WO2016180288A1 - 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 - Google Patents
制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 Download PDFInfo
- Publication number
- WO2016180288A1 WO2016180288A1 PCT/CN2016/081350 CN2016081350W WO2016180288A1 WO 2016180288 A1 WO2016180288 A1 WO 2016180288A1 CN 2016081350 W CN2016081350 W CN 2016081350W WO 2016180288 A1 WO2016180288 A1 WO 2016180288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- solution
- nickel
- cobalt
- complexing agent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of lithium ion battery manufacturing, and in particular to a method of preparing a nickel cobalt aluminum precursor material and a positive electrode material having a gradient distribution of aluminum elements.
- lithium ion batteries have been widely used in various mobile electronic products and power tools, and positive electrode materials are the key to improving energy density, safety, and cost reduction in lithium ion batteries. Further improving the power density, energy density and improving safety performance of materials is the development direction of cathode materials for lithium ion batteries.
- LiNiO 2 has attracted attention due to its high capacity, low cost and less pollution.
- LiNi 1-x Co x O 2 has the advantages of high specific capacity and low cost of LiNiO 2 .
- it also has good cycle performance, LiNi 1-x Co x O 2 can play a specific capacity of 190mAh / g, but the stability of nickel-cobalt binary material still can not reach the current 3C (home appliances, computers, communications ) Requirements for materials for electronic products and power batteries.
- Al-doped material represented by nickel-cobalt-aluminum material, LiNi 1-xy Co x Al y O 2 is used as a homogeneous solid solution of LiNiO 2 , LiCoO 2 and LiAlO 2 , and has high energy density and thermal stability. Good, cheap and environmentally friendly, it has become a high-end energy storage material in the 3C field and power battery field.
- NCA lithium nickel cobalt aluminate material
- the divalent nickel ions are difficult to oxidize to trivalent, and it is necessary to completely oxidize under a pure oxygen atmosphere.
- NCA has high water absorption, there is a reaction in the following formula, and battery production needs to be normal production under conditions of 10% humidity or less. Since NCA is easy to release O 2 , CO 2 , etc., the battery is easily inflated, and it is best to use a 18650-type cylindrical battery.
- the conditions for preparing a structurally stable NCA material and a nickel-cobalt aluminum lithium battery are very demanding.
- the domestically produced nickel-cobalt-aluminum-lithium cathode material still has defects such as rapid capacity decay, poor rate performance and poor storage performance during charging and discharging. For this reason, in order to meet the mild production process and to prepare nickel-cobalt-aluminum materials with superior performance, it is necessary to develop a novel nickel-cobalt-aluminum precursor.
- Ni 1-xy Co x Al y (OH) 2 is currently considered to be the best precursor for the preparation of high performance nickel cobalt aluminum.
- the coprecipitation method is a simple and practical method for preparing LiNiCoAlO 2 and its surface modification.
- the prepared nickel-cobalt-aluminum precursor often leaves a large amount of sulfate ions difficult to be washed and removed; 2.
- the aging of 5% wt to 15% wt sodium hydroxide solution of CN 103553152A is favorable.
- the removal of sulfur, but in the washing process, often leads to the loss of aluminum on the surface, resulting in the lack of aluminum on the surface of the prepared material, which is detrimental to the storage properties, processing properties and electrochemical cycle stability of the positive electrode material.
- Increasing the doping amount of aluminum can improve the cycle stability, safety performance, processing property and storage performance of the material.
- Yang-Kook Sun of Hanyang University in Korea developed a new type of gradient lithium-ion battery material in 2008.
- the core of the material is a nickel-cobalt-manganese ternary material with a high nickel content, and the outer coating layer has a gradually reduced nickel content.
- This special cathode material exhibits high energy density, long life and good safety.
- a hydroxide precursor prepared by a coprecipitation method for preparing an Al element gradient distribution is included.
- the method comprises the steps of: gradually adding an aluminum salt solution to the mixed nickel-cobalt mixed salt solution to control the gradual change of the aluminum concentration in the nickel-cobalt-aluminum mixed salt solution to prepare a hydroxide precursor having a gradient of aluminum element.
- Al 3+ hardly complexes with ammonia, and Al 3+ is easily hydrolyzed to form a colloid alone without reaching the gradient doping of Al 3+ element in nickel-cobalt-manganese hydroxide. It is advantageous to prepare a high density spherical gradient aluminum doped precursor.
