WO2017019846A1 - Pd-1-binding molecules and methods use thereof - Google Patents

Pd-1-binding molecules and methods use thereof Download PDF

Info

Publication number
WO2017019846A1
WO2017019846A1 PCT/US2016/044430 US2016044430W WO2017019846A1 WO 2017019846 A1 WO2017019846 A1 WO 2017019846A1 US 2016044430 W US2016044430 W US 2016044430W WO 2017019846 A1 WO2017019846 A1 WO 2017019846A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
domain
mab
amino acid
cdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/044430
Other languages
English (en)
French (fr)
Other versions
WO2017019846A8 (en
Inventor
Kalpana SHAH
Douglas H. Smith
Ross La Motte-Mohs
Leslie S. Johnson
Paul A. Moore
Ezio Bonvini
Scott Koenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macrogenics Inc
Original Assignee
Macrogenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macrogenics Inc filed Critical Macrogenics Inc
Priority to SI201631367T priority Critical patent/SI3328419T1/sl
Priority to CR20180062A priority patent/CR20180062A/es
Priority to CR20200423A priority patent/CR20200423A/es
Priority to MA42542A priority patent/MA42542B1/fr
Priority to IL287916A priority patent/IL287916B2/en
Priority to MX2018001227A priority patent/MX2018001227A/es
Priority to PE2023001364A priority patent/PE20231958A1/es
Priority to IL297090A priority patent/IL297090B2/en
Priority to EP24194716.7A priority patent/EP4450088A3/en
Priority to UAA201801414A priority patent/UA127372C2/uk
Priority to US15/748,458 priority patent/US10577422B2/en
Priority to IL290571A priority patent/IL290571B2/en
Priority to DK16831339.3T priority patent/DK3328419T3/da
Priority to CN201810940625.4A priority patent/CN108976300B/zh
Priority to MYPI2018000111A priority patent/MY188871A/en
Priority to NZ739493A priority patent/NZ739493B2/en
Priority to PL18199685T priority patent/PL3456346T3/pl
Priority to LTEPPCT/US2016/044430T priority patent/LT3328419T/lt
Priority to JP2018504643A priority patent/JP6959907B2/ja
Priority to MDE20180572T priority patent/MD3328419T2/ro
Priority to SM20210610T priority patent/SMT202100610T1/it
Priority to EA201890296A priority patent/EA201890296A1/ru
Priority to CN202310501230.5A priority patent/CN116333138A/zh
Priority to PE2023001374A priority patent/PE20240111A1/es
Priority to AU2016298227A priority patent/AU2016298227B9/en
Priority to EP16831339.3A priority patent/EP3328419B1/en
Priority to CN202210614282.9A priority patent/CN114773475B/zh
Priority to CA2993948A priority patent/CA2993948A1/en
Priority to CR20220194A priority patent/CR20220194A/es
Priority to HRP20211645TT priority patent/HRP20211645T1/hr
Priority to ES16831339T priority patent/ES2898511T3/es
Priority to CN201680044392.9A priority patent/CN107847574B/zh
Priority to HK18107602.5A priority patent/HK1248106B/en
Priority to KR1020187005653A priority patent/KR102761886B1/ko
Priority to PL16831339T priority patent/PL3328419T3/pl
Priority to EP18199685.1A priority patent/EP3456346B1/en
Priority to RS20211320A priority patent/RS62568B1/sr
Priority to KR1020257002826A priority patent/KR20250020718A/ko
Priority to KR1020187023163A priority patent/KR102762075B1/ko
Priority to EP21191711.7A priority patent/EP3981792B1/en
Publication of WO2017019846A1 publication Critical patent/WO2017019846A1/en
Priority to ZA2018/00500A priority patent/ZA201800500B/en
Publication of WO2017019846A8 publication Critical patent/WO2017019846A8/en
Priority to CONC2018/0000867A priority patent/CO2018000867A2/es
Priority to IL257216A priority patent/IL257216B/en
Priority to PH12018500232A priority patent/PH12018500232A1/en
Anticipated expiration legal-status Critical
Priority to AU2018214151A priority patent/AU2018214151B2/en
Priority to ZA2018/07856A priority patent/ZA201807856B/en
Priority to AU2020200054A priority patent/AU2020200054B2/en
Priority to US16/752,464 priority patent/US11623959B2/en
Priority to CY20211100853T priority patent/CY1124634T1/el
Priority to CY20211100956T priority patent/CY1124723T1/el
Priority to AU2022200168A priority patent/AU2022200168B2/en
Priority to US18/114,109 priority patent/US20230357404A1/en
Priority to FR24C1033C priority patent/FR24C1033I2/fr
Priority to CY2024026C priority patent/CY2024026I1/el
Priority to LTPA2024525C priority patent/LTPA2024525I1/lt
Priority to FIC20240028C priority patent/FIC20240028I1/fi
Priority to NL301287C priority patent/NL301287I2/nl
Priority to AU2025202334A priority patent/AU2025202334A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/18Drugs for disorders of the endocrine system of the parathyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70521CD28, CD152

