WO2022096908A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2022096908A1
WO2022096908A1 PCT/IB2020/000931 IB2020000931W WO2022096908A1 WO 2022096908 A1 WO2022096908 A1 WO 2022096908A1 IB 2020000931 W IB2020000931 W IB 2020000931W WO 2022096908 A1 WO2022096908 A1 WO 2022096908A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
conductive type
substrate
parasitic capacitance
Prior art date
Application number
PCT/IB2020/000931
Other languages
English (en)
French (fr)
Other versions
WO2022096908A8 (ja
Inventor
俊治 丸井
哲也 林
啓一郎 沼倉
威 倪
亮太 田中
裕一 岩崎
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to CN202080106857.5A priority Critical patent/CN116368624A/zh
Priority to PCT/IB2020/000931 priority patent/WO2022096908A1/ja
Priority to EP20960736.5A priority patent/EP4243084A4/en
Priority to JP2022560420A priority patent/JPWO2022096908A1/ja
Priority to US18/035,890 priority patent/US11881526B2/en
Publication of WO2022096908A1 publication Critical patent/WO2022096908A1/ja
Publication of WO2022096908A8 publication Critical patent/WO2022096908A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same.
  • Patent Document 1 is disclosed as a semiconductor device for the purpose of improving the withstand voltage.
  • impurities are added (doped) to a low-doped or non-doped semiconductor substrate to form an N-type source region, a P-type well region, an N-type drift region, and an N-type drain region, respectively. It had been.
  • the present invention has been made in view of the above problems, and provides a semiconductor device capable of reducing the gate-source capacitance CGS generated between the source electrode and the gate electrode, and a method for manufacturing the same.
  • the purpose is.
  • the semiconductor device is insulated from a first conductive source region, a first conductive source region, a second conductive well region, and a first conductive drift region formed on a main surface of a substrate. It has a third electrode formed so as to be in contact with the film. Then, a parasitic capacitance reduction region is formed so as to be in contact with the first conductive type source region and in contact with the third electrode via the insulating film, and the resistance value of the parasitic capacitance reduction region is made higher than that of the first conductive type source region. ..
  • the gate-source capacitance CGS generated between the source electrode and the gate electrode can be reduced.
  • FIG. 1 is a cross-sectional perspective view showing the structure of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the gate voltage, drain current, and drain voltage of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3A is a diagram for explaining the effect of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3B is a diagram for explaining the effect of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4A is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 1).
  • FIG. 4B is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 2).
  • FIG. 1 is a cross-sectional perspective view showing the structure of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the gate voltage, drain current, and drain voltage of the semiconductor device
  • FIG. 4C is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 3).
  • FIG. 4D is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 4).
  • FIG. 4E is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 5).
  • FIG. 4F is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 6).
  • FIG. 4G is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 7).
  • FIG. 4C is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 3).
  • FIG. 4D is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No
  • FIG. 4H is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention (No. 8).
  • FIG. 5 is a cross-sectional perspective view showing the structure of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional perspective view showing the structure of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional perspective view showing the structure of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 9A is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the third embodiment of the present invention (No. 1).
  • FIG. 9B is a schematic process diagram for explaining a method for manufacturing a semiconductor device according to the third embodiment of the present invention (No. 2).
  • “electrically connected” includes the case of being connected via "something having some kind of electrical action”.
  • the “thing having some kind of electrical action” is not particularly limited as long as it enables the exchange of electric signals between the connection targets.
  • “things having some kind of electrical action” include electrodes, wirings, switching elements, resistance elements, inductors, capacitive elements, and other elements having various functions.
  • FIG. 1 is a diagram showing a structure of a semiconductor device according to the present embodiment.
  • the semiconductor device 100 according to the present embodiment is an N-type MOSFET and is a trench gate structure horizontal MOS device.
  • the semiconductor device 100 includes a substrate 1, a first conductive type source region 3, a second conductive type well region 5, a first conductive type drift region 7, and a first conductive type drain region 9. It has a parasitic capacitance reduction region 11 and a second conductive type column region 13.
  • the semiconductor device 100 includes a source electrode (first electrode) 15 bonded to the source region 3, a drain electrode (second electrode) 17 bonded to the drain region 9, and a well region 5 and a region around the well region 5. It has a gate electrode (third electrode) 21 embedded via a gate insulating film 19.
  • the first conductive type and the second conductive type are different conductive types from each other. That is, if the first conductive type is P type, the second conductive type is N type, and if the first conductive type is N type, the second conductive type is P type. In this embodiment, the case where the first conductive type is N type and the second conductive type is P type will be described.
  • the substrate 1 is an insulating semiconductor substrate. This makes it possible to simplify the element separation process when integrating a plurality of semiconductor devices on the same substrate 1. Further, when mounting the semiconductor device on the cooler, it is possible to omit the insulating board installed between the board 1 and the cooler.
  • the insulating substrate means that the resistivity of the substrate is several k ⁇ ⁇ cm or more.
  • a silicon carbide substrate having an insulating property can be used for the substrate 1. Since SiC is a wide bandgap semiconductor and has a small number of intrinsic carriers, it is easy to obtain high insulation and a semiconductor device having high withstand voltage can be realized. Although there are several polymorphs (polymorphs of crystals) in SiC, a typical 4H SiC substrate can be used as the substrate 1. By using a SiC substrate for the substrate 1, the insulating property of the substrate 1 can be made high and the thermal conductivity can be made high. Therefore, the back surface of the substrate 1 can be directly attached to the cooling mechanism to efficiently cool the semiconductor device. According to this structure, since the thermal conductivity of the SiC substrate is large, heat generation due to the main current when the semiconductor device is on can be efficiently dissipated.
  • the substrate 1 is not limited to the SiC substrate, and a semiconductor substrate made of a semiconductor material having a wide bandgap may be used.
  • the semiconductor material having a wide bandgap include GaN, diamond, ZnO, AlGaN and the like.
  • the source region 3 is formed on the main surface of the substrate 1 and is electrically connected to the well region 5.
  • the concentration of N-type impurities in the source region 3 is higher than that in the drift region 7, and is, for example, about 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 21 / cm 3 .
  • a source electrode 15 is electrically connected to the surface of the source region 3, and a parasitic capacitance reduction region 11 is formed in a part of the source region 3. Further, the source region 3 is in contact with the gate electrode 21 via the gate insulating film 19.
  • the well region 5 is formed on the main surface of the substrate 1, is electrically connected to the source region 3, and is in contact with the drift region 7.
  • the concentration of P-type impurities in the well region 5 is, for example, about 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 19 / cm 3 .
  • a gate electrode 21 is formed in a part of the well region 5 and is in contact with the gate electrode 21 via the gate insulating film 19. Since it is possible to achieve both a low on-resistance and a high dielectric breakdown electric field, it is preferable that the well region 5 is formed of a wide bandgap semiconductor. Further, if the substrate 1 and the well region 5 are formed of the same material, it is possible to prevent performance deterioration such as lattice mismatch that occurs when different materials are used.
  • the drift region 7 is formed on the main surface of the substrate 1 and is in contact with the well region 5 and the drain region 9.
  • the concentration of N-type impurities in the drift region 7 is, for example, about 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 19 / cm 3 .
  • a column region 13 is formed in a part of the drift region 7, and the drift region 7 is in contact with the column region 13 and also with the gate electrode 21 via the gate insulating film 19. Since it is possible to achieve both a low on-resistance and a high dielectric breakdown electric field, it is preferable that the drift region 7 is formed of a wide bandgap semiconductor. Further, if the substrate 1 and the drift region 7 are formed of the same material, it is possible to prevent performance deterioration such as lattice mismatch that occurs when different materials are used.
  • the drain region 9 is formed on the main surface of the substrate 1 and is in contact with the drift region 7.
  • the concentration of N-type impurities in the drain region 9 is higher than that in the drift region 7, and is, for example, about 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 21 / cm 3 .
  • the drain electrode 17 is electrically connected to the surface of the drain region 9.
  • the parasitic capacitance reduction region 11 is in contact with the source region 3 and is in contact with the gate electrode 21 via the gate insulating film 19, and is formed so that the resistance value is higher than that of the source region 3. Specifically, the parasitic capacitance reduction region 11 is formed of the same material as the substrate 1. As a result, the resistance value of the parasitic capacitance reduction region 11 becomes higher than that of the source region 3 to which the N-type impurity is added. By forming such a parasitic capacitance reduction region 11, the capacitance caused by the parasitic capacitance reduction region 11 can be sandwiched between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS is reduced. be able to.
  • the parasitic capacitance reduction region 11 is preferably formed from the surface of the source region 3 to the depth of the substrate 1 because the effect of reducing the gate-source capacitance CGS is greater when the parasitic capacitance reduction region 11 is formed to a deep position.