- the invention provides a method for preparing a spherical nickel hydroxide cobalt aluminum precursor material by a coprecipitation method, and a preparation method of a lithium aluminum cobalt aluminum oxide cathode material for a ladder aluminum type lithium ion battery based on the method, so as to overcome and avoid the prior art.
- the shortcomings and shortcomings provide a simple and easy to control condition, which can synthesize a lithium aluminum cobalt aluminum oxide cathode material for ladder aluminum type lithium ion battery with excellent electrochemical performance, superior processing performance and storage performance.
- a method of preparing a spherical nickel hydroxide cobalt aluminum precursor material by a coprecipitation method comprising the steps of:
- the precursor material is obtained by a precipitation reaction in a reaction vessel, wherein the aqueous nickel cobalt salt solution, the solution containing the complexing agent II, and the sodium hydroxide solution are each fed to the reaction vessel at a constant flow rate.
- the aluminum-containing complex solution and the solution containing the complexing agent I are added in such a manner that the aluminum-containing complex solution is fed at a constant flow rate to a fixed volume of the solution containing the complexing agent I and Mixing the solution containing the complexing agent I while adding a mixed solution of the aluminum-containing complex solution and the solution containing the complexing agent I to the reaction vessel at a constant flow rate, thereby The aluminum concentration in the mixed solution is gradually increased.
- the nickel salt in the method is one or more of nickel sulfate, nickel chloride, nickel acetate, and nickel nitrate.
- the cobalt salt in the method is one or more of cobalt sulfate, cobalt chloride, cobalt acetate and cobalt nitrate.
- the complexing agent I in the method is one or more of triethanolamine, ammonium fluoride, citric acid, oxalic acid, sodium ethylenediaminetetraacetate and sodium hydroxide.
- the complexing agent II in the method is one or more of ammonia water, triethanolamine, ammonium fluoride, citric acid, oxalic acid, sodium edetate.
- the aluminum salt in the method is one or more of aluminum nitrate, aluminum sulfate or aluminum acetate.
- the molar ratio of the nickel salt to the cobalt salt in the aqueous solution of the nickel-cobalt salt is 1-19.
- the molar ratio of the nickel salt to the cobalt salt in the aqueous solution of the nickel-cobalt salt may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19.
- the total concentration of the nickel salt and the cobalt salt in the aqueous nickel-cobalt salt solution is 0.2 to 2.5 mol/L, for example, the total of the nickel salt and the cobalt salt in the aqueous solution of the nickel-cobalt salt.
- the concentration may be 0.2 mol/L, 0.4 mol/L, 0.6 mol/L, 0.8 mol/L, 1.0 mol/L, 1.2 mol/L, 1.4 mol/L, 1.6 mol/L, 1.8 mol/L, 2.0 mol. /L, 2.2 mol/L or 2.5 mol/L.
- the concentration of the sodium hydroxide solution in the method is 2 to 10 mol/L, for example, the concentration of the sodium hydroxide solution may be 2 mol/L, 3 mol/L, 4 mol/L, 5 mol/L, 6 mol/L, 7 mol/L, 8 mol/L, 9 mol/L or 10 mol/L.
- the molar ratio of the aluminum element to the complexing agent I in the aluminum-containing complex solution is 1:0.01 to 20.0, for example, the aluminum element in the aluminum-containing complex solution.
- the molar ratio to the complexing agent I may be 1:0.01, 1:0.05, 1:0.1, 1:0.2, 1:0.3, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1: 0.7, 1:0.8, 1:0.9, 1:1.0, 1:1.5, 1:2.0, 1:2.5, 1:3.0, 1:3.5, 1:4.0, 1:4.5, 1:5.0, 1:5.5, 1:6.0, 1:6.5, 1:7.0, 1:7.5, 1:8.0, 1:8.5, 1:9.0, 1:10.0, 1:11.0, 1:12.0, 1:13.0, 1:14.0, 1: 15.0, 1:16.0, 1:17.0, 1:18.0, 1:19.0 or 20.0.
- the concentration of the complexing agent II in the bottom liquid in the method is 0.3 to 2 mol/L, for example, the concentration of the complexing agent II in the bottom liquid may be 0.3 mol/L, 0.4. Mol/L, 0.5 mol/L, 0.6 mol/L, 0.7 mol/L, 0.8 mol/L, 0.9 mol/L, 1.0 mol/L, 1.1 mol/L, 1.2 mol/L, 1.3 mol/L, 1.4 Mol/L, 1.5 mol/L, 1.6 mol/L, 1.7 mol/L, 1.8 mol/L, 1.9 mol/L or 2.0 mol/L.