Definitions

  • the present invention is directed to PD-1 binding molecules that comprise the PD- 1 -binding domain of selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD- 1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15.
  • the invention particularly concerns PD-1 binding molecules that are humanized or chimeric versions of such antibodies, or that comprise PD-1 binding-fragments of such anti-PD-1 antibodies (especially immunocongugates, diabodies, BiTEs, bispecific antibodies, etc.).
  • the invention particularly concerns such PD-1 -binding molecules that are additionally capable of binding an epitope of a molecule involved in regulating an immune check point that is present on the surface of an immune cell.
  • the present invention also pertains to methods of using such PD-l-binding molecules to detect PD-1 or to stimulate an immune response.
  • the present invention also pertains to methods of combination therapy in which a PD-l-binding molecule that comprises one or more PD-l-binding domain(s) of such selected anti-PD-1 antibodies is administered in combination with one or more additional molecules that are effective in stimulating an immune response and/or in combination with one or more additional molecules that specifically bind a cancer antigen.
  • the immune system of humans and other mammals is responsible for providing protection against infection and disease. Such protection is provided both by a humoral immune response and by a cell-mediated immune response.
  • the humoral response results in the production of antibodies and other biomolecules that are capable of recognizing and neutralizing foreign targets (antigens).
  • the cell-mediated immune response involves the activation of macrophages, Natural Killer cells (NK), and antigen specific cytotoxic T-lymphocytes by T-cells, and the release of various cytokines in response to the recognition of an antigen (Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules " Immunolog. Res. 28(l):39-48).
  • T-cells The ability of T-cells to optimally mediate an immune response against an antigen requires two distinct signaling interactions (Viglietta, V. et al. (2007) “Modulating Co- Stimulation " Neurotherapeutics 4:666-675; Korman, A.J. et al. (2007) “Checkpoint Blockade in Cancer Immunotherapy " Adv. Immunol. 90:297-339).
  • APC Antigen-Presenting Cells
  • TCR T-Cell Receptor
  • a series of costimulatory and inhibitory signals mediated through interactions between the APC and distinct T-cell surface molecules, triggers first the activation and proliferation of the T-cells and ultimately their inhibition.
  • the first signal confers specificity to the immune response whereas the second signal serves to determine the nature, magnitude and duration of the response.
  • the immune system is tightly controlled by costimulatory and co-inhibitory ligands and receptors. These molecules provide the second signal for T-cell activation and provide a balanced network of positive and negative signals to maximize immune responses against infection while limiting immunity to self (Wang, L. et al. (March 7, 2011) "VISTA, A Novel Mouse Ig Superfamily Ligand That Negatively Regulates T-Cell Responses " J. Exp. Med. 10.1084/jem.20100619: l-16; Lepenies, B. et al. (2008) “The Role Of Negative Costimulators During Parasitic Infections " Endocrine, Metabolic & Immune Disorders - Drug Targets 8:279-288).
  • Binding of B7.1 or of B7.2 to CD28 stimulates T-cell activation; binding of B7.1 or B7.2 to CTLA-4 inhibits such activation (Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules " Immunolog. Res. 28(l):39-48; Lindley, P.S. etal. (2009) “The Clinical Utility Of Inhibiting CD28-Mediated Costimulation " Immunol. Rev. 229:307-321; Greenwald, R.J. et al. (2005) "The B7 Family Revisited” Ann. Rev. Immunol. 23 :515-548).
  • CD28 is constitutively expressed on the surface of T-cell s (Gross, J., et al. (1992) "Identification And Distribution Of The Costimulatory Receptor CD28 In The Mouse “ J. Immunol. 149:380-388), whereas CTLA-4 expression is rapidly upregulated following T-cell activation (Linsley, P. et al. (1996) "Intracellular Trafficking Of CTLA4 And Focal Localization Towards Sites Of TCR Engagement " Immunity 4:535-543). Since CTLA-4 is the higher affinity receptor (Sharpe, A.H. et al. (2002) “The B7- CD28 Superfamily " Nature Rev. Immunol. 2: 116-126), binding first initiates T-cell proliferation (via CD28) and then inhibits it (via nascent expression of CTLA-4), thereby dampening the effect when proliferation is no longer needed.
  • B7 Superfamily a set of related B7 molecules (the "B7 Superfamily") (Coyle, A.J. et al. (2001) "The Expanding B7 Superfamily: Increasing Complexity In Costimulatory Signals Regulating T-Cell Function " Nature Immunol. 2(3):203-209; Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily " Nature Rev. Immunol. 2: 116-126; Greenwald, R.J. et al. (2005) "The B7 Family Revisited " Ann. Rev. Immunol. 23 :515-548; Collins, M. et al.
  • B7.1 CD80
  • B7.2 CD86
  • IVS-L inducible co- stimulator ligand
  • PD-L1 programmed death-1 ligand
  • PD-L2 programmed death-2 ligand
  • B7-H3 B7-H4 and B7-H6
  • PD-1 Programmed Death-1
  • CD279 is an approximately 31 kD type I membrane protein member of the extended CD28/CTLA-4 family of T-cell regulators that broadly negatively regulates immune responses
  • PD-1 is expressed on activated T-cells, B-cells, and monocytes (Agata, Y. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes ,” Int. Immunol. 8(5):765-772; Yamazaki, T. et al. (2002) “Expression Of Programmed Death 1 Ligands By Murine T-Cells And APC “ J. Immunol. 169:5538-5545) and at low levels in natural killer (NK) T-cells (Nishimura, H. et al.
  • the extracellular region of PD-1 consists of a single immunoglobulin (Ig)V domain with 23% identity to the equivalent domain in CTLA-4 (Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity " Semin. Cancer Biol. 17(4):288-298).
  • the extracellular IgV domain is followed by a transmembrane region and an intracellular tail.
  • the intracellular tail contains two phosphorylation sites located in an immunoreceptor tyrosine- based inhibitory motif and an immunoreceptor tyrosine-based switch motif, which suggests that PD-1 negatively regulates TCR signals (Ishida, Y. et al.
  • PD-1 mediates its inhibition of the immune system by binding to B7-H1 and B7-DC (Flies, D.B. et al. (2007) "The New B7s: Playing a Pivotal Role in Tumor Immunity " J. Immunother. 30(3):251-260; United States Patents Nos. 6,803, 192; 7,794,710; United States Patent Application Publication Nos. 2005/0059051; 2009/0055944; 2009/0274666; 2009/0313687; PCT Publication Nos. WO 01/39722; WO 02/086083).
  • B7-H1 and B7-DC are broadly expressed on the surfaces of human and murine tissues, such as heart, placenta, muscle, fetal liver, spleen, lymph nodes, and thymus as well as murine liver, lung, kidney, islets cells of the pancreas and small intestine (Martin-Orozco, N. et al. (2007) “Inhibitory Costimulation And Anti-Tumor Immunity " Semin. Cancer Biol. 17(4):288-298).
  • B7-H1 protein expression has been found in human endothelial cells (Chen, Y. et al. (2005) "Expression ofB7-Hl in Inflammatory Renal Tubular Epithelial Cells " Nephron.
  • the adaptive immune system can be a potent defense mechanism against cancer and disease, it is often hampered by immune suppressive mechanisms in the tumor microenvironment, such as the expression of PD-1. Furthermore, co-inhibitory molecules expressed by tumor cells, immune cells, and stromal cells in the tumor milieu can dominantly attenuate T-cell responses against cancer cells. Thus, a need remains for potent PD-1 -binding molecules. In particular, a need exists for potent PD-1 -binding molecules having a desirable binding kinetic profile and that antagonize the PD-l/PD-Ll axis by blocking the PD-l/PD-Ll interaction, which could provide improved therapeutic value to patients suffering from cancer or other diseases and conditions. The present invention is directed to these and other goals.
  • the present invention is directed to PD-1 binding molecules that comprise the PD- 1 -binding domain of selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD- 1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15.
  • the invention particularly concerns PD-1 binding molecules that are humanized or chimeric versions of such antibodies, or that comprise PD-1 binding-fragments of such anti-PD-1 antibodies (especially immunocongugates, diabodies, BiTEs, bispecific antibodies, etc.).
  • the invention particularly concerns such PD-1 -binding molecules that are additionally capable of binding an epitope of a molecule involved in regulating an immune check point that is present on the surface of an immune cell.
  • the present invention also pertains to methods of using such PD-l-binding molecules to detect PD-1 or to stimulate an immune response.
  • the present invention also pertains to methods of combination therapy in which a PD-l-binding molecule that comprises one or more PD-l-binding domain(s) of such selected anti-PD-1 antibodies is administered in combination with one or more additional molecules that are effective in stimulating an immune response and/or in combination with one or more additional molecules that specifically bind a cancer antigen.
  • the invention provides an anti-human PD-1 -binding molecule that comprises the three Heavy Chain CDR Domains, CDRHI , CDRH2 and CDRH3 and the three Light Chain CDR Domains, CDRL I , CDRL2, and CDR L 3, wherein:
  • Heavy Chain CDRs of PD-1 mAb 1 and respectively have the amino acid sequences: SEQ ID NO:71, SEQ ID NO:72, and SEQ ID NO:73;
  • CDRL I Domain CDRL2 Domain
  • CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 1, and respectively have the amino acid sequences: SEQ ID NO:76, SEQ ID NO:77, and SEQ ID NO:78; or
  • Heavy Chain CDRs of PD-1 mAb 2 and respectively have the amino acid sequences: SEQ ID NO:85, SEQ ID NO:86, and SEQ ID NO:87; and
  • CDRLI Domain CDRL2 Domain
  • CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 2, and, respectively have the amino acid sequences: SEQ ID NO:90, SEQ ID NO:91, and SEQ ID NO:92; or
  • Heavy Chain CDRs of PD-1 mAb 3 have the amino acid sequences: SEQ ID NO:99, SEQ ID NO: 100, and SEQ ID NO:101; and
  • CDRL I Domain CDRL2 Domain
  • CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 3, and, respectively have the amino acid sequences: SEQ ID NO:104, SEQ ID NO:105, and SEQ ID NO:106; or
  • Heavy Chain CDRs of PD-1 mAb 4 and respectively have the amino acid sequences: SEQ ID NO:109, SEQ ID NO:110, and SEQ ID NO:lll; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 4, and, respectively have the amino acid sequences: SEQ ID NO:114, SEQ ID NO:115, and SEQ ID NO:116; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 5, and respectively have the amino acid sequences: SEQ ID NO:119, SEQ ID NO:120, and SEQ ID NO: 121; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 5, and, respectively have the amino acid sequences: SEQ ID NO:124, SEQ ID NO:125, and SEQ ID NO:126; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 6, and respectively have the amino acid sequences: SEQ ID NO:129, SEQ ID NO:130, and SEQ ID NO: 131; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 6, and, respectively have the amino acid sequences: SEQ ID NO:134, SEQ ID NO:135, and SEQ ID NO:136; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 7, and respectively have the amino acid sequences: SEQ ID NO:139, SEQ ID NO:140, and SEQ ID NO:141; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 7, and, respectively have the amino acid sequences: SEQ ID NO:144, SEQ ID NO:145, and SEQ ID NO:146; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 8, and respectively have the amino acid sequences: SEQ ID NO:161, SEQ ID NO:162, and SEQ ID NO: 163; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 8, and, respectively have the amino acid sequences: SEQ ID NO:166, SEQ ID NO:167, and SEQ ID NO:168; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 9, and respectively have the amino acid sequences: SEQ ID NO:171, SEQ ID NO:172, and SEQ ID NO: 173; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 9, and, respectively have the amino acid sequences: SEQ ID NO:176, SEQ ID NO:177, and SEQ ID NO:178; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 10, and respectively have the amino acid sequences: SEQ ID NO:192, SEQ ID NO:193, and SEQ ID NO: 194; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 10, and, respectively have the amino acid sequences: SEQ ID NO:197, SEQ ID NO:198, and SEQ ID NO:199; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 11, and respectively have the amino acid sequences: SEQ ID NO:202, SEQ ID NO:203, and SEQ ID NO:204; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 11, and, respectively have the amino acid sequences: SEQ ID NO:207, SEQ ID NO:208, and SEQ ID NO:209; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 12, and respectively have the amino acid sequences: SEQ ID NO:212, SEQ ID NO:213, and SEQ ID NO:214; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 12, and, respectively have the amino acid sequences: SEQ ID NO:217, SEQ ID NO:218, and SEQ ID NO:219 the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 13, and respectively have the amino acid sequences: SEQ ID NO:222, SEQ ID NO:223, and SEQ ID NO:224; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 13, and, respectively have the amino acid sequences: SEQ ID NO:227, SEQ ID NO:228, and SEQ ID NO:229; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 14, and respectively have the amino acid sequences: SEQ ID NO:232, SEQ ID NO:233, and SEQ ID NO:234; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 14, and, respectively have the amino acid sequences: SEQ ID NO:237, SEQ ID NO:238, and SEQ ID NO:239; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of PD-1 mAb 15, and respectively have the amino acid sequences: SEQ ID NO:242, SEQ ID NO:243, and SEQ ID NO:244; and
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of PD-1 mAb 15, and, respectively have the amino acid sequences: SEQ ID NO:247, SEQ ID NO:248, and SEQ ID NO:249;
  • the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of hPD-1 mAb 7(1.2), and respectively have the amino acid sequences: SEQ ID NO:139, SEQ ID NO:140, and SEQ ID NO: 141;
  • CDRL I Domain, CDRL2 Domain, and CDRL3 Domain are the Light Chain CDRs of hPD-1 mAb 7(1.2), and, respectively have the amino acid sequences: SEQ ID NO:157, SEQ ID NO:145, and SEQ ID NO:146; the CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are the Heavy Chain CDRs of hPD-1 mAb 7(1.3), and respectively have the amino acid sequences: SEQ ID NO:139, SEQ ID NO:140, and SEQ ID NO: 141; and
  • CDRL I Domain CDRL2 Domain
  • CDRL3 Domain are the Light Chain CDRs of hPD- 1 mAb 7(1.3), and, respectively have the amino acid sequences: SEQ ID NO:157, SEQ ID NO:158, and SEQ ID NO:145;
  • CDRL I Domain CDRL2 Domain
  • CDRL3 Domain are the Light Chain CDRs of hPD- 1 mAb 9(2.2), and, respectively have the amino acid sequences: SEQ ID NO:188, SEQ ID NO:189, and SEQ ID NO:178
  • the invention further concerns the embodiments of all such anti-human PD- 1 - binding molecules wherein the molecule is an antibody, and especially wherein the molecule is a chimeric antibody or a humanized antibody.
  • the invention further concerns the embodiments of such anti-human PD- 1 -binding molecules wherein the Heavy Chain Variable Domain has the amino acid sequence of SEQ ID NO:79, SEQ ID NO:93, SEQ ID NO:147, SEQ ID NO:149, SEQ ID NO:179, SEQ ID NO: 181, or SEQ ID NO:250
  • the invention further concerns the embodiments of such anti-human PD- 1 -binding molecules wherein the Light Chain Variable Domain has the amino acid sequence of SEQ ID NO:81, SEQ ID NO:95, SEQ ID NO:151, SEQ ID NO:153, SEQ ID NO:155, SEQ ID NO:184, SEQ ID NO:186, or SEQ ID NO:251
  • the invention further concerns the embodiment wherein the anti -human PD- 1 - binding molecule is a bispecific binding molecule, capable of simultaneously binding to human PD- 1 and to a second epitope, and particularly concerns the embodiment wherein the second epitope is an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell (especially wherein the second epitope is an epitope of B7-H3, B7-H4, BTLA, CD40, CD40L, CD47, CD70, CD80, CD86, CD94, CD 137, CD137L, CD226, CTLA-4, Galectin-9, GITR, GITRL, HHLA2, ICOS, ICOSL, KIR, LAG-3, LIGHT, MHC class I or II, KG2a, NKG2d, OX40, OX40L, PD1H, PD-1, PD-L1, PD-L2, PVR, SIRPa, TCR, TIGIT, TIM-3
  • the invention further concerns the embodiments wherein the anti-human PD-1- binding molecule is a bispecific molecule comprising a LAG-3 epitope-binding site, particularly wherein the LAG-3 epitope-binding site comprises:
  • Variable Heavy Chain of LAG-3 mAb 1 having the amino acid sequences: SEQ ID NO:42, SEQ ID NO:43, and SEQ ID NO:44, respectively;
  • Variable Heavy Chain of hLAG-3 mAb 1 VH1 having the amino acid sequences: SEQ ID NO:42, SEQ ID NO:43, and SEQ ID NO:44, respectively;
  • Variable Heavy Chain of LAG-3 mAb 6 having the amino acid sequences: SEQ ID NO:57, SEQ ID NO:58, and SEQ ID NO:59, respectively;
  • Variable Heavy Chain of hLAG-3 mAb 6 VH1 having the amino acid sequences: SEQ ID NO:57, SEQ ID NO:58, and SEQ ID NO:59, respectively;
  • the invention further concerns the embodiment of such anti-human PD-1 -binding molecules wherein the molecule is a diabody, and especially, wherein the diabody is a covalently bonded complex that comprises two, or three, or four, or five polypeptide chains.
  • the invention further concerns the embodiment of such anti-human PD-1 -binding molecules wherein the molecule is a trivalent binding molecule, and especially wherein the trivalent binding molecule is a covalently bonded complex that comprises three, four, five or more than five polypeptide chains.
  • the invention additionally concerns the embodiment of such anti- human PD-1 -binding molecules in which the molecule comprises an Fc Region.
  • the invention additionally concerns the embodiment of such anti-human PD-1 -binding molecules in which the molecule comprises an Albumin-Binding Domain, and especially a deimmunized Albumin- Binding Domain.
  • the invention further concerns the embodiments of all such anti-human PD-1- binding molecules wherein the molecule comprises an Fc Region, and wherein the Fc Region is a variant Fc Region that comprises one or more amino acid modifications that reduces the affinity of the variant Fc Region for an FcyR and/or enhances the serum half-life, and more particularly, wherein the modifications comprise at least one amino acid substitution selected from the group consisting of:
  • the invention further concerns the embodiments in which any of the above- described PD-l-binding molecules is used to stimulate a T-cell mediate immune response.
  • the invention additionally concerns the embodiments in which any of the above-described PD-l- binding molecules is used in the treatment of a disease or condition associated with a suppressed immune system, especially cancer or an infection.
  • the invention particularly concerns such use in the treatment or diagnosis or prognosis of cancer, wherein the cancer is characterized by the presence of a cancer cell selected from the group consisting of a cell of: an adrenal gland tumor, an AIDS-associated cancer, an alveolar soft part sarcoma, an astrocytic tumor, bladder cancer, bone cancer, a brain and spinal cord cancer, a metastatic brain tumor, a breast cancer, a carotid body tumors, a cervical cancer, a chondrosarcoma, a chordoma, a chromophobe renal cell carcinoma, a clear cell carcinoma, a colon cancer, a colorectal cancer, a cutaneous benign fibrous histiocytoma, a desmoplastic small round cell tumor, an ependymoma, a Ewing's tumor, an extraskeletal myxoid chondrosarcoma, a fibrogenesis imperfecta ossium, a fibrous dysplasia of the group consisting
  • the invention particularly concerns such use in the treatment or diagnosis or prognosis of cancer, wherein the cancer is colorectal cancer, hepatocellular carcinoma, glioma, kidney cancer, breast cancer, multiple myeloma, bladder cancer, neuroblastoma; sarcoma, non- Hodgkin's lymphoma, non-small cell lung cancer, ovarian cancer, pancreatic cancer, a rectal cancer, acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), acute B lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), hairy cell leukemia (HCL), blastic plasmacytoid dendritic cell neoplasm (BPDCN), non-Hodgkin's lymphomas (NHL), including mantel cell leukemia (MCL), and small lymphocytic lymphoma (SLL), Hodgkin's lymphoma, systemic mastocytosis, or
  • the invention further concerns the embodiments in which any of the above- described PD-l-binding molecules is detectably labeled and is used in the detection of PD-1.
  • Figure 1 provides a schematic of a representative covalently bonded diabody having two epitope-binding sites composed of two polypeptide chains, each having an E-coil or K-coil Heterodimer-Promoting Domain.
  • a cysteine residue may be present in a linker and/or in the Heterodimer-Promoting Domain as shown in Figure 3B.
  • VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • Figure 2 provides a schematic of a representative covalently bonded diabody molecule having two epitope-binding sites composed of two polypeptide chains, each having a CH2 and CH3 Domain, such that the associated chains form all or part of an Fc Region. VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • Figures 3A-3C provide schematics showing representative tetravalent diabodies having four epitope-binding sites composed of two pairs of polypeptide chains (i.e., four polypeptide chains in all).
  • One polypeptide of each pair possesses a CH2 and CH3 Domain, such that the associated chains form all or part of an Fc Region.
  • VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • the two pairs of polypeptide chains may be same.
  • the resulting molecule possesses four epitope-binding sites and is bispecific and bivalent with respect to each bound epitope.
  • the resulting molecule possesses four epitope-binding sites and is monospecific and tetravalent with respect to a single epitope.
  • the two pairs of polypeptides may be different.
  • the resulting molecule possesses four epitope-binding sites and is tetraspecific and monovalent with respect to each bound epitope.
  • Figure 3A shows an Fc diabody which contains a peptide Heterodimer-Promoting Domain comprising a cysteine residue.
  • Figure 3B shows an Fc Region-containing diabody, which contains E-coil and K-coil Heterodimer-Promoting Domains comprising a cysteine residue and a linker (with an optional cysteine residue).
  • Figure 3C shows an Fc-Region-Containing diabody, which contains antibody CHI and CL domains.
  • Figures 4A and 4B provide schematics of a representative covalently bonded diabody molecule having two epitope-binding sites composed of three polypeptide chains. Two of the polypeptide chains possess a CH2 and CH3 Domain, such that the associated chains form all or part of an Fc Region.
  • the polypeptide chains comprising the VL and VH Domain further comprise a Heterodimer-Promoting Domain. VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • Figure 5 provides the schematics of a representative covalently bonded diabody molecule having four epitope-binding sites composed of five polypeptide chains. Two of the polypeptide chains possess a CH2 and CH3 Domain, such that the associated chains form an Fc Region that comprises all or part of an Fc Region.
  • the polypeptide chains comprising the linked VL and VH Domains further comprise a Heterodimer-Promoting Domain. VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • Figures 6A-6F provide schematics of representative Fc Region-containing trivalent binding molecules having three epitope-binding sites.
  • Figures 6A and 6B respectively, illustrate schematically the domains of trivalent binding molecules comprising two diabody- type binding domains and a Fab-type binding domain having different domain orientations in which the diabody-type binding domains are N-terminal or C-terminal to an Fc Region.
  • the molecules in Figures 6A and 6B comprise four chains.
  • Figures 6C and 6D respectively, illustrate schematically the domains of trivalent binding molecules comprising two diabody- type binding domains N-terminal to an Fc Region, and a Fab-type binding domain in which the light chain and heavy chain are inked via a polypeptide spacer, or an scFv-type binding domain.
  • the trivalent binding molecules in Figures 6E and 6F respectively illustrate schematically the domains of trivalent binding molecules comprising two diabody-type binding domains C- terminal to an Fc Region, and a linked Fab-type binding domain, or an scFv-type binding domain in which the diabody-type binding domains are.
  • the trivalent binding molecules in Figures 6C-6F comprise three chains. VL and VH Domains that recognize the same epitope are shown using the same shading or fill pattern.
  • Figures 7A-7D shows that the anti-PD-1 antibodies PD-1 mAb 1-15 bind to human PD-1. Binding curves for binding to shPD-l-His are shown in Figure 7A (PD-1 mAb 1, PD- 1 mAb 2, PD-1 mAb 4 and PD-1 mAb 9), Figure 7B (PD-1 mAb 5, PD-1 mAb 6, and PD-1 mAb 7), and Figure 7C (PD-1 mAb 3, PD-1 mAb 8, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, and PD-1 mAb 15).
  • Figure 7A PD-1 mAb 1, PD- 1 mAb 2, PD-1 mAb 4 and PD-1 mAb 9
  • Figure 7B PD-1 mAb 5, PD-1 mAb 6, and PD-1 mAb 7
  • Figure 7C PD-1 mAb 3, PD-1 mAb 8, PD-1
  • Binding curves for binding to shPD-1- human Fc are shown in Figure 7D (PD-1 mAb 3, PD-1 mAb 8, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, and PD-1 mAb 15).
  • Figures 8A-8C shows that the anti-PD-1 antibodies PD-1 mAb 1-15 bind to cynomolgus monkey PD-1. Binding curves for binding to scynoPD-l-hFc are shown in Figure 8A (PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7), Figure 8B (PD-1 mAb 9), and Figure 8C (PD-1 mAb 3, PD-1 mAb 8, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, and PD-1 mAb 15).
  • Figures 9A-9D show the ability of the anti-PD-1 antibodies PD-1 mAb 1-15 to block the binding of human PD-Ll to human PD-1. Inhibition curves are shown in Figure 9A (PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 15, and PD-1 mAb A), Figure 9B (PD- 1 mAb 4), Figure 9C (PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, and PD-1 mAb A), and Figure 9D (PD-1 mAb 3, PD-1 mAb 8, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, PD-1 mAb 15, and PD-1 mAb A).
  • Figures 10A-10B show the tissue specificity of the anti -human PD-1 antibody PD- 1 mAb 7.
  • Figure 10A shows histological stains of normal colon (Panels i and vii), liver (Panels ii and viii), lung (Panels iii and ix), pancreas (Panels iv and x), kidney (Panels v and xi) and heart (Panels vi and xii) tissue.
  • Figure 10A, Panels i-vi show the results of tissue incubated with labeled PD-1 mAb 7 (0.313 ⁇ g/mL).
  • Figure 10A Panels vii-xii show the results of tissue incubated with labeled isotype control mAb (0.314 ⁇ g/mL).
  • Figure 10B shows histological stains of skin (Panels i and iv), tonsils (Panels ii and v), and NSO cells expressing PD-1 (Panels iii and vi).
  • Figure 10B Panels i-iii show the results of tissue incubated with labeled PD-1 mAb 7 (0.313 ⁇ g/mL).
  • Figure 11 shows the binding profiles of humanized anti-human PD-1 antibodies hPD-1 mAb 2, hPD-1 mAb 7(1.1), hPD-1 mAb 7(1.2), hPD-1 mAb 9(1.1), and the reference anti-PD-1 antibodies PD-1 mAb A and PD-1 mAb B having IgGl (AA) or IgG4 (P) for binding to cell surface PD-1.
  • Figures 12A-12B show the ability of humanized anti-PD antibodies hPD-1 mAb 2, hPD-1 mAb 7(1.1), hPD-1 mAb 7(1.2), hPD-1 mAb 9(1.1), and the reference anti-PD-1 antibodies PD-1 mAb A and PD-1 mAb B, having IgGl (AA) or IgG4 (P) to block the binding of soluble human PD-L1 ( Figure 12A) and soluble human PD-L2 ( Figure 12B) to cell surface human PD-1.
  • IgGl AA
  • IgG4 IgG4
  • Figure 13 shows the ability of humanized anti-PD antibodies hPD-1 mAb 2, hPD-1 mAb 7(1.1), hPD-1 mAb 7(1.2), hPD-1 mAb 9(1.1), and the reference anti-PD-1 antibodies PD-1 mAb A and PD-1 mAb B, having IgGl (AA) or IgG4 (P) to antagonize the PD-l/PD- Ll axis by blocking the PD-1/PD-L1 interaction and preventing down-regulation of T-cell responses in a Jurkat-luc-NFAT / CHO-PD-L1 luciferase reporter assay.
  • IgGl AA
  • IgG4 IgG4
  • Figure 14 shows that PD-1 mAb 2, PD-1 mAb 7, PD-1 mAb 9 and PD-1 mAb 15 are able to stimulate cytokine production to levels comparable or higher than the referenced anti-PD-1 antibodies (PD-1 mAb A and PD-1 mAb B) and that treatment with PD-1 mAb 2, PD-1 mAb 7, PD-1 mAb 9 and PD-1 mAb 15 in combination with LAG-3 mAb 1 provided the largest enhancement of cytokine release.
  • SEB Staphylococcal enterotoxin B
  • Figures 15A-15B show the ability of humanized anti-PD antibodies hPD-1 mAb 2, hPD-1 mAb 7(1.2), hPD-1 mAb 9(1.1), and the reference anti-PD-1 antibodies PD-1 mAb A and PD-1 mAb B, having IgGl (AA) or IgG4 (P) to stimulate cytokine production.
  • IFNy Figure 15A
  • T Fa Figure 15B
  • FIGS 16A-16B show that the PD-1 x LAG-3 bispecific diabody constructs DART A, DART D, DART E, DART F, DART G and DART H, are able to stimulate cytokine production to levels comparable or higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti-LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A), and that the PD-1 x LAG-3 bispecific diabody constructs DART A, DART D, DART E, DART F and DART G provided the largest enhancement of cytokine release.
  • FIGS 17A-17B show that the PD-1 x LAG-3 bispecific diabody constructs DART A, DART B and DART C are able to stimulate cytokine production to levels higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti -LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A).
  • IFNy secretion profiles of PBMCs from two representative donors, stimulated with a high concentration of SEB (85 ng/mL) treated with PD-1 x LAG-3 bispecific diabodies, or anti-PD-1 and anti -LAG-3 antibodies alone and in combination are plotted.
  • the results using PBMCs from two representative donors are shown in Figure 17A and Figure 17B
  • FIGS 18A-18B show that the PD-1 x LAG-3 bispecific diabody constructs DART A, DART B and DART C are able to stimulate cytokine production to levels higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti -LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A).
  • IFNy secretion profiles of PBMCs from two representative donors, stimulated with a middle concentration of SEB (0.5 ng/mL) treated with PD-1 x LAG-3 bispecific diabodies, or anti-PD-1 and anti -LAG-3 antibodies alone and in combination are plotted.
  • the results using PBMCs from two representative donors are shown in Figure 18A and Figure 18B.
  • FIG. 19 shows that the PD-1 x LAG-3 bispecific diabody constructs DART D and DART H are able to stimulate cytokine production to levels comparable or higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti -LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A), and that DART D provided the largest enhancement of cytokine release.
  • IL-2 secretion profiles of PBMCs from a representative donor stimulated with a high concentration of SEB (85 ng/mL) treated with PD-1 x LAG-3 bispecific diabodies, or anti-PD-1 and anti -LAG-3 antibodies alone and in combination are plotted.
  • Figure 20 shows that the PD-1 x LAG-3 bispecific diabody constructs DART B and DART I are able to stimulate cytokine production to levels higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti -LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A, hPD-1 mAb 7(1.2) + hLAG-3 mAb 1(1.4), hPD-1 mAb 7(1.2) + hLAG-3 mAb 6(1.1)).
  • IFNy secretion profiles of PBMCs from a representative donor, stimulated with a middle concentration of SEB (0.5 ng/mL) treated with PD-1 x LAG-3 bispecific diabodies, or anti-PD-1 and anti -LAG-3 antibodies alone and in combination are plotted.
  • Figures 21A-21D show that the that the PD-1 x LAG-3 bispecific diabody DART I is able to stimulate cytokine production to levels higher than that observed upon the administration of the combination of an anti-PD-1 mAb + an anti -LAG-3 mAb (PD-1 mAb A + LAG-3 mAb A).
  • IFNy ( Figures 21A and 21C) and IL-2 ( Figures 21B and 21D) secretion profiles of CD4 memory cells from two representative donors, stimulated with tetanus toxoid (5 ⁇ g/mL) treated with the PD-1 x LAG-3 bispecific diabody DART-I, anti-PD-1 and anti- LAG-3 antibodies in combination, or an isotype control are plotted.
  • the results at day 7 using CD4 memory T cells from two representative donors are shown in Figures 21A-B and Figures 21C-D
  • Figure 22 shows that the the pharmacokinetics of the PD-1 x LAG-3 bispecific molecule, DART I are comparable to those of the anti-PD-1 antibody, PD-1 mAb A IgG4 (P) in cynomolgus monkey.
  • the lines indicate the mean serum concentration of DART I (solid) and PD-1 mAb A (dashed).
  • the individual values for the male (filled) and female (open) monkeys are plotted for DART I (triangles) and PD-1 mAb A (circles).
  • Figures 23A-23C show serum antibody concentrations and percentage of bound PD-1 on the surface of CD4+ or CD8+ T cells over time in animals following treatment with different anti-PD-1 antibodies.
  • the percentage of bound PD 1 on the surface of CD4+ or CD8+ T cells following anti-PD 1 mAb treatment is plotted on the right y-axes; symbols represent % bound PD 1 on T cells for each individual animal and dashed lines represent the mean values.
  • Serum mAb concentrations are plotted on the left y-axes; symbols represent serum levels for each individual animal and solid lines represent nonlinear fits of the data.
  • the present invention is directed to PD-1 -binding molecules that comprise the PD- 1 -binding domain of selectedanti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD- 1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15.
  • the invention particularly concerns PD-l-binding molecules that are humanized or chimeric versions of such antibodies, or that comprise PD-l-binding fragments of such anti-PD-1 antibodies (especially immunocongugates, diabodies (including but not limited to DART-A, DART-B, DART-C, DART-D, DART-E, DART-F, DART-G, DART-H, DART-I, and DART-J), BiTEs, bispecific antibodies, etc.).
  • the invention particularly concerns such PD-l-binding molecules that are additionally capable of binding an epitope of a molecule involved in regulating an immune check point that is present on the surface of an immune cell.
  • the present invention also pertains to methods of using such PD-l-binding molecules to detect PD-1 or to stimulate an immune response.
  • the present invention also pertains to methods of combination therapy in which a PD-l-binding molecule that comprises one or more PD-l-binding domain(s) of such selected anti-PD-1 antibodies is administered in combination with one or more additional molecules that are effective in stimulating an immune response and/or in combination with one or more additional molecules that specifically bind a cancer antigen.
  • the antibodies of the present invention are immunoglobulin molecules capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the Variable Domain of the immunoglobulin molecule.
  • a target such as a carbohydrate, polynucleotide, lipid, polypeptide, etc.
  • antibody refers to monoclonal antibodies, multispecific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, polyclonal antibodies, camelized antibodies, single- chain Fvs (scFv), single-chain antibodies, Fab fragments, F(ab') fragments, disulfide-linked bispecific Fvs (sdFv), intrabodies, and epitope-binding fragments of any of the above.
  • antibodies include immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, i.e., molecules that contain an antigen-binding site.
  • Immunoglobulin molecules can be of any type ⁇ e.g., IgG, IgE, IgM, IgD, IgA and IgY), class ⁇ e.g., IgGi, IgG 2 , IgG 3 , IgG 4 , IgAi and IgA 2 ) or subclass.
  • IgGi IgG 2 , IgG 3 , IgG 4 , IgAi and IgA 2
  • Antibodies are capable of immunospecifically binding to a polypeptide or protein or a non-protein molecule due to the presence on such molecule of a particular domain or moiety or conformation (an "epitope").
  • An epitope-containing molecule may have immunogenic activity, such that it elicits an antibody production response in an animal; such molecules are termed "antigens").
  • antigens immunogenic activity
  • the last few decades have seen a revival of interest in the therapeutic potential of antibodies, and antibodies have become one of the leading classes of biotechnology-derived drugs (Chan, C.E. etal. (2009) “The Use Of Antibodies In The Treatment Of Infectious Diseases," Singapore Med. J. 50(7):663-666). Over 200 antibody-based drugs have been approved for use or are under development.
  • the term "monoclonal antibody” refers to a homogeneous antibody population wherein the monoclonal antibody is comprised of amino acids (naturally occurring and non- naturally occurring) that are involved in the selective binding of an antigen. Monoclonal antibodies are highly specific, being directed against a single epitope (or antigenic site).
  • monoclonal antibody encompasses not only intact monoclonal antibodies and full- length monoclonal antibodies, but also fragments thereof (such as Fab, Fab', F(ab') 2 Fv), single- chain (scFv), mutants thereof, fusion proteins comprising an antibody portion, humanized monoclonal antibodies, chimeric monoclonal antibodies, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site of the required specificity and the ability to bind to an antigen. It is not intended to be limited as regards to the source of the antibody or the manner in which it is made (e.g., by hybridoma, phage selection, recombinant expression, transgenic animals, etc.).
  • the term includes whole immunoglobulins as well as the fragments etc. described above under the definition of "antibody.”
  • Methods of making monoclonal antibodies are known in the art. One method which may be employed is the method of Kohl er, G. et al. (1975) "Continuous Cultures Of Fused Cells Secreting Antibody Of Predefined Specificity," Nature 256:495-497 or a modification thereof.
  • monoclonal antibodies are developed in mice, rats or rabbits.
  • the antibodies are produced by immunizing an animal with an immunogenic amount of cells, cell extracts, or protein preparations that contain the desired epitope.
  • the immunogen can be, but is not limited to, primary cells, cultured cell lines, cancerous cells, proteins, peptides, nucleic acids, or tissue.
  • Cells used for immunization may be cultured for a period of time (e.g. , at least 24 hours) prior to their use as an immunogen.
  • Cells may be used as immunogens by themselves or in combination with a non-denaturing adjuvant, such as Ribi (see, e.g., Jennings, V.M. (1995) "Review of Selected Adjuvants Used in Antibody Production," ILAR J. 37(3): 119- 125).
  • a non-denaturing adjuvant such as Ribi (see, e.g., Jennings, V.M. (1995) "Review of Selected Adjuvants Used in Antibody Production," ILAR J. 37(3): 119- 125).
  • Ribi non-denaturing adjuvant
  • cells should be kept intact and preferably viable when used as immunogens. Intact cells may allow antigens to be better detected than ruptured cells by the immunized animal.
  • the immunogen may be administered multiple times at periodic intervals such as, bi-weekly, or weekly, or may be administered in such a way as to maintain viability in the animal (e.g., in a tissue recombinant).
  • existing monoclonal antibodies and any other equivalent antibodies that are immunospecific for a desired pathogenic epitope can be sequenced and produced recombinantly by any means known in the art.
  • such an antibody is sequenced and the polynucleotide sequence is then cloned into a vector for expression or propagation.
  • the sequence encoding the antibody of interest may be maintained in a vector in a host cell and the host cell can then be expanded and frozen for future use.
  • the polynucleotide sequence of such antibodies may be used for genetic manipulation to generate the monospecific or multispecific (e.g., bispecific, trispecific and tetraspecific) molecules of the invention as well as an affinity optimized, a chimeric antibody, a humanized antibody, and/or a caninized antibody, to improve the affinity, or other characteristics of the antibody.
  • the general principle in humanizing an antibody involves retaining the basic sequence of the antigen-binding portion of the antibody, while swapping the non-human remainder of the antibody with human antibody sequences.
  • Natural antibodies are composed of two Light Chains complexed with two Heavy Chains. Each light chain contains a Variable Domain (VL) and a Constant Domain (CL). Each heavy chain contains a Variable Domain (VH), three Constant Domains (CHI, CH2 and CH3), and a hinge domain located between the CHI and CH2 Domains.
  • the basic structural unit of naturally occurring immunoglobulins e.g., IgG
  • the amino-terminal (“N-terminal") portion of each chain includes a Variable Domain of about 100 to 1 10 or more amino acids primarily responsible for antigen recognition.
  • the carboxy-terminal ("C-terminal") portion of each chain defines a constant region, with light chains having a single Constant Domain and heavy chains usually having three Constant Domains and a Hinge Domain.
  • the structure of the light chains of an IgG molecule is n-VL-CL-c and the structure of the IgG heavy chains is n-VH-CHl-H-CH2-CH3- c (where H is the hinge domain, and n and c represent, respectively, the N-terminus and the C- terminus of the polypeptide).
  • the Variable Domains of an IgG molecule consist of the complementarity determining regions (CDR), which contain the residues in contact with epitope, and non-CDR segments, referred to as framework segments (FR), which in general maintain the structure and determine the positioning of the CDR loops so as to permit such contacting (although certain framework residues may also contact antigen).
  • CDR complementarity determining regions
  • FR framework segments
  • the VL and VH Domains have the structure n-FRl-CDRl-FR2-CDR2-FR3-CDR3-FR4-c.
  • Polypeptides that are (or may serve as) the first, second and third CDR of an antibody Light Chain are herein respectively designated CDRLI Domain, CDRL2 Domain, and CDRL3 Domain.
  • polypeptides that are (or may serve as) the first, second and third CDR of an antibody heavy chain are herein respectively designated CDRHI Domain, CDRH2 Domain, and CDRH3 Domain.
  • CDRLI Domain, CDRL2 Domain, CDRL3 Domain, CDRHI Domain, CDRH2 Domain, and CDRH3 Domain are directed to polypeptides that when incorporated into a protein cause that protein to be able to bind to a specific epitope regardless of whether such protein is an antibody having light and heavy chains or a diabody or a single-chain binding molecule (e.g. , an scFv, a BiTe, etc.), or is another type of protein.
  • epitope-binding fragment means a fragment of an antibody capable of immunospecifically binding to an epitope
  • epitope-binding site refers to that portion of a molecule comprising an epitope-binding fragment that is responsible for epitope binding.
  • An epitope-binding site may contain 1, 2, 3, 4, 5 or all 6 of the CDR Domains of such antibody and, although capable of immunospecifically binding to such epitope, may exhibit an immunospecificity, affinity or selectivity toward such epitope that differs from that of such antibody.
  • an epitope-binding fragment will contain all 6 of the CDR Domains of such antibody.
  • An epitope-binding fragment of an antibody may be a single polypeptide chain (e.g., an scFv), or may comprise two or more polypeptide chains, each having an amino terminus and a carboxy terminus (e.g., a diabody, a Fab fragment, an F(ab') 2 fragment, etc.).
  • the invention particularly encompasses single-chain Variable Domain fragments ("scFv") of the anti-PD-1 antibodies of this invention and multispecific binding molecules comprising the same.
  • Single-chain Variable Domain fragments are made by linking Light and/or Heavy chain Variable Domain by using a short linking peptide.
  • Bird et al. (1988) (“Single-Chain Antigen-Binding Proteins," Science 242:423-426) describes example of linking peptides which bridge approximately 3.5 nm between the carboxy terminus of one Variable Domain and the amino terminus of the other Variable Domain. Linkers of other sequences have been designed and used (Bird et al.
  • Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports.
  • the single-chain variants can be produced either recombinantly or synthetically.
  • an automated synthesizer can be used for synthetic production of scFv.
  • a suitable plasmid containing polynucleotide that encodes the scFv can be introduced into a suitable host cell, either eukaryotic, such as yeast, plant, insect or mammalian cells, or prokaryotic, such as E. coli.
  • Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides.
  • the resultant scFv can be isolated using standard protein purification techniques known in the art.
  • the invention also particularly encompasses humanized variants of the anti-PD-1 antibodies of the invention and multispecific binding molecules comprising the same.
  • humanized antibody refers to a chimeric molecule, generally prepared using recombinant techniques, having an antigen-binding site of an immunoglobulin from a non- human species and a remaining immunoglobulin structure of the molecule that is based upon the structure and /or sequence of a human immunoglobulin.
  • the anti-human PD-1 antibodies of the present invention include humanized, chimeric or caninized variants of antibodies PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD- 1 mAb 14, or PD-1 mAb 15.
  • the polynucleotide sequence of the variable domains of such antibodies may be used for genetic manipulation to generate such derivatives and to improve the affinity, or other characteristics of such antibodies.
  • the general principle in humanizing an antibody involves retaining the basic sequence of the antigen-binding portion of the antibody, while swapping the non-human remainder of the antibody with human antibody sequences.
  • the antigen-binding site may comprise either a complete Variable Domain fused to a Constant Domain or only the complementarity determining regions (CDRs) of such Variable Domain grafted to appropriate framework regions.
  • Antigen-binding sites may be wild-type or modified by one or more amino acid substitutions. This eliminates the constant region as an immunogen in human individuals, but the possibility of an immune response to the foreign variable domain remains (LoBuglio, A.F. et al. (1989) "Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response," Proc. Natl. Acad. Sci. (U.S.A.) 86:4220- 4224).
  • variable domains of both heavy and light chains contain three complementarity determining regions (CDRs) which vary in response to the antigens in question and determine binding capability, flanked by four framework regions (FRs) which are relatively conserved in a given species and which putatively provide a scaffolding for the CDRs.
  • CDRs complementarity determining regions
  • FRs framework regions
  • humanized antibodies preserve all CDR sequences (for example, a humanized mouse antibody which contains all six CDRs from the mouse antibodies). In other embodiments, humanized antibodies have one or more CDRs (one, two, three, four, five, or six) which differ in sequence relative to the original antibody.
  • a number of "humanized” antibody molecules comprising an antigen-binding site derived from a non-human immunoglobulin have been described, including chimeric antibodies having rodent or modified rodent Variable Domain and their associated complementarity determining regions (CDRs) fused to human Constant Domains (see, for example, Winter et al. (1991) "Man-made Antibodies " Nature 349:293-299; Lobuglio et al. (1989) 'Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response," Proc. Natl. Acad. Sci. (U.S.A.) 86:4220-4224 (1989), Shaw et al.
  • CDRs complementarity determining regions
  • Fey Receptors Fey Receptors
  • the CH2 and CH3 Domains of the two heavy chains interact to form the Fc Region, which is a domain that is recognized by cellular Fc Receptors, including but not limited to Fc gamma Receptors (FcyRs).
  • Fc Region is used to define a C-terminal region of an IgG heavy chain.
  • the amino acid sequence of the CH2-CH3 Domain of an exemplary human IgGl is (SEQ ID NO:l):
  • X is a lysine (K) or is absent.
  • amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG2 is (SEQ ID NO:2):
  • X is a lysine (K) or is absent.
  • amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG3 is (SEQ ID NO:3):
  • ALHNRFTQKS LSLSPGX as numbered by the EU index as set forth in Kabat, wherein, X is a lysine (K) or is absent.
  • amino acid sequence of the CH2-CH3 Domain of an exemplary human IgG4 is (SEQ ID NO:4):
  • ALHNHYTQKS LSLSLGX as numbered by the EU index as set forth in Kabat, wherein, X is a lysine (K) or is absent.
  • the numbering of the residues in the constant region of an IgG heavy chain is that of the EU index as in Kabat et al, Sequences of Proteins of Immunological Interest. 5 th Ed. Public Health Service, H1, MD (1991) ("Kabat”), expressly incorporated herein by references.
  • EU index as in Kabat refers to the numbering of the human IgGl EU antibody. Amino acids from the Variable Domains of the mature heavy and light chains of immunoglobulins are designated by the position of an amino acid in the chain.
  • Kabat described numerous amino acid sequences for antibodies, identified an amino acid consensus sequence for each subgroup, and assigned a residue number to each amino acid, and the CDRs are identified as defined by Kabat (it will be understood that CDRHI as defined by Chothia, C. & Lesk, A. M. ((1987) "Canonical structures for the hypervariable regions of immunoglobulins " . J. Mol. Biol. 196:901-917) begins five residues earlier).
  • Rabat's numbering scheme is extendible to antibodies not included in his compendium by aligning the antibody in question with one of the consensus sequences in Kabat by reference to conserved amino acids.
  • Gm Polymorphic forms of human immunoglobulins have been well-characterized. At present, 18 Gm allotypes are known: Glm (1, 2, 3, 17) or Glm (a, x, f, z), G2m (23) or G2m (n), G3m (5, 6, 10, 11, 13, 14, 15, 16, 21, 24, 26, 27, 28) or G3m (bl, c3, b3, bO, b3, b4, s, t, gl, c5, u, v, g5) (Lefranc, et al, "The Human IgG Subclasses: Molecular Analysis Of Structure, Function And Regulation. ' " Pergamon, Oxford, pp. 43-78 (1990); Lefranc, G.
  • the antibodies of the present invention may be incorporate any allotype, isoallotype, or haplotype of any immunoglobulin gene, and are not limited to the allotype, isoallotype or haplotype of the sequences provided herein.
  • the C-terminal amino acid residue (bolded above) of the CH3 Domain may be post-translationally removed. Accordingly, the C-terminal residue of the CH3 Domain is an optional amino acid residue in the PD-1 -binding molecules of the invention.
  • PD-1 -binding molecules lacking the C-terminal residue of the CH3 Domain.
  • constructs comprising the C-terminal lysine residue of the CH3 Domain.
  • Activating and inhibitory signals are transduced through the ligation of an Fc region to a cellular Fc gamma Receptor (FcyR).
  • FcyR Fc gamma Receptor
  • the ability of such ligation to result in diametrically opposing functions results from structural differences among the different FcyRs.
  • Two distinct domains within the cytoplasmic signaling domains of the receptor called immunoreceptor tyrosine-based activation motifs (ITAMs) and immunoreceptor tyrosine-based inhibitory motifs (ITEVIS) account for the different responses.
  • ITAMs immunoreceptor tyrosine-based activation motifs
  • ITEVIS immunoreceptor tyrosine-based inhibitory motifs
  • ITAM-containing FcyR complexes include FcyRI, FcyRIIA, FcyRIIIA, whereas ITEVI- containing complexes only include FcyRIIB.
  • Human neutrophils express the FcyRIIA gene.
  • FcyRIIA clustering via immune complexes or specific antibody cross-linking serves to aggregate ITAMs along with receptor-associated kinases which facilitate ITAM phosphorylation.
  • ITAM phosphorylation serves as a docking site for Syk kinase, activation of which results in activation of downstream substrates ⁇ e.g., PLK). Cellular activation leads to release of proinflammatory mediators.
  • the FcyRIIB gene is expressed on B lymphocytes; its extracellular domain is 96% identical to FcyRIIA and binds IgG complexes in an indistinguishable manner.
  • the presence of an ITIM in the cytoplasmic domain of FcyRIIB defines this inhibitory subclass of FcyR. Recently the molecular basis of this inhibition was established.
  • the ITIM in FcyRIIB When co-ligated along with an activating FcyR, the ITIM in FcyRIIB becomes phosphorylated and attracts the SH2 domain of the inositol polyphosphate 5 '-phosphatase (SHIP), which hydrolyzes phosphoinositol messengers released as a consequence of ITAM- containing FcyR- mediated tyrosine kinase activation, consequently preventing the influx of intracellular Ca ++ .
  • SHIP inositol polyphosphate 5 '-phosphatase
  • cross-linking of FcyRIIB dampens the activating response to FcyR ligation and inhibits cellular responsiveness. B-cell activation, B-cell proliferation and antibody secretion is thus aborted.
  • an antibody to bind an epitope of an antigen depends upon the presence and amino acid sequence of the antibody's VL and VH Domains. Interaction of an antibody light chain and an antibody heavy chain and, in particular, interaction of its VL and VH Domains forms one of the two epitope-binding sites of a natural antibody. Natural antibodies are capable of binding to only one epitope species (i.e., they are monospecific), although they can bind multiple copies of that species (i.e., exhibiting bivalency or multivalency).
  • the binding domains of the present invention bind to epitopes in an "immunospecific" manner.
  • an antibody, diabody or other epitope-binding molecule is said to "immunospecifically” bind a region of another molecule (i.e., an epitope) if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with that epitope relative to alternative epitopes.
  • an antibody that immunospecifically binds to a viral epitope is an antibody that binds this viral epitope with greater affinity, avidity, more readily, and/or with greater duration than it immunospecifically binds to other viral epitopes or non-viral epitopes.
  • an antibody or moiety or epitope that immunospecifically binds to a first target may or may not specifically or preferentially bind to a second target.
  • immunospecific binding does not necessarily require (although it can include) exclusive binding.
  • reference to binding means "specific” binding. Two molecules are said to be capable of binding to one another in a “physiospecific” manner, if such binding exhibits the specificity with which receptors bind to their respective ligands.
  • antibodies can be enhanced by generating multispecific antibody-based molecules that can simultaneously bind two separate and distinct antigens (or different epitopes of the same antigen) and/or by generating antibody-based molecule having higher valency (i.e., more than two binding sites) for the same epitope and/or antigen.
  • WO 2013/174873, WO 2011/133886 and WO 2010/136172 disclose that the use of linkers may cause problems in therapeutic settings, and teaches a trispecific antibody in which the CL and CHI Domains are switched from their respective natural positions and the VL and VH Domains have been diversified (WO 2008/027236; WO 2010/108127) to allow them to bind to more than one antigen.
  • the molecules disclosed in these documents trade binding specificity for the ability to bind additional antigen species.
  • PCT Publications Nos. WO 2013/163427 and WO 2013/119903 disclose modifying the CH2 Domain to contain a fusion protein adduct comprising a binding domain. The document notes that the CH2 Domain likely plays only a minimal role in mediating effector function.
  • PCT Publications Nos. WO 2010/028797, WO2010028796 and WO 2010/028795 disclose recombinant antibodies whose Fc Regions have been replaced with additional VL and VH Domains, so as to form trivalent binding molecules.
  • PCT Publications Nos. WO 2003/025018 and WO2003012069 disclose recombinant diabodies whose individual chains contain scFv Domains.
  • PCT Publications No. WO 2013/006544 discloses multivalent Fab molecules that are synthesized as a single polypeptide chain and then subjected to proteolysis to yield heterodimeric structures. Thus, the molecules disclosed in these documents trade all or some of the capability of mediating effector function for the ability to bind additional antigen species.
  • the art has additionally noted the capability to produce diabodies that differ from such natural antibodies in being capable of binding two or more different epitope species (i.e., exhibiting bispecificity or multispecificity in addition to bivalency or multivalency) (see, e.g., Holliger et al. (1993) '"Diabodies ': Small Bivalent And Bispecific Antibody Fragments, ' " Proc. Natl. Acad. Sci. (U.S.A.) 90:6444-6448; US 2004/0058400 (Hollinger et al); US 2004/0220388 / WO 02/02781 (Mertens et al.); Alt et al. (1999) FEBS Lett.
  • a diabody is based on the antibody derivative known as a single-chain Variable Domain fragment (scFv).
  • scFv Single-chain Variable Domain fragment
  • Such molecules are made by linking Light and/ or Heavy chain Variable Domains by using a short linking peptide.
  • Bird et al. (1988) (“Single -Chain Antigen-Binding Proteins," Science 242:423-426) describes example of linking peptides which bridge approximately 3.5 nm between the carboxy terminus of one Variable Domain and the amino terminus of the other Variable Domain.
  • Linkers of other sequences have been designed and used (Bird et al. (1988) "Single-Chain Antigen-Binding Proteins," Science 242:423-426).
  • Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports.
  • the single-chain variants can be produced either recombinantly or synthetically.
  • an automated synthesizer can be used for synthetic production of scFv.
  • a suitable plasmid containing polynucleotide that encodes the scFv can be introduced into a suitable host cell, either eukaryotic, such as yeast, plant, insect or mammalian cells, or prokaryotic, such as E. coli.
  • Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides.
  • the resultant scFv can be isolated using standard protein purification techniques known in the art.
  • non-monospecific diabodies provides a significant advantage over antibodies, including but not limited to, the capacity to co-ligate and co-localize cells that express different epitopes.
  • Bispecific diabodies thus have wide-ranging applications including therapy and immunodiagnosis. Bispecificity allows for great flexibility in the design and engineering of the diabody in various applications, providing enhanced avidity to multimeric antigens, the cross-linking of differing antigens, and directed targeting to specific cell types relying on the presence of both target antigens.
  • diabody molecules known in the art Due to their increased valency, low dissociation rates and rapid clearance from the circulation (for diabodies of small size, at or below -50 kDa), diabody molecules known in the art have also shown particular use in the field of tumor imaging (Fitzgerald et al. (1997) “Improved Tumour Targeting By Disulphide Stabilized Diabodies Expressed In Pichia pastoris, " Protein Eng. 10: 1221).
  • bispecific diabodies can be used to co-ligate receptors on the surface of different cells or on a single cell. Co-ligation of different cells and/or receptors is useful to modulation effector functions and/or immune cell signaling.
  • Multispecific molecules ⁇ e.g., bispecific diabodies) comprising epitope-binding sites may be directed to a surface determinant of any immune cell such as B7-H3 (CD276), B7-H4 (VTCN1), BTLA (CD272), CD3, CD8, CD16, CD27, CD32, CD40, CD40L, CD47, CD64, CD70 (CD27L), CD80 (B7-1), CD86 (B7-2), CD94 (KLRD1), CD137 (4-1BB), CD137L (4-1BBL), CD226, CTLA-4 (CD152), Galectin-9, GITR, GITRL, HHLA2, ICOS (CD278), ICOSL (CD275), Killer Activation Receptor (KIR), L
  • epitope-binding sites directed to a cell surface receptor that is involved in regulating an immune checkpoint are useful in the generation of bispecific or multispecific binding molecules which antagonize or block the inhibitory signaling of immune checkpoint molecules and thereby stimulate, upregulate or enhance, immune responses in a subject.
  • Molecules involved in regulating immune checkpoints include, but are not limited to B7-H3, B7-H4, BTLA, CD40, CD40L, CD47, CD70, CD80, CD86, CD94, CD 137, CD137L, CD226, CTLA-4, Galectin-9, GITR, GITRL, HHLA2, ICOS, ICOSL, KIR, LAG-3, LIGHT, MHC class I or II, NKG2a, NKG2d, OX40, OX40L, PD1H, PD-1, PD-L1, PD-L2, PVR, SIRPa, TCR, TIGIT, TIM-3 and/or VISTA.
  • bispecific diabodies composed of non- covalently associated polypeptides are unstable and readily dissociate into non-functional monomers (see, e.g., Lu, D. et al. (2005) "A Fully Human Recombinant IgG-Tike Bispecific Antibody To Both The Epidermal Growth Factor Receptor And The Insulin-Tike Growth Factor Receptor For Enhanced Antitumor Activity;' J. Biol. Chem. 280(20): 19665-19672).
  • DART® Dual Affinity Re- Targeting Reagents
  • Such diabodies comprise two or more covalently complexed polypeptides and involve engineering one or more cysteine residues into each of the employed polypeptide species that permit disulfide bonds to form and thereby covalently bond two polypeptide chains.
  • cysteine residues For example, the addition of a cysteine residue to the C-terminus of such constructs has been shown to allow disulfide bonding between the polypeptide chains, stabilizing the resulting heterodimer without interfering with the binding characteristics of the bivalent molecule.
  • the first polypeptide comprises (in the N-terminal to C-terminal direction): (i) a First Domain that comprises a binding region of a Light Chain Variable Domain of a first immunoglobulin (VLl), (ii) a Second Domain that comprises a binding region of a Heavy Chain Variable Domain of a second immunoglobulin (VH2), and (iii) a Third Domain that contains a cysteine residue (or a cysteine-containing domain) and a Heterodimer-Promoting Domain that serves to promote heterodimerization with the second polypeptide of the diabody and to covalently bond the diabody' s first and second polypeptides to one another.
  • the second polypeptide contains (in the N-terminal to C-terminal direction): (i) a First Domain that comprises a binding region of a Light Chain Variable Domain of the second immunoglobulin (VL2), (ii) a Second Domain that comprises a binding region of a Heavy Chain Variable Domain of the first immunoglobulin (VH1), and (iii) a Third Domain that contains a cysteine residue (or a cysteine-containing domain) and a complementary Heterodimer-Promoting Domain that complexes with the Heterodimer-Promoting Domain of the first polypeptide chain in order to promote heterodimerization with the first polypeptide chain.
  • the cysteine residue (or a cysteine-containing domain) of the third domain of the second polypeptide chain serves to promote the covalent bonding of the second polypeptide chain to the first polypeptide chain of the diabody.
  • Such molecules are stable, potent and have the ability to simultaneously bind two or more antigens.
  • the Third Domains of the first and second polypeptides each contain a cysteine residue, which serves to bind the polypeptides together via a disulfide bond.
  • Figure 1 provides a schematic of such a diabody, which utilizes E-coil/K- coil Heterodimer-Promoting domains and a cysteine containing linker for covalent bonding.
  • one or both of the polypeptides may additionally possesses the sequence of a CH2-CH3 Domain, such that complexing between the two diabody polypeptides forms an Fc Region that is capable of binding to the Fc receptor of cells (such as B lymphocytes, dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils and mast cells).
  • the CH2 and/or CH3 Domains of such polypeptide chains need not be identical in sequence, and advantageously are modified to foster complexing between the two polypeptide chains. [0079] Many variations of such molecules have been described (see, e.g., United States Patent Publications No.
  • Fc Region-containing DART® diabodies may comprise two pairs of polypeptide chains.
  • the first polypeptide chain comprises (in the N-terminal to C-terminal direction): (i) a First Domain that comprises a binding region of a Light Chain Variable Domain of a first immunoglobulin (VLl), (ii) a Second Domain that comprises a binding region of a Heavy Chain Variable Domain of a second immunoglobulin (VH2), (iii) a Third Domain that contains a cysteine residue (or a cysteine-containing domain) and a serves to promote heterodimerization with the second polypeptide of the diabody and to covalently bond the diabody's first and second polypeptides to one another, and (iv) a CH2-CH3 Domain.
  • the second polypeptide contains (in the N-terminal to C-terminal direction): (i) a First Domain that comprises a binding region of a Light Chain Variable Domain of the second immunoglobulin (VL2), (ii) a Second Domain that comprises a binding region of a Heavy Chain Variable Domain of the first immunoglobulin (VHl), and (iii) ) a Third Domain that contains a cysteine residue (or a cysteine-containing domain) and a Heterodimer-Promoting Domain that promotes heterodimerization with the first polypeptide chain.
  • VL2 Light Chain Variable Domain of the second immunoglobulin
  • VHl Heavy Chain Variable Domain of the first immunoglobulin
  • a Third Domain that contains a cysteine residue (or a cysteine-containing domain) and a Heterodimer-Promoting Domain that promotes heterodimerization with the first polypeptide chain.
  • two first polypeptides complex with each other to form an F
  • Other Fc-Region-containing DART® diabodies may comprise three polypeptide chains.
  • the first polypeptide of such DART® diabodies contains three domains: (i) a VL1- containing Domain, (ii) a VH2-containing Domain and (iii) a Domain containing a CH2-CH3 sequence.
  • the second polypeptide of such DART® diabodies contains: (i) a VL2-containing Domain, (ii) a VHl -containing Domain and (iii) a Domain that promotes heterodimerization and covalent bonding with the diabody ' s first polypeptide chain.
  • the third polypeptide of such DART® diabodies comprises a CH2-CH3 sequence.
  • the first and second polypeptide chains of such DART® diabodies associate together to form a VLl /VHl binding site that is capable of binding to the epitope, as well as a VL2/VH2 binding site that is capable of binding to the second epitope.
  • Such more complex DART® molecules also possess cysteine- containing domains which function to form a covalently bonded complex.
  • the first and second polypeptides are bonded to one another through a disulfide bond involving cysteine residues in their respective Third Domains.
  • the first and third polypeptide chains complex with one another to form an Fc Region that is stabilized via a disulfide bond.
  • Figures 4A-4B provide schematics of such diabodies comprising three polypeptide chains.