  • the column region 13 is formed in a part of the drift region 7, is in contact with the drift region 7, and is in contact with the gate electrode 21 via the gate insulating film 19.
  • the column region 13 is formed by adding a P-type impurity to the substrate 1 by ion implantation. By forming the column region 13 in this way, a super junction structure can be obtained, and characteristics of high withstand voltage and low on-resistance can be obtained.
  • the source electrode 15 is formed on the surface of the source region 3 and is electrically connected to the source region 3 and the well region 5.
  • the drain electrode 17 is formed on the surface of the drain region 9 and is electrically connected to the drift region 7 and the drain region 9.
  • the gate electrode 21 is formed so as to be in contact with the source region 3, the well region 5, the drift region 7, the parasitic capacitance reduction region 11, and the column region 13 via the gate insulating film 19.
  • the gate electrode 21 forms a gate groove so as to be in contact with the source region 3, the well region 5, the drift region 7, the parasitic capacitance reduction region 11, and the column region 13, and after forming the gate insulating film 19 on the inner surface of the gate groove, It is formed by depositing polysilicon.
  • the semiconductor device 100 having the configuration shown in FIG. 1 functions as a transistor by controlling the potential of the gate electrode 21 in a state where a positive potential is applied to the drain electrode 17 with reference to the potential of the source electrode 15. That is, when the voltage between the gate electrode 21 and the source electrode 15 is set to a predetermined threshold voltage or higher, an inversion layer is formed in the channel portion of the P-type well region 5 on the side surface of the gate electrode 21 to turn it on, and the drain electrode 17 is turned on. A current flows from the source electrode 15 to the source electrode 15.
  • the inversion layer disappears and becomes an off state, and the current from the drain electrode 17 to the source electrode 15 is cut off.
  • the P-type column region 13 and the N-type drift region 7 are in a pinch-off state, so that the electric field distributions of the P-type column region 13 and the N-type drift region 7 become a uniform rectangular distribution, and the maximum electric field is large.
  • the pressure resistance is improved by lowering.
  • the gate-source capacitance CGS greatly contributes to the time when the inverted layer transitions from the off state to the on state and from the off state to the on state.
  • FIG. 2 shows the time t 1 ⁇ t 2 taken when the gate voltage V G changes from the threshold voltage V TH to the plateau voltage V GP (the voltage at which the transistor can flow a controllable current to the load current) and at that time.
  • V G the gate voltage V G changes from the threshold voltage V TH to the plateau voltage V GP (the voltage at which the transistor can flow a controllable current to the load current) and at that time.
  • V G the gate voltage V G changes from the threshold voltage V TH to the plateau voltage V GP (the voltage at which the transistor can flow a controllable current to the load current) and at that time.
  • V GP the voltage at which the transistor can flow a controllable current to the load current
  • t 1 and t 2 are represented by the following equations (1) and (2).
  • the gate-source capacitance CGS is sufficiently larger than the gate-drain capacitance CGD . Therefore, ignoring the CGD term, the switching time of the drain current iD is t 1 ⁇ t 2 It can be seen that is proportional to the value of the gate-source capacitance CGS . Therefore, if the gate-source capacitance CGS can be reduced, the switching time t 1 ⁇ t 2 of the drain current iD can be shortened.
  • FIG. 3A shows the structure of the conventional semiconductor device 200 not provided with the parasitic capacitance reduction region 11
  • FIG. 3B shows the structure of the semiconductor device 100 of the present embodiment provided with the parasitic capacitance reduction region 11.
  • the parasitic capacitance CGS of the portion between the gate electrode 210 and the source electrode 220 is determined only by the Cgate caused by the gate insulating film 230.
  • the parasitic capacitance CGS between the gate electrode 21 and the source electrode 15 is a Cgate caused by the gate insulating film 19.
  • the Cred is connected in series due to the parasitic capacitance reduction region 11.
  • the gate insulating film 19 has a film thickness of several tens of nm, whereas the thickness of the parasitic capacitance reduction region 11 is 0.5 ⁇ m or more. Therefore, the relationship is Cred ⁇ Cgate, and the capacitance of the series connection between Cred and Cgate is a much smaller value than the Cgate caused by the gate insulating film 19 as shown in the following equation (3). That is, the gate-source capacitance CGS of the semiconductor device 100 of the present embodiment is much smaller than the Cgate caused by the gate insulating film 19.
  • the gate-source capacitance CGS is caused by the gate insulating film 19. It is much smaller than the Cgate.
  • the gate-source capacitance CGS is reduced as compared with the case where only the gate insulating film 19 is formed. Become. Since the switching time t 1 ⁇ t 2 of the drain current iD is proportional to the value of the gate-source capacitance CGS , the switching time of the semiconductor device 100 of the present embodiment is reduced by reducing the gate-source capacitance CGS . t 1 ⁇ t 2 can be shortened.
  • a space of 0.5 ⁇ m or more is provided between the gate electrode 21 and the source electrode 15 for process safety design, so that the parasitic capacitance reduction region 11 is placed between the gate electrode 21 and the source electrode 15. Even if it is provided, it does not affect the dimensions of each part of the semiconductor device 100.
  • the mask material 51 formed on the substrate 1 is patterned to expose the region forming the well region 5. Then, using the mask material 51 as a mask, ion implantation is performed to selectively add P-type impurities to the substrate 1 to form the well region 5.
  • a silicon oxide film can be used as a general mask material, and a thermal CVD method or a plasma CVD method can be used as a deposition method.
  • a patterning method a photolithography method can be used. That is, the mask material is etched using the patterned photoresist film as a mask.
  • dry etching such as wet etching using hydrofluoric acid or reactive ion etching can be used. After etching the mask material, the photoresist film is removed with oxygen plasma, sulfuric acid, or the like. In this way, the mask material 51 is patterned.
  • the mask material 53 formed on the substrate 1 and the well region 5 is patterned to expose the region forming the column region 13. Then, using the mask material 53 as a mask, ion implantation is performed to selectively add P-type impurities to the substrate 1 to form the column region 13.
  • the mask material 55 formed on the substrate 1, the well region 5 and the column region 13 is patterned to expose the region forming the drift region 7. Then, using the mask material 55 as a mask, ion implantation is performed to selectively add N-type impurities to the substrate 1 to form the drift region 7.
  • the mask material 57 formed on the substrate 1, the well region 5, the column region 13, and the drift region 7 is patterned to form a region forming the source region 3 and the drain region 9. Expose. Then, using the mask material 57 as a mask, ion implantation is performed to selectively add N-type impurities to the substrate 1 to form a high-concentration source region 3 and drain region 9. At this time, the mask material 57 is formed in a part of the region forming the source region 3 to prevent ion implantation, thereby forming the parasitic capacitance reduction region 11. As a result, the parasitic capacitance reduction region 11 becomes a region formed of the same material as the substrate 1. Further, the parasitic capacitance reduction region 11 is formed from the surface of the source region 3 to the depth of the substrate 1.
  • N-type impurity for example, nitrogen (N) can be used, and as the P-type impurity, for example, aluminum (Al) or boron (B) can be used. Further, by implanting ions in a state where the temperature of the substrate is heated to about 600 ° C., it is possible to suppress the occurrence of crystal defects in the ion-implanted region.
  • the concentration of impurities in the N-type drift region 7 and the P-type column region 13 is preferably 1 ⁇ 10 15 / cm 3 to 1 ⁇ 10 19 / cm 3 .
  • the relationship of the following equation (4) is established.
  • the donor concentration of the N-type drift region 7 is Nd
  • the acceptor concentration of the P-type column region 13 is Na
  • the width of the N-type drift region 7 is Wn
  • the width of the P-type column region 13 is Wp.
  • the impurities ion-implanted in each of the above steps can be activated by heat treatment.
  • heat treatment at about 1700 ° C. is performed in an argon atmosphere or a nitrogen atmosphere.
  • a high-concentration impurity region and a low-concentration impurity region can be continuously formed by one continuous ion implantation.
  • the drift region 7 which is a low-concentration impurity region and the source region 3 which is a high-concentration impurity region can be continuously formed.
  • the drift region 7, the well region 5, the source region 3, and the drain region 9, which are a part of the active region, are formed by switching the ion implantation conditions in the middle of the ion implantation and changing the impurity concentration in the depth direction.
  • the impurity concentration in the depth direction can be freely designed.
  • the concentration of the electric field can be relaxed and the maximum applied voltage of the semiconductor device can be improved.
  • the manufacturing cost can be reduced as compared with the case of forming by epitaxial growth.
  • etching is performed using the patterned mask material (not shown) as a mask.
  • a part of the source region 3, a part of the parasitic capacitance reduction region 11, a part of the well region 5, a part of the drift region 7, and a part of the column region 13 are selectively etched, and the gate electrode is obtained.
