絶縁破壊を抑制して、耐圧性を向上することができる。
(第4実施形態)
 図20は、本発明の第4実施形態に係る半導体装置を説明する断面図である。第4実施形態に係る半導体装置は、ドレイン電極13が形成されるドレイン電極溝25を備える点等で第1乃至第3実施形態と異なる。第4実施形態において説明しない構成、作用及び効果は、第1乃至第3実施形態と実質的に同様であり重複するため省略する。
 ドレイン電極溝25は、ウェル領域3とドリフト領域2内に、ウェル領域3から離れて形成される。ドレイン電極溝25は、ドリフト領域2の第2主面から基板1内まで、ドリフト領域2の第2主面に対して(y軸方向)に形成される。ドレイン領域12は、ドレイン電極溝25の側面に接する。第4実施形態において、ドレイン領域12は、ドリフト領域2の第2主面から基板1内まで、ドリフト領域2の第2主面に対して(y軸方向)に形成される。ドレイン電極溝25の深さは、ドレイン領域12の深さより深い。
 ドレイン電極溝25は、第1実施形態に係る半導体装置の製造方法において、マスク材18となるシリコン酸化膜を、ドレイン電極溝25を形成する予定の領域も選択的に除去することにより形成可能である。このマスク材18をマスクとして、ドライエッチング法により、ソース電極溝4、ゲート電極溝7及びドレイン電極溝25を同時に形成することができる。
 また、ドレイン電極溝25が形成されることにより、ドレイン領域12の製造工程において、第1実施形態と比べて高い注入エネルギーで不純物を注入する必要なく、深い位置までドレイン領域12を形成することができる。
 第4実施形態に係る半導体装置によれば、ドレイン電極溝25がドリフト領域2より深く形成されるため、ドリフト領域2の深さ方向(y軸方向)における電界分布を低減することができる。よって、電界集中が低減され、耐圧性を向上することができる。
 また、第4実施形態に係る半導体装置によれば、ドリフト領域2よりも高不純物濃度のドレイン領域12が、ドリフト領域2より深く形成されるため、電流経路をドリフト領域2からドレイン領域12に置き換えることができる。よって、オン抵抗を低減することができる。
(その他の実施形態)
 上記のように、本発明を上記の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、第1乃至第4実施形態において、SiCからなる基板1及びドリフト領域2に半導体装置を製造する場合を説明したが、材料としてはSiCに限定されない。例えば、基板1及びドリフト領域2の材料となるワイドバンドギャップ半導体として、例えば窒化ガリウム(GaN)、ダイヤモンド、酸化亜鉛(ZnO)、窒化アルミニウムガリウム(AlGaN)等が挙げられる。
 また、第1乃至第4実施形態において、ドリフト領域2をエピタキシャル成長により形成する場合を説明したが、SiC等の絶縁性基板にn型不純物を注入することにより形成するようにしてもよい。
 また、第1乃至第4実施形態において、基板1は、ドリフト領域2より不純物濃度が低いn型半導体からなるようにしてもよい。これにより、半導体装置のオン状態時に、電流が基板1内を流れることになり、電流経路が増加するため、電流が増加する。仮に基板1がp型半導体である場合、ドリフト領域2内に電流経路を狭めるように空乏層が広がるため、電流が低減する。即ち、基板1がドリフト領域2と同じ導電型である場合、電流が増加して損失が低減される。
 また、第1乃至第4実施形態において、ゲート電極溝7及びソース電極溝4の底面は、ドリフト領域2の第1主面よりも高くても低くてもよく、第1主面に一致していてもよい。また、ソース電極溝4内におけるゲート配線10の位置は、ゲート電極溝7の底面よりも高くてもよい。
 また、第1乃至第4実施形態において、半導体装置の一例としてMOSFETを説明したが、本発明実施形態に係る半導体装置は、絶縁ゲート型バイポーラトランジスタ(IGBT)やサイリスタにも適用できるのは勿論である。
 また、第1乃至第4実施形態において、「平行」、「垂直」、「直交」等の表現は、完全なトポロジーを意味するものではなく、フォトリソグラフィやその他のプロセス上の理由から、不完全なトポロジーをも許容するものである。
 その他、上記の各構成を相互に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 1 基板
 2 ドリフト領域
 3 ウェル領域
 4 ソース電極溝
 5 ソース領域
 6 ソース電極
 7 ゲート電極溝
 8 ゲート絶縁膜
 9 ゲート電極
 10 ゲート配線
 11 シリコン酸化膜
 12 ドレイン領域
 13 ドレイン電極
 14 層間絶縁膜
 15 ソース配線
 16 ドレイン配線