- the pH of the bottom liquid in the method is 10-12, for example, the pH of the bottom liquid may be 10, 10.2, 10.4, 10.6, 10.8, 11, 11.2, 11.4, 11.6, 11.8 or 12.
- a flow rate ratio of the aqueous nickel cobalt salt solution, the solution containing the complexing agent II, the sodium hydroxide solution, and the mixed solution to the reaction vessel is added It is 1: (0.05 to 50): (0.1 to 10): (0.01 to 100).
- the flow rate of the aluminum-containing complex solution added to the fixed volume of the solution containing the complexing agent I in the method is from 0.1 mL/min to 2000 mL/min.
- the stirring speed in the reaction vessel in the method is 50 to 1000 rpm.
- the reaction temperature in the step c) in the method is 20 to 80 °C.
- the reaction time in the step c) in the method is from 5 to 100 hours.
- a method for preparing a lithium aluminum cobalt aluminum oxide cathode material for a ladder aluminum type lithium ion battery comprising:
- the precursor material is uniformly mixed with lithium hydroxide, and then calcined in an oxygen atmosphere furnace, and cooled to room temperature to obtain the ladder aluminum-type lithium ion battery composite cathode material.
- the step 2) in the method comprises: stirring the precursor material with a sodium chloride solution at a concentration of 20 to 80 ° C and a concentration of 3 to 30 wt% for 10 to 60 minutes; b) adopting The precipitate is washed several times with deionized water at 20-80 ° C until the final pH value is lower than 10; c) the wet material after washing is dried at 60-150 ° C for 6-60 h.
- the step 3) in the method comprises: uniformly mixing the washed and dried precursor material with lithium hydroxide, calcining in an oxygen atmosphere furnace at 650 to 850 ° C for 10 to 30 hours, and cooling to After the room temperature, a ladder aluminum type lithium nickel cobalt aluminum oxide cathode material was obtained.
- the invention aims at the problem of easy hydrolysis of Al 3+ , and proposes that the complex solution of aluminum alone is used as the aluminum source, and the aluminum source solution is gradually added to the intermediate solution (ie, the solution containing the complexing agent I) so that the aluminum in the mixed solution is made.
- the concentration gradually increases, and the mixed solution in which the aluminum concentration is gradually increased, the nickel-cobalt salt solution, the sodium hydroxide solution, and the complexing agent solution are continuously added to the continuous reaction in the kettle, so that the aluminum element in the precursor has a spherical core to the spherical surface. Gradient distribution.
- the concentration of the doped aluminum element continuously increases from the core to the spherical surface, and the surface aluminum content can even reach 100%.
- the concentration of LiNi 1-xy Co x Al y O 2 doped with such a precursor increases continuously from the core to the spherical surface, and the surface aluminum content can even reach 100%, which not only improves the diffusion performance of lithium ions in the material body. It also fundamentally solves the material's stability in air and electrolyte, and can reduce the amount of aluminum to increase the energy density of the material.
- a series of nickel-based gradient aluminum-doped composite materials were prepared by the method of the invention: LiNi 0.815 Co 0.15 Al 0.035 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 and LiNi 0.87 Co 0.10 Al 0.03 O 2 , etc.
- the materials all exhibit high energy density, high safety stability and superior processing properties.
- the method for preparing a spherical nickel hydroxide cobalt aluminum precursor material by the coprecipitation method and the preparation method of the lithium aluminum cobalt aluminum oxide cathode material for the ladder aluminum type lithium ion battery provided by the invention have a plurality of beneficial technical effects: (1) The gradient spherical nickel hydroxide cobalt aluminum precursor material prepared by the method of the invention and the positive electrode material, the concentration of aluminum gradually increases from the core to the particle surface in the radial direction, and the concentration at the outermost surface is the largest, possibly as high as 100%; (2) The method of the present invention can realize the preparation of a precursor which uniformly increases the surface aluminum element with the spherical nickel hydroxide cobalt aluminum particle center as a starting point by strictly controlling the system conditions; (3) prepared by the method of the present invention.
- the gradient spherical nickel hydroxide cobalt aluminum precursor material and the positive electrode material have significantly improved moisture resistance, effectively avoiding the decomposition of trivalent nickel, and greatly reducing the humidity sensitivity in the preparation and application of the material, which is beneficial to the manufacture of NCA materials and related batteries.
- some embodiments of the present invention also add a NaCl desulfurization washing step, which is effective in reducing the precursor.