  • a gate groove 59 for embedding 21 is formed. As a result, the gate groove 59 is formed at a position in contact with the source region 3, the well region 5, the drift region 7, the column region 13, and the parasitic capacitance reduction region 11.
  • the gate insulating film 19 and the gate electrode 21 are formed inside the gate groove 59.
  • the gate electrode 21 is formed so as to be in contact with each of the source region 3, the parasitic capacitance reduction region 11, the well region 5, the column region 13, and the drift region 7 via the gate insulating film 19.
  • the gate insulating film 19 is formed on the inner wall surface of the gate groove 59, and can be formed by, for example, a thermal oxidation method or a deposition method.
  • a thermal oxidation method by heating the substrate to about 1100 ° C. in an oxygen atmosphere, a silicon oxide film is formed in all the portions where the substrate comes into contact with oxygen.
  • a silicon nitride film instead of the silicon oxide film, a silicon nitride film may be used, or a silicon oxide film and a silicon nitride film may be laminated.
  • the isotropic etching in the case of the silicon nitride film can be etched by washing with hot phosphoric acid at 160 ° C.
  • annealing is performed at about 1000 ° C. in an atmosphere of nitrogen, argon, N2O or the like in order to reduce the interface state at the interface between the well region 5 and the gate insulating film 19. It is also good. It is also possible to directly perform thermal oxidation in a NO or N2O atmosphere. In that case, the temperature is preferably 1100 ° C to 1400 ° C.
  • the thickness of the gate insulating film 19 is about several tens of nm.
  • the gate electrode 21 is formed so as to be deposited inside the gate groove 59 in which the gate insulating film 19 is formed.
  • a polysilicon film can be used as the material of the gate electrode 21, for example. In this embodiment, a case where a polysilicon film is used for the gate electrode 21 will be described.
  • the thickness of the polysilicon film to be deposited is set to a value larger than half the width of the gate groove 59, and the gate groove 59 is filled with the polysilicon film. Since the polysilicon film is formed from the inner wall surface of the gate groove 59, the gate groove 59 can be filled with the polysilicon film by setting the thickness of the polysilicon film as described above. For example, when the width of the gate groove 59 is 2 ⁇ m, the polysilicon film is formed so that the film thickness is larger than 1 ⁇ m. Further, after the polysilicon film is deposited, it is annealed in phosphorus oxychloride (POCl 3 ) at 950 ° C. to form an N-type polysilicon film, which imparts conductivity to the gate electrode 21.
  • POCl 3 phosphorus oxychloride
  • the polysilicon film is flattened by etching or the like.
  • the etching method may be isotropic etching or anisotropic selective etching.
  • the etching amount is set so that the polysilicon film remains inside the gate groove 59. For example, when a polysilicon film is deposited to a thickness of 1.5 ⁇ m for a gate groove 59 having a width of 2 ⁇ m, the etching amount of the polysilicon film is set to 1.5 ⁇ m. However, in the etching control, there is no problem even if the etching amount of 1.5 ⁇ m is overetched by several%.
  • N-type polysilicon P-type polysilicon may also be used.
  • other semiconductor materials may be used, or a conductive material such as a metal material may be used.
  • P-type polysilicon carbide, SiGe, Al, or the like may be used.
  • the gate wiring 61 is formed so as to be arranged on the source region 3 and the well region 5, and the gate electrodes 21 are electrically connected to each other.
  • the same polysilicon or metal as the gate electrode 21 can be used for the gate wiring 61.
  • the interlayer insulating film 63 is formed.
  • a silicon oxide film can be used.
  • a thermal CVD method or a plasma CVD method can be used.
  • a silicon nitride film may be used for the interlayer insulating film 63.
  • the interlayer insulating film 63 is selectively etched using the patterned photoresist film (not shown) as a mask to form the source electrode contact hole 65 so that the upper surface of the source region 3 is exposed.
  • the drain electrode contact hole 67 is formed so that the upper surface of the drain region 9 is exposed.
  • dry etching such as wet etching using hydrofluoric acid or reactive ion etching is used.
  • the electrode film formed so as to embed the contact holes 65 and 67 is patterned to form the source electrode 15 and the drain electrode 17.
  • metal materials used for metal wiring such as titanium (Ti), nickel (Ni), and molybdenum (Mo) can be preferably used.
  • a laminated film such as titanium / nickel / silver (Ti / Ni / Ag) may be used for the source electrode 15 and the drain electrode 17.
  • the source electrode 15 and the drain electrode 17 are formed by depositing a metal material on the entire surface by a sputtering method, an electron beam (EB) vapor deposition method, or the like, and then etching the metal material.
  • the contact hole may be embedded with a metal material by a plating process to form the source electrode 15 and the drain electrode 17.
  • the parasitic capacitance reduction region 11 is formed so as to be in contact with the source region 3 and also with the gate electrode 21 via the gate insulating film 19, and is parasitic.
  • the resistance value of the capacitance reduction region 11 is made higher than that of the source region 3.
  • the gate-source capacitance CGS generated between the source electrode 15 and the gate electrode 21 can be reduced.
  • the switching time of the semiconductor device 100 can be shortened.
  • the parasitic capacitance reduction region 11 is formed of the same material as the substrate 1. As a result, when the source region 3 is formed, the parasitic capacitance reduction region 11 can be formed at the same time by masking, so that an increase in the manufacturing process can be prevented.
  • the substrate 1 is an insulating substrate. This makes it possible to omit the use of a separate insulating substrate when mounting the semiconductor device 100 on a cooler or the like.
  • the parasitic capacitance reduction region 11 is formed from the surface of the source region 3 to the depth of the substrate 1. As a result, the effect of reducing the stray capacitance CGS between the gate and source can be further increased as compared with the case where the depth of the parasitic capacitance reduction region 11 is shallow.
  • the substrate 1 is made of silicon carbide.
  • the cooling performance can be improved by utilizing the high thermal conductivity characteristics of silicon carbide.
  • the well region 5 and the drift region 7 are formed of a wide bandgap semiconductor. This makes it possible to achieve both a low on-resistance and a high dielectric breakdown electric field.
  • the substrate 1 and the drift region 7 are formed of the same material. This makes it possible to prevent performance deterioration such as lattice mismatch that occurs when different materials are used.
  • impurities are added to the substrate 1 by ion implantation to form a source region 3, a well region 5, a drift region 7, and a drain region 9.
  • the manufacturing cost can be significantly reduced as compared with the case of forming by epitaxial growth.
  • the source region 3, the well region 5, the drift region 7, and the drain region 9 are formed by changing the impurity concentration in the depth direction at the time of ion implantation. This makes it possible to freely design the dope concentration in the depth direction and further improve the maximum applied voltage.
  • the source region 3 when the source region 3 is formed by ion implantation, a part of the region where the source region 3 is formed is masked to form the parasitic capacitance reduction region 11. ..
  • the source region 3 and the parasitic capacitance reduction region 11 can be produced at the same time, and an increase in the manufacturing process can be prevented.
  • FIG. 5 is a diagram showing the structure of the semiconductor device according to the present embodiment.
  • the parasitic capacitance reduction region 11 is formed of a P-type semiconductor material having a lower impurity concentration than the source region 3, according to the first embodiment. It is different. Further, the parasitic capacitance reduction region 11 may be formed of an N-type semiconductor material having a lower impurity concentration than the source region 3.
  • the parasitic capacitance reduction region 11 is formed of the N-type or P-type semiconductor material having a lower impurity concentration than the source region 3, the resistance value is higher than that of the source region 3.
  • the depletion layer can be expanded from the gate electrode 21 to the source region 3 between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS is reduced. be able to. Since the other configurations have the same structure as that of the first embodiment, detailed description thereof will be omitted.
  • the mask material 71 formed on the substrate 1 and the well region 5 is patterned to have a parasitic capacitance.
  • the regions forming the reduction region 11 and the column region 13 are exposed.
  • ion implantation is performed to selectively add P-type impurities to the substrate 1 to form the parasitic capacitance reduction region 11 and the column region 13.
  • the semiconductor device 100 is completed by the same method as in the first embodiment.
  • a step of forming the parasitic capacitance reduction region 11 may be provided separately from the step of forming the column region 13.
  • the mask material formed on the substrate 1 and the well region 5 is patterned to expose the region forming the parasitic capacitance reduction region 11, and N-type impurities are added to the substrate 1 using the mask material as a mask. Ion implantation may be performed.
  • the parasitic capacitance reduction region 11 is formed of an N-type semiconductor material having a lower impurity concentration than the source region 3.
  • the depletion layer can be spread from the gate electrode 21 to the source region 3 between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS can be reduced.