Claims (8)

  1.  基板と、
     前記基板の第1主面に設けられ、前記基板よりも高不純物濃度の第1導電型のドリフト領域と、
     前記ドリフト領域の前記第1主面と反対側の第2主面から、前記第2主面の垂直方向に形成されたソース電極溝と、
     前記ソース電極溝の側面に接して、少なくとも一部が前記ドリフト領域内に形成された第2導電型のウェル領域と、
     前記ソース電極溝の側面に接して、前記ウェル領域内に形成された第1導電型のソース領域と、
     前記ソース領域と電気的に接続されたソース電極と、
     前記ドリフト領域、前記ウェル領域及び前記ソース領域と接するように、前記第2主面から前記垂直方向に形成されたゲート電極溝と、
     前記ゲート電極溝の表面に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜の表面に形成されたゲート電極と、
     前記ドリフト領域内に、前記ウェル領域から離れて形成された第1導電型のドレイン領域と、
     前記ドレイン領域と電気的に接続されたドレイン電極とを備える半導体装置において、
     前記ゲート電極溝は、前記ソース電極溝に接するように形成され、
     前記ソース電極と電気的に絶縁され、前記ソース電極溝内に前記ゲート電極に接して形成されたゲート配線を有することを特徴とする半導体装置。
  2.  前記ソース電極溝は、前記ゲート電極溝よりも深く形成されることを特徴とする請求項1に記載の半導体装置。
  3.  前記ゲート配線は、絶縁膜を介して前記基板に接するように形成されることを特徴とする請求項1又は2に記載の半導体装置。
  4.  前記第2主面に形成された層間絶縁膜と、
     前記ソース電極と電気的に接続されるソース配線と、
     前記ドレイン電極と電気的に接続されるドレイン配線と、を更に備え、
     前記ソース配線及び前記ドレイン配線は、前記層間絶縁膜の前記第2主面と反対側かつ平行な主面に形成されることを特徴とする請求項1乃至3の何れか1項に記載の半導体装置。
  5.  前記基板は、絶縁体又は半絶縁体からなることを特徴とする請求項1乃至4の何れか1項に記載の半導体装置。
  6.  前記ゲート電極及び前記ゲート配線は、互いに同じ材料で形成されることを特徴とする請求項1乃至5の何れか1項に記載の半導体装置。
  7.  前記ゲート配線は、シリコンから形成され、表面に形成されたシリコン酸化膜により前記ソース電極と電気的に絶縁されることを特徴とする請求項1乃至6の何れか1項に記載の半導体装置。
  8.  前記ドリフト領域は、ワイドバンドギャップ半導体からなることを特徴とする請求項1乃至7の何れか1項に記載の半導体装置。
PCT/JP2016/073525 2016-08-10 2016-08-10 半導体装置 WO2018029796A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2019106317A RU2705761C1 (ru) 2016-08-10 2016-08-10 Полупроводниковое устройство
BR112019002551-0A BR112019002551B1 (pt) 2016-08-10 2016-08-10 Dispositivo semicondutor
MYPI2019000537A MY183245A (en) 2016-08-10 2016-08-10 Semiconductor device
CN201680088287.5A CN109564876B (zh) 2016-08-10 2016-08-10 半导体装置
KR1020197003462A KR101988202B1 (ko) 2016-08-10 2016-08-10 반도체 장치
US16/323,373 US10937874B2 (en) 2016-08-10 2016-08-10 Semiconductor device
JP2018533350A JP6620889B2 (ja) 2016-08-10 2016-08-10 半導体装置
PCT/JP2016/073525 WO2018029796A1 (ja) 2016-08-10 2016-08-10 半導体装置
EP16912677.8A EP3499549B1 (en) 2016-08-10 2016-08-10 Semiconductor device
MX2019001527A MX2019001527A (es) 2016-08-10 2016-08-10 Dispositivo semiconductor.
CA3033462A CA3033462C (en) 2016-08-10 2016-08-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073525 WO2018029796A1 (ja) 2016-08-10 2016-08-10 半導体装置