  • Still other Fc-Region-containing DART® diabodies may comprise five polypeptide chains which may comprise the binding regions from the Light and Heavy Chain Variable Domains of up to three different immunoglobulins (referred to as VLl/VHl, VL2/VH2 and VL3/VH3).
  • the first polypeptide chain of such diabodies may contain: (i) a VH1- containing domain, (ii) a CHI -containing domain, and (iii) a Domain containing a CH2-CH3 sequence.
  • the second and fifth polypeptide chains of such diabodies may contain: (i) a VLl- containing domain, and (ii) a CL-containing domain.
  • the third polypeptide chain of such diabodies may contain: (i) a VH1 -containing domain, (ii) a CHI -containing domain, (iii) a Domain containing a CH2-CH3 sequence, (iv) a VL2 -containing Domain, (v) a VH3- containing Domain and (vi) a Heterodimer-Promoting Domain, where the Heterodimer- Promoting Domains promote the dimerization of the third chain with the fourth chain.
  • the fourth polypeptide of such diabodies may contain: (i) a VL3 -containing Domain, (ii) a VH2- containing Domain and (iii) a Domain that promotes heterodimerization and covalent bonding with the diabody's third polypeptide chain.
  • the first and third polypeptides complex with each other to form an Fc Region.
  • Such more complex DART® molecules also possess cysteine-containing domains which function to form a covalently bonded complex, such that each polypeptide chain is bonded to at least one addition polypeptide chain through a disulfide bond involving cysteine residues.
  • such domains are ordered in the N-terminal to C-terminal direction.
  • Figure 5 provides schematics of such diabodies comprising five polypeptide chains.
  • the preferred PD-l-binding molecules of the present invention include antibodies, diabodies, BiTEs, etc. and are capable of binding to a continuous or discontinuous ⁇ e.g., conformational) portion (epitope) of human PD-1 (CD279).
  • the PD-l-binding molecules of the present invention will preferably also exhibit the ability to bind to PD-1 molecules of one or more non-human species, in particular, primate species (and especially a primate species, such as cynomolgus monkey).
  • a representative human PD-1 polypeptide NCBI Sequence
  • NP 005009.2 including a 20 amino acid residue signal sequence (shown underlined) and the
  • amino acid residue mature protein has the amino acid sequence (SEQ ID NO:68):
  • the anti-human PD- 1 -binding molecules of the invention are characterized by any (one or more) of the following criteria:
  • non-human primate PD-1 e.g., PD-1 of cynomolgus
  • (9) inhibits (i.e., blocks or interferes with) the binding/the inhibitory activity) of PD-1 ligand (PD-L1/PD-L2) to PD-1;
  • the term "antigen specific T-cell response" refers to responses by a T- cell that result from stimulation of the T-cell with the antigen for which the T-cell is specific.
  • responses by a T-cell upon antigen specific stimulation include proliferation and cytokine production (e.g., TNF-a, IFN- ⁇ production).
  • SEB Staphylococcus aureus Enterotoxin type B antigen
  • the preferred anti-human PD-1 -binding molecules of the present invention possess the VH and/or VL Domains of murine anti-human PD-1 monoclonal antibodies "PD-1 mAb 1," “PD-1 mAb 2,” “PD-1 mAb 3,””PD-1 mAb 4," "PD-1 mAb 5,” “PD-1 mAb 6,” “PD-1 mAb 7,” “PD-1 mAb 8,” "PD-1 mAb 9,” “PD-1 mAb 10,” “PD-1 mAb 11,” “PD-1 mAb 12,” “PD-1 mAb 13,” “PD-1 mAb 14,” or “PD-1 mAb 15,” and more preferably possess 1, 2 or all 3 of the CDRHS of the VH Domain and/or 1, 2 or all 3 of the CDRLS of the VL Domain of such anti-human PD-1 monoclonal antibodies.
  • Such preferred anti -human PD-1 -binding molecules include bispecific (or multispecific) antibodies, chimeric or humanized antibodies, BiTes
  • the invention particularly relates to PD-1 -binding molecules comprising a PD-1 binding domain that possess:
  • PD-1 mAb 1 that binds, or competes for binding with, the same epitope as PD-1 mAb 1, PD-1 mAb 2, PD- 1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15.
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 1 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 1 is SEQ ID NO: 1
  • the above-described murine anti-human PD-1 antibody PD-1 mAb 1 was humanized and further deimmunized when antigenic epitopes were identified in order to demonstrate the capability of humanizing an anti -human PD-1 antibody so as to decrease its antigenicity upon administration to a human recipient.
  • the humanization yielded one humanized VH Domain, designated herein as "hPD-1 mAb 1 VHl,” and one humanized VL Domain designated herein as "hPD-1 mAb 1 VL1.” Accordingly, an antibody comprising the humanized VL Domains paired with the humanized VH Domain is referred to as "hPD-1 mAb 1.”
  • An exemplary polynucleotide that encodes hPD-1 mAb 1 VHl is SEQ ID NO:80
  • An exemplary polynucleotide that encodes hPD-1 mAb 1 VLl is SEQ ID NO:82
  • CDR H 3 of PD-1 mAb 2 (SEQ ID NO:87): LSDYFDY [0099]
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 2 is SEQ ID NO:87.
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 2 is SEQ ID NO: 1
  • the above-described murine anti-human PD-1 antibody PD-1 mAb 2 was humanized and further deimmunized when antigenic epitopes were identified in order to demonstrate the capability of humanizing an anti -human PD-1 antibody so as to decrease its antigenicity upon administration to a human recipient.
  • the humanization yielded one humanized VH Domain, designated herein as "hPD-1 mAb 2 VHl,” and one humanized VL Domains designated herein as "hPD-1 mAb 1 VL1.” Accordingly, any antibody comprising the humanized VL Domains paired with the humanized VH Domain is referred to as "hPD-1 mAb 2.”
  • An exemplary polynucleotide that encodes hPD-1 mAb 2 VHl is SEQ ID NO:94
  • An exemplary polynucleotide that encodes hPD-1 mAb 2 VLl is SEQ ID NO:96
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 3 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 3 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 4 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 5 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 5 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 6 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 6 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 7 is SEQ ID NO: 1
  • CDR L 3 of PD-1 mAb 7 (SEQ ID NO: 146): QQSKEVPYT [00126]
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 7 is SEQ ID NO: 1466
  • the above-described murine anti-human PD-1 antibody PD-1 mAb 7 was humanized and further deimmunized when antigenic epitopes were identified in order to demonstrate the capability of humanizing an anti -human PD-1 antibody so as to decrease its antigenicity upon administration to a human recipient.
  • the humanization yielded two humanized VH Domains, designated herein as “hPD-1 mAb 7 VHl,” and “hPD-1 mAb 7 VH2,” and three humanized VL Domains designated herein as “hPD-1 mAb 7 VL1,” “hPD- 1 mAb 7 VL2,” and “hPD-1 mAb 7 VL3.” Any of the humanized VL Domains may be paired with either of the humanized VH Domains.
  • any antibody comprising one of the humanized VL Domains paired with the humanized VH Domain is referred to generically as "hPD-1 mAb 7," and particular combinations of humanized VH/VL Domains are referred to by reference to the specific VH/VL Domains, for example a humanized antibody comprising hPD-1 mAb 7 VHl and hPD-1 mAb 1 VL2 is specifically referred to as “hPD-1 mAb 7(1.2)."
  • An exemplary polynucleotide that encodes hPD-1 mAb 7 VHl is SEQ ID NO: 148
  • An exemplary polynucleotide that encodes hPD-1 mAb 7 VH2 is SEQ ID NO: 150
  • An exemplary polynucleotide that encodes hPD-1 mAb 7 VLl is SEQ ID NO: 152
  • An exemplary polynucleotide that encodes hPD- 1 mAb 7 VL2 is SEQ ID NO: 154
  • An exemplary polynucleotide that encodes hPD- 1 mAb 7 VL3 is SEQ ID NO: 156
  • the CDRLI of the VL Domain of both hPD- 1 mAb 7 VL2 and hPD-1 mAb 7 VL3 comprises an asparagine to serine amino acid substitution and has the amino acid sequence: RASESVDNYGMSFMN ((SEQ ID NO: 157), the substituted serine is shown underlined). It is contemplated that a similar substitution may be incorporated into any of the PD- 1 mAb 7 CDRLI Domains described above.
  • the CDR L 2 of the VL Domain of hPD- 1 mAb 7 VL3 comprises a glutamine to arginine amino acid substitution and has the amino acid sequence: AASNRGS ((SEQ ID NO: 158), the substituted arginine is shown underlined). It is contemplated that a similar substitution may be incorporated into any of the PD- 1 mAb 7 CDRL2 Domains described above.
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 8 is SEQ ID NO: 1
  • ggccacattg actgtagaca agtcctccac cacagcctac atggagctcc gcagcctgac atctgaggac tctgcagtct attactgtgc gagcgatttt
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 8 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 9 is SEQ ID NO: 1
  • CDR L 2 of PD-1 mAb 9 (SEQ ID NO: 177): NAKTLAA
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 9 is SEQ ID NO: 1
  • the above-described murine anti-human PD-1 antibody PD-1 mAb 9 was humanized and further deimmunized when antigenic epitopes were identified in order to demonstrate the capability of humanizing an anti -human PD-1 antibody so as to decrease its antigenicity upon administration to a human recipient.
  • the humanization yielded two humanized VH Domains, designated herein as "hPD-1 mAb 9 VHl,” and “hPD-1 mAb 9 VH2,” and two humanized VL Domains designated herein as "hPD-1 mAb 9 VL1," and "hPD-1 mAb 9 VL2.” Any of the humanized VL Domains may be paired with the humanized VH Domains.
  • any antibody comprising one of the humanized VL Domains paired with the humanized VH Domain is referred to generically as "hPD-1 mAb 9," and particular combinations of humanized VH/VL Domains are referred to by reference to the specific VH/VL Domains, for example a humanized antibody comprising hPD-1 mAb 9 VHl and hPD- 1 mAb 9 VL2 is specifically referred to as “hPD-1 mAb 9(1.2)."
  • An exemplary polynucleotide that encodes hPD-1 mAb 9 VHl is SEQ ID NO: 180
  • An exemplary polynucleotide that encodes hPD-1 mAb 9 VH2 is SEQ ID NO: 182
  • the CDRHI of the VH Domain of hPD- 1 mAb 9 VH2 comprises a serine to glycine amino acid substitution and has the amino acid sequence: SYLVG ((SEQ ID NO: 183), the substituted glycine is shown underlined). It is contemplated that a similar substitution may be incorporated into any of the PD-1 mAb 9 CDRHI Domains described above.
  • An exemplary polynucleotide that encodes hPD- 1 mAb 9 VLl is SEQ ID NO: 185
  • An exemplary polynucleotide that encodes hPD-1 mAb 9 VL2 is SEQ ID NO: 187
  • the CDRLI of the VL Domain of hPD-1 mAb 9 VL2 comprises a serine to asparagine amino acid substitution and has the amino acid sequence: RASENIYNYLA (SEQ ID NO: 188), the substituted asparagine is shown underlined). It is contemplated that a similar substitution may be incorporated into any of the PD-1 mAb 9 CDRLI Domains described above.
  • the CDR L 2 of the VL Domain of hPD-1 mAb 9 VL2 comprises an asparagine to aspartate amino acid substitution and has the amino acid sequence: DAKTLAA ((SEQ ID NO: 189), the substituted aspartate is shown underlined). It is contemplated that a similar substitution may be incorporated into any of the PD-1 mAb 7 CDRL2 Domains described above.
  • CDR H 3 of PD-1 mAb 10 (SEQ ID NO: 194) QELAFDY [00161]
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 10 is SEQ ID NO: 194.
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 10 is SEQ ID NO: 1
  • CDR H 3 of PD-1 mAb 11 (SEQ ID NO:204): GTYSYFDV [00165]
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 11 is SEQ ID NO:204
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 11 is SEQ ID NO: 1
  • CDR H 3 of PD-1 mAb 12 (SEQ ID NO:214): ERITTWEGAYWYFDV [00169]
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 12 is SEQ ID NO:214
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 12 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VH Domain of PD-1 mAb 13 is SEQ ID NO: 1
  • CDRLI of PD-1 mAb 13 (SEQ ID NO:227): LASQTIGTWLA
  • An exemplary polynucleotide that encodes the VH Domain of PD- 1 mAb 14 is SEQ ID NO: 1
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 14 is SEQ ID NO: 1
  • CDRLI of PD-1 mAb 15 (SEQ ID NO:247): LASQTIGTWLA
  • An exemplary polynucleotide that encodes the VL Domain of PD-1 mAb 15 is SEQ ID NO: 1
  • the above-described murine anti-human PD-1 antibody PD-1 mAb 15 was humanized and further deimmunized when antigenic epitopes were identified in order to demonstrate the capability of humanizing an anti -human PD-1 antibody so as to decrease its antigenicity upon administration to a human recipient.
  • the humanization yielded one humanized VH Domain, designated herein as "hPD-1 mAb 2 VHl,” and one humanized VL Domains designated herein as "hPD-1 mAb 1 VL1.”
  • An antibody comprising the humanized VL Domain paired with the humanized VH Domain is referred to as "hPD-1 mAb 15.”
  • An exemplary polynucleotide that encodes hPD-1 mAb 15 VHl is SEQ ID NO:251
  • An exemplary polynucleotide that encodes hPD-1 mAb 15 VL1 is SEQ ID NO:253
  • FcyRI CD64
  • FcyRIIA CD32A
  • FcyRIII CD 16
  • FcyRIIB CD32B
  • FcRn neonatal Fc Receptor
  • Modification of the Fc Region normally leads to an altered phenotype, for example altered serum half-life, altered stability, altered susceptibility to cellular enzymes or altered effector function. It may be desirable to modify an antibody or other binding molecule of the present invention with respect to effector function, for example, so as to enhance the effectiveness of such molecule in treating cancer. Reduction or elimination of effector function is desirable in certain cases, for example in the case of antibodies whose mechanism of action involves blocking or antagonism, but not killing of the cells bearing a target antigen.
  • Increased effector function is generally desirable when directed to undesirable cells, such as tumor and foreign cells, where the FcyRs are expressed at low levels, for example, tumor-specific B cells with low levels of FcyRIIB (e.g., non-Hodgkins lymphoma, CLL, and Burkitt's lymphoma).
  • FcyRIIB e.g., non-Hodgkins lymphoma, CLL, and Burkitt's lymphoma.
  • molecules of the invention with conferred or altered effector function activity are useful for the treatment and/or prevention of a disease, disorder or infection where an enhanced efficacy of effector function activity is desired.
  • the PD-l-binding molecules of the present invention comprise an Fc Region that possesses one or more modifications (e.g., substitutions, deletions, or insertions) to the sequence of amino acids of a wild-type Fc Region (e.g., SEQ ID NO:l), which reduce the affinity and avidity of the Fc Region and, thus, the molecule of the invention, for one or more FcyR receptors.
  • the molecules of the invention comprise an Fc Region that possesses one or more modifications to the amino acids of the wild- type Fc Region, which increase the affinity and avidity of the Fc Region and, thus, the molecule of the invention, for one or more FcyR receptors.
  • the molecules comprise a variant Fc Region wherein said variant confers or mediates increased antibody dependent cell mediated cytotoxicity (ADCC) activity and/or an increased binding to FcyRIIA, relative to a molecule comprising no Fc Region or comprising a wild-type Fc Region.
  • ADCC antibody dependent cell mediated cytotoxicity
  • the molecules comprise a variant Fc Region wherein said variant confers or mediates decreased ADCC activity (or other effector function) and/or an increased binding to FcyRIIB, relative to a molecule comprising no Fc Region or comprising a wild-type Fc Region.
  • the invention encompasses PD-1 -binding molecules comprising a variant Fc Region, which variant Fc Region does not show a detectable binding to any FcyR, relative to a comparable molecule comprising the wild-type Fc Region.
  • the invention encompasses PD-1 -binding molecules comprising a variant Fc Region, which variant Fc Region only binds a single FcyR, preferably one of FcyRIIA, FcyRIIB, or FcyRIIIA.
  • any such increased affinity and/or avidity is preferably assessed by measuring in vitro the extent of detectable binding to the FcyR or FcyR-related activity in cells that express low levels of the FcyR when binding activity of the parent molecule (without the modified Fc Region) cannot be detected in the cells, or in cells which express non-FcyR receptor target antigens at a density of 30,000 to 20,000 molecules/cell, at a density of 20,000 to 10,000 molecules/cell, at a density of 10,000 to 5,000 molecules/cell, at a density of 5,000 to 1,000 molecules/cell, at a density of 1,000 to 200 molecules/cell or at a density of 200 molecules/cell or less (but at least 10, 50, 100 or 150 molecules/cell).
  • the PD-l-binding molecules of the present invention may comprise a variant Fc Region having altered affinities for an activating and/or inhibitory Fey receptor.
  • the PD-l-binding molecule comprises a variant Fc Region that has increased affinity for FcyRIIB and decreased affinity for FcyRIIIA and/or FcyRIIA, relative to a comparable molecule with a wild-type Fc Region.
  • the PD-l-binding molecule of the present invention comprise a variant Fc Region, which has decreased affinity for FcyRIIB and increased affinity for FcyRIIIA and/or FcyRIIA, relative to a comparable molecule with a wild-type Fc Region.
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region that has decreased affinity for FcyRIIB and decreased affinity for FcyRIIIA and/or FcyRIIA, relative to a comparable molecule with a wild-type Fc Region.
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region, which has unchanged affinity for FcyRIIB and decreased (or increased) affinity for FcyRIIIA and/or FcyRIIA, relative to a comparable molecule with a wild-type Fc Region.
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region having an altered affinity for FcyRIIIA and/or FcyRIIA such that the immunoglobulin has an enhanced effector function.
  • effector cell functions include antibody dependent cell mediated cytotoxicity, antibody dependent phagocytosis, phagocytosis, opsonization, opsonophagocytosis, cell binding, rosetting, C lq binding, and complement dependent cell mediated cytotoxicity.
  • the alteration in affinity or effector function is at least 2- fold, preferably at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, at least 10-fold, at least 50-fold, or at least 100-fold, relative to a comparable molecule comprising a wild-type Fc Region.
  • the variant Fc Region immunospecifically binds one or more FcRs with at least 65%, preferably at least 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, 200%, 225%, or 250% greater affinity relative to a molecule comprising a wild-type Fc Region.
  • Such measurements can be in vivo or in vitro assays, and in a preferred embodiment are in vitro assays such as ELISA or surface plasmon resonance assays.
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region wherein said variant agonizes at least one activity of an FcyR receptor, or antagonizes at least one activity of an FcyR receptor.
  • the molecules comprise a variant that antagonizes one or more activities of FcyRIIB, for example, B-cell receptor-mediated signaling, activation of B-cells, B-cell proliferation, antibody production, intracellular calcium influx of B cells, cell cycle progression, FcyRIIB- mediated inhibition of FcsRI signaling, phosphorylation of FcyRIIB, SHIP recruitment, SHIP phosphorylation and association with She, or activity of one or more downstream molecules (e.g., MAP kinase, JNK, p38, or Akt) in the FcyRIIB signal transduction pathway.
  • FcyRIIB for example, B-cell receptor-mediated signaling, activation of B-cells, B-cell proliferation, antibody production, intracellular calcium influx of B cells, cell cycle progression, FcyRIIB- mediated inhibition of FcsRI signaling, phosphorylation of FcyRIIB, SHIP recruitment, SHIP phosphorylation and association with She, or activity of one
  • the PD-l-binding molecules of the present invention comprise a variant that agonizes one or more activities of FcsRI, for example, mast cell activation, calcium mobilization, degranulation, cytokine production, or serotonin release.
  • the molecules comprise an Fc Region comprising regions from two or more IgG isotypes (e.g., IgGl, IgG2, IgG3 and IgG4).
  • an Fc Region is said to be of a particular IgG isotype if its amino acid sequence is most homologous to that isotype relative to other IgG isotypes.
  • the various IgG isotypes exhibit differing physical and functional properties including serum half-life, complement fixation, FcyR binding affinities and effector function activities (e.g., ADCC, CDC, etc.) due to differences in the amino acid sequences of their hinge and/or Fc Regions, for example as described in Flesch and Neppert (1999) J. Clin. Lab. Anal. 14: 141-156; Chappel et al. (1993) J. Biol. Chem. 33 :25124-25131; Chappel et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) 88:9036-9040; or Briiggemann et al. (1987) J. Exp.
  • This type of variant Fc Region may be used alone, or in combination with an amino acid modification, to affect Fc-mediated effector function and/or binding activity.
  • the amino acid modification and IgG hinge/Fc Region may display similar functionality ⁇ e.g., increased affinity for FcyRIIA) and may act additively or, more preferably, synergistically to modify the effector functionality in the molecule of the invention, relative to a molecule of the invention comprising a wild-type Fc Region.
  • the amino acid modification and IgG Fc Region may display opposite functionality ⁇ e.g., increased and decreased affinity for FcyRIIA, respectively) and may act to selectively temper or reduce a specific functionality in the molecule of the invention, relative to a molecule of the invention not comprising an Fc Region or comprising a wild-type Fc Region of the same isotype.
  • the PD-1 -binding molecules of the present invention comprise a variant Fc Region, wherein said variant Fc Region comprises at least one amino acid modification relative to a wild-type Fc Region, such that said molecule has an altered affinity for an FcR, provided that said variant Fc Region does not have a substitution at positions that make a direct contact with FcyR based on crystallographic and structural analysis of Fc-FcR interactions such as those disclosed by Sondermann et al. (2000) Nature 406:267- 73.
  • the molecules of the invention comprise variant Fc Regions comprise modification of at least one residue that does not make a direct contact with an FcyR based on structural and crystallographic analysis, e.g., is not within the Fc-FcyR binding site.
  • Variant Fc Regions are well known in the art, and any known variant Fc Region may be used in the present invention to confer or modify the effector function exhibited by a molecule of the invention comprising an Fc Region (or portion thereof) as functionally assayed, e.g., in an NK dependent or macrophage dependent assay.
  • Fc Region variants identified as altering effector function are disclosed in PCT Publications No. WO 04/063351; WO 06/088494; WO 07/024249; WO 06/113665; WO 07/021841; WO 07/106707; and WO 2008/140603, and any suitable variant disclosed therein may be used in the present molecules.
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region, having one or more amino acid modifications in one or more regions, which modification(s) alter (relative to a wild-type Fc Region) the Ratio of Affinities of the variant Fc Region to an activating FcyR (such as FcyRIIA or FcyRIIIA) relative to an inhibiting FcyR (such as FcyRIIB):
  • PD-l-binding molecules of the present invention that possess a variant Fc Region (relative to the wild-type Fc Region) in which the variant Fc Region has a Ratio of Affinities greater than 1.
  • Such molecules have particular use in providing a therapeutic or prophylactic treatment of a disease, disorder, or infection, or the amelioration of a symptom thereof, where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcyR is desired, e.g., cancer or infectious disease.
  • a variant Fc Region having a Ratio of Affinities less than 1 mediates decreased efficacy of effector cell function.
  • Table 1 lists exemplary single, double, triple, quadruple and quintuple mutations by whether their Ratio of Affinities is greater than or less than 1.
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications at any of positions 255, 256, 258, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 300, 301, 303, 305, 307, 309, 312, 320, 322, 326, 329, 330, 332, 331, 333, 334, 335, 337, 338, 339, 340, 359, 360, 373, 376, 416, 419, 430, 434, 435, 437, 438 or 439.
  • the variant Fc Region has any of the following residues: A256, N268, Q272, D286, Q286, S286, A290, S290, A298, M301, A312, E320, M320, Q320, R320, E322, A326, D326, E326, N326, S326, K330, T339, A333, A334, E334, H334, L334, M334, Q334, V334, K335, Q335, A359, A360 or A430.
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any amino acid modifications e.g., substitutions
  • any of the following residues A255, A256, A258, A267, A268, N268, A272, Q272, A276, A280, A283, A285, A286, D286, Q286, S286, A290, S290, M301, E320, M320, Q320, R320, E322, A326, D326, E326, S326, K330, A331, Q335, A337 or A430.
  • Preferred variants include one or more modifications at any of positions: 228, 230, 231, 232, 233, 234, 235, 239, 240, 241, 243, 244, 245, 247, 262, 263, 264, 265, 266, 271, 273, 275, 281, 284, 291, 296, 297, 298, 299, 302, 304, 305, 313, 323, 325, 326, 328, 330 or 332.
  • Particularly preferred variants include one or more modifications selected from groups A-AI:
  • Still more particularly preferred variants include one or more modifications selected from Groups 1-105:
  • a PD-1 -binding molecule of the invention will comprise a variant Fc Region having at least one modification in the Fc Region.
  • the variant Fc Region comprises at least one substitution selected from the group consisting of L235V, F243L, R292P, Y300L, V305I, and P396L.
  • the variant Fc Region comprises:
  • the variant Fc Region comprises substitutions of:
  • a PD-1 -binding molecule of the invention comprises a variant Fc Region that exhibits decreased (or substantially no) binding to FcyRIA (CD64), FcyRIIA (CD32A), FcyRIIB (CD32B), FcyRIIIA (CD 16a) or FcyRIIIB (CD 16b) (relative to the binding exhibited by the wild-type IgGl Fc Region (SEQ ID NO:l)).
  • a PD-1- binding molecule of the invention will comprise a variant Fc Region that exhibits reduced (or substantially no) binding to an FcyR (e.g., FcyRIIIA) and reduced (or substantially no) ADCC effector function.
  • the variant Fc Region comprises at least one substitution selected from the group consisting of L234A, L235A, D265A,N297Q, and N297G.
  • the variant Fc Region comprises the substitution of L234A; L235A; L234A and L235A; D265A; N297Q, or N297G.
  • a preferred IgGl sequence for the CH2 and CH3 Domains of the PD-l-binding molecules of the invention will have the L234A/L235A substitutions (SEQ ID NO:5):
  • X is a lysine (K) or is absent.
  • a PD-l-binding molecule of the invention comprises an Fc Region which inherently exhibits decreased (or substantially no) binding to FcyRIIIA (CD 16a) and/or reduced effector function (relative to the binding exhibited by the wild-type IgGl Fc Region (SEQ ID NO:l)).
  • a PD-l-binding molecule of the present invention comprises an IgG2 Fc Region (SEQ ID NO:2) or an IgG4 Fc Region (SEQ ID:NO:4).
  • the instant invention also encompasses the introduction of a stabilizing mutation, such as the IgG4 hinge region S228P substitution (see, e.g., SEQ ID NO:13: ESKYGPPCPPCP, (Lu et al, (2008) "The Effect Of A Point Mutation On The Stability Of Igg4 As Monitored By Analytical Ultracentrifugation " J. Pharmaceutical Sciences 97:960-969) to reduce the incidence of strand exchange.
  • a stabilizing mutation such as the IgG4 hinge region S228P substitution (see, e.g., SEQ ID NO:13: ESKYGPPCPPCP, (Lu et al, (2008) "The Effect Of A Point Mutation On The Stability Of Igg4 As Monitored By Analytical Ultracentrifugation " J. Pharmaceutical Sciences 97:960-969) to reduce the incidence of strand exchange.
  • the invention encompasses the use of any variant Fc Region known in the art, such as those disclosed in Jefferis, B.J. et al (2002) "Interaction Sites On Human IgG-Fc For FcgammaR: Current Models " Immunol. Lett. 82:57-65; Presta, L.G. etal. (2002) “Engineering Therapeutic Antibodies For Improved Function " Biochem. Soc. Trans. 30:487-90; Idusogie, E.E. et al. (2001) "Engineered Antibodies With Increased Activity To recruit Complement " J. Immunol. 166:2571-75; Shields, R.L. et al.
  • the molecules of the invention further comprise one or more glycosylation sites, so that one or more carbohydrate moieties are covalently attached to the molecule.
  • the molecules of the invention with one or more glycosylation sites and/or one or more modifications in the Fc Region confer or have an enhanced antibody mediated effector function, e.g., enhanced ADCC activity, compared to the unmodified antibody.
  • the invention further comprises molecules comprising one or more modifications of amino acids that are directly or indirectly known to interact with a carbohydrate moiety of the Fc Region, including but not limited to amino acids at positions 241, 243, 244, 245, 245, 249, 256, 258, 260, 262, 264, 265, 296, 299, and 301.
  • Amino acids that directly or indirectly interact with a carbohydrate moiety of an Fc Region are known in the art, see, e.g., Jefferis et al, 1995 Immunology Letters, 44: 111-7, which is incorporated herein by reference in its entirety.
  • the invention encompasses molecules that have been modified by introducing one or more glycosylation sites into one or more sites of the molecules, preferably without altering the functionality of the molecules, e.g., binding activity to target antigen or FcyR.
  • Glycosylation sites may be introduced into the variable and/or constant region of the molecules of the invention.
  • "glycosylation sites” include any specific amino acid sequence in an antibody to which an oligosaccharide ⁇ i.e., carbohydrates containing two or more simple sugars linked together) will specifically and covalently attach. Oligosaccharide side chains are typically linked to the backbone of an antibody via either N-or O-linkages.
  • N-linked glycosylation refers to the attachment of an oligosaccharide moiety to the side chain of an asparagine residue.
  • O-linked glycosylation refers to the attachment of an oligosaccharide moiety to a hydroxyamino acid, e.g., serine, threonine.
  • the molecules of the invention may comprise one or more glycosylation sites, including N-linked and O-linked glycosylation sites. Any glycosylation site for N-linked or O-linked glycosylation known in the art may be used in accordance with the instant invention.
  • An exemplary N-linked glycosylation site that is useful in accordance with the methods of the present invention is the amino acid sequence: Asn-X-Thr/Ser, wherein X may be any amino acid and Thr/Ser indicates a threonine or a serine.
  • a site or sites may be introduced into a molecule of the invention using methods well known in the art to which this invention pertains (see for example, IN VITRO MUTAGENESIS, RECOMBINANT DNA: A SHORT COURSE, J. D. Watson, et al. W.H. Freeman and Company, New York, 1983, chapter 8, pp. 106-116, which is incorporated herein by reference in its entirety.
  • An exemplary method for introducing a glycosylation site into a molecule of the invention may comprise: modifying or mutating an amino acid sequence of the molecule so that the desired Asn-X-Thr/Ser sequence is obtained.
  • the invention encompasses methods of modifying the carbohydrate content of a molecule of the invention by adding or deleting a glycosylation site.
  • Methods for modifying the carbohydrate content of antibodies (and molecules comprising antibody domains, e.g., Fc Region) are well known in the art and encompassed within the invention, see, e.g., U.S. Patent No. 6,218,149; EP 0 359 096 B l; U.S. Publication No. US 2002/0028486; WO 03/035835; U.S. Publication No. 2003/0115614; U.S. Patent No. 6,218,149; U.S. Patent No.
  • the invention encompasses methods of modifying the carbohydrate content of a molecule of the invention by deleting one or more endogenous carbohydrate moieties of the molecule.
  • the invention encompasses shifting the glycosylation site of the Fc Region of an antibody, by modifying positions adjacent to 297.
  • the invention encompasses modifying position 296 so that position 296 and not position 297 is glycosylated.
  • Effector function can also be modified by techniques such as by introducing one or more cysteine residues into the Fc Region, thereby allowing interchain disulfide bond formation in this region to occur, resulting in the generation of a homodimeric antibody that may have improved internalization capability and/or increased complement-mediated cell killing and ADCC (Caron, P.C. et a/. (1992) "Engineered Humanized Dimeric Forms OfIgG Are More Effective Antibodies;' J. Exp. Med. 176: 1191-1195; Shopes, B. (1992) 11 A Genetically Engineered Human IgG Mutant With Enhanced Cytolytic Activity;' J. Immunol. 148(9):2918-2922.
  • Homodimeric antibodies with enhanced antitumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff, E.A. et al. (1993) "Monoclonal Antibody Homodimers: Enhanced Antitumor Activity In Nude Mice " Cancer Research 53 :2560-2565.
  • an antibody can be engineered which has dual Fc Regions and may thereby have enhanced complement lysis and ADCC capabilities (Stevenson, G.T. et al. (1989) "A Chimeric Antibody With Dual Fc Regions (bisFabFc) Prepared By Manipulations At The IgG Hinge " Anti-Cancer Drug Design 3 :219-230).
  • the serum half-life of the molecules of the present invention comprising Fc Regions may be increased by increasing the binding affinity of the Fc Region for FcRn.
  • the term "half- life" as used herein means a pharmacokinetic property of a molecule that is a measure of the mean survival time of the molecules following their administration.
  • Half-life can be expressed as the time required to eliminate fifty percent (50%) of a known quantity of the molecule from a subject's body ⁇ e.g., human patient or other mammal) or a specific compartment thereof, for example, as measured in serum, i.e., circulating half-life, or in other tissues.
  • an increase in half-life results in an increase in mean residence time (MRT) in circulation for the molecule administered.
  • MRT mean residence time
  • the PD-1 -binding molecules of the present invention comprise a variant Fc Region, wherein said variant Fc Region comprises at least one amino acid modification relative to a wild-type Fc Region, such that said molecule has an increased half-life (relative to a wild-type Fc Region).
  • the PD-l-binding molecules of the present invention comprise a variant Fc Region, wherein said variant Fc Region comprises a half-live extending amino acid substitution at one or more positions selected from the group consisting of 238, 250, 252, 254, 256, 257, 256, 265, 272, 286, 288, 303, 305, 307, 308, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424, 428, 433, 434, 435, and 436 .
  • said variant Fc Region comprises a half-live extending amino acid substitution at one or more positions selected from the group consisting of 238, 250, 252, 254, 256, 257, 256, 265, 272, 286, 288, 303, 305, 307, 308, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424, 428, 433, 434, 435, and 4
  • Numerous specific mutations capable of increasing the half-life of an Fc Region-containing molecule are known in the art and include, for example M252Y, S254T, T256E, and combinations thereof. For example, see the mutations described in U.S. Patent Nos. 6,277,375, 7,083,784; 7,217,797, 8,088,376; U.S. Publication Nos. 2002/0147311; 2007/0148164; and International Publication Nos. WO 98/23289; WO 2009/058492; and WO 2010/033279, which are herein incorporated by reference in their entireties.
  • Fc Region-containing molecules with enhanced half-life also include those with substitutions at two or more of Fc Region residues 250, 252, 254, 256, 257, 288, 307, 308, 309, 311, 378, 428, 433, 434, 435 and 436.
  • two or more substitutions selected from: T250Q, M252Y, S254T, T256E, K288D, T307Q, V308P, A378V, M428L, N434A, H435K, and Y436I.
  • the variant Fc Region comprises substitutions of:
  • the instant invention further encompasses variant Fc Regions comprising:
  • One embodiment of the present invention relates to bispecific binding molecules that are capable of binding to a "first epitope” and a "second epitope,” wherein the first epitope is an epitope of human PD-1 and the second epitope is the same or a different epitope of PD-1, or is an epitope of another molecule that is present on the surface of an immune cell (such as a T lymphocyte) and is involved in regulating an immune checkpoint.
  • an immune cell such as a T lymphocyte
  • the second epitope is an epitope of B7-H3, B7-H4, BTLA, CD3, CD8, CD16, CD27, CD32, CD40, CD40L, CD47, CD64, CD70, CD80, CD86, CD94, CD137, CD137L, CD226, CTLA-4, Galectin-9, GITR, GITRL, HHLA2, ICOS, ICOSL, KIR, LAG-3, LIGHT, MHC class I or II, KG2a, KG2d, OX40, OX40L, PDIH, PD-1, PD-Ll, PD-L2, PVR, SIRPa, TCR, TIGIT, TEVI-3 or VISTA.
  • the second epitope not an epitope of PD-1.
  • the second epitope is CD137, CTLA-4, LAG-3, OX40, TIGIT, or TEVI-3.
  • a bispecific molecule comprises more than two epitope binding sites. Such bispecific molecules may bind two or more different epitopes of LAG-3 and at least one epitope of a molecule that is not LAG-3.
  • the instant invention encompasses bispecific antibodies capable of simultaneously binding to PD-1 and the second epitope (e.g.
  • the bispecific antibody capable of simultaneously binding to PD-1 and the second epitope is produced using any of the methods described in PCT Publication Nos.
  • One embodiment of the present invention relates to bispecific diabodies that comprise, and most preferably are composed of, a first polypeptide chain and a second polypeptide chain, whose sequences permit the polypeptide chains to covalently bind to each other to form a covalently associated diabody that is capable of simultaneously binding to a first epitope and a second epitope, such epitopes not being identical to one another.
  • Such bispecific diabodies thus comprise "VL1" / "VH1" domains that are capable of binding to the first epitope and "VL2" / " VH2" domains that are capable of binding to the second epitope.
  • VL1 and VH1 denote respectively, the Variable Light Chain Domain and Variable Heavy Chain Domain that bind the "first" epitope of such bispecific diabody.
  • VL2 and VH2 denote respectively, the Variable Light Chain Domain and Variable Heavy Chain Domain that bind the "second" epitope of such bispecific diabody. It is irrelevant whether a particular epitope is designated as the first vs. the second epitope; such notation having relevance only with respect to the presence and orientation of domains of the polypeptide chains of the binding moleucles of the present invention.
  • one of such epitopes is an epitope of PD-1 and the other of such epitopes is not an epitope of PD-1 (for example, an epitope of B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3, MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • the VL Domain of the first polypeptide chain interacts with the VH Domain of the second polypeptide chain to form a first functional antigen-binding site that is specific for a first antigen (i.e., either PD-1 or an antigen that contains the second epitope).
  • a first antigen i.e., either PD-1 or an antigen that contains the second epitope
  • the VL Domain of the second polypeptide chain interacts with the VH Domain of the first polypeptide chain in order to form a second functional antigen-binding site that is specific for a second antigen (i.e., either an antigen that contains the second epitope or PD-1).
  • the selection of the VL and VH Domains of the first and second polypeptide chains is coordinated, such that the two polypeptide chains of the diabody collectively comprise VL and VH Domains capable of binding to both an epitope of PD-1 and to the second epitope (i.e., they comprise VLPD-I/VHPD-I and VL2/VH2, wherein PD-1 is the "first" epitope, or VL1/VH1 and VLPD- l/VHpD-i, wherein PD-1 is the "second" epitope).
  • the first polypeptide chain of an embodiment of such bispecific diabodies comprises, in the N-terminal to C-terminal direction, an N-terminus, the VLl Domain of a monoclonal antibody capable of binding to either the first or second epitope (i.e., either VLPD- l or VLEpitope 2), a first intervening spacer peptide (Linker 1), a VH2 Domain of a monoclonal antibody capable of binding to either the second epitope (if such first polypeptide chain contains VLPD-I) or the first epitope (if such first polypeptide chain contains VLEpitope 2), a second intervening spacer peptide (Linker 2) optionally containing a cysteine residue, a Heterodimer-Promoting Domain and a C-terminus ( Figure 1).
  • the second polypeptide chain of this embodiment of bispecific diabodies comprises, in the N-terminal to C-terminal direction, an N-terminus, a VL2 Domain of a monoclonal antibody capable of binding to either PD-1 or the second epitope (i.e., either VLPD -1 Or VLEpitope 2, and being the VL Domain not selected for inclusion in the first polypeptide chain of the diabody), an intervening linker peptide (Linker 1), a VHl Domain of a monoclonal antibody capable of binding to either the second epitope (if such second polypeptide chain contains VLPD-I) or to PD-1 (if such second polypeptide chain contains VLEpitope 2), a second intervening spacer peptide (Linker 2) optionally containing a cysteine residue, a Heterodimer-Promoting Domain, and a C-terminus ( Figure 1).
  • Linker 1 an intervening linker peptide
  • Linker 2 optionally containing a cyst
  • the length of the intervening linker peptide (e.g., Linker 1) that separates such VL and VH Domains is selected to substantially or completely prevent the VL and VH Domains of the polypeptide chain from binding to one another.
  • the VL and VH Domains of the first polypeptide chain are substantially or completely incapable of binding to one another.
  • the VL and VH Domains of the second polypeptide chain are substantially or completely incapable of binding to one another.
  • a preferred intervening spacer peptide (Linker 1) has the sequence (SEQ ID NO:14): GGGS GGGG.
  • the length and composition of the second intervening linker peptide (Linker 2) is selected based on the choice of heterodimer-promoting domains. Typically, the second intervening linker peptide (Linker 2) will comprise 3-20 amino acid residues. In particular, where the heterodimer-promoting domains do not comprise a cysteine residue a cysteine- containing second intervening linker peptide (Linker 2) is utilized. A cysteine-containing second intervening spacer peptide (Linker 2) will contain 1, 2, 3 or more cysteines. A preferred cysteine-containing spacer peptide (Linker 2) has the sequence is SEQ ID NO: 15: GGCGGG.
  • Linker 2 does not comprise a cysteine (e.g., GGG , GGGS (SEQ ID NO:29), LGGGS G (SEQ ID NO:261), GGGS GGGS GGG (SEQ ID NO:262), AS TKG (SEQ ID NO:30), LE PKS S (SEQ ID NO:33), APS S S (SEQ ID NO:34), etc.) and a Cysteine-Containing Heterodimer-Promoting Domain, as described below is used.
  • a cysteine- containing Linker 2 and a cysteine-containing Heterodimer-Promoting Domain are used.
  • the Heterodimer-Promoting Domains may be GVE PKS C (SEQ ID NO: 16) or VE PKS C ( SEQ ID NO: 17) or AE PKS C (SEQ ID NO: 18) on one polypeptide chain and GFNRGEC (SEQ ID NO: 19) or FNRGEC (SEQ ID NO: 20) on the other polypeptide chain (US2007/0004909).
  • the Heterodimer-Promoting Domains of such diabodies are formed from one, two, three or four tandemly repeated coil domains of opposing charge that comprise a sequence of at least six, at least seven or at least eight amino acid residues such that the Heterodimer-Promoting Domain possesses a net charge
  • Helix-stabilized Fv (hsFv) Antibody Fragments Substituting the Constant Domains of a Fab Fragment for a Heterodimeric Coiled-coil Domain," J. Molec. Biol. 312:221-228; Arndt, K.M. et al. (2002) “Comparison of In Vivo Selection and Rational Design of Heterodimeric Coiled Coils," Structure 10: 1235-1248; Boucher, C. et al. (2010) “Protein Detection By Western Blot Via Coiled-Coil Interactions," Analytical Biochemistry 399: 138-140; Cachia, P.J. et al.
  • Such repeated coil domains may be exact repeats or may have substitutions.
  • the coil domain of the Heterodimer-Promoting Domain of the first polypeptide chain may comprise a sequence of eight amino acid residues selected to confer a negative charge to such Heterodimer-Promoting Domain
  • the coil domain of the Heterodimer-Promoting Domain of the second polypeptide chain may comprise a sequence of eight amino acid residues selected to confer a positive charge to such Heterodimer-Promoting Domain. It is immaterial which coil is provided to the first or second polypeptide chains, provided that a coil of opposite charge is used for the other polypeptide chain.
  • the positively charged amino acid may be lysine, arginine, histidine, etc. and/or the negatively charged amino acid may be glutamic acid, aspartic acid, etc.
  • the positively charged amino acid is preferably lysine and/or the negatively charged amino acid is preferably glutamic acid. It is possible for only a single Heterodimer- Promoting Domain to be employed (since such domain will inhibit homodimerization and thereby promote heterodimerization), however, it is preferred for both the first and second polypeptide chains of the diabodies of the present invention to contain Heterodimer-Promoting Domains.
  • one of the Heterodimer-Promoting Domains will comprise four tandem "E-coil” helical domains (SEQ ID NO:21: E VAALE K - E VAALE K - EVAALEK-EVAALEK), whose glutamate residues will form a negative charge at pH 7, while the other of the Heterodimer-Promoting Domains will comprise four tandem "K-coil” domains (SEQ ID NO:22: KVAAL KE - KVAAL KE - KVAAL KE - KVAAL KE - KVAAL KE ), whose lysine residues will form a positive charge at pH 7.
  • Heterodimer-Promoting Domain in which one of the four tandem "E-coil" helical domains of SEQ ID NO:21 has been modified to contain a cysteine residue: EVAACEK- E VAALE K - E VAALE K - E VAALE K (SEQ ID NO:23).
  • Heterodimer-Promoting Domain in which one of the four tandem "K-coil" helical domains of SEQ ID NO:22 has been modified to contain a cysteine residue: KVAACKE - KVAALKE - KVAALKE -KVAALKE (SEQ ID NO:24).
  • a diabody in order to improve the in vivo pharmacokinetic properties of diabodies, may be modified to contain a polypeptide portion of a serum- binding protein at one or more of the termini of the diabody. Most preferably, such polypeptide portion of a serum-binding protein will be installed at the C-terminus of the diabody.
  • Albumin is the most abundant protein in plasma and has a half-life of 19 days in humans. Albumin possesses several small molecule binding sites that permit it to non-covalently bind to other proteins and thereby extend their serum half-lives.
  • the Albumin-Binding Domain 3 (ABD3) of protein G of Streptococcus strain G148 consists of 46 amino acid residues forming a stable three-helix bundle and has broad albumin-binding specificity (Johansson, M.U. et al. (2002) “Structure, Specificity, And Mode Of Interaction For Bacterial Albumin-Binding Modules " J. Biol. Chem. 277(10):8114-8120.
  • a particularly preferred polypeptide portion of a serum- binding protein for improving the in vivo pharmacokinetic properties of a diabody is the Albumin-Binding Domain (ABD) from streptococcal protein G, and more preferably, the Albumin-Binding Domain 3 (ABD3) of protein G of Streptococcus dysgalactiae strain G148 (SEQ ID NO:25): LAEAKVLANR ELDKYGVS DY YKNL I DNAKS AEGVKAL I DE I LAALP .
  • deimmunized variants of SEQ ID NO:25 have the ability to attenuate or eliminate MHC class II binding. Based on combinational mutation results, the following combinations of substitutions are considered to be preferred substitutions for forming such a deimmunized ABD: 66D/70S +71A; 66S/70S +71A; 66S/70S +79A; 64A/65A/71A; 64A/65A/71A+66S; 64A/65A/71A+66D; 64A/65A/71A+66E; 64A/65A/79A+66S; 64A/65A/79A+66D; 64A/65A/79A+66E.
  • Variant ABDs having the modifications L64A, I65A and D79A or the modifications N66S, T70S and D79A.
  • Variant deimmunized ABD having the amino acid sequence:
  • the first polypeptide chain of such a diabody having an ABD contains a peptide linker preferably positioned C-terminally to the E- coil (or K-coil) Domain of such polypeptide chain so as to intervene between the E-coil (or K- coil) Domain and the ABD (which is preferably a deimmunized ABD).
  • a preferred sequence for such a peptide linker is SEQ ID NO:29: GGGS.
  • One embodiment of the present invention relates to bispecific diabodies comprising an Fc Region capable of simultaneously binding to PD-1 and a second epitope (e.g. B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3, MHC class I or II, OX40, PD-1, PD-Ll, TCR, TIM-3, etc.).
  • a second epitope e.g. B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3, MHC class I or II, OX40, PD-1, PD-Ll, TCR, TIM-3, etc.
  • the addition of an IgG CH2-CH3 Domain to one or both of the diabody polypeptide chains, such that the complexing of the diabody chains results in the formation of an Fc Region, increases the biological half-life and/or
  • CHI Domain a peptide having the amino acid sequence GVE PKS C (SEQ ID NO: 16) VE PKS C ( SEQ ID NO: 17), or AE PKS C (SEQ ID NO: 18), derived from the hinge domain of a human IgG
  • the CL Domain one may employ the C-terminal 6 amino acids of the human kappa light chain, GFNRGEC (SEQ ID NO: 19) or FNRGEC (SEQ ID NO:20).
  • GFNRGEC SEQ ID NO: 19
  • FNRGEC SEQ ID NO:20
  • a peptide comprising tandem coil domains of opposing charge such as the "E-coil” helical domains (SEQ ID NO:21: E VAALE K - E VAALE K - E VAALE K - E VAALE K o r SEQ ID NO:23: EVAACE K-EVAALEK-EVAALEK-EVAALEK); and the "K-coil” domains (SEQ ID NO:22: KVAALKE -KVAALKE -KVAALKE -KVAALKE or SEQ ID NO:24: KVAACKE - KVAALKE - KVAALKE - KVAALKE ) .
  • a representative coil domain containing four-chain diabody is shown in Figure 3B.
  • the Fc Region-containing diabody molecules of the present invention generally include additional intervening linker peptides (Linkers). Typically, the additional Linkers will comprise 3-20 amino acid residues. Additional or alternative linkers that may be employed in the Fc Region-containing diabody molecules of the present invention include: GGGS (SEQ ID NO:29), LGGGS G (SEQ ID NO:261), GGGS GGGS GGG (SEQ ID NO:262), AS T KG (SEQ ID NO:30), DKTHTCPPCP (SEQ ID NO:31), E PKS CDKTHTCPPCP (SEQ ID NO:32), LE PKS S (SEQ ID NO:33), APS S S (SEQ ID NO:34), and APS S S PME (SEQ ID NO:35), LE PKSADKTHTCPPC SEQ ID NO:36), GGC, and GGG.
  • Linkers will comprise 3-20 amino acid residues. Additional or alternative linkers that may be employed in the Fc Region-containing diabody molecules of the present invention include
  • SEQ ID NO:33 may be used in lieu of GGG or GGC for ease of cloning. Additionally, the amino acids GGG, or SEQ ID NO:33 may be immediately followed by SEQ ID NO:31 to form the alternate linkers: GGGDKTHTCPPCP (SEQ ID NO:263); and LE PKS S DKTHTCPPCP (SEQ ID NO:37).
  • Fc Region-containing diabody molecule of the present invention may incorporate an IgG hinge region in addition to or in place of a linker.
  • Exemplary hinge regions include: EPKSCDKTHTCPPCP (SEQ ID NO:32) from IgGl, ERKCCVECPPCP (SEQ ID NO:ll) from IgG2, ESKYGPPCPSCP (SEQ ID NO:12) from IgG4, and ESKYGPPCPPCP (SEQ ID NO: 13) an IgG4 hinge variant comprising a stabilizing substitute to reduce strand exchange.
  • diabodies of the invention may comprise four different chains.
  • the first and third polypeptide chains of such a diabody contain three domains: (i) a VL1 -containing Domain, (ii) a VH2-containing Domain, (iii) Heterodimer- Promoting Domain and (iv) a Domain containing a CH2-CH3 sequence.
  • the second and fourth polypeptide chains contain: (i) a VL2-containing Domain, (ii) a VHl -containing Domain and (iii) a Heterodimer-Promoting Domain, where the Heterodimer-Promoting Domains promote the dimerization of the first/third polypeptide chains with the second/fourth polypeptide chains.
  • the VL and/or VH Domains of the third and fourth polypeptide chains, and VL and/or VH Domains of the first and second polypeptide chains may be the same or different so as to permit tetravalent binding that is either monospecific, bispecific or tetraspecific.
  • VL3 and VH3 denote respectively, the Variable Light Chain Domain and Variable Heavy Chain Domain that bind the "third" epitope of such diabody.
  • VL4 and VH4 denote respectively, the Variable Light Chain Domain and Variable Heavy Chain Domain that bind the "fourth" epitope of such diabody.
  • Table 2 The general structure of the polypeptide chains of a representative four-chain Fc Region-containing diabodies of invention is provided in Table 2:
  • diabodies of the present invention are bispecific, tetravalent (i.e., possess four epitope-binding sites), Fc-containing diabodies ( Figures 3A-3C) that are composed of four total polypeptide chains.
  • the bispecific, tetravalent, Fc-containing diabodies of the invention comprise two epitope-binding sites immunospecific for PD-1 (which may be capable of binding to the same epitope of PD-1 or to different epitopes of PD-1), and two epitope-binding sites specific for a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TEVI-3, etc.).
  • two epitope-binding sites immunospecific for PD-1 which may be capable of binding to the same epitope of PD-1 or to different epitopes of PD-1
  • two epitope-binding sites specific for a second epitope e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS
  • the bispecific Fc Region-containing diabodies may comprise three polypeptide chains.
  • the first polypeptide of such a diabody contains three domains: (i) a VL1 -containing Domain, (ii) a VH2-containing Domain and (iii) a Domain containing a CH2-CH3 sequence.
  • the second polypeptide of such diabodies contains: (i) a VL2-containing Domain, (ii) a VH1 -containing Domain and (iii) a Domain that promotes heterodimerization and covalent bonding with the diabody's first polypeptide chain.
  • the third polypeptide of such diabodies comprises a CH2-CH3 sequence.
  • the first and second polypeptide chains of such diabodies associate together to form a VLl/VHl binding site that is capable of binding to the first epitope, as well as a VL2/VH2 binding site that is capable of binding to the second epitope.
  • the first and second polypeptides are bonded to one another through a disulfide bond involving cysteine residues in their respective Third Domains.
  • the first and third polypeptide chains complex with one another to form an Fc Region that is stabilized via a disulfide bond.
  • Such diabodies have enhanced potency.
  • Figures 4A and 4B illustrate the structures of such diabodies.
  • Such Fc-Region-containing bispecific diabodies may have either of two orientations (Table 3):
  • diabodies of the present invention are bispecific, bivalent (i.e., possess two epitope-binding sites), Fc-containing diabodies ( Figures 4A-4B) that are composed of three total polypeptide chains.
  • the bispecific, bivalent Fc-containing diabodies of the invention comprise one epitope-binding site immunospecific for PD-1, and one epitope- binding site specific for a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG- 3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • the bispecific Fc Region-containing diabodies may comprise a total of five polypeptide chains.
  • two of said five polypeptide chains have the same amino acid sequence.
  • the first polypeptide chain of such diabodies contains: (i) a VH1 -containing domain, (ii) a CHI -containing domain, and (iii) a Domain containing a CH2-CH3 sequence.
  • the first polypeptide chain may be the heavy chain of an antibody that contains a VH1 and a heavy chain constant region.
  • the second and fifth polypeptide chains of such diabodies contain: (i) a VL1 -containing domain, and (ii) a CL- containing domain.
  • the second and/or fifth polypeptide chains of such diabodies may be light chains of an antibody that contains a VL1 complementary to the VH1 of the first/third polypeptide chain.
  • the first, second and/or fifth polypeptide chains may be isolated from naturally occurring antibodies. Alternatively, they may be constructed recombinantly.
  • the third polypeptide chain of such diabodies contains: (i) a VH1 -containing domain, (ii) a CH1- containing domain, (iii) a Domain containing a CH2-CH3 sequence, (iv) a VL2-containing Domain, (v) a VH3 -containing Domain and (vi) a Heterodimer-Promoting Domain, where the Heterodimer-Promoting Domains promote the dimerization of the third chain with the fourth chain.
  • the fourth polypeptide of such diabodies contains: (i) a VL3 -containing Domain, (ii) a VH2-containing Domain and (iii) a Domain that promotes heterodimerization and covalent bonding with the diabody's third polypeptide chain.
  • the first and second, and the third and fifth, polypeptide chains of such diabodies associate together to form two VL1/VH1 binding sites capable of binding a first epitope.
  • the third and fourth polypeptide chains of such diabodies associate together to form a VL2/VH2 binding site that is capable of binding to a second epitope, as well as a VL3/VH3 binding site that is capable of binding to a third epitope.
  • the first and third polypeptides are bonded to one another through a disulfide bond involving cysteine residues in their respective constant regions.
  • the first and third polypeptide chains complex with one another to form an Fc Region.
  • Such diabodies have enhanced potency.
  • FIG. 5 illustrates the structure of such diabodies.
  • the VLl/VHl, VL2/VH2, and VL3/VH3 Domains may be the same or different so as to permit binding that is monospecific, bispecific or trispecific.
  • these domains are preferably selected so as to bind PD-1 and a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA- 4, ICOS, KIR, LAG- 3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • a second epitope e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA- 4, ICOS, KIR, LAG- 3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.
  • VL and VH Domains of the polypeptide chains are selected so as to form VL/VH binding sites specific for a desired epitope.
  • the VL/VH binding sites formed by the association of the polypeptide chains may be the same or different so as to permit tetravalent binding that is monospecific, bispecific, tnspecific or tetraspecific.
  • VL and VH Domains may be selected such that a bispecific diabody may comprise two binding sites for a first epitope and two binding sites for a second epitope, or three binding sites for a first epitope and one binding site for a second epitope, or two binding sites for a first epitope, one binding site for a second epitope and one binding site for a third epitope (as depicted in Figure 5).
  • the general structure of the polypeptide chains of representative five-chain Fc Region- containing diabodies of invention is provided in Table 4:
  • diabodies of the present invention are bispecific, tetravalent (i.e., possess four epitope-binding sites), Fc-containing diabodies that are composed of five total polypeptide chains having two binding sites for a first epitope and two binding sites for a second epitope.
  • the bispecific, tetravalent, Fc-containing diabodies of the invention comprise two epitope-binding sites immunospecific for PD-1 (which may be capable of binding to the same epitope of PD-1 or to different epitopes of PD-1), and two epitope-binding sites specific for a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • two epitope-binding sites immunospecific for PD-1 which may be capable of binding to the same epitope of PD-1 or to different epitopes of PD-1
  • two epitope-binding sites specific for a second epitope e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS,
  • the bispecific, tetravalent, Fc-containing diabodies of the invention comprise three epitope-binding sites immunospecific for PD-1 which may be capable of binding to the same epitope of PD-1 or to different epitopes of PD-1), and one epitope-binding sites specific for a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • a second epitope e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.
  • the bispecific, tetravalent, Fc-containing diabodies of the invention comprise one epitope-binding sites immunospecific for PD-1, and three epitope- binding sites specific for a second epitope (e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • a second epitope e.g., B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.
  • a further embodiment of the present invention relates to bispecific, trivalent binding molecules, comprising an Fc Region, and being capable of simultaneously binding to a first epitope, a second epitope and a third epitope, wherein at least one of such epitopes is not identical to another.
  • Such bispecific diabodies thus comprise "VL1" / "VH1" domains that are capable of binding to the first epitope, "VL2” / "VH2" domains that are capable of binding to the second epitope and "VL3" / "VH3” domains that are capable of binding to the third epitope.
  • one or two of such epitopes is an epitope of PD-1 and another (or the other) of such epitopes is not an epitope of PD-1 (for example, an epitope of B7-H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3, MHC class I or II, OX40, PD-1, PD-L1, TCR, TIM-3, etc.).
  • Such bispecific trivalent binding molecules comprise three epitope- binding sites, two of which are diabody-type binding domains, which provide binding Site A and binding Site B, and one of which is a non-diabody-type binding domain, which provides binding Site C (see, e.g., Figures 6A-6F, and PCT Application No: PCT/US 15/33081; and PCT/US15/33076).
  • the trivalent binding molecules of the present invention will comprise four different polypeptide chains (see Figures 6A-6B), however, the molecules may comprise fewer or greater numbers of polypeptide chains, for example by fusing such polypeptide chains to one another (e.g., via a peptide bond) or by dividing such polypeptide chains to form additional polypeptide chains, or by associating fewer or additional polypeptide chains via disulfide bonds.
  • Figures 6B-6F illustrate this aspect of the present invention by schematically depicting such molecules having three polypeptide chains.
  • the trivalent binding molecules of the present invention may have alternative orientations in which the diabody-type binding domains are N-terminal ( Figures 6A, 6C and 6D) or C-terminal ( Figures 6B, 6E and 6F) to an Fc Region.
  • the first polypeptide chain of such trivalent binding molecules of the present invention contains: (i) a VLl-containing Domain, (ii) a VH2- containing Domain, (iii) a Heterodimer-Promoting Domain, and (iv) a Domain containing a CH2-CH3 sequence.
  • the VL1 and VL2 Domains are located N-terminal or C-terminal to the CH2-CH3 -containing domain as presented in Table 5 ( Figures 6A and 6B).
  • the second polypeptide chain of such embodiments contains: (i) a VL2-containing Domain, (ii) a VH1- containing Domain, and (iii) a Heterodimer-Promoting Domain.
  • the third polypeptide chain of such embodiments contains: (i) a VH3 -containing Domain, (ii) a CHI -containing Domain and (iii) a Domain containing a CH2-CH3 sequence.
  • the third polypeptide chain may be the heavy chain of an antibody that contains a VH3 and a heavy chain constant region.
  • the fourth polypeptide of such embodiments contains: (i) a VL3 -containing Domain and (ii) a CL- containing Domain.
  • the fourth polypeptide chains may be a light chain of an antibody that contains a VL3 complementary to the VH3 of the third polypeptide chain.
  • the third or fourth polypeptide chains may be isolated from naturally occurring antibodies. Alternatively, they may be constructed recombinantly, synthetically or by other means.
  • the Variable Light Chain Domain of the first and second polypeptide chains are separated from the Variable Heavy Chain Domains of such polypeptide chains by an intervening spacer linker having a length that is too short to permit their VL1/VH2 (or their VL2/VH1) domains to associate together to form epitope-binding site capable of binding to either the first or second epitope.
  • a preferred intervening spacer peptide (Linker 1) for this purpose has the sequence (SEQ ID NO:14): GGGSGGGG.
  • Other Domains of the trivalent binding molecules may be separated by one or more intervening spacer peptides, optionally comprising a cysteine residue.
  • Exemplary linkers useful for the generation of trivalent binding molecules are provided herein and are also provided in PCT Application Nos: PCT/US15/33081; and PCT/US15/33076.
  • the first and second polypeptide chains of such trivalent binding molecules associate together to form a VLl/VHl binding site capable of binding a first epitope, as well as a VL2/VH2 binding site that is capable of binding to a second epitope.
  • the third and fourth polypeptide chains of such trivalent binding molecules associate together to form a VL3/VH3 binding site that is capable of binding to a third epitope.
  • the VLl/VHl, VL2/VH2, and VL3/VH3 Domains may be the same or different so as to permit binding that is monospecific, bispecific or trispecific.
  • the trivalent binding molecules of the present invention may comprise three polypeptides.
  • Trivalent binding molecules comprising three polypeptide chains may be obtained by linking the domains of the fourth polypeptide N-terminal to the VH3- containing Domain of the third polypeptide.
  • a third polypeptide chain of a trivalent binding molecule of the invention containing the following three domains is utilized: (i) a VL3 -containing Domain, (ii) a VH3 -containing Domain, and (iii) a Domain containing a CH2-CH3 sequence, wherein the VL3 and VH3 are spaced apart from one another by an intervening spacer peptide that is sufficiently long (at least 9 or more amino acid residues) so as to allow the association of these domains to form an epitope-binding site.
  • VLl/VHl, VL2/VH2, and VL3/VH3 Domains may be the same or different so as to permit binding that is monospecific, bispecific or trispecific.
  • these domains are preferably selected so as to bind PD-1 and a second epitope (or a second and third epitope) (preferably, such epitopes are epitopes of B7- H3, B7-H4, BTLA, CD40, CD80, CD86, CD137, CTLA-4, ICOS, KIR, LAG-3 MHC class I or II, OX40, PD-L1, TCR, TIM-3, etc.).
  • the VL and VH Domains may be selected such that a trivalent binding molecule comprises two binding sites for a first epitope and one binding sites for a second epitope, or one binding site for a first epitope and two binding sites for a second epitope, or one binding site for a first epitope, one binding site for a second epitope and one binding site for a third epitope.
  • the general structure of the polypeptide chains of representative trivalent binding molecules of invention is provided in Figures 6A-6F and in Table 5: Table 5