  • the parasitic capacitance reduction region 11 is formed of a P-type semiconductor material having a lower impurity concentration than the source region 3.
  • the depletion layer can be spread from the gate electrode 21 to the source region 3 between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS can be reduced.
  • FIG. 7 is a diagram showing the structure of the semiconductor device according to the present embodiment.
  • the parasitic capacitance reduction region 11 is formed of an insulating film, which is different from the first embodiment. Further, as shown in FIG. 8, the parasitic capacitance reduction region 11 may be formed by a groove.
  • the parasitic capacitance reduction region 11 is formed of the insulating film, the resistance value is higher than that of the source region 3. Further, even when the parasitic capacitance reduction region 11 is a groove, the resistance value is higher than that of the source region 3.
  • the parasitic capacitance reduction region 11 is formed with an insulating film in this way, a very small insulator capacitance is sandwiched between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS can be reduced. Can be done. Further, since the capacitance at both ends of the groove becomes zero by making the parasitic capacitance reduction region 11 into a groove, the capacitance CGS between the gate and source can be reduced. Since the other configurations have the same structure as that of the first embodiment, detailed description thereof will be omitted.
  • the mask material is grown.
  • a resist is patterned on the mask material, and a part of the source region 3 is selectively etched by dry etching or wet etching to form a groove 81 for embedding the parasitic capacitance reduction region 11 as shown in FIG. 9A. Form.
  • the groove 81 is formed at a position in contact with the source region 3 and the well region 5.
  • the insulating film 83 is formed inside the groove 81.
  • the insulating film 83 is grown to a film thickness that fills the groove 81.
  • a silicon oxide film is used as the insulating film 83, but a silicon nitride film may be used.
  • it is flattened by dry etching or wet etching to form a parasitic capacitance reduction region 11 in which a silicon oxide film is embedded in the groove 81.
  • the semiconductor device 100 is completed by the same method as in the first embodiment.
  • the process may proceed to form the gate electrode 21 without forming the insulating film 83 and leaving the groove 81.
  • the parasitic capacitance reduction region 11 is formed of the insulating film 83.
  • a very small insulator capacitance is sandwiched between the source electrode 15 and the gate electrode 21, so that the gate-source capacitance CGS can be reduced.
  • the parasitic capacitance reduction region 11 is formed by the groove 81.
  • the capacitance at both ends of the groove 81 can be reduced to zero, so that the gate-source capacitance CGS can be reduced.
  • the above embodiment is an example of the present invention. Therefore, the present invention is not limited to the above-described embodiment, and even if the embodiment is other than this embodiment, as long as it does not deviate from the technical idea of the present invention, it depends on the design and the like. Of course, various changes are possible.

Abstract

本発明の半導体装置は、基板と、基板の主面上に形成された第1導電型ソース領域と、第1導電型ソース領域と電気的に接続された第2導電型ウェル領域と、第2導電型ウェル領域と接した第1導電型ドリフト領域と、第1導電型ドリフト領域と接した第1導電型ドレイン領域と、第1導電型ソース領域と鼋気的に接続された第1電極と、第1導電型ドレイン領域と電気的に接続された第2電極と、第1導電型ソース領域と第2導電型ウェル領域と第1導鼋型ドリフト領域と絶縁膜を介して接するように形成された第3電極と、第1導電型ソース領域と接し、かつ第3電極と絶縁膜を介して接するように形成され、第1導電型ソース領域よりも抵抗値が高い寄生容量低減領域とを有する。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関する。
 従来では、耐圧を向上させることを目的とした半導体装置として特許文献1が開示されている。この特許文献1に開示された半導体装置では、低ドープもしくはノンドープ半導体基板に不純物を添加(ドープ)して、N型ソース領域、P型ウェル領域、N型ドリフト領域、N型ドレイン領域がそれぞれ形成されていた。
国際公開第2015/008550号
 しかしながら、上述した従来の半導体装置では、N型ソース領域のゲート電極側の側面の全体がゲート電極と接しているので、N型ソース領域のゲート電極側の側面全体にゲートソース間容量CGSが発生してしまうという問題点があった。
 そこで、本発明は、上記課題に鑑みて成されたものであり、ソース電極とゲート電極との間に発生するゲートソース間容量CGSを低減することのできる半導体装置及びその製造方法を提供することを目的とする。
 本発明の一態様に係る半導体装置は、基板の主面上に形成された第1導電型ソース領域と、第1導電型ソース領域と第2導電型ウェル領域と第1導電型ドリフト領域と絶縁膜を介して接するように形成された第3電極とを有する。そして、第1導電型ソース領域と接し、かつ第3電極と絶縁膜を介して接するように寄生容量低減領域を形成し、寄生容量低減領域の抵抗値を第1導電型ソース領域よりも高くする。
 本発明によれば、ソース電極とゲート電極との間に発生するゲートソース間容量CGSを低減することができる。