Publications (1)

Publication Number Publication Date
WO2018029796A1 true WO2018029796A1 (ja) 2018-02-15

Family

ID=61161949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073525 WO2018029796A1 (ja) 2016-08-10 2016-08-10 半導体装置

Country Status (11)

Country Link
US (1) US10937874B2 (ja)
EP (1) EP3499549B1 (ja)
JP (1) JP6620889B2 (ja)
KR (1) KR101988202B1 (ja)
CN (1) CN109564876B (ja)
BR (1) BR112019002551B1 (ja)
CA (1) CA3033462C (ja)
MX (1) MX2019001527A (ja)
MY (1) MY183245A (ja)
RU (1) RU2705761C1 (ja)
WO (1) WO2018029796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096908A1 (ja) * 2020-11-09 2022-05-12 日産自動車株式会社 半導体装置及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504308B (zh) * 2019-08-29 2021-03-30 电子科技大学 一种高速低损耗的多槽栅高压功率器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271637A (ja) * 1989-04-13 1990-11-06 Oki Electric Ind Co Ltd 薄膜トランジスタアレイの製造方法
JP2002504267A (ja) * 1997-06-10 2002-02-05 スペクトリアン トレンチソースコンタクトを備えた横拡散mosトランジスター
JP2011171420A (ja) * 2010-02-17 2011-09-01 On Semiconductor Trading Ltd 半導体装置及びその製造方法
WO2014054375A1 (ja) * 2012-10-02 2014-04-10 シャープ株式会社 電界効果トランジスタおよびその製造方法
WO2015008550A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 半導体装置及びその製造方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828101A (en) * 1995-03-30 1998-10-27 Kabushiki Kaisha Toshiba Three-terminal semiconductor device and related semiconductor devices
JP3303601B2 (ja) * 1995-05-19 2002-07-22 日産自動車株式会社 溝型半導体装置
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
GB9917099D0 (en) * 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP2002270840A (ja) * 2001-03-09 2002-09-20 Toshiba Corp パワーmosfet
JP4590884B2 (ja) * 2003-06-13 2010-12-01 株式会社デンソー 半導体装置およびその製造方法
DE102004029435B4 (de) * 2004-06-18 2017-02-16 Infineon Technologies Ag Feldplattentrenchtransistor
JP2006093430A (ja) * 2004-09-24 2006-04-06 Nec Electronics Corp 半導体装置
JP4961686B2 (ja) * 2005-06-03 2012-06-27 株式会社デンソー 半導体装置
JP5225546B2 (ja) * 2005-12-27 2013-07-03 株式会社豊田中央研究所 半導体装置
JP5303839B2 (ja) * 2007-01-29 2013-10-02 富士電機株式会社 絶縁ゲート炭化珪素半導体装置とその製造方法
US8159024B2 (en) * 2007-04-20 2012-04-17 Rensselaer Polytechnic Institute High voltage (>100V) lateral trench power MOSFET with low specific-on-resistance
US8129779B2 (en) * 2007-09-03 2012-03-06 Rohm Co., Ltd. Trench gate type VDMOSFET device with thicker gate insulation layer portion for reducing gate to source capacitance
US8384152B2 (en) * 2007-09-20 2013-02-26 Rohm Co., Ltd. Semiconductor device having trench gate VDMOSFET and method of manufacturing the same
JP2009081397A (ja) * 2007-09-27 2009-04-16 Fuji Electric Device Technology Co Ltd 半導体装置および半導体装置の製造方法
JP2009135360A (ja) * 2007-12-03 2009-06-18 Renesas Technology Corp 半導体装置およびその製造方法
JP2009146994A (ja) * 2007-12-12 2009-07-02 Toyota Industries Corp トレンチゲート型半導体装置
JP2010016221A (ja) * 2008-07-04 2010-01-21 Nec Electronics Corp 双方向スイッチ、及び半導体装置
JP5588671B2 (ja) * 2008-12-25 2014-09-10 ローム株式会社 半導体装置の製造方法