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Endocrinology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Diabetes (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Hospice & Palliative Care (AREA)
  • Orthopedic Medicine & Surgery (AREA)
PCT/US2016/044430 2015-07-30 2016-07-28 Pd-1-binding molecules and methods use thereof Ceased WO2017019846A1 (en)

Priority Applications (58)

Application Number Priority Date Filing Date Title
SI201631367T SI3328419T1 (sl) 2015-07-30 2016-07-28 PD-1-vezavne molekule in postopki uporabe le-teh
CR20180062A CR20180062A (es) 2015-07-30 2016-07-28 Moléculas de unión a pd-1 y métodos de uso de las mismas
CR20200423A CR20200423A (es) 2015-07-30 2016-07-28 Moléculas de unión a pd-1 y métodos de uso de las mismas (divisional 2018-0062)
MA42542A MA42542B1 (fr) 2015-07-30 2016-07-28 Molécules se liant à pd-1 et méthodes d'utilisation correspondantes
IL287916A IL287916B2 (en) 2015-07-30 2016-07-28 Molecules that bind pd-1 and methods of using them
MX2018001227A MX2018001227A (es) 2015-07-30 2016-07-28 Moleculas de union a pd-1 y metodos de uso de las mismas.
PE2023001364A PE20231958A1 (es) 2015-07-30 2016-07-28 Moleculas de union a pd-1 y metodos de uso de las mismas
IL297090A IL297090B2 (en) 2015-07-30 2016-07-28 PD-1 binding molecules and methods of using them
EP24194716.7A EP4450088A3 (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
UAA201801414A UA127372C2 (uk) 2015-07-30 2016-07-28 Моноспецифічне pd-1-сполучне моноклональне антитіло
US15/748,458 US10577422B2 (en) 2015-07-30 2016-07-28 PD-1-binding molecules and methods of use thereof
IL290571A IL290571B2 (en) 2015-07-30 2016-07-28 Molecules that bind pd-1 and methods of using them
DK16831339.3T DK3328419T3 (da) 2015-07-30 2016-07-28 Pd-1-bindingsmolekyler og fremgangsmåder til anvendelse deraf
CN201810940625.4A CN108976300B (zh) 2015-07-30 2016-07-28 Pd-1结合分子和其使用方法
MYPI2018000111A MY188871A (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
NZ739493A NZ739493B2 (en) 2016-07-28 Pd-1-binding molecules and methods of use thereof
PL18199685T PL3456346T3 (pl) 2015-07-30 2016-07-28 Cząsteczki wiążące pd-1 i lag-3 oraz sposoby ich zastosowania
LTEPPCT/US2016/044430T LT3328419T (lt) 2015-07-30 2016-07-28 Pd-1 surišančios molekulės ir jų panaudojimo būdai
JP2018504643A JP6959907B2 (ja) 2015-07-30 2016-07-28 Pd‐1結合分子及びその使用方法
MDE20180572T MD3328419T2 (ro) 2015-07-30 2016-07-28 Molecule de legare la PD-1 şi procedee de utilizare a acestora
SM20210610T SMT202100610T1 (it) 2015-07-30 2016-07-28 Molecole di legame a pd-1 e loro metodi d'uso
EA201890296A EA201890296A1 (ru) 2015-07-30 2016-07-28 Pd-1-связывающие молекулы и способы их применения
CN202310501230.5A CN116333138A (zh) 2015-07-30 2016-07-28 Pd-1结合分子和其使用方法
PE2023001374A PE20240111A1 (es) 2015-07-30 2016-07-28 Moleculas de union a pd-1 y metodos de uso de las mismas
AU2016298227A AU2016298227B9 (en) 2015-07-30 2016-07-28 PD-1-binding molecules and methods of use thereof
EP16831339.3A EP3328419B1 (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
CN202210614282.9A CN114773475B (zh) 2015-07-30 2016-07-28 Pd-1结合分子和其使用方法
CA2993948A CA2993948A1 (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
CR20220194A CR20220194A (es) 2015-07-30 2016-07-28 Moléculas de unión a pd-1 y métodos de uso de las mismas
HRP20211645TT HRP20211645T1 (hr) 2015-07-30 2016-07-28 Molekule za vezanje pd-1 i postupci za njihovu uporabu
ES16831339T ES2898511T3 (es) 2015-07-30 2016-07-28 Moléculas de unión a PD-1 y métodos de uso de las mismas
CN201680044392.9A CN107847574B (zh) 2015-07-30 2016-07-28 Pd-1结合分子和其使用方法
HK18107602.5A HK1248106B (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
KR1020187005653A KR102761886B1 (ko) 2015-07-30 2016-07-28 Pd-1-결합 분자 및 그것의 사용 방법
PL16831339T PL3328419T3 (pl) 2015-07-30 2016-07-28 Cząsteczki wiążące pd-1 i sposoby ich zastosowania
EP18199685.1A EP3456346B1 (en) 2015-07-30 2016-07-28 Pd-1 and lag-3 binding molecules and methods of use thereof
RS20211320A RS62568B1 (sr) 2015-07-30 2016-07-28 Pd-1-vezujući molekuli i metodi njihove upotrebe
KR1020257002826A KR20250020718A (ko) 2015-07-30 2016-07-28 Pd-1-결합 분자 및 그것의 사용 방법
KR1020187023163A KR102762075B1 (ko) 2015-07-30 2016-07-28 Pd-1-결합 분자 및 그것의 사용 방법
EP21191711.7A EP3981792B1 (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods of use thereof
ZA2018/00500A ZA201800500B (en) 2015-07-30 2018-01-24 Pd-1-binding molecules and methods of use thereof
CONC2018/0000867A CO2018000867A2 (es) 2015-07-30 2018-01-29 Moléculas de unión a pd-1 y métodos de uso de las mismas
IL257216A IL257216B (en) 2015-07-30 2018-01-29 Pd-1-binding molecules and methods of use thereof
PH12018500232A PH12018500232A1 (en) 2015-07-30 2018-01-29 Pd-1-binding molecules and methods of use thereof
AU2018214151A AU2018214151B2 (en) 2015-07-30 2018-08-10 Pd-1-binding molecules and methods of use thereof
ZA2018/07856A ZA201807856B (en) 2015-07-30 2018-11-21 Pd-1-binding molecules and methods of use thereof
AU2020200054A AU2020200054B2 (en) 2015-07-30 2020-01-03 PD-1-binding molecules and methods of use thereof
US16/752,464 US11623959B2 (en) 2015-07-30 2020-01-24 PD-1-binding molecules and methods of use thereof
CY20211100853T CY1124634T1 (el) 2015-07-30 2021-09-28 Μορια προσδεσης pd-1 και lag-3 και μεθοδοι χρησης αυτων
CY20211100956T CY1124723T1 (el) 2015-07-30 2021-11-05 Μορια προσδεσης pd-1 και μεθοδοι χρησης αυτων
AU2022200168A AU2022200168B2 (en) 2015-07-30 2022-01-12 PD-1-binding molecules and methods of use thereof
US18/114,109 US20230357404A1 (en) 2015-07-30 2023-02-24 Pd-1-binding molecules and methods of use thereof
FR24C1033C FR24C1033I2 (fr) 2015-07-30 2024-07-29 Molécules se liant à pd-1 et méthodes d'utilisation correspondantes
CY2024026C CY2024026I1 (el) 2015-07-30 2024-07-30 Μορια προσδεσης pd-1 και μεθοδοι χρησης αυτων
LTPA2024525C LTPA2024525I1 (enExample) 2015-07-30 2024-07-31
FIC20240028C FIC20240028I1 (fi) 2015-07-30 2024-08-05 Retifanlimabi
NL301287C NL301287I2 (nl) 2015-07-30 2024-08-07 retifanlimab
AU2025202334A AU2025202334A1 (en) 2015-07-30 2025-04-02 PD-1-binding molecules and methods of use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562198867P 2015-07-30 2015-07-30
US62/198,867 2015-07-30
US201562239559P 2015-10-09 2015-10-09
US62/239,559 2015-10-09
US201562255140P 2015-11-13 2015-11-13
US62/255,140 2015-11-13
US201662322974P 2016-04-15 2016-04-15
US62/322,974 2016-04-15

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/748,458 A-371-Of-International US10577422B2 (en) 2015-07-30 2016-07-28 PD-1-binding molecules and methods of use thereof
US16/752,464 Division US11623959B2 (en) 2015-07-30 2020-01-24 PD-1-binding molecules and methods of use thereof
US16/752,464 Continuation US11623959B2 (en) 2015-07-30 2020-01-24 PD-1-binding molecules and methods of use thereof

Publications (2)

Publication Number Publication Date
WO2017019846A1 true WO2017019846A1 (en) 2017-02-02
WO2017019846A8 WO2017019846A8 (en) 2018-01-25

Family

ID=57884977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/044430 Ceased WO2017019846A1 (en) 2015-07-30 2016-07-28 Pd-1-binding molecules and methods use thereof

Country Status (39)

Country Link
US (3) US10577422B2 (enExample)
EP (4) EP3981792B1 (enExample)
JP (5) JP6959907B2 (enExample)
KR (3) KR20250020718A (enExample)
CN (4) CN116333138A (enExample)
AU (5) AU2016298227B9 (enExample)
CA (1) CA2993948A1 (enExample)
CL (1) CL2018000254A1 (enExample)
CO (1) CO2018000867A2 (enExample)
CR (3) CR20220194A (enExample)
CY (3) CY1124634T1 (enExample)
DK (3) DK3981792T3 (enExample)
EA (1) EA201890296A1 (enExample)
EC (1) ECSP18006831A (enExample)
ES (3) ES2898958T3 (enExample)
FI (2) FI3981792T3 (enExample)
FR (1) FR24C1033I2 (enExample)
GE (3) GEP20227438B (enExample)
HR (3) HRP20241289T1 (enExample)
HU (4) HUE055207T2 (enExample)
IL (4) IL290571B2 (enExample)
JO (2) JO3736B1 (enExample)
LT (4) LT3328419T (enExample)
MA (2) MA42542B1 (enExample)
MD (3) MD3328419T2 (enExample)
MX (3) MX2018001227A (enExample)
NL (1) NL301287I2 (enExample)
PE (3) PE20231958A1 (enExample)
PH (1) PH12018500232A1 (enExample)
PL (3) PL3456346T3 (enExample)
PT (3) PT3328419T (enExample)
RS (3) RS62374B1 (enExample)
SG (2) SG10202010506TA (enExample)
SI (3) SI3328419T1 (enExample)
SM (3) SMT202400381T1 (enExample)
TW (5) TWI691509B (enExample)
UA (1) UA127372C2 (enExample)
WO (1) WO2017019846A1 (enExample)
ZA (2) ZA201800500B (enExample)