図1は、本発明の第1実施形態に係る半導体装置の構造を示す断面斜視図である。 図2は、本発明の第1実施形態に係る半導体装置のゲート電圧、ドレイン電流、ドレイン電圧の関係を示す図である。 図3Aは、本発明の第1実施形態に係る半導体装置の効果を説明するための図である。 図3Bは、本発明の第1実施形態に係る半導体装置の効果を説明するための図である。 図4Aは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その1)。 図4Bは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その2)。 図4Cは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その3)。 図4Dは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その4)。 図4Eは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その5)。 図4Fは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その6)。 図4Gは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その7)。 図4Hは、本発明の第1実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その8)。 図5は、本発明の第2実施形態に係る半導体装置の構造を示す断面斜視図である。 図6は、本発明の第2実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である。 図7は、本発明の第3実施形態に係る半導体装置の構造を示す断面斜視図である。 図8は、本発明の第3実施形態に係る半導体装置の構造を示す断面斜視図である。 図9Aは、本発明の第3実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その1)。 図9Bは、本発明の第3実施形態に係る半導体装置の製造方法を説明するための模式的な工程図である(その2)。
 以下に、図面を参照して実施形態を説明する。図面の記載において同一部分には同一符号を付して説明を省略する。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率などは現実のものとは異なる部分を含んでいる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 また、本明細書等において、「電気的に接続」とは、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に限定されない。例えば、「何らかの電気的作用を有するもの」には、電極、配線、スイッチング素子、抵抗素子、インダクタ、容量素子、その他の各種機能を有する素子などが含まれる。
[第1実施形態]
 [半導体装置の構造]
 図1は、本実施形態に係る半導体装置の構造を示す図である。図1に示すように、本実施形態に係る半導体装置100はN型MOSFETであり、トレンチゲート構造横型MOSデバイスである。この半導体装置100は、基板1と、第1導電型のソース領域3と、第2導電型のウェル領域5と、第1導電型のドリフト領域7と、第1導電型のドレイン領域9と、寄生容量低減領域11と、第2導電型のコラム領域13とを有する。また、半導体装置100は、ソース領域3に接合されたソース電極(第1電極)15と、ドレイン領域9に接合されたドレイン電極(第2電極)17と、ウェル領域5とその周囲の領域にゲート絶縁膜19を介して埋め込まれたゲート電極(第3電極)21を有する。
 尚、第1導電型と第2導電型は互いに異なる導電型である。すなわち、第1導電型がP型であれば、第2導電型はN型であり、第1導電型がN型であれば、第2導電型はP型である。本実施形態では、第1導電型がN型、第2導電型がP型の場合について説明する。
 基板1は、絶縁性半導体基板である。これにより、同一の基板1に複数の半導体装置を集積する際の素子分離プロセスを簡略化することができる。また、冷却器に半導体装置を実装する場合に、基板1と冷却器の間に設置する絶縁性基板を省略することが可能である。ここで、絶縁性基板とは、基板の抵抗率が数kΩ・cm以上のことをいう。
 例えば、基板1に絶縁性を有する炭化珪素基板(SiC基板)を用いることができる。SiCはワイドバンドギャップ半導体であり真性キャリヤ数が少ないため、高い絶縁性を得やすく、耐圧の高い半導体装置を実現できる。SiCにはいくつかのポリタイプ(結晶多形)が存在するが、代表的な4HのSiC基板を基板1として用いることができる。基板1にSiC基板を用いることにより、基板1の絶縁性を高く、かつ、熱伝導率を高くできる。このため、基板1の裏面を冷却機構に直接取り付けて、半導体装置を効率よく冷却することができる。この構造によれば、SiC基板の熱伝導率が大きいため、半導体装置がオン状態のときの主電流による発熱を効率よく発散させることができる。
 また、基板1は、SiC基板に限らず、バンドギャップの広い半導体材料からなる半導体基板を使用してもよい。バンドギャップの広い半導体材料には、例えばGaN、ダイヤモンド、ZnO、AlGaNなどが挙げられる。
 ソース領域3は、基板1の主面上に形成され、ウェル領域5と電気的に接続されている。ソース領域3のN型の不純物濃度はドリフト領域7よりも高濃度であり、例えば、1×1018/cm~1×1021/cm程度である。ソース領域3の表面にはソース電極15が電気的に接続され、ソース領域3の一部に寄生容量低減領域11が形成されている。また、ソース領域3は、ゲート絶縁膜19を介してゲート電極21に接している。
 ウェル領域5は、基板1の主面上に形成され、ソース領域3と電気的に接続され、ドリフト領域7と接している。ウェル領域5のP型の不純物濃度は、例えば、1×1015/cm~1×1019/cm程度である。ウェル領域5の一部にはゲート電極21が形成され、ゲート絶縁膜19を介してゲート電極21に接している。尚、低いオン抵抗と高い絶縁破壊電界を両立させることができるので、ウェル領域5はワイドバンドギャップ半導体で形成することが好ましい。また、基板1とウェル領域5を同一の材料から形成すれば、異なる材料を用いた場合に生じる格子不整合等の性能劣化を防止することができる。
 ドリフト領域7は、基板1の主面上に形成され、ウェル領域5とドレイン領域9と接している。ドリフト領域7のN型の不純物濃度は、例えば、1×1015/cm~1×1019/cm程度である。ドリフト領域7の一部にはコラム領域13が形成されており、ドリフト領域7はコラム領域13と接するとともに、ゲート絶縁膜19を介してゲート電極21にも接している。尚、低いオン抵抗と高い絶縁破壊電界を両立させることができるので、ドリフト領域7はワイドバンドギャップ半導体で形成することが好ましい。また、基板1とドリフト領域7を同一の材料から形成すれば、異なる材料を用いた場合に生じる格子不整合等の性能劣化を防止することができる。
 ドレイン領域9は、基板1の主面上に形成され、ドリフト領域7と接している。ドレイン領域9のN型の不純物濃度はドリフト領域7よりも高濃度であり、例えば、1×1018/cm~1×1021/cm程度である。また、ドレイン領域9の表面には、ドレイン電極17が電気的に接続されている。
 寄生容量低減領域11は、ソース領域3と接し、かつゲート電極21とゲート絶縁膜19を介して接しており、抵抗値がソース領域3よりも高くなるように形成されている。具体的に、寄生容量低減領域11は、基板1と同一の材料で形成されている。これにより、寄生容量低減領域11の抵抗値は、N型の不純物が添加されているソース領域3よりも高くなる。このような寄生容量低減領域11を形成したことにより、ソース電極15とゲート電極21の間に、寄生容量低減領域11に起因する容量を挟むことができるので、ゲートソース間容量CGSを低減することができる。尚、寄生容量低減領域11は、深い位置まで形成したほうがゲートソース間容量CGSの低減効果が大きくなるので、ソース領域3の表面から基板1の深さまで形成されていることが好ましい。
 コラム領域13は、ドリフト領域7の一部に形成され、ドリフト領域7と接し、かつゲート電極21とゲート絶縁膜19を介して接している。コラム領域13は、基板1にイオン注入によってP型の不純物を添加することによって形成される。このようにコラム領域13を形成したことにより、スーパージャンクション構造になり、高耐圧、かつ低オン抵抗の特性を得ることができる。
 ソース電極15は、ソース領域3の表面に形成され、ソース領域3及びウェル領域5と電気的に接続されている。
 ドレイン電極17は、ドレイン領域9の表面に形成され、ドリフト領域7及びドレイン領域9と電気的に接続されている。
 ゲート電極21は、ソース領域3とウェル領域5とドリフト領域7と寄生容量低減領域11とコラム領域13にゲート絶縁膜19を介して接するように形成されている。ゲート電極21は、ソース領域3とウェル領域5とドリフト領域7と寄生容量低減領域11とコラム領域13に接するようにゲート溝を形成し、ゲート溝の内面にゲート絶縁膜19を形成した後に、ポリシリコンを堆積させて形成される。
 [半導体装置の動作]
 次に、本実施形態に係る半導体装置100における基本的な動作の一例を説明する。
 図1に示す構成の半導体装置100は、ソース電極15の電位を基準として、ドレイン電極17に正の電位を印加した状態で、ゲート電極21の電位を制御することによって、トランジスタとして機能する。すなわち、ゲート電極21とソース電極15の間の電圧を所定の閾値電圧以上にすると、ゲート電極21の側面のP型ウェル領域5のチャネル部に反転層が形成されてオン状態となり、ドレイン電極17からソース電極15へ電流が流れる。
 一方、ゲート電極21とソース電極15の間の電圧を所定の閾値電圧より低くすると、反転層が消滅してオフ状態となり、ドレイン電極17からソース電極15への電流が遮断される。理想的には、P型コラム領域13とN型ドリフト領域7がピンチオフ状態になることで、P型コラム領域13とN型ドリフト領域7の電界分布が均一な長方形の分布となり、最大電界が大きく低下することで耐圧が向上する。
 次に、本発明の効果について説明する。反転層がオフ状態からオン状態およびオフ状態からオン状態に遷移する時間は、ゲートソース間容量CGSが大きく関与することが分かっている。
 図2は、ゲート電圧Vが閾値電圧VTHからプラトー電圧VGP(トランジスタが負荷電流に制御可能な電流を流せるようになる電圧)まで変化する際にかかる時間t−t及びその際のゲート電圧V、ドレイン電流i、ドレイン電圧Vの関係を示す。
 ここで、t、tは、下記の式(1)、(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)、(2)において、ゲートソース間容量CGSはゲートドレイン間容量CGDよりも十分に大きいので、CGDの項を無視すると、ドレイン電流iのスイッチング時間t−tはゲートソース間容量CGSの値に比例することが分かる。したがって、ゲートソース間容量CGSを小さくできれば、ドレイン電流iのスイッチング時間t−tを短縮することができる。
 次に、寄生容量低減領域11を設けた場合と設けなかった場合のゲートソース間容量CGSの変化を説明する。図3Aは寄生容量低減領域11を設けていない従来の半導体装置200の構造を示し、図3Bは寄生容量低減領域11を設けた本実施形態の半導体装置100の構造を示している。
 図3Aに示すように、従来の半導体装置200では、ゲート電極210とソース電極220の間の部分の寄生容量CGSは、ゲート絶縁膜230に起因するCgateのみによって決まる。一方、図3Bに示すように、寄生容量低減領域11を設けた本実施形態の半導体装置100では、ゲート電極21とソース電極15の間の寄生容量CGSは、ゲート絶縁膜19に起因するCgateと、寄生容量低減領域11に起因するCredの直列接続となる。