US8546893B2 (en) * 2010-01-12 2013-10-01 Mohamed N. Darwish Devices, components and methods combining trench field plates with immobile electrostatic charge
JP5762689B2 (ja) * 2010-02-26 2015-08-12 株式会社東芝 半導体装置
TWI426568B (zh) * 2010-03-29 2014-02-11 Sinopower Semiconductor Inc 半導體功率元件與其製作方法
US8786011B2 (en) * 2010-04-28 2014-07-22 Nissan Motor Co., Ltd. Semiconductor device
JP5775268B2 (ja) * 2010-06-09 2015-09-09 ローム株式会社 半導体装置およびその製造方法
JP2012059931A (ja) * 2010-09-09 2012-03-22 Toshiba Corp 半導体装置
WO2012105609A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体装置
JP2012169384A (ja) * 2011-02-11 2012-09-06 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2012182212A (ja) * 2011-02-28 2012-09-20 Toshiba Corp 半導体装置の製造方法および半導体装置
JP2012204563A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 半導体素子及び半導体素子の製造方法
BR112013027105B1 (pt) * 2011-04-19 2021-01-12 Nissan Motor Co., Ltd. dispositivo semicondutor
EP2732471B8 (en) * 2011-07-14 2019-10-09 ABB Schweiz AG Insulated gate bipolar transistor and method of production thereof
TWI430449B (zh) * 2011-09-29 2014-03-11 Anpec Electronics Corp 橫向堆疊式超級接面功率半導體元件
JP5644793B2 (ja) 2012-03-02 2014-12-24 株式会社デンソー 半導体装置
JP2013258333A (ja) * 2012-06-13 2013-12-26 Toshiba Corp 電力用半導体装置
JP5812029B2 (ja) * 2012-06-13 2015-11-11 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP6061181B2 (ja) * 2012-08-20 2017-01-18 ローム株式会社 半導体装置
DE112013005770B4 (de) * 2012-12-03 2022-12-01 Infineon Technologies Ag Halbleitervorrichtung, integrierte Schaltung und Verfahren zum Herstellen einer Halbleitervorrichtung
KR101920717B1 (ko) * 2013-01-14 2018-11-21 삼성전자주식회사 이중 병렬 채널 구조를 갖는 반도체 소자 및 상기 반도체 소자의 제조 방법
WO2014171048A1 (ja) * 2013-04-16 2014-10-23 パナソニック株式会社 炭化珪素半導体装置およびその製造方法
US9490328B2 (en) * 2013-06-26 2016-11-08 Hitachi, Ltd. Silicon carbide semiconductor device and manufacturing method of the same
US9401399B2 (en) * 2013-10-15 2016-07-26 Infineon Technologies Ag Semiconductor device
CN104969356B (zh) * 2014-01-31 2019-10-08 瑞萨电子株式会社 半导体器件
WO2016047438A1 (ja) * 2014-09-26 2016-03-31 三菱電機株式会社 半導体装置
DE102014116773A1 (de) * 2014-11-17 2016-05-19 Infineon Technologies Ag Halbleitervorrichtung und Bipolartransistor mit isoliertem Gate mit Transistorzellen und Sensorzelle
US9768284B2 (en) * 2015-03-05 2017-09-19 Infineon Technologies Americas Corp. Bipolar semiconductor device having a charge-balanced inter-trench structure
US11257944B2 (en) * 2015-04-27 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP6409681B2 (ja) * 2015-05-29 2018-10-24 株式会社デンソー 半導体装置およびその製造方法
US9530882B1 (en) * 2015-11-17 2016-12-27 Force Mos Technology Co., Ltd Trench MOSFET with shielded gate and diffused drift region
US9673318B1 (en) * 2016-01-13 2017-06-06 Infineon Technologies Americas Corp. Semiconductor device including a gate trench having a gate electrode located above a buried electrode
DE102016102493B3 (de) * 2016-02-12 2017-07-20 Infineon Technologies Ag Halbleitervorrichtung mit einem temperatursensor, temperatursensor und verfahren zum herstellen einer halbleitervorrichtung mit einem temperatursensor