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines
WO2018183928A1 (en) 2017-03-31 2018-10-04 Bristol-Myers Squibb Company Methods of treating tumor
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
WO2018189382A1 (en) 2017-04-14 2018-10-18 Solstice Biologics, Ltd. Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
WO2018195506A1 (en) 2017-04-21 2018-10-25 Amgen Inc. Trem2 antigen binding proteins and uses thereof
WO2018217944A1 (en) * 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018223040A1 (en) 2017-06-01 2018-12-06 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-pd-1 antibody
WO2018222718A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
WO2018222722A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
WO2018222711A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
EP3307240A4 (en) * 2015-06-12 2018-12-19 MacroGenics, Inc. Combination therapy for the treatment of cancer
WO2019009728A1 (en) * 2017-07-06 2019-01-10 Merus N.V. ANTIBODIES THAT MODULATE A BIOLOGICAL ACTIVITY EXPRESSED BY A CELL
WO2019075468A1 (en) 2017-10-15 2019-04-18 Bristol-Myers Squibb Company TUMOR TREATMENT METHODS
US10273281B2 (en) 2015-11-02 2019-04-30 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
WO2019090330A1 (en) 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Methods of treating a tumor
WO2019094637A1 (en) * 2017-11-08 2019-05-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
CN109897111A (zh) * 2017-12-08 2019-06-18 杭州翰思生物医药有限公司 抗pd-1/cd47的双特异性抗体及其应用
US10323091B2 (en) 2015-09-01 2019-06-18 Agenus Inc. Anti-PD-1 antibodies and methods of use thereof
CN109971712A (zh) * 2017-12-28 2019-07-05 上海细胞治疗研究院 特异性靶向cd19抗原且高水平稳定表达pd-1抗体的car-t细胞及用途
CN109971714A (zh) * 2017-12-28 2019-07-05 上海细胞治疗研究院 自表达pd-1抗体并靶向间皮素的嵌合抗原受体修饰t细胞及其用途
WO2019144126A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
WO2019152642A1 (en) * 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
EP3389702A4 (en) * 2017-02-22 2019-08-14 I-Mab ANTI-LAG-3 ANTIBODIES AND USES THEREOF
WO2019158942A1 (en) * 2018-02-16 2019-08-22 Crescendo Biologics Limited Therapeutic molecules that bind to lag3 and pd1
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
US10428145B2 (en) 2015-09-29 2019-10-01 Celgene Corporation PD-1 binding proteins and methods of use thereof
WO2019191676A1 (en) 2018-03-30 2019-10-03 Bristol-Myers Squibb Company Methods of treating tumor
WO2019195621A1 (en) * 2018-04-04 2019-10-10 Immutics, Inc. Methods and compositions for blocking interaction between non-glycosylated pd-1 polypeptides
WO2019201169A1 (en) * 2018-04-15 2019-10-24 Salubris (Chengdu) Biotech Co., Ltd Antibodies binding pd-1 and uses thereof
WO2019217457A1 (en) 2018-05-07 2019-11-14 Genmab A/S Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US10501543B2 (en) 2016-10-14 2019-12-10 Xencor, Inc. IL15/IL15Rα heterodimeric Fc-fusion proteins
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
WO2019246110A1 (en) 2018-06-20 2019-12-26 Incyte Corporation Anti-pd-1 antibodies and uses thereof
WO2020015722A1 (en) * 2018-07-19 2020-01-23 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-pd-1 antibodies, dosages and uses thereof
WO2020023707A1 (en) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Lag-3 combination therapy for the treatment of cancer
WO2020081928A1 (en) 2018-10-19 2020-04-23 Bristol-Myers Squibb Company Combination therapy for melanoma
WO2020086724A1 (en) 2018-10-23 2020-04-30 Bristol-Myers Squibb Company Methods of treating tumor
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020102233A1 (en) * 2018-11-13 2020-05-22 Jn Biosciences Llc Bispecific antibodies for activation of immune cells
EP3569616A4 (en) * 2017-01-13 2020-06-03 Taizhou Hanzhong Biopharmaceutics, Inc. MONOCLONAL ANTIBODIES RESISTANT TO PD-1 AND ITS APPLICATIONS
WO2020117849A1 (en) 2018-12-04 2020-06-11 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
EP3666905A1 (en) 2018-12-11 2020-06-17 Sanofi E. coli positive for pks island as marker of positive response to anti-pd1 therapy in colorectal cancer
WO2020127373A1 (en) 2018-12-21 2020-06-25 Ose Immunotherapeutics Bifunctional anti-pd-1/sirpa molecule
WO2020127377A1 (en) 2018-12-21 2020-06-25 Ose Immunotherapeutics Bifunctional anti-pd-1/il-7 molecule
WO2020143749A1 (zh) * 2019-01-10 2020-07-16 迈威(上海)生物科技有限公司 重组抗人pd-1抗体及其应用
WO2020154189A1 (en) 2019-01-21 2020-07-30 Sanofi Therapeutic rna and anti-pd1 antibodies for advanced stage solid tumor cancers
US10738133B2 (en) 2013-01-14 2020-08-11 Xencor, Inc. Heterodimeric proteins
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
US10751414B2 (en) 2016-09-19 2020-08-25 Celgene Corporation Methods of treating psoriasis using PD-1 binding antibodies
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
JP2020529862A (ja) * 2017-06-25 2020-10-15 システィミューン, インク.Systimmune, Inc. 抗pd−1抗体とその作製及び使用方法
EP3735417A1 (en) * 2018-01-03 2020-11-11 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
CN112074541A (zh) * 2018-05-03 2020-12-11 上海岸迈生物科技有限公司 Pd-1和lag-3的高亲和力抗体以及由其制备的双特异性结合蛋白
US10889653B2 (en) 2014-11-26 2021-01-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
WO2021006199A1 (ja) 2019-07-05 2021-01-14 小野薬品工業株式会社 Pd-1/cd3二重特異性タンパク質による血液がん治療
WO2021022172A1 (en) 2019-08-01 2021-02-04 Incyte Corporation A dosing regimen for an ido inhibitor
WO2021025140A1 (ja) 2019-08-08 2021-02-11 小野薬品工業株式会社 二重特異性タンパク質
WO2021025177A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
WO2021062018A1 (en) 2019-09-25 2021-04-01 Bristol-Myers Squibb Company Composite biomarker for cancer therapy
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
WO2021092044A1 (en) 2019-11-05 2021-05-14 Bristol-Myers Squibb Company M-protein assays and uses thereof
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021097256A1 (en) 2019-11-14 2021-05-20 Cohbar, Inc. Cxcr4 antagonist peptides
WO2021100022A1 (en) * 2019-11-22 2021-05-27 Abl Bio Inc. Anti-pd-l1/anti-b7-h3 multispecific antibodies and uses thereof
CN113004408A (zh) * 2019-12-20 2021-06-22 广东菲鹏制药股份有限公司 抗人程序死亡因子-1单克隆抗体
WO2021122866A1 (en) 2019-12-17 2021-06-24 Ose Immunotherapeutics Bifunctional molecules comprising an il-7 variant
WO2021127554A1 (en) 2019-12-19 2021-06-24 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
WO2021138512A1 (en) 2020-01-03 2021-07-08 Incyte Corporation Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors
EP3755716A4 (en) * 2018-02-23 2021-08-04 Eucure (Beijing) Biopharma Co., Ltd ANTI-PD-1 ANTIBODIES AND THEIR USES
WO2021152548A1 (en) 2020-01-30 2021-08-05 Benitah Salvador Aznar Combination therapy for treatment of cancer and cancer metastasis
WO2021152005A1 (en) 2020-01-28 2021-08-05 Universite De Strasbourg Antisense oligonucleotide targeting linc00518 for treating melanoma
WO2021158938A1 (en) 2020-02-06 2021-08-12 Bristol-Myers Squibb Company Il-10 and uses thereof
US11111315B2 (en) 2014-11-26 2021-09-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
WO2021178807A1 (en) 2020-03-06 2021-09-10 Celgene Quanticel Research, Inc. Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc
WO2021176424A1 (en) 2020-03-06 2021-09-10 Ona Therapeutics, S.L. Anti-cd36 antibodies and their use to treat cancer
US11130796B2 (en) 2017-01-05 2021-09-28 Kahr Medical Ltd. SIRPalpha-41BBL fusion protein and methods of use thereof
WO2021224438A1 (en) 2020-05-07 2021-11-11 Institut Curie Antxr1 as a biomarker of immunosuppressive fibroblast populations and its use for predicting response to immunotherapy
US11192868B2 (en) 2005-05-10 2021-12-07 Incyte Corporation Modulators of indoleamine 2,3-dioxygenase and methods of using the same
EP3768727A4 (en) * 2018-03-20 2021-12-22 Wuxi Biologics Ireland Limited. NEW BIS SPECIFIC PD-1 / LAG-3 ANTIBODY MOLECULES
US11207302B2 (en) 2008-07-08 2021-12-28 Incyte Corporation 1,2,5-oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
US11225521B2 (en) 2016-06-28 2022-01-18 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US11236170B2 (en) 2016-06-14 2022-02-01 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
JP2022514962A (ja) * 2018-12-21 2022-02-16 神州細胞工程有限公司 ヒト化抗pd-1抗体及びこの使用
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
US11299530B2 (en) 2017-01-05 2022-04-12 Kahr Medical Ltd. SIRP alpha-CD70 fusion protein and methods of use thereof
US11299554B2 (en) 2013-03-15 2022-04-12 Xencor, Inc. Heterodimeric proteins
WO2022074107A1 (en) 2020-10-09 2022-04-14 Worldwide Innovative Network Novel prediction method and gene signatures for the treatment of cancer
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
WO2022076318A1 (en) 2020-10-05 2022-04-14 Bristol-Myers Squibb Company Methods for concentrating proteins
US11306144B2 (en) 2017-08-25 2022-04-19 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
US11312771B2 (en) 2017-01-06 2022-04-26 Crescendo Biologics Limited Single-domain antibodies to programmed cell death 1 protein (PD-1), encoding nucleic acids and methods of using same
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
WO2022094567A1 (en) 2020-10-28 2022-05-05 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
WO2022108931A2 (en) 2020-11-17 2022-05-27 Seagen Inc. Methods of treating cancer with a combination of tucatinib and an anti-pd-1/anti-pd-l1 antibody
WO2022112198A1 (en) 2020-11-24 2022-06-02 Worldwide Innovative Network Method to select the optimal immune checkpoint therapies
US11352442B2 (en) 2014-11-26 2022-06-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
WO2022118197A1 (en) 2020-12-02 2022-06-09 Pfizer Inc. Time to resolution of axitinib-related adverse events
US11358999B2 (en) 2018-10-03 2022-06-14 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
WO2022129512A1 (en) 2020-12-17 2022-06-23 Ose Immunotherapeutics Bifunctional anti-pd1/il-7 molecules
WO2022136257A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022148781A1 (en) 2021-01-05 2022-07-14 Institut Curie Combination of mcoln activators and immune checkpoint inhibitors
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
WO2022165214A1 (en) 2021-01-29 2022-08-04 Board Of Regents, The University Of Texas System Methods of treating cancer with kinase inhibitors
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022214652A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains
WO2022214653A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics New scaffold for bifunctional molecules with improved properties
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
US11472890B2 (en) 2019-03-01 2022-10-18 Xencor, Inc. Heterodimeric antibodies that bind ENPP3 and CD3
US11479609B2 (en) 2016-04-15 2022-10-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2022240741A1 (en) 2021-05-12 2022-11-17 Dana-Farber Cancer Institute, Inc. Lag3 and gal3 inhibitory agents, xbp1, cs1, and cd138 peptides, and methods of use thereof
US11505595B2 (en) 2018-04-18 2022-11-22 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains
JP2022550243A (ja) * 2019-09-30 2022-12-01 シチュアン ケルン-バイオテック バイオファーマシューティカル カンパニー リミテッド 抗pd-1抗体及びその使用
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2022254227A1 (en) 2021-06-04 2022-12-08 Kymab Limited Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
US11560430B2 (en) 2017-01-20 2023-01-24 Tayu Huaxia Biotech Medical Group Co., LTD Anti-PD-1 antibodies and uses thereof
US20230025464A1 (en) * 2021-07-09 2023-01-26 Macrogenics, Inc. Pharmaceutical compositions of a pd-1 antibody and use of the same
US11566060B2 (en) 2017-01-05 2023-01-31 Kahr Medical Ltd. PD1-CD70 fusion protein and methods of use thereof
WO2023007472A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
US11591401B2 (en) 2020-08-19 2023-02-28 Xencor, Inc. Anti-CD28 compositions
US11613566B2 (en) 2017-10-18 2023-03-28 Alpine Immune Sciences, Inc. Variant ICOS ligand immunomodulatory proteins and related compositions and methods
WO2023052531A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
US11639375B2 (en) 2017-03-16 2023-05-02 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
US11673894B2 (en) 2018-02-27 2023-06-13 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors
US11702458B2 (en) 2017-01-05 2023-07-18 Kahr Medical Ltd. PD1-41BBL fusion protein and methods of use thereof
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
US11739144B2 (en) 2021-03-09 2023-08-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
US11746161B2 (en) 2017-06-05 2023-09-05 Janssen Biotech, Inc. Antibodies that specifically bind PD-1 and methods of use
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
US11753458B2 (en) 2017-10-10 2023-09-12 Alpine Immune Sciences, Inc. CTLA-4 variant immunomodulatory proteins and uses thereof
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
US11789010B2 (en) 2017-04-28 2023-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
US11795463B2 (en) 2020-02-28 2023-10-24 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
US11840579B2 (en) 2014-03-28 2023-12-12 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
EP4081248A4 (en) * 2019-12-23 2024-01-10 MacroGenics, Inc. METHOD FOR TREATING CANCER
US11873304B2 (en) 2018-05-18 2024-01-16 Incyte Corporation Fused pyrimidine derivatives as A2A/A2B inhibitors
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
US11884665B2 (en) 2019-01-29 2024-01-30 Incyte Corporation Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024028386A1 (en) 2022-08-02 2024-02-08 Ose Immunotherapeutics Multifunctional molecule directed against cd28
EP4319755A1 (en) 2021-04-08 2024-02-14 Board of Regents, The University of Texas System Compounds and methods for theranostic targeting of parp activity
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
US11918585B2 (en) 2018-06-29 2024-03-05 Incyte Corporation Formulations of an AXL/MER inhibitor
US11939383B2 (en) 2018-03-02 2024-03-26 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods and use thereof
WO2024072893A1 (en) * 2022-09-28 2024-04-04 Incyte Corporation Anti-pd-1/lag-3 bispecific antibodies and uses thereof
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
WO2024105180A1 (en) 2022-11-16 2024-05-23 Boehringer Ingelheim International Gmbh Predictive efficacy biomarkers for anti-sirpa antibodies
US11993653B2 (en) 2016-12-07 2024-05-28 Agenus Inc. Antibodies and methods of use thereof
US11999740B2 (en) 2018-07-05 2024-06-04 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024116140A1 (en) 2022-12-01 2024-06-06 Medimmune Limited Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies
WO2024091919A3 (en) * 2022-10-25 2024-06-20 The Brigham And Women's Hospital, Inc. Klrb1 binding agents and methods of use thereof
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
WO2024150177A1 (en) 2023-01-11 2024-07-18 Advesya Treatment methods for solid tumors
WO2024160721A1 (en) 2023-01-30 2024-08-08 Kymab Limited Antibodies
WO2024175699A1 (en) 2023-02-23 2024-08-29 Imcheck Therapeutics Combination of btn3a activating antibody and immune checkpoint inhibitors
US12077595B2 (en) 2017-11-13 2024-09-03 Crescendo Biologics Limited Single domain antibodies that bind to CD137
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
RU2827610C1 (ru) * 2020-06-19 2024-09-30 Синоселлтех Лтд Стабильная композиция рекомбинантного моноклонального антитела против pd-1
US12103976B2 (en) 2018-07-12 2024-10-01 Invox Pharma Limited Fc binding fragments comprising a CD137 antigen-binding site
EP4200324A4 (en) * 2020-08-19 2024-10-02 Pandion Operations, Inc. MULTIPARATOPIC ANTI-PD-1 ANTIBODIES AND THEIR USES
WO2024200820A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Method of synthesis of targeted lipid nanoparticle and uses thereof
WO2024200823A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof
US12110339B2 (en) 2016-04-15 2024-10-08 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer
US12122834B2 (en) 2018-02-01 2024-10-22 Merck Sharp & Dohme Llc Anti-PD-1 antibodies
US12134638B2 (en) 2018-07-11 2024-11-05 Kahr Medical Ltd. SIRPalpha-4-1BBL variant fusion protein and methods of use thereof
US12144875B2 (en) 2018-06-01 2024-11-19 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
WO2024236048A1 (en) 2023-05-16 2024-11-21 Nh Theraguix Combination therapy for treating tumors with radiotherapy
WO2024261239A1 (en) 2023-06-23 2024-12-26 Imcheck Therapeutics Bispecific antibodies targeting btn3a and the pd-1/pd-l1 inhibitory axis
US12187798B2 (en) 2016-06-20 2025-01-07 Invox Pharma Limited LAG-3 binding members
US12187730B2 (en) 2017-09-27 2025-01-07 Incyte Corporation Salts of TAM inhibitors
US12214036B2 (en) * 2020-03-06 2025-02-04 Incyte Corporation Combination therapy comprising AXL/MER and PD-1/PD-L1 inhibitors
WO2025038763A1 (en) 2023-08-15 2025-02-20 Bristol-Myers Squibb Company Ceramic hydroxyapatite chromatography flow through method
US12247074B2 (en) 2018-07-12 2025-03-11 Invox Pharma Limited Antibody molecules
US12246025B2 (en) 2018-03-21 2025-03-11 Genmab A/S Methods of treating cancer with a combination of a platinum-based agent and an anti-tissue factor antibody-drug conjugate
US12252537B2 (en) 2018-07-12 2025-03-18 Invox Pharma Limited Antibody molecules that bind CD137 and OX40
WO2025056778A1 (en) 2023-09-15 2025-03-20 BioNTech SE Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists
US12263234B2 (en) 2019-01-23 2025-04-01 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-PD-L1 diabodies and the use thereof
WO2025068452A1 (en) 2023-09-29 2025-04-03 Negio Therapeutics Guanfacine derivatives and their use in treating cancer
WO2025068461A1 (en) 2023-09-29 2025-04-03 Negio Therapeutics Guanfacine derivatives and their use in treating cancer
US12286466B2 (en) 2018-07-11 2025-04-29 Kahr Medical Ltd. PD1-4-1BBL variant fusion protein and methods of use thereof
US12297283B2 (en) 2018-07-12 2025-05-13 Invox Pharma Limited Fc binding fragments comprising an OX40 antigen-binding site
US12304943B2 (en) 2020-05-08 2025-05-20 Alpine Immune Sciences, Inc. April and BAFF inhibitory immunomodulatory proteins and methods of use thereof
US12319739B2 (en) 2018-07-12 2025-06-03 Invox Pharma Limited Mesothelin and CD137 binding molecules
WO2025114541A1 (en) 2023-11-30 2025-06-05 Genmab A/S Antibodies capable of binding to ox40 in combination therapy
US12324841B2 (en) 2018-05-07 2025-06-10 Genmab A/S Methods of treating cancer with a combination of an anti-PD-1 antibody and an anti-tissue factor antibody-drug conjugate
US12325742B2 (en) 2018-07-12 2025-06-10 Invox Pharma Limited Anti-mesothelin antibodies
WO2025121445A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025121444A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and anti-vegfr2 antibodies
WO2025120866A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025133115A1 (en) 2023-12-21 2025-06-26 Ose Immunotherapeutics Lipid-based nanoparticles comprising il-35
WO2025132831A1 (en) 2023-12-19 2025-06-26 Universite D'aix-Marseille N-heteroaryl derivatives and uses thereof for treating cancer
US12344672B2 (en) 2018-07-12 2025-07-01 Invox Pharma Limited Antibody molecules that bind PD-L1 and CD137
WO2025145207A1 (en) 2023-12-29 2025-07-03 Bristol-Myers Squibb Company Combination therapy of kras inhibitor and treg-depleting agent
WO2025184208A1 (en) 2024-02-27 2025-09-04 Bristol-Myers Squibb Company Anti-ceacam5 antibodies and uses thereof
WO2025184211A1 (en) 2024-02-27 2025-09-04 Bristol-Myers Squibb Company Anti-ceacam5 antibody drug conjugates
US12410258B2 (en) 2023-05-12 2025-09-09 Ganmab A/S Antibodies capable of binding to OX40, variants thereof and uses thereof
US12415809B2 (en) 2016-03-28 2025-09-16 Incyte Corporation Pyrrolotriazine compounds as tam inhibitors
US12435155B2 (en) 2020-02-21 2025-10-07 Macrogenics, Inc. CD137 binding molecules and uses thereof
US12435145B2 (en) 2018-02-21 2025-10-07 Five Prime Therapeutics, Inc. B7-H4 antibody formulations
US12453781B2 (en) 2018-10-30 2025-10-28 Genmab A/S Methods of treating cancer with a combination of an anti-VEGF antibody and an anti-tissue factor antibody-drug conjugate
US12466897B2 (en) 2011-10-10 2025-11-11 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
WO2025242835A1 (en) 2024-05-22 2025-11-27 Ose Immunotherapeutics Molecules comprising masking linkers and uses thereof for the treatment of cancer
WO2025245489A1 (en) 2024-05-24 2025-11-27 Bristol-Myers Squibb Company Treatment of tumors in subjects having fgl-1 positive samples
US12486312B2 (en) 2015-04-17 2025-12-02 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9963510B2 (en) 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
PE20190736A1 (es) 2012-06-13 2019-05-23 Incyte Holdings Corp Compuestos triciclicos sustituidos como inhibidores del receptor del factor de crecimiento de fibroblastos (fgfr)
KR102269032B1 (ko) 2013-04-19 2021-06-24 인사이트 홀딩스 코포레이션 Fgfr 저해제로서 이환식 헤테로사이클
NZ726520A (en) * 2014-05-29 2018-12-21 Macrogenics Inc Tri-specific binding molecules that specifically bind to multiple cancer antigens and methods of use thereof
TWI693232B (zh) * 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 與pd-1和lag-3具有免疫反應性的共價結合的雙抗體和其使用方法
ES2895769T3 (es) 2015-02-20 2022-02-22 Incyte Corp Heterociclos bicíclicos como inhibidores de FGFR
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
TWI773646B (zh) * 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 結合lag-3的分子和其使用方法
CN116333138A (zh) * 2015-07-30 2023-06-27 宏观基因有限公司 Pd-1结合分子和其使用方法
SI3370768T1 (sl) 2015-11-03 2022-04-29 Janssen Biotech, Inc. Protitelesa, ki se specifično vežejo na PD-1, in njihove uporabe
CN108341871A (zh) * 2017-01-24 2018-07-31 三生国健药业(上海)股份有限公司 抗pd-1单克隆抗体及其制备方法和应用
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
US12398209B2 (en) 2018-01-22 2025-08-26 Janssen Biotech, Inc. Methods of treating cancers with antagonistic anti-PD-1 antibodies
CN108546297B (zh) * 2018-03-29 2019-08-02 中国人民解放军军事科学院军事医学研究院 针对pd-1的单克隆抗体及其应用
SI3788047T1 (sl) 2018-05-04 2024-11-29 Incyte Corporation Trdne oblike inhibitorja fgfr in postopki priprave le-teh
SG11202010882XA (en) 2018-05-04 2020-11-27 Incyte Corp Salts of an fgfr inhibitor
CN110684113A (zh) * 2018-07-06 2020-01-14 复旦大学 一种抗PD-1抗原和抗c-Met抗原的双特异性抗体及其构建方法
KR20210060477A (ko) 2018-09-17 2021-05-26 압큐로, 인크. 항-klrg1 항체
BR112021005585A2 (pt) 2018-09-27 2021-06-29 Celgene Corporation proteínas de ligação a sirpa e métodos de uso das mesmas
US11591390B2 (en) 2018-09-27 2023-02-28 Celgene Corporation SIRP-α binding proteins and methods of use thereof
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
MX2021009041A (es) * 2019-02-03 2021-08-19 Jiangsu Hengrui Medicine Co Anticuerpo anti-pd-1, fragmento de union a antigeno del mismo y uso farmaceutico del mismo.
WO2020168197A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors
CA3130210A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Cyclin-dependent kinase 2 biomarkers and uses thereof
WO2020180959A1 (en) 2019-03-05 2020-09-10 Incyte Corporation Pyrazolyl pyrimidinylamine compounds as cdk2 inhibitors
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
WO2020205560A1 (en) 2019-03-29 2020-10-08 Incyte Corporation Sulfonylamide compounds as cdk2 inhibitors
WO2020223469A1 (en) 2019-05-01 2020-11-05 Incyte Corporation N-(1-(methylsulfonyl)piperidin-4-yl)-4,5-di hydro-1h-imidazo[4,5-h]quinazolin-8-amine derivatives and related compounds as cyclin-dependent kinase 2 (cdk2) inhibitors for treating cancer
US11447494B2 (en) 2019-05-01 2022-09-20 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
CN117447596A (zh) * 2019-06-30 2024-01-26 福州创方医药科技有限公司 一种靶向pd-1的单克隆抗体及其应用
CN112225809B (zh) * 2019-06-30 2023-09-05 福州创方医药科技有限公司 一种靶向pd-1的单克隆抗体及其应用
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US20220289846A1 (en) * 2019-07-09 2022-09-15 Cadila Healthcare Limited Antibodies to human programmed death receptor pd-1
CN112239506B (zh) * 2019-07-16 2023-09-26 复旦大学 一种抗PD-1及c-Met抗原的小分子双特异性抗体Diabody
PH12022550211A1 (en) * 2019-08-02 2022-12-12 Cttq Akeso Shanghai Biomed Tech Co Ltd Anti-pd-1 antibody and medical use thereof
PH12022550361A1 (en) 2019-08-14 2023-02-27 Incyte Corp Imidazolyl pyrimidinylamine compounds as cdk2 inhibitors
WO2021067374A1 (en) 2019-10-01 2021-04-08 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
PE20221905A1 (es) 2019-10-11 2022-12-23 Incyte Corp Aminas biciclicas como inhibidoras de la cdk2
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
WO2021113462A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
EP4069696A1 (en) 2019-12-04 2022-10-12 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
WO2021146424A1 (en) 2020-01-15 2021-07-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
WO2021170082A1 (zh) * 2020-02-28 2021-09-02 南京圣和药业股份有限公司 抗cd47/抗pd-l1抗体及其应用
EP4135844A1 (en) 2020-04-16 2023-02-22 Incyte Corporation Fused tricyclic kras inhibitors
CN113583127A (zh) * 2020-04-30 2021-11-02 迈威(上海)生物科技股份有限公司 一种靶向nkg2a和pd-l1的双特异性抗体及应用
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
US11999752B2 (en) 2020-08-28 2024-06-04 Incyte Corporation Vinyl imidazole compounds as inhibitors of KRAS
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
EP4261225A4 (en) * 2020-12-10 2024-11-13 Eutilex Co., Ltd. ANTI-PD-1 ANTIBODY AND ITS USES
MX2023007850A (es) 2020-12-29 2023-09-11 Incyte Corp Terapia combinada que comprende inhibidores de adora2a/adora2b (a2a/a2b), inhibidores de muerte programada/ligando 1 de muerte programada (pd-1/pd-l1) y anticuerpos de cumulo de diferenciacion 73 (anti-cd73).
EP4274852A4 (en) * 2021-01-11 2025-02-26 Eutilex Co., Ltd. BISPECIFIC EPITOP-BINDING PROTEIN WITH ANTI-4-1BB ANTIBODY AND PD-1 PROTEIN OR FRAGMENTS THEREOF AND USE THEREOF
CN113336848B (zh) * 2021-02-03 2022-08-19 上海莱馥医疗科技有限公司 一种抗pd-1抗体及其用途
WO2022221170A1 (en) 2021-04-12 2022-10-20 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent
WO2022261159A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
WO2022261160A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
US11981671B2 (en) 2021-06-21 2024-05-14 Incyte Corporation Bicyclic pyrazolyl amines as CDK2 inhibitors
US12441727B2 (en) 2021-07-07 2025-10-14 Incyte Corporation Tricyclic compounds as inhibitors of KRAS
JP2024529347A (ja) 2021-07-14 2024-08-06 インサイト・コーポレイション Krasの阻害剤としての三環式化合物
JP2024534187A (ja) 2021-08-31 2024-09-18 インサイト・コーポレイション Krasの阻害剤としてのナフチリジン化合物
WO2023049697A1 (en) 2021-09-21 2023-03-30 Incyte Corporation Hetero-tricyclic compounds as inhibitors of kras
JP2024537824A (ja) 2021-10-01 2024-10-16 インサイト・コーポレイション ピラゾロキノリンkras阻害剤
PE20242113A1 (es) 2021-10-14 2024-10-28 Incyte Corp Compuestos de quinolina como inhibidores de kras
EP4419566A4 (en) * 2021-10-21 2025-09-17 Seismic Therapeutic Inc DUAL-TARGETED IMMUNE REGULATORY COMPOSITIONS
EP4436578A1 (en) 2021-11-22 2024-10-02 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a kras inhibitor
US11976073B2 (en) 2021-12-10 2024-05-07 Incyte Corporation Bicyclic amines as CDK2 inhibitors
EP4452982A1 (en) 2021-12-22 2024-10-30 Incyte Corporation Salts and solid forms of an fgfr inhibitor and processes of preparing thereof
EP4536362A1 (en) 2022-06-08 2025-04-16 Incyte Corporation Tricyclic triazolo compounds as dgk inhibitors
WO2024015731A1 (en) 2022-07-11 2024-01-18 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
EP4608515A1 (en) 2022-10-25 2025-09-03 Seismic Therapeutic, Inc. Variant igg fc polypeptides and uses thereof
US20240190982A1 (en) 2022-11-03 2024-06-13 Incyte Corporation Combination therapies comprising an anti-gitr antibody for treating cancers
WO2024107731A2 (en) * 2022-11-14 2024-05-23 Ablexis, Llc Anti-pd-l1 antibodies
US20240217989A1 (en) 2022-11-18 2024-07-04 Incyte Corporation Heteroaryl Fluoroalkenes As DGK Inhibitors
CN117482246B (zh) * 2022-12-30 2024-10-15 英百瑞(杭州)生物医药有限公司 抗cd33/cll1双特异性抗体-自然杀伤细胞偶联物及其用途
WO2024151093A1 (ko) * 2023-01-11 2024-07-18 주식회사 녹십자 혈전성 질환의 예방 또는 치료를 위한 신규한 액상 제형물
WO2024151346A1 (en) 2023-01-12 2024-07-18 Incyte Corporation Heteroaryl fluoroalkenes as dgk inhibitors
US20240390340A1 (en) 2023-04-18 2024-11-28 Incyte Corporation Pyrrolidine kras inhibitors
US20250066363A1 (en) 2023-08-24 2025-02-27 Incyte Corporation Bicyclic DGK Inhibitors
WO2025080593A1 (en) 2023-10-09 2025-04-17 Incyte Corporation Combination therapy using a kras g12d inhibitor and pd-1 inhibitor or pd-l1 inhibitor
WO2025096738A1 (en) 2023-11-01 2025-05-08 Incyte Corporation Kras inhibitors
US20250179083A1 (en) 2023-12-05 2025-06-05 Incyte Corporation Tricyclic triazolo compounds as dgk inhibitors
TW202523304A (zh) 2023-12-06 2025-06-16 美商英塞特公司 包含dgk抑制劑及pd—1/pd—l1抑制劑之組合療法
WO2025129002A1 (en) 2023-12-13 2025-06-19 Incyte Corporation Bicyclooctane kras inhibitors