- the loss of elements increases the removal of harmful impurities, which is beneficial for the preparation of high stability lithium nickel cobalt cobalt aluminate.
- Lithium positive electrode material Lithium positive electrode material; (5)
- the positive electrode material of lithium nickel cobalt aluminate battery prepared by the method has stable electrochemical performance, high energy density, good rate performance, high safety, low sensitivity to temperature and humidity, and excellent processing performance. Such characteristics can be used to prepare power batteries that meet the needs of electronic products and electric vehicles; (6) By controlling the sintering process, it is possible to construct a gradient type nickel-cobalt lithium aluminate cathode material with a high stability surface, thus, the synthesized product High purity, good crystallization, excellent processing performance and good electrochemical performance; (7)
- the method of the invention is simple and easy, the conditions are easy to control, and the green is highly efficient.
- FIG. 1 is a schematic view showing the manner of feeding each raw material in the synthesis method of the present invention.
- Example 2 is an SEM image of a precursor prepared in Example 1.
- Example 3 is an XRD comparison diagram of the ladder aluminum precursor and the conventional coprecipitation precursor in Example 1.
- Example 4 is a cycle performance curve of the positive electrode material prepared in Example 1.
- Figure 5 is an SEM image of the precursor prepared in Example 2.
- 6 is a comparison chart of charge and discharge curves (at 6a, 0.2C and 1C magnification) and a comparison of cycle performance curves (6b) of the positive electrode material prepared in Example 2 and ordinary NCA materials.
- the nickel cobalt salt aqueous solution (20 ml/min), 30% sodium hydroxide solution (10 ⁇ 2 mL/min) and 14 mol/L ammonia aqueous solution (4 ⁇ 1 mL/min) to the reaction kettle, and biasing
- the sodium aluminate solution was firstly fed at a flow rate of 1.45 ml/min to a continuously stirred mixing vessel containing a solution of the complexing agent I having a volume of 41.74 L, and the mixed solution was fed at a flow rate of 20 ml/min.
- the reaction temperature in the reaction vessel is 50 ° C;
- the concentration of the aluminum element in the mixing container is higher and higher, thereby feeding the reaction.
- the concentration of aluminum in the mixed solution in the autoclave is also getting higher and higher, and the concentration of aluminum element in contact with the surface of the precipitated particles is also increased, and finally the ladder aluminum type which is distributed along the radial interface of the precipitated particles is obtained.
- Nickel hydroxide cobalt aluminum precursor material since the volume of the solution containing the complexing agent I in the mixing container is continuously decreased, and the sodium metaaluminate solution is continuously added, the concentration of the aluminum element in the mixing container is higher and higher, thereby feeding the reaction.
- the concentration of aluminum in the mixed solution in the autoclave is also getting higher and higher, and the concentration of aluminum element in contact with the surface of the precipitated particles is also increased, and finally the ladder aluminum type which is distributed along the radial interface of the precipitated particles is obtained.
- the concentration of the complexing agent, the pH value and the particle size distribution were strictly controlled, and the reaction was stopped after the nickel-cobalt salt aqueous solution was added.
- the mother liquor was filtered and washed with a 60 ° C, 10% sodium chloride solution for 30 min.
- the slurry was washed, filtered, and dried to obtain Ni 0.815 Co 0.15 Al 0.035 with a surface aluminum concentration of 30 at% (
- the precursor of OH) 2 see Fig. 2 for its SEM image) can be seen from the SEM image.
- the morphology of the precursor is spherical or spheroidal, and the particle size distribution is concentrated.
- the Ni 0.815 Co 0.15 Al 0.035 (OH) 2 was uniformly mixed with the metered lithium hydroxide, and then calcined in an oxygen atmosphere furnace at 750 ° C for 12 h to cool to room temperature to obtain a positive electrode material LiNi 0.815 Co 0.15 Al 0.035 O 2 , XRD.
- the material was tested to have a single alpha-NaFeO 3 structure (see Figure 3).
- the positive electrode material had a first discharge capacity of 198 mAh/g at a charge and discharge of 2.8 to 4.3 voltage window of 0.1 C, a discharge specific capacity of 174 mAh/g at 1 C, and a capacity retention rate of >82% at a cycle of 300 cycles (shown in Fig. 4).
- the nickel cobalt salt aqueous solution (20 ml/min), 30% sodium hydroxide solution (10 ⁇ 2 mL/min) and 1 mol/L EDTA solution (3 ⁇ 1 mL/min) were added to the reaction kettle, and Al was added.