JP6651894B2 (ja) * 2016-02-23 2020-02-19 株式会社デンソー 化合物半導体装置およびその製造方法
CA3025767C (en) * 2016-05-30 2019-07-23 Nissan Motor Co., Ltd. Semiconductor device
TWI567979B (zh) * 2016-06-22 2017-01-21 Sinopower Semiconductor Inc 溝槽式功率半導體元件
US10446545B2 (en) * 2016-06-30 2019-10-15 Alpha And Omega Semiconductor Incorporated Bidirectional switch having back to back field effect transistors
CN109119477B (zh) * 2018-08-28 2021-11-05 上海华虹宏力半导体制造有限公司 沟槽栅mosfet及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271637A (ja) * 1989-04-13 1990-11-06 Oki Electric Ind Co Ltd 薄膜トランジスタアレイの製造方法
JP2002504267A (ja) * 1997-06-10 2002-02-05 スペクトリアン トレンチソースコンタクトを備えた横拡散mosトランジスター
JP2011171420A (ja) * 2010-02-17 2011-09-01 On Semiconductor Trading Ltd 半導体装置及びその製造方法
WO2014054375A1 (ja) * 2012-10-02 2014-04-10 シャープ株式会社 電界効果トランジスタおよびその製造方法
WO2015008550A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 半導体装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499549A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096908A1 (ja) * 2020-11-09 2022-05-12 日産自動車株式会社 半導体装置及びその製造方法
US11881526B2 (en) 2020-11-09 2024-01-23 Nissan Motor Co., Ltd. Semiconductor device and method for manufacturing same
JP7526808B2 (ja) 2020-11-09 2024-08-01 日産自動車株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
BR112019002551B1 (pt) 2023-01-17
US20200381522A1 (en) 2020-12-03
KR101988202B1 (ko) 2019-06-11
US10937874B2 (en) 2021-03-02
EP3499549A4 (en) 2019-08-07
MX2019001527A (es) 2019-07-04
JP6620889B2 (ja) 2019-12-18
MY183245A (en) 2021-02-18
KR20190025988A (ko) 2019-03-12
RU2705761C1 (ru) 2019-11-11
JPWO2018029796A1 (ja) 2019-06-06
CA3033462C (en) 2020-09-01
BR112019002551A2 (pt) 2019-05-21
CN109564876A (zh) 2019-04-02
EP3499549B1 (en) 2020-03-18
EP3499549A1 (en) 2019-06-19
CN109564876B (zh) 2020-02-21
CA3033462A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP5397289B2 (ja) 電界効果トランジスタ
WO2015008550A1 (ja) 半導体装置及びその製造方法
JP2018056304A (ja) スイッチング装置とその製造方法
JP6620889B2 (ja) 半導体装置
JP6610781B2 (ja) 半導体装置
CN112005349B (zh) 半导体装置及半导体装置的制造方法
CN112005379B (zh) 半导体装置及其制造方法
JP2005101147A (ja) 半導体装置及びその製造方法
JP6950816B2 (ja) 半導体装置及びその製造方法
JP6029330B2 (ja) 半導体装置およびその製造方法
US9911846B2 (en) Semiconductor device having a bandgap wider than that of silicon
WO2022096908A1 (ja) 半導体装置及びその製造方法
JP7009954B2 (ja) 半導体装置及びその製造方法
JP2022073551A (ja) 半導体装置およびその製造方法
JP2022159941A (ja) 半導体装置
JP2023105554A (ja) 半導体装置及びその製造方法
JP6102564B2 (ja) 半導体装置及びその製造方法
CN113330578A (zh) 半导体装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533350

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003462

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3033462

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016912677

Country of ref document: EP

Effective date: 20190311

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002551

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019002551

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190207