Citations (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842067A (en) 1973-07-27 1974-10-15 American Home Prod Synthesis of(des-asn5)-srif and intermediates
US3862925A (en) 1973-07-05 1975-01-28 American Home Prod Preparation of somatotropin release inhibiting factor and intermediates therefor
US3972859A (en) 1974-03-08 1976-08-03 Takeda Chemical Industries, Ltd. Novel decapeptide amide analogs of leuteinizing hormone-releasing hormone
US4105603A (en) 1977-03-28 1978-08-08 The Salk Institute For Biological Studies Peptides which effect release of hormones
US4526938A (en) 1982-04-22 1985-07-02 Imperial Chemical Industries Plc Continuous release formulations
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4880078A (en) 1987-06-29 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Exhaust muffler
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
WO1991005548A1 (en) 1989-10-10 1991-05-02 Pitman-Moore, Inc. Sustained release composition for macromolecular proteins
US5128326A (en) 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
WO1992019244A2 (en) 1991-05-01 1992-11-12 Henry M. Jackson Foundation For The Advancement Of Military Medicine A method for treating infectious respiratory diseases
WO1996020698A2 (en) 1995-01-05 1996-07-11 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Surface-modified nanoparticles and method of making and using same
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
WO1997032572A2 (en) 1996-03-04 1997-09-12 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
US5679377A (en) 1989-11-06 1997-10-21 Alkermes Controlled Therapeutics, Inc. Protein microspheres and methods of using them
EP0359096B1 (en) 1988-09-15 1997-11-05 The Trustees Of Columbia University In The City Of New York Antibodies having modified carbohydrate content and methods of preparation and use
WO1997044013A1 (en) 1996-05-24 1997-11-27 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
WO1998002463A1 (en) 1996-07-11 1998-01-22 Medarex, Inc. THERAPEUTIC MULTISPECIFIC COMPOUNDS COMPRISED OF ANTI-FCα RECEPTOR ANTIBODIES
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
WO1998031346A1 (en) 1997-01-16 1998-07-23 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US5866692A (en) 1991-09-18 1999-02-02 Kyowa Hakko Kogyo Co., Ltd. Process for producing humanized chimera antibody
US5885573A (en) 1993-06-01 1999-03-23 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
US5888533A (en) 1995-10-27 1999-03-30 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
WO1999015154A1 (en) 1997-09-24 1999-04-01 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release preparations
WO1999020253A1 (en) 1997-10-23 1999-04-29 Bioglan Therapeutics Ab Encapsulation method
US5912015A (en) 1992-03-12 1999-06-15 Alkermes Controlled Therapeutics, Inc. Modulated release from biocompatible polymers
US5916597A (en) 1995-08-31 1999-06-29 Alkermes Controlled Therapeutics, Inc. Composition and method using solid-phase particles for sustained in vivo release of a biologically active agent
US5934272A (en) 1993-01-29 1999-08-10 Aradigm Corporation Device and method of creating aerosolized mist of respiratory drug
US5945155A (en) 1996-02-29 1999-08-31 International Business Machines Corporation Low dielectric constant amorphous fluorinated carbon and method of preparation
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
WO1999058572A1 (en) 1998-05-08 1999-11-18 Cambridge University Technical Services Limited Binding molecules derived from immunoglobulins which do not trigger complement mediated lysis
WO1999066903A2 (en) 1998-06-24 1999-12-29 Advanced Inhalation Research, Inc. Large porous particles emitted from an inhaler
US6019968A (en) 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US20020147311A1 (en) 2000-02-11 2002-10-10 Gillies Stephen D. Enhancing the circulating half-life of antibody-based fusion proteins
US6472511B1 (en) 1997-02-11 2002-10-29 Immunomedics, Inc. Stimulation of an immune response with antibodies labeled with the α-galactosyl epitope
WO2003035835A2 (en) 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
US20030115614A1 (en) 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
WO2003093443A2 (en) 2002-05-03 2003-11-13 Raven Biotechnologies, Inc. Alcam and alcam modulators
WO2004063351A2 (en) 2003-01-09 2004-07-29 Macrogenics, Inc. IDENTIFICATION AND ENGINEERING OF ANTIBODIES WITH VARIANT Fc REGIONS AND METHODS OF USING SAME
WO2005070966A2 (en) 2004-01-16 2005-08-04 Regeneron Pharmaceuticals, Inc. Fusion polypeptides capable of activating receptors
WO2005121179A2 (en) 2004-06-07 2005-12-22 Raven Biotechnologies, Inc. Transferrin receptor antibodies
US20060166291A1 (en) 2005-01-12 2006-07-27 Mather Jennie P KID31 and antibodies that bind thereto
US7083784B2 (en) 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
US20060172350A1 (en) 2005-02-02 2006-08-03 Mather Jennie P ADAM-9 modulators
WO2006088494A2 (en) 2004-07-12 2006-08-24 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using the same
WO2006107617A2 (en) 2005-04-06 2006-10-12 Ibc Pharmaceuticals, Inc. Methods for generating stably linked complexes composed of homodimers, homotetramers or dimers of dimers and uses
WO2006107786A2 (en) 2005-04-06 2006-10-12 Ibc Pharmaceuticals, Inc. Improved stably tethered structures of defined compositions with multiple functions or binding specificities
WO2006113665A2 (en) 2005-04-15 2006-10-26 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
WO2007024715A2 (en) 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
WO2007046893A2 (en) 2005-10-19 2007-04-26 Ibc Pharmaceuticals, Inc. Methods for generating bioactive assemblies and uses thereof
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US20070148164A1 (en) 2003-11-12 2007-06-28 Biogen Idec Ma Inc. Neonatal Fc receptor (FcRn)-binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
WO2007075270A2 (en) 2005-12-16 2007-07-05 Ibc Pharmaceuticals, Inc. Multivalent immunoglobulin-based bioactive assemblies
WO2007106707A2 (en) 2006-03-10 2007-09-20 Macrogenics, Inc. Identification and engineering of antibodies with variant heavy chains and methods of using same
US7276586B2 (en) 1999-03-08 2007-10-02 Genentech, Inc. Antibodies to a polypeptide encoded by a nucleic acid under-expressed in stomach and lung tumor
WO2007110205A2 (en) 2006-03-24 2007-10-04 Merck Patent Gmbh Engineered heterodimeric protein domains
WO2007146968A2 (en) 2006-06-12 2007-12-21 Trubion Pharmaceuticals, Inc. Single-chain multivalent binding proteins with effector function
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2008003116A2 (en) 2006-07-05 2008-01-10 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H. Method for engineering immunoglobulins
WO2008003103A2 (en) 2006-07-05 2008-01-10 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H. Novel multivalent immunoglobulins
WO2008024188A2 (en) 2006-08-18 2008-02-28 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
WO2008027236A2 (en) 2006-08-30 2008-03-06 Genentech, Inc. Multispecific antibodies
WO2008140603A2 (en) 2006-12-08 2008-11-20 Macrogenics, Inc. METHODS FOR THE TREATMENT OF DISEASE USING IMMUNOGLOBULINS HAVING FC REGIONS WITH ALTERED AFFINITIES FOR FCγR ACTIVATING AND FCγR INHIBITING
WO2008145142A1 (en) 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
WO2009018386A1 (en) 2007-07-31 2009-02-05 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
US20090060910A1 (en) 2005-04-15 2009-03-05 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2009058492A2 (en) 2007-10-31 2009-05-07 Xencor, Inc Fc variants with altered binding to fcrn
WO2009080254A1 (en) 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009080251A1 (en) 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2009132876A1 (en) 2008-05-02 2009-11-05 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H Cytotoxic immunoglobulin
EP2158221A2 (en) 2007-06-21 2010-03-03 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2010028797A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
WO2010028796A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Trispecific hexavalent antibodies
WO2010028795A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
WO2010033279A2 (en) 2008-06-04 2010-03-25 Macrogenics, Inc. Antibodies with altered binding to fcrn and methods of using same
US20100174053A1 (en) 2005-04-15 2010-07-08 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2010080538A1 (en) 2008-12-19 2010-07-15 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2010108127A1 (en) 2009-03-20 2010-09-23 Genentech, Inc. Bispecific anti-her antibodies
WO2010136172A1 (en) 2009-05-27 2010-12-02 F. Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
WO2011069104A2 (en) 2009-12-04 2011-06-09 Genentech, Inc. Multispecific antibodies, antibody analogs, compositions, and methods
WO2011086091A1 (en) 2010-01-12 2011-07-21 Ucb Pharma S.A. Multivalent antibodies
WO2011117329A1 (en) 2010-03-26 2011-09-29 F. Hoffmann-La Roche Ag Bispecific, bivalent anti-vegf/anti-ang-2 antibodies
WO2011133886A2 (en) 2010-04-23 2011-10-27 Genentech, Inc. Production of heteromultimeric proteins
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
WO2011143545A1 (en) 2010-05-14 2011-11-17 Rinat Neuroscience Corporation Heterodimeric proteins and methods for producing and purifying them
US8088376B2 (en) 2004-11-12 2012-01-03 Xencor, Inc. Fc variants with altered binding to FcRn
WO2012009544A2 (en) 2010-07-14 2012-01-19 Amgen Inc. Domain insertion immunoglobulin
WO2012018687A1 (en) 2010-08-02 2012-02-09 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2012023053A2 (en) 2010-08-16 2012-02-23 Novimmune S.A. Methods for the generation of multispecific and multivalent antibodies
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012156430A1 (en) 2011-05-17 2012-11-22 Trion Research Gmbh Vaccine preparation containing trifunctional antibodies with antigen immunogenicity enhancer properties
WO2012162583A1 (en) 2011-05-26 2012-11-29 Ibc Pharmaceuticals, Inc. Design and construction of novel multivalent antibodies
WO2012162068A2 (en) 2011-05-21 2012-11-29 Macrogenics, Inc. Deimmunized serum-binding domains and their use for extending serum half-life
WO2013003652A1 (en) 2011-06-28 2013-01-03 Sea Lane Biotechnologies, Llc Multispecific stacked variable domain binding proteins
WO2013006867A1 (en) 2011-07-07 2013-01-10 Massachussetts Institute Of Technology Methods and apparatus for ultrathin catalyst layer for photoelectrode
WO2013060867A2 (en) 2011-10-27 2013-05-02 Genmab A/S Production of heterodimeric proteins
US20130109843A1 (en) * 2007-06-18 2013-05-02 Mds Oss B.V. Antibodies to human programmed death receptor pd-1
WO2013070565A1 (en) 2011-11-07 2013-05-16 Medimmune, Llc Multispecific and multivalent binding proteins and uses thereof
WO2013174873A1 (en) 2012-05-24 2013-11-28 F. Hoffmann-La Roche Ag Multispecific antibodies
WO2014008218A1 (en) 2012-07-02 2014-01-09 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
WO2014022540A1 (en) 2012-08-02 2014-02-06 Regeneron Pharmaceuticals, Inc. Multivalent antigen-binding proteins
US20140234296A1 (en) * 2011-03-31 2014-08-21 Merck Sharp & Dohme Corp. Stable formulations of antibodies to human programmed death receptor pd-1 and related treatments
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
US20140348743A1 (en) * 2005-05-09 2014-11-27 Ono Pharmaceutical Co., Ltd. Monoclonal antibodies to programmed death 1 (pd-1)
WO2014194302A2 (en) 2013-05-31 2014-12-04 Sorrento Therapeutics, Inc. Antigen binding proteins that bind pd-1
WO2015026894A2 (en) * 2013-08-23 2015-02-26 Macrogenics, Inc. Bi-specific monovalent diabodies that are capable of binding to gpa33 and cd3, and uses thereof
US20150079109A1 (en) * 2013-09-13 2015-03-19 Beigene, Ltd. Anti-PD1 Antibodies and their Use as Therapeutics and Diagnostics

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US320A (en) 1837-07-31 John dainty
US5985A (en) 1848-12-26 Pianoforte-action
WO1991003493A1 (en) 1989-08-29 1991-03-21 The University Of Southampton Bi-or trispecific (fab)3 or (fab)4 conjugates
FR2656800B1 (fr) 1990-01-08 1992-05-15 Roussy Inst Gustave Nouvelles proteines produits par les lymphocytes humains, sequence d'adn codant pour ces proteines et applications pharmaceutiques et biologiques.
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
FR2664500B1 (fr) 1990-07-13 1994-10-28 Lille Ii Universite Droit Sant Procede de preparation d'une lipoproteine modifiee par incorporation d'une substance active lipophile, lipoproteine modifiee ainsi obtenue et composition pharmaceutique ou cosmetique la contenant.
US5972337A (en) 1990-11-01 1999-10-26 Cancer Research Fund Of Contra Costa 46 kilodalton human milk fat globule (HMFG) antigen, fragments and fusion protein
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
GB9112536D0 (en) 1991-06-11 1991-07-31 Celltech Ltd Chemical compounds
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
GB9115364D0 (en) 1991-07-16 1991-08-28 Wellcome Found Antibody
US5843749A (en) 1991-07-26 1998-12-01 Regeneron Pharmaceuticals, Inc. Ehk and Ror tyrosine kinases
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
US6180377B1 (en) 1993-06-16 2001-01-30 Celltech Therapeutics Limited Humanized antibodies
IL108501A (en) 1994-01-31 1998-10-30 Mor Research Applic Ltd Antibodies and pharmaceutical compositions containing them
ES2281899T3 (es) 1994-05-06 2007-10-01 Institut Gustave Roussy Fracciones polipeptidicas solubles de la proteina lag-3; procedimiento de produccion; composicion terapeutica; anticuerpo anti-idiotipo.
US6265150B1 (en) 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
IL130123A (en) 1996-11-28 2007-07-24 Roussy Inst Gustave LAG-3 protein mutants, their expression, use and method of production
EP0900841A1 (en) 1997-06-18 1999-03-10 Institut National De La Sante Et De La Recherche Medicale (Inserm) LAG-3 splice variants
DE19819846B4 (de) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
JP5004390B2 (ja) 1999-08-23 2012-08-22 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド 新規b7−4分子およびその用途
EP1210428B1 (en) 1999-08-23 2015-03-18 Dana-Farber Cancer Institute, Inc. Pd-1, a receptor for b7-4, and uses therefor
US6803192B1 (en) 1999-11-30 2004-10-12 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
PT1234031T (pt) 1999-11-30 2017-06-26 Mayo Foundation B7-h1, uma nova molécula imunoregulatória
AU2001270609A1 (en) 2000-06-30 2002-01-14 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Heterodimeric fusion proteins
WO2002086083A2 (en) 2001-04-20 2002-10-31 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
US20040241745A1 (en) 2001-07-31 2004-12-02 Tasuku Honjo Substance specific to pd-1
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
EP1293514B1 (en) 2001-09-14 2006-11-29 Affimed Therapeutics AG Multimeric single chain tandem Fv-antibodies
WO2003024191A2 (en) 2001-09-21 2003-03-27 Raven Biotechnologies, Inc. Antibodies that bind to cancer-associated antigen cytokeratin 8 and methods of use thereof
ATE524196T1 (de) 2001-10-16 2011-09-15 Macrogenics West Inc An das krebsassoziierte antigen cd46 bindende antikörper und verwendungsverfahren dafür
CA2466279A1 (en) 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
WO2003087340A2 (en) 2002-04-12 2003-10-23 Raven Biotechnologies, Inc. Antibodies that bind to integrin alpha-v-beta-6 and methods of use thereof
NZ535925A (en) 2002-04-16 2008-06-30 Genentech Inc An isolated antibody that binds to a particular polypeptide
IL149820A0 (en) 2002-05-23 2002-11-10 Curetech Ltd Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency
AU2003281200A1 (en) 2002-07-03 2004-01-23 Tasuku Honjo Immunopotentiating compositions
EP1581096A4 (en) 2002-11-13 2006-06-21 Raven Biotechnologies Inc ANTIGEN PIPA AND BINDING ANTIBODIES THEREOF
CN101899114A (zh) 2002-12-23 2010-12-01 惠氏公司 抗pd-1抗体及其用途
EP1591527B1 (en) 2003-01-23 2015-08-26 Ono Pharmaceutical Co., Ltd. Substance specific to human pd-1
JP2006523226A (ja) 2003-02-28 2006-10-12 ザ ジョンズ ホプキンス ユニバーシティ T細胞調節方法
DE602004011789T2 (de) 2003-07-07 2009-02-12 The Scripps Research Institute, La Jolla Zusammensetzungen der orthogonalen Lysyl-tRNA und Aminoacyl-tRNA Synthetase Paaren und ihre Verwendungen
WO2005019258A2 (en) 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
BRPI0414513A (pt) 2003-09-18 2007-01-02 Raven Biotechnologies Inc kid3 e anticorpos de kid3 que se ligam a ele
KR20050082389A (ko) 2004-02-18 2005-08-23 메덱스젠 주식회사 직렬 연쇄체를 갖는 면역접합체를 포함하는 장기이식합병증 치료용 약제학적 조성물
US20070166281A1 (en) 2004-08-21 2007-07-19 Kosak Kenneth M Chloroquine coupled antibodies and other proteins with methods for their synthesis
WO2006021955A2 (en) 2004-08-23 2006-03-02 Mor Research Applications Ltd. Use of bat monoclonal antibody for immunotherapy
CA2583741C (en) 2004-10-15 2014-10-14 Verisign, Inc. An algorithm to create and validate a one time password
US7847070B2 (en) 2005-01-31 2010-12-07 Raven Biotechnologies, Inc. LUCA2 and antibodies that bind thereto
US20060171952A1 (en) 2005-02-02 2006-08-03 Mather Jennie P JAM-3 and antibodies that bind thereto
JP5328156B2 (ja) 2005-02-03 2013-10-30 マクロジェニックス ウエスト, インコーポレイテッド オンコスタチンmレセプターに対する抗体
KR101363252B1 (ko) 2005-02-04 2014-02-13 레이븐 바이오테크놀로지스, 인코퍼레이티드 Epha2에 결합하는 항체 및 그것의 사용방법
EP3130350A1 (en) 2005-06-08 2017-02-15 Dana-Farber Cancer Institute, Inc. Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway
JP2006345852A (ja) 2005-06-16 2006-12-28 Virxsys Corp 抗体複合体
KR101411165B1 (ko) 2005-07-01 2014-06-25 메다렉스, 엘.엘.시. 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날항체
NZ720288A (en) 2006-12-27 2020-02-28 Harvard College Compositions and methods for the treatment of infections and tumors
EP1987839A1 (en) 2007-04-30 2008-11-05 I.N.S.E.R.M. Institut National de la Sante et de la Recherche Medicale Cytotoxic anti-LAG-3 monoclonal antibody and its use in the treatment or prevention of organ transplant rejection and autoimmune disease
JP2010190572A (ja) 2007-06-01 2010-09-02 Sapporo Medical Univ IL13Ra2に対する抗体およびこれを含む診断・治療薬
US20090028857A1 (en) 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US8062852B2 (en) 2007-10-01 2011-11-22 The Children's Hospital And Regional Medical Center Detection and treatment of autoimmune disorders
TW200938224A (en) 2007-11-30 2009-09-16 Medarex Inc Anti-B7H4 monoclonal antibody-drug conjugate and methods of use
PL2242773T3 (pl) 2008-02-11 2017-11-30 Cure Tech Ltd. Przeciwciała monoklonalne do leczenia nowotworu
US7565048B1 (en) 2008-05-30 2009-07-21 Ofs Fitel Llc Undersea optical fiber transmission systems
EP2307050A4 (en) 2008-07-04 2012-07-25 Ono Pharmaceutical Co USE OF A EFFECTIVENESS MARKER TO OPTIMIZE THE THERAPEUTIC EFFECTIVENESS OF AN ANTI-HUMAN PD-1 ANTIBODY ON CANCERS
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
EP2927240A1 (en) 2008-08-25 2015-10-07 Amplimmune, Inc. Compositions of pd-1 antagonists and methods of use
ES2592216T3 (es) 2008-09-26 2016-11-28 Dana-Farber Cancer Institute, Inc. Anticuerpos anti-PD-1, PD-L1 y PD-L2 humanos y sus usos
US8741295B2 (en) 2009-02-09 2014-06-03 Universite De La Mediterranee PD-1 antibodies and PD-L1 antibodies and uses thereof
US8277919B2 (en) 2009-07-23 2012-10-02 VMO Systems, Inc. Reflective coating for an optical disc
KR101808602B1 (ko) 2009-10-07 2017-12-13 마크로제닉스, 인크. 푸코실화 정도의 변경으로 인해 개선된 이펙터 기능을 나타내는 Fc 영역-함유 폴리펩티드, 그것의 사용 방법
US20130017199A1 (en) 2009-11-24 2013-01-17 AMPLIMMUNE ,Inc. a corporation Simultaneous inhibition of pd-l1/pd-l2
LT2361936T (lt) 2010-02-25 2016-09-12 Affimed Gmbh Antigeną rišanti molekulė ir jos panaudojimas
US20110206672A1 (en) 2010-02-25 2011-08-25 Melvyn Little Antigen-Binding Molecule And Uses Thereof
US9150656B2 (en) * 2010-03-04 2015-10-06 Macrogenics, Inc. Antibodies reactive with B7-H3, immunologically active fragments thereof and uses thereof
EP2545078A1 (en) 2010-03-11 2013-01-16 UCB Pharma, S.A. Pd-1 antibody
TW201134488A (en) * 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies
US8876892B2 (en) 2010-04-21 2014-11-04 Medtronic, Inc. Prosthetic heart valve delivery system with spacing
US9163087B2 (en) 2010-06-18 2015-10-20 The Brigham And Women's Hospital, Inc. Bi-specific antibodies against TIM-3 and PD-1 for immunotherapy in chronic immune conditions
WO2013119903A1 (en) 2012-02-10 2013-08-15 Research Corporation Technologies, Inc. Fusion proteins comprising immunoglobulin constant domain-derived scaffolds
PL2699264T3 (pl) 2011-04-20 2018-08-31 Medimmune, Llc Przeciwciała i inne cząsteczki wiążące B7-H1 i PD-1
ME03440B (me) 2011-05-21 2020-01-20 Macrogenics Inc Cd3-vezujući molekuli sposobni za vezivanje za humani i nehumani cd3
EP2726101B1 (en) 2011-06-30 2018-08-08 Genzyme Corporation Inhibitors of t-cell activation
US20140155581A1 (en) 2011-07-06 2014-06-05 Medimmune, Llc Methods For Making Multimeric Polypeptides
WO2013013700A1 (en) 2011-07-22 2013-01-31 Affimed Therapeutics Ag Multivalent antigen-binding fv molecule
LT2734551T (lt) 2011-07-24 2018-04-10 Cure Tech Ltd. Humanizuotų imunomoduliuojančių monokloninių antikūnų variantai
WO2013163427A1 (en) 2012-04-25 2013-10-31 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Antibodies to treat hiv-1 infection
US9856320B2 (en) 2012-05-15 2018-01-02 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
US9845356B2 (en) 2012-08-03 2017-12-19 Dana-Farber Cancer Institute, Inc. Single agent anti-PD-L1 and PD-L2 dual binding antibodies and methods of use
BR112015005772A2 (pt) 2012-09-17 2017-08-08 Galectin Therapeutics Inc método para a intensificação de imunoterapias específicas no tratamento de câncer
AU2013327116C1 (en) 2012-10-02 2018-08-30 Bristol-Myers Squibb Company Combination of anti-KIR antibodies and anti-PD-1 antibodies to treat cancer
CN104853776B (zh) 2012-10-12 2021-04-09 布里格姆及妇女医院股份有限公司 免疫应答的增强
WO2014066532A1 (en) 2012-10-23 2014-05-01 Bristol-Myers Squibb Company Combination of anti-kir and anti-ctla-4 antibodies to treat cancer
WO2014066834A1 (en) 2012-10-26 2014-05-01 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
SI2970464T1 (sl) 2013-03-15 2020-08-31 Glaxosmithkline Intellectual Propety Development Limited Anti-LAG-3 vezavni proteini
WO2014209804A1 (en) 2013-06-24 2014-12-31 Biomed Valley Discoveries, Inc. Bispecific antibodies
DK177790B1 (en) 2013-08-08 2014-07-07 Liqtech Internat A S A METHOD OF PRODUCING A CERAMIC FILTER MEMBRANE, A METHOD OF IMPROVING A CERAMIC FILTER MEMBRANE AND THE CERAMIC FILTER MEMBRANE OBTAINED BY THE METHOD
AR097306A1 (es) 2013-08-20 2016-03-02 Merck Sharp & Dohme Modulación de la inmunidad tumoral
EP2839842A1 (en) * 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific monovalent diabodies that are capable of binding CD123 and CD3 and uses thereof
WO2015036394A1 (en) 2013-09-10 2015-03-19 Medimmune Limited Antibodies against pd-1 and uses thereof
US10081681B2 (en) * 2013-09-20 2018-09-25 Bristol-Myers Squibb Company Combination of anti-LAG-3 antibodies and anti-PD-1 antibodies to treat tumors
EP3757130A1 (en) * 2013-09-26 2020-12-30 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
PE20160953A1 (es) 2013-12-12 2016-09-26 Shanghai hengrui pharmaceutical co ltd Anticuerpo pd-1, fragmento de union al antigeno de este y uso medico de este
ES2923641T3 (es) 2013-12-30 2022-09-29 Epimab Biotherapeutics Inc Inmunoglobulina con Fabs en tándem y usos de la misma
CA2936244A1 (en) 2014-01-21 2015-07-30 Medimmune, Llc Compositions and methods for modulating and redirecting immune responses
TWI681969B (zh) 2014-01-23 2020-01-11 美商再生元醫藥公司 針對pd-1的人類抗體
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
SI3556775T1 (sl) 2014-01-28 2022-02-28 Bristol-Myers Squibb Company Protitelesa proti-LAG-3 za zdravljenje hematoloških malignosti
ME03558B (me) 2014-03-14 2020-07-20 Novartis Ag Molekuli anti-lag-3 antiтela i njihove upotrebe
US20150307620A1 (en) 2014-04-16 2015-10-29 University Of Connecticut Linked immunotherapeutic agonists that costimulate multiple pathways
US20170158776A1 (en) 2014-05-15 2017-06-08 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
NZ726520A (en) 2014-05-29 2018-12-21 Macrogenics Inc Tri-specific binding molecules that specifically bind to multiple cancer antigens and methods of use thereof
WO2015195163A1 (en) 2014-06-20 2015-12-23 R-Pharm Overseas, Inc. Pd-l1 antagonist fully human antibody
TWI693232B (zh) 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 與pd-1和lag-3具有免疫反應性的共價結合的雙抗體和其使用方法
WO2015200828A1 (en) 2014-06-27 2015-12-30 H. Lee Moffit Cancer Center And Research Institute, Inc. Conjugates for immunotherapy
SG11201700496WA (en) 2014-07-22 2017-02-27 Cb Therapeutics Inc Anti-pd-1 antibodies
CN105330740B (zh) 2014-07-30 2018-08-17 珠海市丽珠单抗生物技术有限公司 抗pd-1抗体及其应用
SG10201901057UA (en) 2014-08-05 2019-03-28 Cb Therapeutics Inc Anti-pd-l1 antibodies
CA2957258C (en) 2014-08-05 2023-11-07 MabQuest SA Immunological reagents
JO3663B1 (ar) 2014-08-19 2020-08-27 Merck Sharp & Dohme الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين
GB201419084D0 (en) 2014-10-27 2014-12-10 Agency Science Tech & Res Anti-PD-1 antibodies
US10822414B2 (en) 2014-11-11 2020-11-03 Sutro Biopharma, Inc. Anti-PD-1 antibodies, compositions comprising anti-PD-1 antibodies and methods of using anti-PD-1 antibodies
TWI595006B (zh) 2014-12-09 2017-08-11 禮納特神經系統科學公司 抗pd-1抗體類和使用彼等之方法
CA2971734C (en) 2014-12-22 2025-11-18 Enumeral Biomedical Holdings Inc Anti-pd-1 antibodies
JP2018506280A (ja) 2015-02-06 2018-03-08 カドモン コーポレイション,リミティド ライアビリティ カンパニー 免疫調節薬
NZ735820A (en) 2015-04-17 2025-02-28 Bristol Myers Squibb Co Compositions comprising a combination of an anti-pd-1 antibody and another antibody
TWI773646B (zh) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 結合lag-3的分子和其使用方法
TWI870335B (zh) * 2015-06-12 2025-01-21 美商宏觀基因股份有限公司 變異的嵌合4d5抗體及其與抗pd-1抗體聯合用於治療癌症的應用
CN116333138A (zh) * 2015-07-30 2023-06-27 宏观基因有限公司 Pd-1结合分子和其使用方法
IL258521B2 (en) * 2015-10-08 2024-01-01 Macrogenics Inc Combination therapy for the treatment of cancer
SI3370768T1 (sl) 2015-11-03 2022-04-29 Janssen Biotech, Inc. Protitelesa, ki se specifično vežejo na PD-1, in njihove uporabe

Patent Citations (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862925A (en) 1973-07-05 1975-01-28 American Home Prod Preparation of somatotropin release inhibiting factor and intermediates therefor
US3842067A (en) 1973-07-27 1974-10-15 American Home Prod Synthesis of(des-asn5)-srif and intermediates
US3972859A (en) 1974-03-08 1976-08-03 Takeda Chemical Industries, Ltd. Novel decapeptide amide analogs of leuteinizing hormone-releasing hormone
US4105603A (en) 1977-03-28 1978-08-08 The Salk Institute For Biological Studies Peptides which effect release of hormones
US4526938A (en) 1982-04-22 1985-07-02 Imperial Chemical Industries Plc Continuous release formulations
US6331415B1 (en) 1983-04-08 2001-12-18 Genentech, Inc. Methods of producing immunoglobulins, vectors and transformed host cells for use therein
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5128326A (en) 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US4880078A (en) 1987-06-29 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Exhaust muffler
US6218149B1 (en) 1988-09-15 2001-04-17 The Trustees Of Columbus University In The City Of New York Antibodies having modified carbohydrate content and methods of preparation and use
EP0359096B1 (en) 1988-09-15 1997-11-05 The Trustees Of Columbia University In The City Of New York Antibodies having modified carbohydrate content and methods of preparation and use
US20020028486A1 (en) 1988-09-15 2002-03-07 The Trustees Of Columbia University In The City Of New York Antibodies having modified carbohydrate content and methods of preparation and use
WO1991005548A1 (en) 1989-10-10 1991-05-02 Pitman-Moore, Inc. Sustained release composition for macromolecular proteins
US5679377A (en) 1989-11-06 1997-10-21 Alkermes Controlled Therapeutics, Inc. Protein microspheres and methods of using them
US5290540A (en) 1991-05-01 1994-03-01 Henry M. Jackson Foundation For The Advancement Of Military Medicine Method for treating infectious respiratory diseases
WO1992019244A2 (en) 1991-05-01 1992-11-12 Henry M. Jackson Foundation For The Advancement Of Military Medicine A method for treating infectious respiratory diseases
US5866692A (en) 1991-09-18 1999-02-02 Kyowa Hakko Kogyo Co., Ltd. Process for producing humanized chimera antibody
US5912015A (en) 1992-03-12 1999-06-15 Alkermes Controlled Therapeutics, Inc. Modulated release from biocompatible polymers
US5934272A (en) 1993-01-29 1999-08-10 Aradigm Corporation Device and method of creating aerosolized mist of respiratory drug
US5885573A (en) 1993-06-01 1999-03-23 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
WO1996020698A2 (en) 1995-01-05 1996-07-11 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Surface-modified nanoparticles and method of making and using same
US6019968A (en) 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5916597A (en) 1995-08-31 1999-06-29 Alkermes Controlled Therapeutics, Inc. Composition and method using solid-phase particles for sustained in vivo release of a biologically active agent
US5888533A (en) 1995-10-27 1999-03-30 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
US5945155A (en) 1996-02-29 1999-08-31 International Business Machines Corporation Low dielectric constant amorphous fluorinated carbon and method of preparation
WO1997032572A2 (en) 1996-03-04 1997-09-12 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
US5985320A (en) 1996-03-04 1999-11-16 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
WO1997044013A1 (en) 1996-05-24 1997-11-27 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
WO1998002463A1 (en) 1996-07-11 1998-01-22 Medarex, Inc. THERAPEUTIC MULTISPECIFIC COMPOUNDS COMPRISED OF ANTI-FCα RECEPTOR ANTIBODIES
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
WO1998031346A1 (en) 1997-01-16 1998-07-23 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US6472511B1 (en) 1997-02-11 2002-10-29 Immunomedics, Inc. Stimulation of an immune response with antibodies labeled with the α-galactosyl epitope
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
US5989463A (en) 1997-09-24 1999-11-23 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release devices
WO1999015154A1 (en) 1997-09-24 1999-04-01 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release preparations
WO1999020253A1 (en) 1997-10-23 1999-04-29 Bioglan Therapeutics Ab Encapsulation method
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
WO1999058572A1 (en) 1998-05-08 1999-11-18 Cambridge University Technical Services Limited Binding molecules derived from immunoglobulins which do not trigger complement mediated lysis
WO1999066903A2 (en) 1998-06-24 1999-12-29 Advanced Inhalation Research, Inc. Large porous particles emitted from an inhaler
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
US7276586B2 (en) 1999-03-08 2007-10-02 Genentech, Inc. Antibodies to a polypeptide encoded by a nucleic acid under-expressed in stomach and lung tumor
US20020147311A1 (en) 2000-02-11 2002-10-10 Gillies Stephen D. Enhancing the circulating half-life of antibody-based fusion proteins
US20030115614A1 (en) 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
US7083784B2 (en) 2000-12-12 2006-08-01 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2003035835A2 (en) 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2003093443A2 (en) 2002-05-03 2003-11-13 Raven Biotechnologies, Inc. Alcam and alcam modulators
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
WO2004063351A2 (en) 2003-01-09 2004-07-29 Macrogenics, Inc. IDENTIFICATION AND ENGINEERING OF ANTIBODIES WITH VARIANT Fc REGIONS AND METHODS OF USING SAME
US20070148164A1 (en) 2003-11-12 2007-06-28 Biogen Idec Ma Inc. Neonatal Fc receptor (FcRn)-binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
WO2005070966A2 (en) 2004-01-16 2005-08-04 Regeneron Pharmaceuticals, Inc. Fusion polypeptides capable of activating receptors
US7572895B2 (en) 2004-06-07 2009-08-11 Raven Biotechnologies, Inc. Transferrin receptor antibodies
WO2005121179A2 (en) 2004-06-07 2005-12-22 Raven Biotechnologies, Inc. Transferrin receptor antibodies
WO2006088494A2 (en) 2004-07-12 2006-08-24 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using the same
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US8088376B2 (en) 2004-11-12 2012-01-03 Xencor, Inc. Fc variants with altered binding to FcRn
US20060166291A1 (en) 2005-01-12 2006-07-27 Mather Jennie P KID31 and antibodies that bind thereto
WO2006084075A2 (en) 2005-02-02 2006-08-10 Raven Biotechnologies, Inc. Adam-9 modulators
US20060172350A1 (en) 2005-02-02 2006-08-03 Mather Jennie P ADAM-9 modulators
WO2006107786A2 (en) 2005-04-06 2006-10-12 Ibc Pharmaceuticals, Inc. Improved stably tethered structures of defined compositions with multiple functions or binding specificities
WO2006107617A2 (en) 2005-04-06 2006-10-12 Ibc Pharmaceuticals, Inc. Methods for generating stably linked complexes composed of homodimers, homotetramers or dimers of dimers and uses
WO2006113665A2 (en) 2005-04-15 2006-10-26 Macrogenics, Inc. Covalent diabodies and uses thereof
US20130295121A1 (en) 2005-04-15 2013-11-07 Macrogenics, Inc. Covalent Diabodies and Uses Thereof
US20100174053A1 (en) 2005-04-15 2010-07-08 Macrogenics, Inc. Covalent diabodies and uses thereof
US20090060910A1 (en) 2005-04-15 2009-03-05 Macrogenics, Inc. Covalent diabodies and uses thereof
US20140348743A1 (en) * 2005-05-09 2014-11-27 Ono Pharmaceutical Co., Ltd. Monoclonal antibodies to programmed death 1 (pd-1)
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
WO2007024715A2 (en) 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
WO2007046893A2 (en) 2005-10-19 2007-04-26 Ibc Pharmaceuticals, Inc. Methods for generating bioactive assemblies and uses thereof
WO2007075270A2 (en) 2005-12-16 2007-07-05 Ibc Pharmaceuticals, Inc. Multivalent immunoglobulin-based bioactive assemblies
WO2007106707A2 (en) 2006-03-10 2007-09-20 Macrogenics, Inc. Identification and engineering of antibodies with variant heavy chains and methods of using same
WO2007110205A2 (en) 2006-03-24 2007-10-04 Merck Patent Gmbh Engineered heterodimeric protein domains
WO2007146968A2 (en) 2006-06-12 2007-12-21 Trubion Pharmaceuticals, Inc. Single-chain multivalent binding proteins with effector function
WO2008003116A2 (en) 2006-07-05 2008-01-10 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H. Method for engineering immunoglobulins
WO2008003103A2 (en) 2006-07-05 2008-01-10 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H. Novel multivalent immunoglobulins
WO2008024188A2 (en) 2006-08-18 2008-02-28 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
WO2008027236A2 (en) 2006-08-30 2008-03-06 Genentech, Inc. Multispecific antibodies
WO2008140603A2 (en) 2006-12-08 2008-11-20 Macrogenics, Inc. METHODS FOR THE TREATMENT OF DISEASE USING IMMUNOGLOBULINS HAVING FC REGIONS WITH ALTERED AFFINITIES FOR FCγR ACTIVATING AND FCγR INHIBITING
WO2008145142A1 (en) 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
US20130109843A1 (en) * 2007-06-18 2013-05-02 Mds Oss B.V. Antibodies to human programmed death receptor pd-1
EP2158221A2 (en) 2007-06-21 2010-03-03 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2009018386A1 (en) 2007-07-31 2009-02-05 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
WO2009058492A2 (en) 2007-10-31 2009-05-07 Xencor, Inc Fc variants with altered binding to fcrn
WO2009080251A1 (en) 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009080254A1 (en) 2007-12-21 2009-07-02 F. Hoffmann-La Roche Ag Bivalent, bispecific antibodies
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
WO2009132876A1 (en) 2008-05-02 2009-11-05 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H Cytotoxic immunoglobulin
WO2010033279A2 (en) 2008-06-04 2010-03-25 Macrogenics, Inc. Antibodies with altered binding to fcrn and methods of using same
WO2010028797A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
WO2010028795A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Multivalent antibodies
WO2010028796A1 (en) 2008-09-10 2010-03-18 F. Hoffmann-La Roche Ag Trispecific hexavalent antibodies
EP2376109A1 (en) 2008-12-19 2011-10-19 MacroGenics, Inc. Covalent diabodies and uses thereof
WO2010080538A1 (en) 2008-12-19 2010-07-15 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2010108127A1 (en) 2009-03-20 2010-09-23 Genentech, Inc. Bispecific anti-her antibodies
WO2010136172A1 (en) 2009-05-27 2010-12-02 F. Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
WO2011069104A2 (en) 2009-12-04 2011-06-09 Genentech, Inc. Multispecific antibodies, antibody analogs, compositions, and methods
WO2011086091A1 (en) 2010-01-12 2011-07-21 Ucb Pharma S.A. Multivalent antibodies
WO2011117329A1 (en) 2010-03-26 2011-09-29 F. Hoffmann-La Roche Ag Bispecific, bivalent anti-vegf/anti-ang-2 antibodies
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
WO2011133886A2 (en) 2010-04-23 2011-10-27 Genentech, Inc. Production of heteromultimeric proteins
WO2011143545A1 (en) 2010-05-14 2011-11-17 Rinat Neuroscience Corporation Heterodimeric proteins and methods for producing and purifying them
WO2012009544A2 (en) 2010-07-14 2012-01-19 Amgen Inc. Domain insertion immunoglobulin
EP2601216A1 (en) 2010-08-02 2013-06-12 MacroGenics, Inc. Covalent diabodies and uses thereof
WO2012018687A1 (en) 2010-08-02 2012-02-09 Macrogenics, Inc. Covalent diabodies and uses thereof
WO2012023053A2 (en) 2010-08-16 2012-02-23 Novimmune S.A. Methods for the generation of multispecific and multivalent antibodies
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
US20140234296A1 (en) * 2011-03-31 2014-08-21 Merck Sharp & Dohme Corp. Stable formulations of antibodies to human programmed death receptor pd-1 and related treatments
WO2012156430A1 (en) 2011-05-17 2012-11-22 Trion Research Gmbh Vaccine preparation containing trifunctional antibodies with antigen immunogenicity enhancer properties
WO2012162068A2 (en) 2011-05-21 2012-11-29 Macrogenics, Inc. Deimmunized serum-binding domains and their use for extending serum half-life
EP2714079A2 (en) 2011-05-21 2014-04-09 MacroGenics, Inc. Deimmunized serum-binding domains and their use for extending serum half-life
WO2012162583A1 (en) 2011-05-26 2012-11-29 Ibc Pharmaceuticals, Inc. Design and construction of novel multivalent antibodies
WO2013003652A1 (en) 2011-06-28 2013-01-03 Sea Lane Biotechnologies, Llc Multispecific stacked variable domain binding proteins
WO2013006867A1 (en) 2011-07-07 2013-01-10 Massachussetts Institute Of Technology Methods and apparatus for ultrathin catalyst layer for photoelectrode
WO2013060867A2 (en) 2011-10-27 2013-05-02 Genmab A/S Production of heterodimeric proteins
WO2013070565A1 (en) 2011-11-07 2013-05-16 Medimmune, Llc Multispecific and multivalent binding proteins and uses thereof
WO2013174873A1 (en) 2012-05-24 2013-11-28 F. Hoffmann-La Roche Ag Multispecific antibodies
WO2014008218A1 (en) 2012-07-02 2014-01-09 Bristol-Myers Squibb Company Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof
WO2014022540A1 (en) 2012-08-02 2014-02-06 Regeneron Pharmaceuticals, Inc. Multivalent antigen-binding proteins
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
WO2014194302A2 (en) 2013-05-31 2014-12-04 Sorrento Therapeutics, Inc. Antigen binding proteins that bind pd-1
WO2015026894A2 (en) * 2013-08-23 2015-02-26 Macrogenics, Inc. Bi-specific monovalent diabodies that are capable of binding to gpa33 and cd3, and uses thereof
US20150079109A1 (en) * 2013-09-13 2015-03-19 Beigene, Ltd. Anti-PD1 Antibodies and their Use as Therapeutics and Diagnostics