 通常、ゲート絶縁膜19は、数10nmの膜厚であるのに対して、寄生容量低減領域11の厚さは0.5μm以上になる。そのため、Cred<<Cgateの関係となり、CredとCgateの直列接続の容量は、以下の式(3)に示すように、ゲート絶縁膜19に起因するCgateよりも非常に小さな値となる。
Figure JPOXMLDOC01-appb-M000003
 すなわち、本実施形態の半導体装置100のゲートソース間容量CGSは、ゲート絶縁膜19に起因するCgateよりも非常に小さな値となる。
 したがって、ソース電極15とゲート電極21の間の寄生容量低減領域11の幅が、所定値以上、すなわちゲート絶縁膜19よりも十分に大きければ、ゲートソース間容量CGSはゲート絶縁膜19に起因するCgateよりも非常に小さくなる。
 このように、本実施形態の半導体装置100では、寄生容量低減領域11を設けたことによって、ゲートソース間容量CGSは、ゲート絶縁膜19のみが形成されている場合よりも低減されることになる。そして、ドレイン電流iのスイッチング時間t−tはゲートソース間容量CGSの値に比例するので、ゲートソース間容量CGSを低減したことにより、本実施形態の半導体装置100のスイッチング時間t−tを短縮することができる。
 尚、通常は、ゲート電極21とソース電極15の間には0.5μm以上の間隔がプロセスの安全設計上設置されているので、寄生容量低減領域11をゲート電極21とソース電極15の間に設けたとしても、半導体装置100の各部の寸法に影響を与えることはない。
 [半導体装置の製造方法]
 次に、図4A~図4Hを参照して、本実施形態に係る半導体装置100の製造方法の一例を説明する。
 まず、不純物が添加されていない基板1を用意する。次に、図4Aに示すように、基板1上に形成したマスク材51をパターニングして、ウェル領域5を形成する領域を露出させる。そして、マスク材51をマスクとして基板1にP型の不純物を選択的に添加するイオン注入を行ってウェル領域5を形成する。
 一般的なマスク材としては、シリコン酸化膜を用いることができ、堆積方法としては熱CVD法やプラズマCVD法を用いることができる。パターニングの方法としては、フォトリソグラフィ法を用いることができる。即ち、パターニングされたフォトレジスト膜をマスクにしてマスク材をエッチングする。エッチング方法としては、フッ酸を用いたウェットエッチングや反応性イオンエッチングなどのドライエッチングを用いることができる。マスク材をエッチングした後、フォトレジスト膜を酸素プラズマや硫酸などで除去する。このようにして、マスク材51がパターニングされる。
 次に、図4Bに示すように、基板1及びウェル領域5の上に形成されたマスク材53をパターニングして、コラム領域13を形成する領域を露出させる。そして、マスク材53をマスクとして基板1にP型の不純物を選択的に添加するイオン注入を行ってコラム領域13を形成する。
 次に、図4Cに示すように、基板1、ウェル領域5及びコラム領域13の上に形成されたマスク材55をパターニングして、ドリフト領域7を形成する領域を露出させる。そして、マスク材55をマスクとして基板1にN型の不純物を選択的に添加するイオン注入を行ってドリフト領域7を形成する。
 次に、図4Dに示すように、基板1、ウェル領域5、コラム領域13及びドリフト領域7の上に形成されたマスク材57をパターニングして、ソース領域3及びドレイン領域9を形成する領域を露出させる。そして、マスク材57をマスクとして基板1にN型の不純物を選択的に添加するイオン注入を行って、高濃度のソース領域3及びドレイン領域9を形成する。このとき、ソース領域3を形成する領域の一部にマスク材57を形成しておき、イオン注入が行われないようにすることで寄生容量低減領域11を形成する。これにより、寄生容量低減領域11は、基板1と同一の材料で形成された領域となる。また、寄生容量低減領域11は、ソース領域3の表面から基板1の深さまで形成されることになる。
 尚、本実施形態におけるN型の不純物としては、例えば、窒素(N)を用いることができ、P型の不純物としては、例えば、アルミニウム(Al)やボロン(B)を用いることができる。また、基板の温度を600℃程度に加熱した状態でイオン注入することにより、イオン注入した領域に結晶欠陥が生じることを抑制することができる。
 このとき、N型ドリフト領域7とP型コラム領域13の不純物の濃度は、1×1015/cm~1×1019/cmが好適である。また、N型ドリフト領域7のドナー濃度とP型コラム領域13のアクセプタ濃度の組み合わせは、以下の式(4)の関係が成立することが好適な条件となる。式(4)において、N型ドリフト領域7のドナー濃度がNd、P型コラム領域13のアクセプタ濃度がNa、N型ドリフト領域7の幅がWn、P型コラム領域13の幅がWpである。
Na×Wp=Nd×Wn ・・・(4)
 さらに、上述の各工程においてイオン注入した不純物は、熱処理することで活性化させることができる。例えば、アルゴン雰囲気中や窒素雰囲気中で、1700℃程度の熱処理を行う。
 また、高い注入エネルギーで不純物を添加して高濃度不純物領域を形成するイオン注入条件と、低い注入エネルギーで不純物を添加して低濃度不純物領域を形成するイオン注入条件とを適宜切り替えるようにしてもよい。これにより、1回の連続したイオン注入で高濃度不純物領域と低濃度不純物領域を連続して形成することができる。例えば、低濃度不純物領域であるドリフト領域7と高濃度不純物領域であるソース領域3を連続的に形成することができる。
 上記のようにイオン注入の途中でイオン注入条件を切り替えて深さ方向の不純物濃度を変化させながら活性領域の一部であるドリフト領域7、ウェル領域5、ソース領域3、ドレイン領域9を形成することにより、深さ方向の不純物濃度を自由に設計できる。これにより、電界の集中を緩和し、半導体装置の最大印加電圧を向上させることができる。
 また、イオン注入によって、N型又はP型の不純物領域を形成することにより、エピタキシャル成長によって形成する場合よりも製造コストを低減できる。
 次に、図4Eに示すように、パターニングしたマスク材(図示せず)をマスクとして、ドライエッチングを行う。これにより、ソース領域3の一部、寄生容量低減領域11の一部、ウェル領域5の一部、ドリフト領域7の一部、及びコラム領域13の一部を選択的にエッチングして、ゲート電極21を埋め込むゲート溝59を形成する。この結果、ゲート溝59は、ソース領域3、ウェル領域5、ドリフト領域7、コラム領域13及び寄生容量低減領域11に接する位置に形成される。
 次に、図4Fに示すように、ゲート溝59の内部にゲート絶縁膜19及びゲート電極21を形成する。ゲート電極21は、ゲート絶縁膜19を介して、ソース領域3、寄生容量低減領域11、ウェル領域5、コラム領域13、及びドリフト領域7のそれぞれと接するように形成される。
 ゲート絶縁膜19は、ゲート溝59の内壁面に形成され、例えば、熱酸化法、又は堆積法を用いて形成することができる。一例として、熱酸化の場合、基板を酸素雰囲気下で1100℃程度に加熱することで、基板が酸素に触れるすべての部分において、シリコン酸化膜が形成される。ただし、シリコン酸化膜ではなく、シリコンの窒化膜でもよいし、シリコン酸化膜とシリコン窒化膜の積層であってもよい。シリコン窒化膜の場合の等方性エッチングは、160℃の熱燐酸による洗浄でエッチングすることができる。
 ゲート絶縁膜19を形成した後、ウェル領域5とゲート絶縁膜19との界面における界面準位を低減するために、窒素、アルゴン、NOなどの雰囲気下で1000℃程度のアニールを行ってもよい。また、直接NO又はNO雰囲気下での熱酸化も可能である。その場合の温度は1100℃~1400℃が好適である。ゲート絶縁膜19の厚さは数十nm程度である。
 ゲート電極21は、ゲート絶縁膜19の形成されたゲート溝59の内部に堆積するように形成される。ゲート電極21の材料は、例えば、ポリシリコン膜を用いることができる。本実施形態では、ゲート電極21にポリシリコン膜を用いる場合を説明する。
 ポリシリコン膜の堆積方法としては、減圧CVD法などを用いることができる。例えば、堆積させるポリシリコン膜の厚さをゲート溝59の幅の2分の1よりも大きな値にして、ゲート溝59をポリシリコン膜で埋める。ゲート溝59の内壁面からポリシリコン膜が形成されていくため、上記のようにポリシリコン膜の厚さを設定することにより、ゲート溝59をポリシリコン膜によって埋めることができる。例えば、ゲート溝59の幅が2μmの場合は、膜厚が1μmよりも大きくなるようにポリシリコン膜を形成する。また、ポリシリコン膜を堆積した後に、オキシ塩化リン(POCl)中で950℃のアニール処理することで、N型のポリシリコン膜が形成され、ゲート電極21に導電性を付与する。
 ポリシリコン膜は、エッチングなどにより平坦化する。エッチング方法は等方性エッチングでも異方性の選択エッチングでもよい。エッチング量は、ゲート溝59の内部にポリシリコン膜が残るように設定する。例えば、幅が2μmのゲート溝59についてポリシリコン膜を1.5μmの厚さに堆積した場合、ポリシリコン膜のエッチング量を1.5μmにする。しかし、エッチングの制御において、1.5μmのエッチング量について数%のオーバーエッチングでも問題はない。尚、ここでは、N型のポリシリコンを用いて説明したが、P型のポリシリコンでもよい。また、他の半導体材料でもよいし、メタル材料などの導電性のある材料でもよい。例えば、P型ポリ炭化珪素、SiGe、Alなどでもよい。
 次に、図4Fに示すように、ソース領域3及びウェル領域5上に配置されるようにゲート配線61を形成し、ゲート電極21同士を電気的に接続する。ゲート配線61は、ゲート電極21と同じポリシリコン、又は金属を用いることができる。
 次に、図4Gに示すように、層間絶縁膜63を形成する。層間絶縁膜63は、例えば、シリコン酸化膜を用いることができる。シリコン酸化膜の堆積方法としては、熱CVD法やプラズマCVD法を用いることができる。また、層間絶縁膜63にシリコン窒化膜を用いてもよい。
 その後、パターニングしたフォトレジスト膜(図示せず)をマスクにして層間絶縁膜63を選択的にエッチングし、ソース領域3の上面が露出するようにソース電極コンタクトホール65を形成する。同様に、ドレイン領域9の上面が露出するようにドレイン電極コンタクトホール67を形成する。エッチング方法としては、例えば、フッ酸を用いたウェットエッチングや反応性イオンエッチングなどのドライエッチングを用いる。
 次に、図4Hに示すように、コンタクトホール65、67を埋め込むように成膜した電極膜をパターニングしてソース電極15及びドレイン電極17を形成する。ソース電極15及びドレイン電極17の材料には、チタン(Ti)、ニッケル(Ni)、モリブデン(Mo)などの金属配線に用いる金属材料を好適に用いることができる。また、チタン/ニッケル/銀(Ti/Ni/Ag)などの積層膜をソース電極15及びドレイン電極17に用いてもよい。ソース電極15及びドレイン電極17の形成は、スパッタ法や電子ビーム(EB)蒸着法などにより全面に金属材料を堆積した後、金属材料をエッチングして形成する。また、メッキプロセスによってコンタクトホールを金属材料で埋め込んで、ソース電極15及びドレイン電極17を形成してもよい。こうして、ソース電極15及びドレイン電極17が形成されると、本実施形態に係る半導体装置100が完成する。