Non-Patent Citations (115)

* Cited by examiner, † Cited by third party
Title
"MEDICAL APPLICATIONS OF CONTROLLED RELEASE", 1974, CRC PRES.
ALEGRE, M.L. ET AL.: "A Non-Activating ''Humanized'' Anti-CD3 Monoclonal Antibody Retains Immunosuppressive Properties In Vivo", TRANSPLANTATION, vol. 57, 1994, pages 1537 - 1543, XP008036788
ALMQVIST, Y., NUCL MED BIOL., vol. 33, no. 8, November 2006 (2006-11-01), pages 991 - 998
ARMOUR, K.L. ET AL.: "Recombinant human IgG Molecules Lacking Fcgamma Receptor I Binding And Monocyte Triggering Activities", EUR. J. IMMUNOL., vol. 29, 1999, pages 2613 - 24, XP002501617, DOI: 10.1002/(SICI)1521-4141(199908)29:08<2613::AID-IMMU2613>3.0.CO;2-J
ARUFFO, A. ET AL.: "Molecular Cloning Of A CD28 cDNA By A High-Efficiency COS Cell Expression System", PROC. NATL. ACAD. SCI., vol. 84, 1987, pages 8573 - 8577, XP002033087, DOI: 10.1073/pnas.84.23.8573
ATWELL ET AL.: "Stable Heterodimers From Remodeling The Domain Interface Of A Homodimer Using A Phage Display Library", J. MOL. BIOL., vol. 270, 1997, pages 26 - 35, XP002610109, DOI: 10.1006/jmbi.1997.1116
BARBER, D. L. ET AL.: "Restoringfunction in exhausted CD8 Tcells during chronic viral infection", NATURE, vol. 439, 2006, pages 682 - 687
BAST, R.C. JR. ET AL., INT J GYNECOL CANCER, vol. 15, no. 3, 2005, pages 274 - 81
BIRD ET AL.: "Single-Chain Antigen-Binding Proteins", SCIENCE, vol. 242, 1988, pages 423 - 426, XP000575094, DOI: 10.1126/science.3140379
BIRD ET AL.: "Single-ChainAntigen-Binding Proteins", SCIENCE, vol. 242, 1988, pages 423 - 426
BODEY, B., EXPERT OPIN BIOL THER., vol. 2, no. 6, 2002, pages 577 - 84
BOGHAERT, E.R. ET AL.: "The Oncofetal Protein, 5T4, Is A Suitable Target For Antibody-Guided Anti-Cancer Chemotherapy With Calicheamicin", INT. J. ONCOL., vol. 32, no. 1, 2008, pages 221 - 234, XP055051976, DOI: 10.3892/ijo.32.1.221
BRIIGGEMANN ET AL., J. EXP. MED, vol. 166, 1987, pages 1351 - 1361
BUCHWALD ET AL.: "Long-Term, Continuous Intravenous Heparin Administration By An Implantable Infusion Pump In Ambulatory Patients With Recurrent Venous Thrombosis", SURGERY, vol. 88, 1980, pages 507 - 516, XP009142781
CALIN, G.A. ET AL., SEMIN ONCOL., vol. 33, no. 2, 2006, pages 167 - 73
CARON, P.C. ET AL.: "Engineered Humanized Dimeric Forms Of IgG Are More Effective Antibodies", J. EXP. MED., vol. 176, 1992, pages 1191 - 1195, XP000914982, DOI: 10.1084/jem.176.4.1191
CARTER, P. ET AL.: "Humanization Of An Anti-pl85her2 Antibody For Human Cancer Therapy", PROC. NATL. ACAD. SCI., vol. 89, 1992, pages 4285 - 4289, XP000275844, DOI: 10.1073/pnas.89.10.4285
CHAPOVAL, A. ET AL.: "B7-H3: A Costimulatory Molecule For T Cell Activation and IFN-y Production", NATURE IMMUNOL., vol. 2, 2001, pages 269 - 274, XP002958730, DOI: 10.1038/85339
CHAPPEL ET AL., J. BIOL. CHEM., vol. 33, 1993, pages 25124 - 25131
CHAPPEL ET AL.: "Antennapedia Homeobox Peptide Regulates Neural Morphogenesis", PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 1864 - 1868
CHOTHIA, C.LESK, A. M.: "Canonical structures for the hypervariable regions of immunoglobulins", J. MOL. BIOL., vol. 196, 1987, pages 901 - 917, XP024010426, DOI: 10.1016/0022-2836(87)90412-8
CLEEK ET AL.: "Biodegradable Polymeric Carriers For A bFGF Antibody For Cardiovascular Application", PRO. INT'L. SYMP. CONTROL. REL. BIOACT. MATER., vol. 24, 1997, pages 853 - 854
CO, M. S. ET AL.: "Humanized Antibodies For Antiviral Therapy", PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 2869 - 2873, XP000200583, DOI: 10.1073/pnas.88.7.2869
CO, M.S. ET AL.: "Chimeric And Humanized Antibodies With Specificity For The CD33 Antigen", J. IMMUNOL., vol. 148, 1992, pages 1149 - 1154, XP000368716
COLLINS, M. ET AL.: "The B7 Family Of Immune-Regulatory Ligands", GENOME BIOL., vol. 6, 2005, XP009101943, DOI: 10.1186/gb-2005-6-6-223
DEL RIO, M-L. ET AL.: "Antibody-Mediated Signaling Through PD-1 Costimulates T Cells And Enhances CD28-Dependent Proliferation", EUR. J. IMMUNOL, vol. 35, 2005, pages 3545 - 3560, XP002497526, DOI: 10.1002/eji.200535232
DI BARTOLOMEO, M. ET AL.: "Bevacizumab treatment in the elderly patient with metastatic colorectal cancer", CLIN. INTERV. AGING, vol. 10, 2015, pages 127 - 133
DISIS, M. L. ET AL.: "Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines", J. CLIN. ONCOL., vol. 20, 2002, pages 2624 - 2632, XP002406489, DOI: 10.1200/JCO.2002.06.171
DUNCAN, A.R. ET AL.: "Localization Of The Binding Site For The Human High-Affinity Fc Receptor On IgG", NATURE, vol. 332, 1988, pages 563 - 564, XP000961211, DOI: 10.1038/332563a0
DURING ET AL.: "Controlled Release Of Dopamine From A Polymeric Brain Implant: In Vivo Characterization", ANN. NEUROL., vol. 25, 1989, pages 351 - 356, XP009035936, DOI: 10.1002/ana.410250406
EGLOFF, A.M. ET AL., CANCER RES., vol. 66, no. 1, 2006, pages 6 - 9
EISEN, T. ET AL.: "Naptumomab Estafenatox: Targeted Immunotherapy with a Novel Immunotoxin", CURR. ONCOL. REP., vol. 16, no. 370, 2014, pages 1 - 6
FEDOROV V.D.: "PD-1- and CTLA-4-BasedInhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses", SCI. TRANL. MED., vol. 5, 2013, pages 215ra172
FIELD, K.M.: "Bevacizumab And Glioblastoma: Scientific Review, Newly Reported Updates, And Ongoing Controversies", CANCER, vol. 121, no. 7, 2015, pages 997 - 1007
FLESCHNEPPERT, J. CLIN. LAB. ANAL., vol. 14, 1999, pages 141 - 156
GANESAN, A.: "Solid-Phase Synthesis In The Twenty-First Century", MINI REV. MED. CHEM., vol. 6, no. 1, 2006, pages 3 - 10
GARDNEROVA, M. ET AL., CURR DRUG TARGETS., vol. 1, no. 4, 2000, pages 327 - 64
GHETIE ET AL., ANTI-CD19 INHIBITS THE GROWTH OF HUMAN B-CELL TUMOR LINES IN VITRO AND OF DAUDI CELLS IN SCID MICE BY INDUCING, 1994
GILL, S. ET AL.: "Efficacy Against Human Acute Myeloid Leukemia And Myeloablation Of Normal Hematopoiesis In A Mouse Model Using Chimeric Antigen Receptor-Modified T Cells", BLOOD, vol. 123, no. 15, 2014, pages 2343 - 2354
GOODSON, MEDICAL APPLICATIONS OF CONTROLLED RELEASE, vol. 2, 1984, pages 115 - 138
GORMAN, S. D. ET AL.: "ReshapingA Therapeutic CD4 Antibody", PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 4181 - 4185
GRABOWSKI, J.P: "Current Management Of Ovarian Cancer", MINERVA MED., vol. 106, no. 3, 2015, pages 151 - 156
HELLSTROM ET AL.: "Monoclonal Antibodies To Cell Surface Antigens Shared By Chemically Induced Mouse Bladder Carcinomas", CANCER. RES., vol. 45, 1985, pages 2210 - 2188
HOUGHTEN, R.A.: "General Method For The Rapid Solid-Phase Synthesis Of Large Numbers Of Peptides: Specificity Of Antigen-Antibody Interaction At The Level Of Individual Amino Acids", PROC. NATL. ACAD. SCI. (U.S.A., vol. 82, no. 15, 1985, pages 5131 - 5135, XP000611717, DOI: 10.1073/pnas.82.15.5131
HOWARD ET AL.: "Intracerebral Drug Delivery In Rats With Lesion-InducedMemory Deficits", J. NEUROSURG., vol. 7, no. 1, 1989, pages 105 - 112
HUTCHINS ET AL.: "Improved Biodistribution, Tumor Targeting, And Reduced Immunogenicity In Mice With A Gamma 4 Variant Of Campath-IH", PROC. NATL. ACAD. SCI., vol. 92, 1995, pages 11980 - 84, XP002234019, DOI: 10.1073/pnas.92.26.11980
HUTLOFF ET AL.: "ICOS Is An Inducible T-Cell Co-Stimulator Structurally And Functionally Related To CD28", NATURE, vol. 397, 1999, pages 263 - 266, XP002156736, DOI: 10.1038/16717
IDUSOGIE, E.E. ET AL.: "Engineered Antibodies With Increased Activity To Recruit Complement", J. IMMUNOL., vol. 166, 2001, pages 2571 - 75, XP002781370, DOI: 10.4049/jimmunol.166.4.2571
IDUSOGIE, E.E. ET AL.: "Mapping Of The Clq Binding Site On Rituxan, A Chimeric Antibody With A Human IgG Fc", J. IMMUNOL., vol. 164, 2000, pages 4178 - 84
ITO ET AL.: "Effective Priming Of Cytotoxic T Lymphocyte Precursors By Subcutaneous Administration Of Peptide Antigens In Liposomes Accompanied By Anti-CD40 And Anti-CTLA-4 Antibodies", IMMUNOBIOLOGY, vol. 201, 2000, pages 527 - 40
IWAI, Y. ET AL.: "Involvement Of PD-L1 On Tumor Cells In The Escape From Host Immune System And Tumor Immunotherapy By PD-L1 Blockade", PROC. NATL ACAD. SCI. USA, vol. 99, 2002, pages 12293 - 12297, XP055572034, DOI: 10.1073/pnas.192461099
J. D. WATSON ET AL.: "IN VITRO MUTAGENESIS, RECOMBINANT DNA: A SHORT COURSE", 1983, W.H. FREEMAN AND COMPANY, pages: 106 - 116
JEFFERIS ET AL., IMMUNOLOGY LETTERS, vol. 44, 1995, pages 111 - 7
JEFFERIS, B.J. ET AL.: "Interaction Sites On Human IgG-Fc For FcgammaR: Current Models", IMMUNOL. LETT., vol. 82, 2002, pages 57 - 65, XP002337953, DOI: 10.1016/S0165-2478(02)00019-6
JEFFERIS, R. ET AL.: "Modulation Of Fc(Gamma)R And Human Complement Activation By IgG3-Core Oligosaccharide Interactions", IMMUNOL. LETT., vol. 54, 1996, pages 101 - 04
JEFFERIS, R. ET AL.: "Recognition Sites On Human IgG For Fc Gamma Receptors: The Role Of Glycosylation", IMMUNOL. LETT., vol. 44, 1995, pages 111 - 17, XP002491811, DOI: 10.1016/0165-2478(94)00201-2
JOHANSSON, M.U. ET AL.: "Structure, Specificity, And Mode Of Interaction For Bacterial Albumin-Binding Modules", J. BIOL. CHEM., vol. 277, no. 10, 2002, pages 8114 - 8120, XP055047761, DOI: 10.1074/jbc.M109943200
KETTLEBOROUGH, C. A. ET AL.: "Humanization Of A Mouse Monoclonal Antibody By CDR-Grafting: The Importance Of Framework Residues On Loop Conformation", PROTEIN ENGINEERING, vol. 4, 1991, pages 773 - 3783
LAM ET AL.: "Microencapsulation Of Recombinant Humanized Monoclonal Antibody For Local Delivery", PROC. INT'L. SYMP. CONTROL REL. BIOACT. MATER., vol. 24, 1997, pages 759 - 760
LANGER: "New Methods Of Drug Delivery", SCIENCE, vol. 249, 1990, pages 1527 - 1533, XP000169082, DOI: 10.1126/science.2218494
LEACH, D. R. ET AL.: "Enhancement Of Antitumor Immunity By CTLA-4 Blockade", SCIENCE, vol. 271, 1996, pages 1734 - 1736, XP000986211, DOI: 10.1126/science.271.5256.1734
LEFRANC, G. ET AL., HUM. GENET., vol. 50, 1979, pages 199 - 211
LEVY ET AL.: "Inhibition Of Calcification Of Bioprosthetic Heart Valves By Local Controlled-Release Diphosphonate", SCIENCE, vol. 228, 1985, pages 190 - 192, XP009142736
LIU, K.J. ET AL.: "Bevacizumab In Combination With Anticancer Drugs For Previously Treated Advanced Non-Small Cell Lung Cancer", TUMOUR BIOL., vol. 36, no. 3, 2015, pages 1323 - 1327, XP036218168, DOI: 10.1007/s13277-014-2962-1
LOBUGLIO, A.F. ET AL.: "Mouse/Human Chimeric Monoclonal Antibody In Man: Kinetics And Immune Response", PROC. NATL. ACAD. SCI., vol. 86, 1989, pages 4220 - 4224, XP002100301, DOI: 10.1073/pnas.86.11.4220
LOPEZ-BERESTEIN, LIPOSOMES IN THE THERAPY OF INFECTIOUS DISEASE AND CANCER, vol. 3, pages 17 - 327
LU ET AL.: "The Effect Of A Point Mutation On The Stability OfIgg4 As Monitored By Analytical Ultracentrifugation", J. PHARMACEUTICAL SCIENCES, vol. 97, 2008, pages 960 - 969
LUND ET AL.: "Human Fc Gamma RI And Fc Gamma RII Interact With Distinct But Overlapping Sites On Human IgG", J. IMMUNOL., vol. 147, 1991, pages 2657 - 2662
LUND ET AL.: "Multiple Binding Sites On The CH2 Domain Of IgG For Mouse Fc Gamma Rll", MOL. IMMUNOL., vol. 29, 1992, pages 53 - 59
LUND, J. ET AL.: "Multiple Interactions Of IgG With Its Core Oligosaccharide Can Modulate Recognition By Complement And Human Fc Gamma Receptor I And Influence The Synthesis Of Its Oligosaccharide Chains", J. IMMUNOL., vol. 157, 1996, pages 4963 - 4969, XP002484003
LUND, J. ET AL.: "Oligosaccharide-Protein Interactions In IgG Can Modulate Recognition By Fc Gamma Receptors", FASEB J., vol. 9, 1995, pages 115 - 19, XP002503513
MAEDA, H. ET AL.: "Construction Of Reshaped Human Antibodies With HIV-Neutralizing Activity", HUMAN ANTIBODIES HYBRIDOMA, vol. 2, 1991, pages 124 - 134
MARDIROS, A. ET AL.: "T Cells Expressing CD123-Specific Chimeric Antigen Receptors Exhibit Specific Cytolytic Effector Functions And Antitumor Effects Against Human Acute Myeloid Leukemia", BLOOD, vol. 122, 2013, pages 3138 - 3148, XP055607043, DOI: 10.1182/blood-2012-12-474056
MELERO ET AL.: "Monoclonal Antibodies Against The 4-1BB T-Cell Activation Molecule Eradicate Established Tumors", NATURE MEDICINE, vol. 3, 1997, pages 682 - 685, XP002104261, DOI: 10.1038/nm0697-682
MELLMAN, I. ET AL.: "Cancer immunotherapy comes of age", NATURE, vol. 480, 2011, pages 480 - 489, XP055054665, DOI: 10.1038/nature10673
MERRIFIELD, B.: "SolidPhase Synthesis", SCIENCE, vol. 232, no. 4748, 1986, pages 341 - 347
MOKYR ET AL., CANCER RESEARCH, vol. 58, 1998, pages 5301 - 5304
MORAN, A.E. ET AL.: "The TNFRs OX40, 4-IBB, and CD40 As Targets For Cancer Immunotherapy", CURR OPIN IMMUNOL., vol. 25, no. 2, April 2013 (2013-04-01), XP055149673, DOI: 10.1016/j.coi.2013.01.004
NING ET AL.: "Intratumoral Radioimmunotheraphy Of A Human Colon Cancer Xenograft Using A Sustained-Release Gel", RADIOTHERAPY & ONCOLOGY, vol. 39, 1996, pages 179 - 189
O'DWYER. P.J., ONCOLOGIST, vol. 11, no. 9, 2006, pages 992 - 998
PALENA, C. ET AL.: "Cancer vaccines: preclinical studies and novel strategies", ADV. CANCER RES., vol. 95, 2006, pages 115 - 145, XP008076761, DOI: 10.1016/S0065-230X(06)95004-0
PETERS, P ET AL.: "Engineering an Improved IgG4 Molecule with Reduced Disulfide Bond Heterogeneity and Increased Fab Domain Thermal Stability", J. BIOL. CHEM., vol. 287, 2012, pages 24525 - 24533, XP055069090, DOI: 10.1074/jbc.M112.369744
PIETRANTONIO, F. ET AL.: "Bevacizumab-BasedNeoadjuvant Chemotherapy For Colorectal Cancer Liver Metastases: Pitfalls And Helpful Tricks In A Review For Clinicians", CRIT. REV. ONCOL. HEMATOL., vol. 95, no. 3, 2015, pages 272 - 281, XP029252518, DOI: 10.1016/j.critrevonc.2015.04.008
PIZZITOLA, I. ET AL.: "Chimeric Antigen Receptors Against CD33/CD123 Antigens Efficiently Target Primary Acute Myeloid Leukemia Cells in vivo", LEUKEMIA, 2014
PRANGE W. ET AL., JPATHOL., vol. 201, no. 2, 2003, pages 250 - 9
PRESTA, L.G. ET AL.: "Engineering Therapeutic Antibodies For Improved Function", BIOCHEM. SOC. TRANS., vol. 30, 2002, pages 487 - 90, XP003000776, DOI: 10.1042/BST0300487
REDDY, M.P. ET AL.: "Elimination Of Fc Receptor-Dependent Effector Functions Of A Modified IgG4MonoclonalAntibody To Human CD4", J. IMMUNOL., vol. 164, 2000, pages 1925 - 1933
RIDGWAY ET AL.: "Knobs-Into-Holes' Engineering Of Antibody CH3 Domains For Heavy Chain Heterodimerization", PROTEIN ENGR., vol. 9, 1996, pages 617 - 621, XP002610995, DOI: 10.1093/protein/9.7.617
RIECHMANN, L. ET AL.: "Reshaping Human Antibodies for Therapy", NATURE, vol. 332, 1988, pages 323 - 327, XP002007067, DOI: 10.1038/332323a0
SATO, K. ET AL., CANCER RES, vol. 53, 1993, pages 851 - 856
SAUDEK ET AL.: "A Preliminary Trial Of The Programmable Implantable Medication System For Insulin Delivery", N. ENGL. J. MED., vol. 321, 1989, pages 574 - 579, XP009142740
SEFTON: "Implantable Pumps", CRC CRIT. REV. BIOMED. ENG., vol. 14, 1987, pages 201 - 240, XP009142739
SHIELDS, R.L. ET AL.: "High Resolution Mapping Of The Binding Site On Human IgGl For Fc Gamma RI, Fc Gamma RII, Fc Gamma RIII, And FcRn And Design Of IgGl Variants With Improved Binding To The Fc gamma R", J. BIOL. CHEM., vol. 276, 2001, pages 6591 - 6604
SHOPES, B.: "A Genetically Engineered Human IgG Mutant With Enhanced Cytolytic Activity", J. IMMUNOL., vol. 148, no. 9, 1992, pages 2918 - 2922
SONDERMANN ET AL., NATURE, vol. 406, 2000, pages 267 - 73
SONG ET AL.: "Antibody Mediated Lung Targeting Of Long-Circulating Emulsions", PDA JOURNAL OF PHARMACEUTICAL SCIENCE & TECHNOLOGY, vol. 50, 1995, pages 372 - 397
STAVENHAGEN, J.B. ET AL.: "Fc Optimization Of Therapeutic Antibodies Enhances Their Ability To Kill Tumor Cells In Vitro And Controls Tumor Expansion In Vivo Via Low-Affinity Activating Fcgamma Receptors", CANCER RES., vol. 57, no. 18, 2007, pages 8882 - 8890, XP002489883, DOI: 10.1158/0008-5472.CAN-07-0696
STEPHAN, J. ET AL.: "Selective Cloning Of Cell Surface Proteins Involved In Organ Development: Epithelial Glycoprotein Is Involved In Normal Epithelial Differentiation", ENDOCRINOL., vol. 140, 1999, pages 5841 - 5854, XP000925818, DOI: 10.1210/en.140.12.5841
STEVENSON, G.T. ET AL.: "A Chimeric Antibody With Dual Fc Regions (bisFabFc) Prepared By Manipulations At The IgG Hinge", ANTI-CANCER DRUG DESIGN, vol. 3, 1989, pages 219 - 230, XP001095843
SUH, D.H. ET AL.: "Major Clinical Research Advances In Gynecologic Cancer In 2014", J. GYNECOL. ONCOL., vol. 26, no. 2, 2015, pages 156 - 167
SUN, M. ET AL.: "Characterization of Mouse and Human B7-H3 Genes", J. IMMUNOL., vol. 168, 2002, pages 6294 - 6297, XP002313221
TEMPEST, P.R. ET AL.: "Reshaping A Human Monoclonal Antibody To Inhibit Human Respiratory Syncytial Virus Infection in vivo", BIO/TECHNOLOGY, vol. 9, 1991, pages 266 - 271, XP000986147, DOI: 10.1038/nbt0391-266
TETTAMANTI, S. ET AL.: "Targeting Of Acute Myeloid Leukaemia By Cytokine-Induced Killer Cells Redirected With A Novel CD123-Specific Chimeric Antigen Receptor", BR. J. HAEMATOL., vol. 161, 2013, pages 389 - 401, XP055150825, DOI: 10.1111/bjh.12282
TRAUTH ET AL.: "Monoclonal Antibody-Mediated Tumor Regression By Induction Of Apoptosis", SCIENCE, vol. 245, 1989, pages 301 - 304
VAN HORSSEN, R. ET AL., ONCOLOGIST., vol. 11, no. 4, 2006, pages 397 - 408
VERHOEYEN, M. ET AL.: "Reshaping Human Antibodies: Grafting An Antilysozyme Activity", SCIENCE, vol. 239, 1988, pages 1534 - 1536, XP002949269, DOI: 10.1126/science.2451287
VERMEIJ, R. ET AL.: "Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: a single-arm phase II study", INT. J. CANCER, vol. 131, 2012, pages E670 - E680
WEINBERG ET AL.: "Engagement of the OX-40 Receptor In Vivo Enhances Antitumor Immunity", IMMUNOL, vol. 164, 2000, pages 2160 - 2169, XP002224132
WOLFF, E.A.: "Monoclonal Antibody Homodimers: Enhanced Antitumor Activity In Nude Mice", CANCER RESEARCH, vol. 53, 1993, pages 2560 - 2565, XP008061639
WU ET AL.: "Receptor-Mediated In Vitro Gene Transformation By A Soluble DNA Carrier System", J. BIOL. CHEM., vol. 262, 1987, pages 4429 - 4432
XIE ET AL.: "A New Format Of Bispecific Antibody: Highly Efficient Heterodimerization, Expression And Tumor Cell Lysis", J. IMMUNOL. METHODS, vol. 296, 2005, pages 95 - 101, XP004738464, DOI: 10.1016/j.jim.2004.11.005
XU, D. ET AL.: "In Vitro Characterization of Five Humanized OKT3 Effector Function Variant Antibodies", CELL. IMMUNOL., vol. 200, 2000, pages 16 - 26, XP002376698, DOI: 10.1006/cimm.2000.1617
YOKOTA ET AL.: "Rapid Tumor Penetration Of A Single-Chain Fv And Comparison With Other Immunoglobulin Forms", CANCER RES., vol. 52, 1992, pages 3402 - 3408
YU ET AL.: "Coexpression Of Different Antigenic Markers On Moieties That Bear CA 125 Determinants", CANCER RES., vol. 51, no. 2, 1991, pages 468 - 475
ZHANG, X. M. ET AL.: "The anti-tumor immune response induced by a combination of MAGE-3/MAGE-n-derived peptides", ONCOL. REP., vol. 20, 2008, pages 245 - 252

Cited By (374)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192868B2 (en) 2005-05-10 2021-12-07 Incyte Corporation Modulators of indoleamine 2,3-dioxygenase and methods of using the same
US11207302B2 (en) 2008-07-08 2021-12-28 Incyte Corporation 1,2,5-oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase
US12466897B2 (en) 2011-10-10 2025-11-11 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US11634506B2 (en) 2013-01-14 2023-04-25 Xencor, Inc. Heterodimeric proteins
US10738133B2 (en) 2013-01-14 2020-08-11 Xencor, Inc. Heterodimeric proteins
US11718667B2 (en) 2013-01-14 2023-08-08 Xencor, Inc. Optimized antibody variable regions
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US11299554B2 (en) 2013-03-15 2022-04-12 Xencor, Inc. Heterodimeric proteins
US12415849B2 (en) 2013-03-15 2025-09-16 Xencor, Inc. Heterodimeric proteins
US11814423B2 (en) 2013-03-15 2023-11-14 Xencor, Inc. Heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US11840579B2 (en) 2014-03-28 2023-12-12 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
US11945880B2 (en) 2014-11-26 2024-04-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11352442B2 (en) 2014-11-26 2022-06-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
US11111315B2 (en) 2014-11-26 2021-09-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11673972B2 (en) 2014-11-26 2023-06-13 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US12359002B2 (en) 2014-11-26 2025-07-15 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US12129309B2 (en) 2014-11-26 2024-10-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
US11859011B2 (en) 2014-11-26 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11225528B2 (en) 2014-11-26 2022-01-18 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10913803B2 (en) 2014-11-26 2021-02-09 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10889653B2 (en) 2014-11-26 2021-01-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
US12486312B2 (en) 2015-04-17 2025-12-02 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
EP3307240A4 (en) * 2015-06-12 2018-12-19 MacroGenics, Inc. Combination therapy for the treatment of cancer
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
US10323091B2 (en) 2015-09-01 2019-06-18 Agenus Inc. Anti-PD-1 antibodies and methods of use thereof
US10450373B2 (en) 2015-09-01 2019-10-22 Agenus Inc. Anti-PD-1 antibodies and methods of use thereof
US11345755B2 (en) 2015-09-01 2022-05-31 Agenus Inc. Anti-PD-1 antibodies and methods of use thereof
US10428145B2 (en) 2015-09-29 2019-10-01 Celgene Corporation PD-1 binding proteins and methods of use thereof
US11098103B2 (en) 2015-11-02 2021-08-24 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
US10273281B2 (en) 2015-11-02 2019-04-30 Five Prime Therapeutics, Inc. CD80 extracellular domain polypeptides and their use in cancer treatment
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
US11840571B2 (en) 2015-12-14 2023-12-12 Macrogenics, Inc. Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
US12415809B2 (en) 2016-03-28 2025-09-16 Incyte Corporation Pyrrolotriazine compounds as tam inhibitors
US12110339B2 (en) 2016-04-15 2024-10-08 Alpine Immune Sciences, Inc. ICOS ligand variant immunomodulatory proteins and uses thereof
US11498967B2 (en) 2016-04-15 2022-11-15 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11479609B2 (en) 2016-04-15 2022-10-25 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
US11492407B2 (en) 2016-06-14 2022-11-08 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US11236170B2 (en) 2016-06-14 2022-02-01 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
WO2017220988A1 (en) 2016-06-20 2017-12-28 Kymab Limited Multispecific antibodies for immuno-oncology
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies
US12187798B2 (en) 2016-06-20 2025-01-07 Invox Pharma Limited LAG-3 binding members
US12054545B2 (en) 2016-06-28 2024-08-06 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US11225521B2 (en) 2016-06-28 2022-01-18 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
US10751414B2 (en) 2016-09-19 2020-08-25 Celgene Corporation Methods of treating psoriasis using PD-1 binding antibodies
US10501543B2 (en) 2016-10-14 2019-12-10 Xencor, Inc. IL15/IL15Rα heterodimeric Fc-fusion proteins
US11993653B2 (en) 2016-12-07 2024-05-28 Agenus Inc. Antibodies and methods of use thereof
US11299530B2 (en) 2017-01-05 2022-04-12 Kahr Medical Ltd. SIRP alpha-CD70 fusion protein and methods of use thereof
US11566060B2 (en) 2017-01-05 2023-01-31 Kahr Medical Ltd. PD1-CD70 fusion protein and methods of use thereof
US12331098B2 (en) 2017-01-05 2025-06-17 Kahr Medical Ltd. SIRPalpha-41BBL fusion protein and methods of use thereof
US11897937B2 (en) 2017-01-05 2024-02-13 Kahr Medical Ltd. SIRPalpha-41BBL fusion protein and methods of use thereof
US11130796B2 (en) 2017-01-05 2021-09-28 Kahr Medical Ltd. SIRPalpha-41BBL fusion protein and methods of use thereof
US11702458B2 (en) 2017-01-05 2023-07-18 Kahr Medical Ltd. PD1-41BBL fusion protein and methods of use thereof
US11591398B2 (en) 2017-01-06 2023-02-28 Crescendo Biologics Limited Single domain antibodies to programmed cell death protein 1 (PD-1)
US11312771B2 (en) 2017-01-06 2022-04-26 Crescendo Biologics Limited Single-domain antibodies to programmed cell death 1 protein (PD-1), encoding nucleic acids and methods of using same
US11814429B2 (en) 2017-01-06 2023-11-14 Crescendo Biologics Limited Single domain antibodies to programmed cell death (PD-1)
EP3569616A4 (en) * 2017-01-13 2020-06-03 Taizhou Hanzhong Biopharmaceutics, Inc. MONOCLONAL ANTIBODIES RESISTANT TO PD-1 AND ITS APPLICATIONS
US10858433B2 (en) 2017-01-13 2020-12-08 Taizhou Hanzhong Biopharmaceutics, Inc. Monoclonal antibody against PD-1 and application thereof
US11560430B2 (en) 2017-01-20 2023-01-24 Tayu Huaxia Biotech Medical Group Co., LTD Anti-PD-1 antibodies and uses thereof
JP2020508303A (ja) * 2017-02-22 2020-03-19 アイ−エムエービー バイオファーマ ユーエス リミテッド 抗lag−3抗体およびその使用
EP3389702A4 (en) * 2017-02-22 2019-08-14 I-Mab ANTI-LAG-3 ANTIBODIES AND USES THEREOF
US11414485B2 (en) 2017-02-22 2022-08-16 I-Mab Biopharma (Hangzhou) Co., Ltd. Anti-LAG-3 antibodies and uses thereof
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
US11942149B2 (en) 2017-02-24 2024-03-26 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
EP4389226A2 (en) 2017-02-24 2024-06-26 MacroGenics, Inc. Bispecific binding molecules that are capable of binding cd137 and tumor antigens, and uses thereof
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
US11732022B2 (en) 2017-03-16 2023-08-22 Alpine Immune Sciences, Inc. PD-L2 variant immunomodulatory proteins and uses thereof
US11639375B2 (en) 2017-03-16 2023-05-02 Alpine Immune Sciences, Inc. CD80 variant immunomodulatory proteins and uses thereof
WO2018183928A1 (en) 2017-03-31 2018-10-04 Bristol-Myers Squibb Company Methods of treating tumor
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
US12351598B2 (en) 2017-04-14 2025-07-08 Tallac Therapeutics, Inc. Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
WO2018189382A1 (en) 2017-04-14 2018-10-18 Solstice Biologics, Ltd. Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
US11186636B2 (en) 2017-04-21 2021-11-30 Amgen Inc. Anti-human TREM2 antibodies and uses thereof
KR20200018778A (ko) * 2017-04-21 2020-02-20 암젠 인크 Trem2 항원 결합 단백질 및 이의 용도
EP3612218A4 (en) * 2017-04-21 2021-07-28 Amgen Inc. TREM2 ANTIGENT BINDING PROTEINS AND USES THEREOF
CN110709100A (zh) * 2017-04-21 2020-01-17 安进公司 Trem2抗原结合蛋白及其用途
KR102772851B1 (ko) 2017-04-21 2025-02-27 암젠 인크 Trem2 항원 결합 단백질 및 이의 용도
WO2018195506A1 (en) 2017-04-21 2018-10-25 Amgen Inc. Trem2 antigen binding proteins and uses thereof
AU2018254600B2 (en) * 2017-04-21 2022-05-26 Amgen Inc. TREM2 antigen binding proteins and uses thereof
US11789010B2 (en) 2017-04-28 2023-10-17 Five Prime Therapeutics, Inc. Methods of treatment with CD80 extracellular domain polypeptides
WO2018217940A3 (en) * 2017-05-24 2019-06-13 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018217944A1 (en) * 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018222718A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
WO2018222711A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
US12049503B2 (en) 2017-05-30 2024-07-30 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
US11807686B2 (en) 2017-05-30 2023-11-07 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
WO2018222722A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
US11723975B2 (en) 2017-05-30 2023-08-15 Bristol-Myers Squibb Company Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody
EP4306542A2 (en) 2017-05-30 2024-01-17 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
EP4245375A2 (en) 2017-05-30 2023-09-20 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
US11566073B2 (en) 2017-06-01 2023-01-31 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-PD-1 antibody
US12227576B2 (en) 2017-06-01 2025-02-18 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-PD-1 antibody
WO2018223040A1 (en) 2017-06-01 2018-12-06 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-pd-1 antibody
US11746161B2 (en) 2017-06-05 2023-09-05 Janssen Biotech, Inc. Antibodies that specifically bind PD-1 and methods of use
JP7490109B2 (ja) 2017-06-25 2024-05-24 システィミューン, インク. 抗pd-1抗体とその作製及び使用方法
JP2023107246A (ja) * 2017-06-25 2023-08-02 システィミューン, インク. 抗pd-1抗体とその作製及び使用方法
JP2020529862A (ja) * 2017-06-25 2020-10-15 システィミューン, インク.Systimmune, Inc. 抗pd−1抗体とその作製及び使用方法
JP7601635B2 (ja) 2017-06-25 2024-12-17 システィミューン, インク. 抗pd-1抗体とその作製及び使用方法
CN111094350A (zh) * 2017-07-06 2020-05-01 美勒斯公司 调节由细胞表达的生物活性的抗体
JP2020525533A (ja) * 2017-07-06 2020-08-27 メルス ナムローゼ フェンノートシャップ 細胞により発現される生物学的活性を調節する抗体
JP7542436B2 (ja) 2017-07-06 2024-08-30 メルス ナムローゼ フェンノートシャップ 細胞により発現される生物学的活性を調節する抗体
TWI875679B (zh) * 2017-07-06 2025-03-11 荷蘭商米樂斯股份有限公司 藉由細胞表現之調控生物活性的抗體
IL271833B1 (en) * 2017-07-06 2024-05-01 Merus Nv Antibodies that modulate a biological activity expressed by a cell
IL271833B2 (en) * 2017-07-06 2024-09-01 Merus Nv Antibodies that modulate a biological activity expressed by a cell
WO2019009728A1 (en) * 2017-07-06 2019-01-10 Merus N.V. ANTIBODIES THAT MODULATE A BIOLOGICAL ACTIVITY EXPRESSED BY A CELL
JP2024086853A (ja) * 2017-07-06 2024-06-28 メルス ナムローゼ フェンノートシャップ 細胞により発現される生物学的活性を調節する抗体
US11732043B2 (en) 2017-07-06 2023-08-22 Merus N.V. Antibodies that modulate a biological activity expressed by a cell
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
US11814431B2 (en) 2017-08-25 2023-11-14 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
US11306144B2 (en) 2017-08-25 2022-04-19 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods of use thereof
US12187730B2 (en) 2017-09-27 2025-01-07 Incyte Corporation Salts of TAM inhibitors
US11753458B2 (en) 2017-10-10 2023-09-12 Alpine Immune Sciences, Inc. CTLA-4 variant immunomodulatory proteins and uses thereof
US12358969B2 (en) 2017-10-10 2025-07-15 Alpine Immune Sciences, Inc. CTLA-4 variant immunomodulatory proteins and uses thereof
WO2019075468A1 (en) 2017-10-15 2019-04-18 Bristol-Myers Squibb Company TUMOR TREATMENT METHODS
US11919957B2 (en) 2017-10-15 2024-03-05 Bristol-Myers Squibb Company Methods of treating tumor
US11613566B2 (en) 2017-10-18 2023-03-28 Alpine Immune Sciences, Inc. Variant ICOS ligand immunomodulatory proteins and related compositions and methods
WO2019090330A1 (en) 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Methods of treating a tumor
US12152076B2 (en) 2017-11-08 2024-11-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
WO2019094637A1 (en) * 2017-11-08 2019-05-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
CN112272563A (zh) * 2017-11-08 2021-01-26 Xencor股份有限公司 使用新颖抗pd-1序列的双特异性和单特异性抗体
JP2021502100A (ja) * 2017-11-08 2021-01-28 ゼンコア インコーポレイテッド 新規抗pd−1配列を用いた二重特異性および単一特異性抗体
US11312770B2 (en) 2017-11-08 2022-04-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US12077595B2 (en) 2017-11-13 2024-09-03 Crescendo Biologics Limited Single domain antibodies that bind to CD137
CN109897111A (zh) * 2017-12-08 2019-06-18 杭州翰思生物医药有限公司 抗pd-1/cd47的双特异性抗体及其应用
CN109897111B (zh) * 2017-12-08 2021-02-23 杭州翰思生物医药有限公司 抗pd-1/cd47的双特异性抗体及其应用
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
CN109971714A (zh) * 2017-12-28 2019-07-05 上海细胞治疗研究院 自表达pd-1抗体并靶向间皮素的嵌合抗原受体修饰t细胞及其用途
CN109971712A (zh) * 2017-12-28 2019-07-05 上海细胞治疗研究院 特异性靶向cd19抗原且高水平稳定表达pd-1抗体的car-t细胞及用途
EP3735417A1 (en) * 2018-01-03 2020-11-11 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
US12297253B2 (en) 2018-01-03 2025-05-13 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2019144126A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
JP2021511791A (ja) * 2018-02-01 2021-05-13 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 抗pd−1/lag3二重特異性抗体
US12122834B2 (en) 2018-02-01 2024-10-22 Merck Sharp & Dohme Llc Anti-PD-1 antibodies
WO2019152642A1 (en) * 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
CN111836829A (zh) * 2018-02-01 2020-10-27 默沙东公司 抗pd-1/lag3双特异性抗体
US11072658B2 (en) 2018-02-01 2021-07-27 Merck Sharp & Dohme Corp. Anti-PD-1/LAG3 bispecific antibodies
JP7379345B2 (ja) 2018-02-01 2023-11-14 メルク・シャープ・アンド・ドーム・エルエルシー 抗pd-1/lag3二重特異性抗体
CN111727057A (zh) * 2018-02-16 2020-09-29 克雷森多生物制剂有限公司 与lag3和pd1结合的治疗分子
IL276063B2 (en) * 2018-02-16 2023-06-01 Crescendo Biologics Ltd Medicinal compounds that bind to lag3 and pd1
US11951172B2 (en) 2018-02-16 2024-04-09 Crescendo Biologics Limited Therapeutic molecules that bind to LAG3 and PD1
WO2019158942A1 (en) * 2018-02-16 2019-08-22 Crescendo Biologics Limited Therapeutic molecules that bind to lag3 and pd1
US12435145B2 (en) 2018-02-21 2025-10-07 Five Prime Therapeutics, Inc. B7-H4 antibody formulations
US11155625B2 (en) 2018-02-23 2021-10-26 Eucure (Beijing) Biopharma Co., Ltd Anti-PD-1 antibodies and uses thereof
EP3755716A4 (en) * 2018-02-23 2021-08-04 Eucure (Beijing) Biopharma Co., Ltd ANTI-PD-1 ANTIBODIES AND THEIR USES
US11673894B2 (en) 2018-02-27 2023-06-13 Incyte Corporation Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors
US11939383B2 (en) 2018-03-02 2024-03-26 Five Prime Therapeutics, Inc. B7-H4 antibodies and methods and use thereof
EP3768727A4 (en) * 2018-03-20 2021-12-22 Wuxi Biologics Ireland Limited. NEW BIS SPECIFIC PD-1 / LAG-3 ANTIBODY MOLECULES
US12246025B2 (en) 2018-03-21 2025-03-11 Genmab A/S Methods of treating cancer with a combination of a platinum-based agent and an anti-tissue factor antibody-drug conjugate
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
WO2019191676A1 (en) 2018-03-30 2019-10-03 Bristol-Myers Squibb Company Methods of treating tumor
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
CN112584901A (zh) * 2018-04-04 2021-03-30 真和制药有限公司 用于阻断非糖基化的pd-1多肽之间的相互作用的方法和组合物
US12180302B2 (en) 2018-04-04 2024-12-31 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
WO2019195621A1 (en) * 2018-04-04 2019-10-10 Immutics, Inc. Methods and compositions for blocking interaction between non-glycosylated pd-1 polypeptides
EP3768703A4 (en) * 2018-04-15 2022-01-05 Salubris (Chengdu) Biotech Co., Ltd. PD-1 BINDING ANTIBODIES AND USES THEREOF
WO2019201169A1 (en) * 2018-04-15 2019-10-24 Salubris (Chengdu) Biotech Co., Ltd Antibodies binding pd-1 and uses thereof
CN112074533A (zh) * 2018-04-15 2020-12-11 信立泰(成都)生物技术有限公司 结合pd-1的抗体及其用途
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
US11505595B2 (en) 2018-04-18 2022-11-22 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains
EP3788079A4 (en) * 2018-05-03 2022-12-21 Shanghai Epimab Biotherapeutics Co., Ltd. High affinity antibodies to pd-1 and lag-3 and bispecific binding proteins made therefrom
JP7368453B2 (ja) 2018-05-03 2023-10-24 シャンハイ エピムアブ バイオセラピューティクス カンパニー リミテッド Pd-1およびlag-3に対する高親和性抗体ならびにそれらから作製された二重特異性結合タンパク質
CN112074541A (zh) * 2018-05-03 2020-12-11 上海岸迈生物科技有限公司 Pd-1和lag-3的高亲和力抗体以及由其制备的双特异性结合蛋白
JP2021522347A (ja) * 2018-05-03 2021-08-30 シャンハイ エピムアブ バイオセラピューティクス カンパニー リミテッド Pd−1およびlag−3に対する高親和性抗体ならびにそれらから作製された二重特異性結合タンパク質
US12060425B2 (en) 2018-05-03 2024-08-13 Shanghai Epimab Biotherapeutics Co., Ltd. High affinity antibodies to PD-1 and LAG-3 and bispecific binding proteins made therefrom
WO2019217457A1 (en) 2018-05-07 2019-11-14 Genmab A/S Methods of treating cancer with a combination of an anti-pd-1 antibody and an anti-tissue factor antibody-drug conjugate
US12324841B2 (en) 2018-05-07 2025-06-10 Genmab A/S Methods of treating cancer with a combination of an anti-PD-1 antibody and an anti-tissue factor antibody-drug conjugate
US11873304B2 (en) 2018-05-18 2024-01-16 Incyte Corporation Fused pyrimidine derivatives as A2A/A2B inhibitors
US12144875B2 (en) 2018-06-01 2024-11-19 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
IL279455B1 (en) * 2018-06-20 2025-09-01 Incyte Corp ANTI-PD-1 ANTIBODIES AND THEIR USES
US20200095322A1 (en) * 2018-06-20 2020-03-26 Incyte Corporation Anti-pd-1 antibodies and uses thereof
EP4349411A2 (en) 2018-06-20 2024-04-10 Incyte Corporation Anti-pd-1 antibodies and uses thereof
CN112955464A (zh) * 2018-06-20 2021-06-11 因赛特公司 抗pd-1抗体及其用途
EP4349411A3 (en) * 2018-06-20 2024-06-19 Incyte Corporation Anti-pd-1 antibodies and uses thereof
US12448448B2 (en) 2018-06-20 2025-10-21 Incyte Corporation Anti-PD-1 antibodies and uses thereof
WO2019246110A1 (en) 2018-06-20 2019-12-26 Incyte Corporation Anti-pd-1 antibodies and uses thereof
JP2021527714A (ja) * 2018-06-20 2021-10-14 インサイト・コーポレイションIncyte Corporation 抗pd−1抗体及びその使用
JP2024123122A (ja) * 2018-06-20 2024-09-10 インサイト・コーポレイション 抗pd-1抗体及びその使用
US11918585B2 (en) 2018-06-29 2024-03-05 Incyte Corporation Formulations of an AXL/MER inhibitor
US12318389B2 (en) 2018-06-29 2025-06-03 Incyte Corporation Formulations of an AXL/MER inhibitor
US11999740B2 (en) 2018-07-05 2024-06-04 Incyte Corporation Fused pyrazine derivatives as A2A / A2B inhibitors
US12286466B2 (en) 2018-07-11 2025-04-29 Kahr Medical Ltd. PD1-4-1BBL variant fusion protein and methods of use thereof
US12134638B2 (en) 2018-07-11 2024-11-05 Kahr Medical Ltd. SIRPalpha-4-1BBL variant fusion protein and methods of use thereof
US12103976B2 (en) 2018-07-12 2024-10-01 Invox Pharma Limited Fc binding fragments comprising a CD137 antigen-binding site
US12344672B2 (en) 2018-07-12 2025-07-01 Invox Pharma Limited Antibody molecules that bind PD-L1 and CD137
US12252537B2 (en) 2018-07-12 2025-03-18 Invox Pharma Limited Antibody molecules that bind CD137 and OX40
US12247074B2 (en) 2018-07-12 2025-03-11 Invox Pharma Limited Antibody molecules
US12325742B2 (en) 2018-07-12 2025-06-10 Invox Pharma Limited Anti-mesothelin antibodies
US12297283B2 (en) 2018-07-12 2025-05-13 Invox Pharma Limited Fc binding fragments comprising an OX40 antigen-binding site
US12319739B2 (en) 2018-07-12 2025-06-03 Invox Pharma Limited Mesothelin and CD137 binding molecules
JP7519985B2 (ja) 2018-07-19 2024-07-22 タユー ファシャ バイオテック メディカル グループ カンパニー, リミテッド 抗pd-1抗体、投薬量、およびその使用
WO2020015722A1 (en) * 2018-07-19 2020-01-23 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-pd-1 antibodies, dosages and uses thereof
JP2021530511A (ja) * 2018-07-19 2021-11-11 タユー ファシャ バイオテック メディカル グループ カンパニー, リミテッド 抗pd−1抗体、投薬量、およびその使用
US12258407B2 (en) 2018-07-19 2025-03-25 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-PD-1 antibodies, dosages and uses thereof
WO2020023707A1 (en) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Lag-3 combination therapy for the treatment of cancer
US11358999B2 (en) 2018-10-03 2022-06-14 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
EP4445958A2 (en) 2018-10-19 2024-10-16 Bristol-Myers Squibb Company Combination therapy for melanoma
EP4663244A2 (en) 2018-10-19 2025-12-17 Bristol-Myers Squibb Company Combination therapy for melanoma
WO2020081928A1 (en) 2018-10-19 2020-04-23 Bristol-Myers Squibb Company Combination therapy for melanoma
US12479917B2 (en) 2018-10-23 2025-11-25 Bristol-Myers Squibb Company Methods of treating NSCLC comprising administering platinum doublet chemotherapy followed by an anti-PD-1 antibody and an anti-CTLA-4 antibody
WO2020086724A1 (en) 2018-10-23 2020-04-30 Bristol-Myers Squibb Company Methods of treating tumor
US12453781B2 (en) 2018-10-30 2025-10-28 Genmab A/S Methods of treating cancer with a combination of an anti-VEGF antibody and an anti-tissue factor antibody-drug conjugate
US11332532B2 (en) 2018-11-13 2022-05-17 Jn Biosciences Llc Bispecific antibodies which bind PD-L1 and GITR
WO2020102233A1 (en) * 2018-11-13 2020-05-22 Jn Biosciences Llc Bispecific antibodies for activation of immune cells
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020117849A1 (en) 2018-12-04 2020-06-11 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
WO2020120501A1 (en) 2018-12-11 2020-06-18 Sanofi Pks-island positive e. coli as marker of negative response to anti-pd1 therapy in colorectal cancer
EP3666905A1 (en) 2018-12-11 2020-06-17 Sanofi E. coli positive for pks island as marker of positive response to anti-pd1 therapy in colorectal cancer
WO2020127373A1 (en) 2018-12-21 2020-06-25 Ose Immunotherapeutics Bifunctional anti-pd-1/sirpa molecule
JP7358478B2 (ja) 2018-12-21 2023-10-10 神州細胞工程有限公司 ヒト化抗pd-1抗体及びこの使用
JP2022514962A (ja) * 2018-12-21 2022-02-16 神州細胞工程有限公司 ヒト化抗pd-1抗体及びこの使用
WO2020127377A1 (en) 2018-12-21 2020-06-25 Ose Immunotherapeutics Bifunctional anti-pd-1/il-7 molecule
US12275790B2 (en) 2018-12-21 2025-04-15 Sinocelltech Ltd. Humanized anti-PD-1 antibody and the use thereof
WO2020143749A1 (zh) * 2019-01-10 2020-07-16 迈威(上海)生物科技有限公司 重组抗人pd-1抗体及其应用
WO2020154189A1 (en) 2019-01-21 2020-07-30 Sanofi Therapeutic rna and anti-pd1 antibodies for advanced stage solid tumor cancers
US12263234B2 (en) 2019-01-23 2025-04-01 Tayu Huaxia Biotech Medical Group Co., Ltd. Anti-PD-L1 diabodies and the use thereof
US11884665B2 (en) 2019-01-29 2024-01-30 Incyte Corporation Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
US11472890B2 (en) 2019-03-01 2022-10-18 Xencor, Inc. Heterodimeric antibodies that bind ENPP3 and CD3
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
WO2021006199A1 (ja) 2019-07-05 2021-01-14 小野薬品工業株式会社 Pd-1/cd3二重特異性タンパク質による血液がん治療
WO2021022172A1 (en) 2019-08-01 2021-02-04 Incyte Corporation A dosing regimen for an ido inhibitor
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025177A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025140A1 (ja) 2019-08-08 2021-02-11 小野薬品工業株式会社 二重特異性タンパク質
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
WO2021062018A1 (en) 2019-09-25 2021-04-01 Bristol-Myers Squibb Company Composite biomarker for cancer therapy
EP4039704A4 (en) * 2019-09-30 2023-09-20 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Anti-pd-1 antibody and use thereof
JP2022550243A (ja) * 2019-09-30 2022-12-01 シチュアン ケルン-バイオテック バイオファーマシューティカル カンパニー リミテッド 抗pd-1抗体及びその使用
WO2021092044A1 (en) 2019-11-05 2021-05-14 Bristol-Myers Squibb Company M-protein assays and uses thereof
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
WO2021097256A1 (en) 2019-11-14 2021-05-20 Cohbar, Inc. Cxcr4 antagonist peptides
WO2021100022A1 (en) * 2019-11-22 2021-05-27 Abl Bio Inc. Anti-pd-l1/anti-b7-h3 multispecific antibodies and uses thereof
WO2021122866A1 (en) 2019-12-17 2021-06-24 Ose Immunotherapeutics Bifunctional molecules comprising an il-7 variant
WO2021127554A1 (en) 2019-12-19 2021-06-24 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
CN113004408B (zh) * 2019-12-20 2022-07-01 广东菲鹏制药股份有限公司 抗人程序死亡因子-1单克隆抗体
CN113004408A (zh) * 2019-12-20 2021-06-22 广东菲鹏制药股份有限公司 抗人程序死亡因子-1单克隆抗体
EP4081248A4 (en) * 2019-12-23 2024-01-10 MacroGenics, Inc. METHOD FOR TREATING CANCER
WO2021138512A1 (en) 2020-01-03 2021-07-08 Incyte Corporation Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors
US11591579B2 (en) 2020-01-07 2023-02-28 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
US11396647B2 (en) 2020-01-07 2022-07-26 Board Of Regents, The University Of Texas System Human methylthioadenosine/adenosine depleting enzyme variants for cancer therapy
WO2021152005A1 (en) 2020-01-28 2021-08-05 Universite De Strasbourg Antisense oligonucleotide targeting linc00518 for treating melanoma
WO2021152548A1 (en) 2020-01-30 2021-08-05 Benitah Salvador Aznar Combination therapy for treatment of cancer and cancer metastasis
WO2021158938A1 (en) 2020-02-06 2021-08-12 Bristol-Myers Squibb Company Il-10 and uses thereof
US12435155B2 (en) 2020-02-21 2025-10-07 Macrogenics, Inc. CD137 binding molecules and uses thereof
US11795463B2 (en) 2020-02-28 2023-10-24 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
US11920136B2 (en) 2020-02-28 2024-03-05 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
WO2021176424A1 (en) 2020-03-06 2021-09-10 Ona Therapeutics, S.L. Anti-cd36 antibodies and their use to treat cancer
US12214036B2 (en) * 2020-03-06 2025-02-04 Incyte Corporation Combination therapy comprising AXL/MER and PD-1/PD-L1 inhibitors
WO2021178807A1 (en) 2020-03-06 2021-09-10 Celgene Quanticel Research, Inc. Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc
WO2021224438A1 (en) 2020-05-07 2021-11-11 Institut Curie Antxr1 as a biomarker of immunosuppressive fibroblast populations and its use for predicting response to immunotherapy
US12304943B2 (en) 2020-05-08 2025-05-20 Alpine Immune Sciences, Inc. April and BAFF inhibitory immunomodulatory proteins and methods of use thereof
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
US12404329B2 (en) 2020-05-14 2025-09-02 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
RU2827610C1 (ru) * 2020-06-19 2024-09-30 Синоселлтех Лтд Стабильная композиция рекомбинантного моноклонального антитела против pd-1
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
US11919958B2 (en) 2020-08-19 2024-03-05 Xencor, Inc. Anti-CD28 compositions
US11591401B2 (en) 2020-08-19 2023-02-28 Xencor, Inc. Anti-CD28 compositions
EP4200324A4 (en) * 2020-08-19 2024-10-02 Pandion Operations, Inc. MULTIPARATOPIC ANTI-PD-1 ANTIBODIES AND THEIR USES
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
WO2022076318A1 (en) 2020-10-05 2022-04-14 Bristol-Myers Squibb Company Methods for concentrating proteins
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
WO2022074107A1 (en) 2020-10-09 2022-04-14 Worldwide Innovative Network Novel prediction method and gene signatures for the treatment of cancer
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022094567A1 (en) 2020-10-28 2022-05-05 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
WO2022108931A2 (en) 2020-11-17 2022-05-27 Seagen Inc. Methods of treating cancer with a combination of tucatinib and an anti-pd-1/anti-pd-l1 antibody
WO2022112198A1 (en) 2020-11-24 2022-06-02 Worldwide Innovative Network Method to select the optimal immune checkpoint therapies
WO2022118197A1 (en) 2020-12-02 2022-06-09 Pfizer Inc. Time to resolution of axitinib-related adverse events
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
WO2022129512A1 (en) 2020-12-17 2022-06-23 Ose Immunotherapeutics Bifunctional anti-pd1/il-7 molecules
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022136255A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022136257A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
EP4566674A2 (en) 2020-12-28 2025-06-11 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022148781A1 (en) 2021-01-05 2022-07-14 Institut Curie Combination of mcoln activators and immune checkpoint inhibitors
WO2022165214A1 (en) 2021-01-29 2022-08-04 Board Of Regents, The University Of Texas System Methods of treating cancer with kinase inhibitors
US12398207B2 (en) 2021-03-09 2025-08-26 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
US11739144B2 (en) 2021-03-09 2023-08-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
EP4319755A1 (en) 2021-04-08 2024-02-14 Board of Regents, The University of Texas System Compounds and methods for theranostic targeting of parp activity
WO2022214652A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains
WO2022214653A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics New scaffold for bifunctional molecules with improved properties
WO2022240741A1 (en) 2021-05-12 2022-11-17 Dana-Farber Cancer Institute, Inc. Lag3 and gal3 inhibitory agents, xbp1, cs1, and cd138 peptides, and methods of use thereof
WO2022254227A1 (en) 2021-06-04 2022-12-08 Kymab Limited Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies
US12364756B2 (en) * 2021-07-09 2025-07-22 Macrogenics, Inc. Pharmaceutical compositions of a PD-1 antibody and use of the same
US20230025464A1 (en) * 2021-07-09 2023-01-26 Macrogenics, Inc. Pharmaceutical compositions of a pd-1 antibody and use of the same
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023007472A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
WO2023052531A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023083868A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024017510A1 (en) 2022-07-21 2024-01-25 Fundación Para La Investigación Biomédica Del Hospital Universitario Puerta De Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024028386A1 (en) 2022-08-02 2024-02-08 Ose Immunotherapeutics Multifunctional molecule directed against cd28
WO2024072893A1 (en) * 2022-09-28 2024-04-04 Incyte Corporation Anti-pd-1/lag-3 bispecific antibodies and uses thereof
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024091919A3 (en) * 2022-10-25 2024-06-20 The Brigham And Women's Hospital, Inc. Klrb1 binding agents and methods of use thereof
WO2024105180A1 (en) 2022-11-16 2024-05-23 Boehringer Ingelheim International Gmbh Predictive efficacy biomarkers for anti-sirpa antibodies
WO2024116140A1 (en) 2022-12-01 2024-06-06 Medimmune Limited Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
WO2024150177A1 (en) 2023-01-11 2024-07-18 Advesya Treatment methods for solid tumors
WO2024160721A1 (en) 2023-01-30 2024-08-08 Kymab Limited Antibodies
WO2024175699A1 (en) 2023-02-23 2024-08-29 Imcheck Therapeutics Combination of btn3a activating antibody and immune checkpoint inhibitors
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
WO2024200823A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof
WO2024200826A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof
WO2024200820A1 (en) 2023-03-30 2024-10-03 Ose Immunotherapeutics Method of synthesis of targeted lipid nanoparticle and uses thereof
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer
US12410258B2 (en) 2023-05-12 2025-09-09 Ganmab A/S Antibodies capable of binding to OX40, variants thereof and uses thereof
WO2024236048A1 (en) 2023-05-16 2024-11-21 Nh Theraguix Combination therapy for treating tumors with radiotherapy
WO2024261239A1 (en) 2023-06-23 2024-12-26 Imcheck Therapeutics Bispecific antibodies targeting btn3a and the pd-1/pd-l1 inhibitory axis
WO2025038763A1 (en) 2023-08-15 2025-02-20 Bristol-Myers Squibb Company Ceramic hydroxyapatite chromatography flow through method
WO2025056180A1 (en) 2023-09-15 2025-03-20 BioNTech SE Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists
WO2025056778A1 (en) 2023-09-15 2025-03-20 BioNTech SE Methods of treatment using agents binding to epcam and cd137 in combination with pd-1 axis binding antagonists
WO2025068461A1 (en) 2023-09-29 2025-04-03 Negio Therapeutics Guanfacine derivatives and their use in treating cancer
WO2025068452A1 (en) 2023-09-29 2025-04-03 Negio Therapeutics Guanfacine derivatives and their use in treating cancer
WO2025114541A1 (en) 2023-11-30 2025-06-05 Genmab A/S Antibodies capable of binding to ox40 in combination therapy
WO2025120866A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025121444A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and anti-vegfr2 antibodies
WO2025120867A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and anti-vegfr2 antibodies
WO2025121445A1 (en) 2023-12-08 2025-06-12 Astellas Pharma Inc. Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and agents stabilizing or increasing expression of cldn18.2
WO2025132831A1 (en) 2023-12-19 2025-06-26 Universite D'aix-Marseille N-heteroaryl derivatives and uses thereof for treating cancer
WO2025133115A1 (en) 2023-12-21 2025-06-26 Ose Immunotherapeutics Lipid-based nanoparticles comprising il-35
WO2025145207A1 (en) 2023-12-29 2025-07-03 Bristol-Myers Squibb Company Combination therapy of kras inhibitor and treg-depleting agent
WO2025184211A1 (en) 2024-02-27 2025-09-04 Bristol-Myers Squibb Company Anti-ceacam5 antibody drug conjugates
WO2025184208A1 (en) 2024-02-27 2025-09-04 Bristol-Myers Squibb Company Anti-ceacam5 antibodies and uses thereof
WO2025242835A1 (en) 2024-05-22 2025-11-27 Ose Immunotherapeutics Molecules comprising masking linkers and uses thereof for the treatment of cancer
WO2025245489A1 (en) 2024-05-24 2025-11-27 Bristol-Myers Squibb Company Treatment of tumors in subjects having fgl-1 positive samples

Also Published As

Publication number Publication date
AU2025202334A1 (en) 2025-04-24
ES2898511T9 (en) 2025-03-12
CN114773475B (zh) 2024-01-12
CO2018000867A2 (es) 2018-04-19
IL287916A (en) 2022-01-01
PE20181151A1 (es) 2018-07-17
CA2993948A1 (en) 2017-02-02
JOP20200213A1 (ar) 2022-10-30
SI3328419T1 (sl) 2021-11-30
MX2019001161A (es) 2019-07-04
SG10202010506TA (en) 2020-11-27
JP6959907B2 (ja) 2021-11-05
HRP20211333T1 (hr) 2021-11-26
EP3328419B1 (en) 2021-08-25
KR102762075B1 (ko) 2025-02-05
AU2020200054B2 (en) 2022-03-03
IL297090A (en) 2022-12-01
IL287916B1 (en) 2023-05-01
CY1124723T1 (el) 2022-07-22
TW201710292A (zh) 2017-03-16
IL290571A (en) 2022-04-01
AU2018214151A1 (en) 2018-08-30
ES2994122T3 (en) 2025-01-17
CR20220194A (es) 2022-06-16
JP2022002540A (ja) 2022-01-11
EP4450088A3 (en) 2025-03-26
JP2024178244A (ja) 2024-12-24
JP7245304B2 (ja) 2023-03-23
AU2016298227A2 (en) 2018-09-13
CN108976300B (zh) 2023-04-14
IL290571B (en) 2022-11-01
MA42542A (fr) 2021-05-26
KR20180093127A (ko) 2018-08-20
MD3328419T2 (ro) 2022-01-31
EP3328419A4 (en) 2018-12-26
KR102761886B1 (ko) 2025-02-06
KR20250020718A (ko) 2025-02-11
JP7557567B2 (ja) 2024-09-27
JP2019055948A (ja) 2019-04-11
RS62374B1 (sr) 2021-10-29
MD3456346T2 (ro) 2021-11-30
TW202417048A (zh) 2024-05-01
PT3456346T (pt) 2021-09-28
SI3981792T1 (sl) 2024-10-30
ZA201800500B (en) 2020-10-28
AU2022200168B2 (en) 2025-01-02
US10577422B2 (en) 2020-03-03
US20200231675A1 (en) 2020-07-23
EP3981792B1 (en) 2024-08-21
CR20200423A (es) 2021-01-20
ES2898958T3 (es) 2022-03-09
FR24C1033I1 (fr) 2024-08-30
DK3456346T3 (da) 2021-08-30
EA201890296A1 (ru) 2018-08-31
EP3328419A1 (en) 2018-06-06
TWI691509B (zh) 2020-04-21
LT3456346T (lt) 2021-09-27
EP3456346A1 (en) 2019-03-20
GEP20227419B (en) 2022-10-10
CN107847574A (zh) 2018-03-27
CN108976300A (zh) 2018-12-11
AU2016298227A8 (en) 2018-03-08
IL257216B (en) 2022-03-01
SI3456346T1 (sl) 2021-11-30
CY2024026I1 (el) 2025-03-28
MX2022014645A (es) 2022-12-15
PH12018500232A1 (en) 2018-08-29
PT3981792T (pt) 2024-11-08
JP2023075241A (ja) 2023-05-30
WO2017019846A8 (en) 2018-01-25
AU2020200054A1 (en) 2020-01-30
RS66208B1 (sr) 2024-12-31
NZ739493A (en) 2024-12-20
PT3328419T (pt) 2021-11-26
IL287916B2 (en) 2023-09-01
EP3456346B1 (en) 2021-07-07
HK1248106A1 (en) 2018-10-12
CL2018000254A1 (es) 2018-07-20
EP4450088A2 (en) 2024-10-23
KR20180034588A (ko) 2018-04-04
ZA201807856B (en) 2020-09-30
AU2022200168A1 (en) 2022-02-10
LT3328419T (lt) 2021-11-10
TWI762879B (zh) 2022-05-01
JP6959897B2 (ja) 2021-11-05
AU2016298227A1 (en) 2018-02-22
TWI886756B (zh) 2025-06-11
CN114773475A (zh) 2022-07-22
AU2018214151B2 (en) 2019-10-31
SMT202100610T1 (it) 2021-11-12
IL257216A (en) 2018-03-29
LTPA2024525I1 (enExample) 2024-08-26
FI3981792T3 (fi) 2024-09-23
US20190127467A1 (en) 2019-05-02
DK3328419T3 (da) 2021-10-11
JP2018524394A (ja) 2018-08-30
HUE055207T2 (hu) 2021-11-29
TWI833183B (zh) 2024-02-21
TW202028234A (zh) 2020-08-01
ECSP18006831A (es) 2018-04-30
US11623959B2 (en) 2023-04-11
US20230357404A1 (en) 2023-11-09
RS62568B1 (sr) 2021-12-31
PL3981792T3 (pl) 2024-12-16
GEP20237538B (en) 2023-09-11
IL297090B2 (en) 2025-01-01
TW202535469A (zh) 2025-09-16
IL297090B1 (en) 2024-09-01
CR20180062A (es) 2018-05-25
MA58293B1 (fr) 2024-11-29
FIC20240028I1 (fi) 2024-08-05
EP3981792A1 (en) 2022-04-13
CY1124634T1 (el) 2022-07-22
NL301287I2 (nl) 2024-08-21
HUS2400028I1 (hu) 2024-08-28
HUE068868T2 (hu) 2025-02-28
JO3736B1 (ar) 2021-01-31
SMT202100527T1 (it) 2021-11-12
TW202229357A (zh) 2022-08-01
MX2018001227A (es) 2018-03-26
PE20240111A1 (es) 2024-01-22
PL3456346T3 (pl) 2021-12-20
AU2016298227B2 (en) 2019-10-03
HRP20211645T1 (hr) 2022-02-04
PL3328419T3 (pl) 2021-12-27
CN107847574B (zh) 2023-05-23
MD3981792T2 (ro) 2025-02-28
DK3981792T3 (da) 2024-09-02
AU2016298227B9 (en) 2019-10-31
LT3981792T (lt) 2024-11-11
GEP20227438B (en) 2022-11-10
MA42542B1 (fr) 2021-09-30
UA127372C2 (uk) 2023-08-02
HUE056201T2 (hu) 2022-02-28
SG10201906059VA (en) 2019-08-27
ES2898511T3 (es) 2022-03-07
HRP20241289T1 (hr) 2024-12-20
IL290571B2 (en) 2023-03-01
CN116333138A (zh) 2023-06-27
PE20231958A1 (es) 2023-12-06
FR24C1033I2 (fr) 2025-05-23
SMT202400381T1 (it) 2024-11-15

Similar Documents

Publication Publication Date Title
AU2022200168B2 (en) PD-1-binding molecules and methods of use thereof
EP3302562A1 (en) Lag-3-binding molecules and methods of use thereof
EA047726B1 (ru) Мультиспецифичные молекулы, связывающие pd-1, и способы их применения
EA042076B1 (ru) Pd-1-связывающие молекулы и способы их применения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16831339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2993948

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201800690W

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018504643

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: NC2020/0007460

Country of ref document: CO

Ref document number: NC2018/0000867

Country of ref document: CO

Ref document number: 000138-2018

Country of ref document: PE

Ref document number: 12018500232

Country of ref document: PH

Ref document number: MX/A/2018/001227

Country of ref document: MX

Ref document number: 257216

Country of ref document: IL

Ref document number: CR2018-000062

Country of ref document: CR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201890296

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2016298227

Country of ref document: AU

Date of ref document: 20160728

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187005653

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201801414

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 14712

Country of ref document: GE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018001931

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: NC2018/0000867

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: CR2018-000283

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 112018001931

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180129

WWG Wipo information: grant in national office

Ref document number: NC2018/0000867

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 15554

Country of ref document: GE

ENP Entry into the national phase

Ref document number: 15864

Country of ref document: GE

WWE Wipo information: entry into national phase

Ref document number: 12023553401

Country of ref document: PH

WWP Wipo information: published in national office

Ref document number: 1020257002826

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 739493

Country of ref document: NZ