 [第1実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る半導体装置100では、ソース領域3と接し、かつゲート電極21とゲート絶縁膜19を介して接するように寄生容量低減領域11を形成し、寄生容量低減領域11の抵抗値をソース領域3よりも高くする。これにより、ソース電極15とゲート電極21の間に発生するゲートソース間容量CGSを低減することができる。そして、ゲートソース間容量CGSを低減したことによって、半導体装置100のスイッチング時間を短縮することができる。
 また、本実施形態に係る半導体装置100では、寄生容量低減領域11が基板1と同一の材料で形成されている。これにより、ソース領域3を形成するときにマスキングによって同時に寄生容量低減領域11を形成できるので、製造プロセスの増加を防止することができる。
 さらに、本実施形態に係る半導体装置100では、基板1を絶縁基板とする。これにより、半導体装置100を冷却器等に実装する際に、別体の絶縁性基板の使用を省略することができる。
 また、本実施形態に係る半導体装置100では、寄生容量低減領域11をソース領域3の表面から基板1の深さまで形成する。これにより、寄生容量低減領域11の深さが浅い場合と比較して、ゲートソース間容量CGSの低減効果をより大きくすることができる。
 さらに、本実施形態に係る半導体装置100では、基板1が炭化珪素で形成されている。これにより、炭化珪素の高い熱伝導率特性を利用して冷却性能を高くすることができる。
 また、本実施形態に係る半導体装置100では、ウェル領域5とドリフト領域7がワイドバンドギャップ半導体から形成されている。これにより、低いオン抵抗と高い絶縁破壊電界を両立させることができる。
 さらに、本実施形態に係る半導体装置100では、基板1とドリフト領域7を同一の材料から形成する。これにより、異なる材料を用いた場合に生じる格子不整合等の性能劣化を防止することができる。
 また、本実施形態に係る半導体装置の製造方法では、イオン注入により基板1に不純物を添加して、ソース領域3とウェル領域5とドリフト領域7とドレイン領域9を形成する。これにより、エピタキシャル成長で形成した場合と比較して製造コストを大きく削減することができる。
 さらに、本実施形態に係る半導体装置の製造方法では、ソース領域3とウェル領域5とドリフト領域7とドレイン領域9を、イオン注入のときに深さ方向の不純物濃度を変化させて形成する。これにより、深さ方向のドープ濃度を自由に設計して、最大印加電圧をより向上させることができる。
 また、本実施形態に係る半導体装置の製造方法では、ソース領域3をイオン注入で形成するときに、ソース領域3が形成される領域の一部をマスキングして、寄生容量低減領域11を形成する。これにより、ソース領域3と寄生容量低減領域11を同時に作製することができ、製造プロセスの増加を防止することができる。
[第2実施形態]
 以下、本発明を適用した第2実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 [半導体装置の構造]
 図5は、本実施形態に係る半導体装置の構造を示す図である。図5に示すように、本実施形態に係る半導体装置100では、寄生容量低減領域11が、ソース領域3よりも不純物濃度が低いP型の半導体材料で形成されていることが第1実施形態と相違している。また、寄生容量低減領域11が、ソース領域3よりも不純物濃度が低いN型の半導体材料で形成されていてもよい。
 このように、寄生容量低減領域11は、ソース領域3よりも不純物濃度が低いN型またはP型の半導体材料で形成されているので、抵抗値がソース領域3よりも高くなる。このような寄生容量低減領域11を形成することにより、ソース電極15とゲート電極21の間のソース領域3にゲート電極21から空乏層を広げることができるので、ゲートソース間容量CGSを低減することができる。尚、その他の構成については、第1実施形態と同様の構造となるので、詳細な説明は省略する。
 [半導体装置の製造方法]
 次に、図6を参照して、本実施形態に係る半導体装置100の製造方法の一例を説明する。ただし、第1実施形態で説明した製造方法と相違する工程のみを説明し、第1実施形態と同一の工程については詳細な説明を省略する。
 第1実施形態と同様の方法で、基板1にウェル領域5を形成した後に、図6に示すように、基板1及びウェル領域5の上に形成されたマスク材71をパターニングして、寄生容量低減領域11及びコラム領域13を形成する領域を露出させる。そして、マスク材71をマスクとして基板1にP型の不純物を選択的に添加するイオン注入を行って、寄生容量低減領域11及びコラム領域13を形成する。この後、第1実施形態と同様の方法で、半導体装置100を完成させる。
 また、寄生容量低減領域11がN型の半導体材料で形成されている場合には、コラム領域13を形成する工程とは別に、寄生容量低減領域11を形成する工程を設ければよい。その工程では、基板1及びウェル領域5の上に形成されたマスク材をパターニングして、寄生容量低減領域11を形成する領域を露出させ、マスク材をマスクとして基板1にN型の不純物を添加するイオン注入を行えばよい。
 [第2実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る半導体装置100では、寄生容量低減領域11が、ソース領域3よりも不純物濃度が低いN型の半導体材料で形成されている。これにより、ソース電極15とゲート電極21の間のソース領域3にゲート電極21から空乏層を広げることができるので、ゲートソース間容量CGSを低減することができる。
 また、本実施形態に係る半導体装置100では、寄生容量低減領域11が、ソース領域3よりも不純物濃度が低いP型の半導体材料で形成されている。これにより、ソース電極15とゲート電極21の間のソース領域3にゲート電極21から空乏層を広げることができるので、ゲートソース間容量CGSを低減することができる。
[第3実施形態]
 以下、本発明を適用した第3実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 [半導体装置の構造]
 図7は、本実施形態に係る半導体装置の構造を示す図である。図7に示すように、本実施形態に係る半導体装置100では、寄生容量低減領域11が、絶縁膜で形成されていることが第1実施形態と相違している。また、図8に示すように、寄生容量低減領域11が溝で形成されていてもよい。
 このように、寄生容量低減領域11は絶縁膜で形成されているので、抵抗値がソース領域3よりも高くなる。また、寄生容量低減領域11が溝である場合も、抵抗値はソース領域3よりも高くなる。このように寄生容量低減領域11を絶縁膜で形成することにより、ソース電極15とゲート電極21の間に非常に小さな絶縁体容量を挟むことになるので、ゲートソース間容量CGSを低減することができる。また、寄生容量低減領域11を溝にしたことにより、溝の両端の容量がゼロになるので、ゲートソース間容量CGSを低減することができる。尚、その他の構成については、第1実施形態と同様の構造となるので、詳細な説明は省略する。
 [半導体装置の製造方法]
 次に、図9A~図9Bを参照して、本実施形態に係る半導体装置100の製造方法の一例を説明する。ただし、第1実施形態で説明した製造方法と相違する工程のみを説明し、第1実施形態と同一の工程については詳細な説明を省略する。
 第1実施形態と同様の方法で、基板1上にウェル領域5、コラム領域13、ドリフト領域7、ソース領域3及びドレイン領域9を形成した後に、マスク材を成長させる。そのマスク材の上にレジストをパターニングして、ドライエッチングまたはウェットエッチングにより、ソース領域3の一部を選択的にエッチングして、図9Aに示すように、寄生容量低減領域11を埋め込む溝81を形成する。この結果、溝81は、ソース領域3とウェル領域5に接する位置に形成される。
 次に、図9Bに示すように、溝81の内部に絶縁膜83を形成する。絶縁膜83は、溝81が埋まる程度の膜厚まで成長させる。本実施形態では、絶縁膜83として、シリコン酸化膜を用いるが、シリコン窒化膜であってもよい。そして、ドライエッチングもしくはウェットエッチングによって平坦化して、溝81の中にシリコン酸化膜が埋め込まれた寄生容量低減領域11を形成する。この後、第1実施形態と同様の方法で、半導体装置100を完成させる。尚、寄生容量低減領域11が溝である場合には、絶縁膜83を形成せずに溝81を残したままゲート電極21を形成する工程へ進めばよい。
 [第3実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る半導体装置100では、寄生容量低減領域11が絶縁膜83で形成されている。これにより、ソース電極15とゲート電極21の間に非常に小さな絶縁体容量を挟むことになるので、ゲートソース間容量CGSを低減することができる。
 また、本実施形態に係る半導体装置100では、寄生容量低減領域11が溝81で形成されている。これにより、溝81の両端の容量をゼロにすることができるので、ゲートソース間容量CGSを低減することができる。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 1 基板
 3 ソース領域
 5 ウェル領域
 7 ドリフト領域
 9 ドレイン領域
 11 寄生容量低減領域
 13 コラム領域
 15 ソース電極
 17 ドレイン電極
 19 ゲート絶縁膜
 21 ゲート電極
 51、53、55、57、71 マスク材
 59 ゲート溝
 61 ゲート配線
 63 層間絶縁膜
 65 ソース電極コンタクトホール
 67 ドレイン電極コンタクトホール
 81 溝
 83 絶縁膜

Claims (14)

  1.  基板と、
     前記基板の主面上に形成された第1導電型ソース領域と、
     前記基板の主面上に形成され、前記第1導電型ソース領域と電気的に接続された第2導電型ウェル領域と、
     前記基板の主面上に形成され、前記第2導電型ウェル領域と接した第1導電型ドリフト領域と、
     前記基板の主面上に形成され、前記第1導電型ドリフト領域と接した第1導電型ドレイン領域と、
     前記第1導電型ソース領域と電気的に接続された第1電極と、
     前記第1導電型ドレイン領域と電気的に接続された第2電極と、
     前記第1導電型ソース領域と前記第2導電型ウェル領域と前記第1導電型ドリフト領域と絶縁膜を介して接するように形成された第3電極と、
     前記第1導電型ソース領域と接し、かつ前記第3電極と前記絶縁膜を介して接するように形成され、前記第1導電型ソース領域よりも抵抗値が高い寄生容量低減領域と
    を有することを特徴とする半導体装置。
  2.  前記寄生容量低減領域は、前記基板と同一の材料で形成されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記寄生容量低減領域は、前記第1導電型ソース領域よりも不純物濃度が低い第1導電型の半導体材料で形成されていることを特徴とする請求項1に記載の半導体装置。
  4.  前記寄生容量低減領域は、前記第1導電型ソース領域よりも不純物濃度が低い第2導電型の半導体材料で形成されていることを特徴とする請求項1に記載の半導体装置。
  5.  前記寄生容量低領域は、絶縁膜で形成されていることを特徴とする請求項1に記載の半導体装置。
  6.  前記寄生容量低減領域は、溝であることを特徴とする請求項1に記載の半導体装置。
  7.  前記基板は、絶縁基板であることを特徴とする請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記寄生容量低減領域は、前記第1導電型ソース領域の表面から前記基板の深さまで形成されていることを特徴とする請求項1~7のいずれか1項に記載の半導体装置。
  9.  前記基板は、炭化珪素からなることを特徴とする請求項1~8のいずれか1項に記載の半導体装置。
  10.  前記第2導電型ウェル領域と前記第1導電型ドリフト領域は、ワイドバンドギャップ半導体からなることを特徴とする請求項1~9のいずれか1項に記載の半導体装置。
  11.  前記基板と前記第1導電型ドリフト領域は、同一の材料からなることを特徴とする請求項1~10のいずれか1項に記載の半導体装置。
  12.  請求項1~11のいずれか1項に記載された半導体装置を製造する半導体装置の製造方法であって、
     イオン注入により、前記基板に不純物を添加して、前記第1導電型ソース領域と前記第2導電型ウェル領域と前記第1導電型ドリフト領域と前記第1導電型ドレイン領域を形成することを特徴とする半導体装置の製造方法。
  13.  前記第1導電型ソース領域と前記第2導電型ウェル領域と前記第1導電型ドリフト領域と前記第1導電型ドレイン領域は、前記イオン注入のときに深さ方向の不純物濃度を変化させて形成されることを特徴とする請求項12に記載の半導体装置の製造方法。
  14.  前記寄生容量低減領域は、前記第1導電型ソース領域をイオン注入で形成するときに、前記第1導電型ソース領域が形成される領域の一部をマスキングして形成されることを特徴とする請求項12または13に記載の半導体装置の製造方法。
PCT/IB2020/000931 2020-11-09 2020-11-09 半導体装置及びその製造方法 WO2022096908A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080106857.5A CN116368624A (zh) 2020-11-09 2020-11-09 半导体装置及其制造方法
PCT/IB2020/000931 WO2022096908A1 (ja) 2020-11-09 2020-11-09 半導体装置及びその製造方法
EP20960736.5A EP4243084A4 (en) 2020-11-09 2020-11-09 SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING THEREOF
JP2022560420A JPWO2022096908A1 (ja) 2020-11-09 2020-11-09
US18/035,890 US11881526B2 (en) 2020-11-09 2020-11-09 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/000931 WO2022096908A1 (ja) 2020-11-09 2020-11-09 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
WO2022096908A1 true WO2022096908A1 (ja) 2022-05-12
WO2022096908A8 WO2022096908A8 (ja) 2023-05-19

Family

ID=81457567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/000931 WO2022096908A1 (ja) 2020-11-09 2020-11-09 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US11881526B2 (ja)
EP (1) EP4243084A4 (ja)
JP (1) JPWO2022096908A1 (ja)
CN (1) CN116368624A (ja)
WO (1) WO2022096908A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198676A (ja) * 2007-02-09 2008-08-28 Sanyo Electric Co Ltd 半導体装置
JP2010010256A (ja) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd 半導体装置
WO2015008550A1 (ja) 2013-07-19 2015-01-22 日産自動車株式会社 半導体装置及びその製造方法
WO2017208301A1 (ja) * 2016-05-30 2017-12-07 日産自動車株式会社 半導体装置
WO2018029796A1 (ja) * 2016-08-10 2018-02-15 日産自動車株式会社 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839578B2 (ja) * 2004-04-26 2011-12-21 富士電機株式会社 横形半導体装置
US7939881B2 (en) 2007-02-09 2011-05-10 Sanyo Electric Co., Ltd. Semiconductor device
CN102832249A (zh) * 2012-09-11 2012-12-19 电子科技大学 一种mos型功率半导体器件
US9306058B2 (en) * 2013-10-02 2016-04-05 Infineon Technologies Ag Integrated circuit and method of manufacturing an integrated circuit
US9287404B2 (en) * 2013-10-02 2016-03-15 Infineon Technologies Austria Ag Semiconductor device and method of manufacturing a semiconductor device with lateral FET cells and field plates
CN112005349A (zh) * 2018-04-19 2020-11-27 日产自动车株式会社 半导体装置及半导体装置的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198676A (ja) * 2007-02-09 2008-08-28 Sanyo Electric Co Ltd 半導体装置
JP2010010256A (ja) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd 半導体装置
WO2015008550A1 (ja) 2013-07-19 2015-01-22 日産自動車株式会社 半導体装置及びその製造方法
WO2017208301A1 (ja) * 2016-05-30 2017-12-07 日産自動車株式会社 半導体装置
WO2018029796A1 (ja) * 2016-08-10 2018-02-15 日産自動車株式会社 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243084A4

Also Published As

Publication number Publication date
CN116368624A (zh) 2023-06-30
JPWO2022096908A1 (ja) 2022-05-12
US20230411516A1 (en) 2023-12-21
EP4243084A1 (en) 2023-09-13
EP4243084A4 (en) 2024-02-21
WO2022096908A8 (ja) 2023-05-19
US11881526B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5433352B2 (ja) 半導体装置の製造方法
TWI390637B (zh) 具混合井區之碳化矽裝置及用以製造該等碳化矽裝置之方法
JP6477912B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2017092368A (ja) 半導体装置および半導体装置の製造方法
WO2017064887A1 (ja) 半導体装置
CN110291620B (zh) 半导体装置及半导体装置的制造方法
WO2012131768A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2014083771A1 (ja) 半導体素子及びその製造方法
JP2012064741A (ja) 半導体装置およびその製造方法
CA3025767C (en) Semiconductor device
WO2022096908A1 (ja) 半導体装置及びその製造方法
JP6950816B2 (ja) 半導体装置及びその製造方法
US11557674B2 (en) Semiconductor device and method for manufacturing the same
JP6930393B2 (ja) 半導体装置及びその製造方法
JP4304332B2 (ja) 炭化ケイ素半導体装置
JP7312616B2 (ja) 半導体装置及びその製造方法
JP7411465B2 (ja) 半導体装置
JP7257423B2 (ja) 半導体装置及びその製造方法
JP2017168681A (ja) 半導体装置および半導体装置の製造方法
CN117457738A (zh) 一种降低表面温度的ldmos结构及其制备方法
CN116635984A (zh) 半导体装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960736

Country of ref document: EP

Effective date: 20230609