- the -EDTA complex solution was first added to a continuously stirred mixing vessel containing a solution of the complexing agent I having a volume of 42.36 L at a flow rate of 1.05 ml/min, while the mixed solution was flowed at a flow rate of 20 ml/min.
- the reaction temperature in the reactor is 50 ° C
- the stirring speed is 400r / min;
- the concentration of the complexing agent, the pH value and the particle size distribution were strictly controlled, and the reaction was stopped after the nickel-cobalt salt aqueous solution was added.
- the mother liquor was filtered and washed with 60 ° C and 10% sodium chloride solution for 30 min.
- the slurry was washed, filtered and dried to obtain Ni 0.80 Co 0.15 Al 0.05 with a surface aluminum concentration of 50 at% ( The precursor of OH) 2 (see Fig. 5 for its SEM image) can be seen from the SEM image.
- the morphology of the precursor is spherical or spheroidal, and the particle size distribution is concentrated.
- Ni 0.80 Co 0.15 Al 0.05 (OH) 2 was uniformly mixed with the metered amount of lithium hydroxide, and then calcined at 750 ° C for 12 hours in an oxygen atmosphere furnace to be cooled to room temperature to obtain a positive electrode material LiNi 0.8 Co 0.15 Al 0.05 O 2 .
- the positive electrode material has a first discharge capacity of 188 mAh/g at a charge and discharge of 2.8 to 4.3 voltage window of 0.2 C, and a specific discharge capacity of 178 mAh/g at 1 C, and the cycle performance is significantly better than that of ordinary NCA materials (see Fig. 6).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Claims (20)
- 一种采用共沉淀法制备球形氢氧化镍钴铝前驱材料的方法,其特征在于,所述方法包括以下步骤:a)配制镍盐和钴盐混合的镍钴盐水溶液、含有络合剂I的溶液、含有络合剂II的溶液和氢氧化钠溶液,并将铝盐与络合剂I混合配制成含铝络合溶液;b)在反应釜中预先加入含有所述络合剂II的底液;c)将所述镍钴盐水溶液、所述含有络合剂I的溶液、所述含有络合剂II的溶液、所述含铝络合溶液和所述氢氧化钠溶液加入不断搅拌的所述反应釜中沉淀反应获得所述前驱材料,其中所述镍钴盐水溶液、所述含有络合剂II的溶液和所述氢氧化钠溶液各自以恒定流速流加加入所述反应釜中,所述含铝络合溶液和所述含有络合剂I的溶液以以下方式加入:将所述含铝络合溶液以恒定流速流加加入固定体积的所述含有络合剂I的溶液中与所述含有络合剂I的溶液混合,同时将所述含铝络合溶液与所述含有络合剂I的溶液的混合溶液以恒定流速流加加入所述反应釜,从而使得所述混合溶液中铝浓度逐渐增加。
- 根据权利要求1所述的方法,其特征在于:所述镍盐为硫酸镍、氯化镍、醋酸镍和硝酸镍中的一种或几种。
- 根据权利要求1所述的方法,其特征在于:所述钴盐为硫酸钴、氯化钴、醋酸钴和硝酸钴中的一种或几种。
- 根据权利要求1所述的方法,其特征在于:所述的络合剂I为三乙醇胺、氟化铵、柠檬酸、草酸、乙二胺四乙酸钠和氢氧化钠中的一种或几种。
- 根据权利要求1所述的方法,其特征在于:所述的络合剂II为氨水、三乙醇胺、氟化铵、柠檬酸、草酸、乙二胺四乙酸钠中的一种或几种。
- 根据权利要求1所述的方法,其特征在于:所述的铝盐为硝酸铝、硫酸铝或醋酸铝中的一种或几种。
- 根据权利要求1所述的方法,其特征在于:所述镍钴盐水溶液中镍盐与钴盐的摩尔比为1-19。
- 根据权利要求1所述的方法,其特征在于:所述镍钴盐水溶液中镍盐和钴盐的总浓度为0.2~2.5mol/L。
- 根据权利要求1所述的方法,其特征在于:所述氢氧化钠溶液的浓度为2~10mol/L。
- 根据权利要求1所述的方法,其特征在于:所述含铝络合溶液中铝元素和所述络合剂I的摩尔比为1∶0.01~20.0。
- 根据权利要求1所述的方法,其特征在于:所述底液中络合剂II的浓度为0.3~2mol/L。
- 根据权利要求1所述的方法,其特征在于:所述底液的pH为10~12。
- 根据权利要求1所述的方法,其特征在于:所述镍钴盐水溶液、所述含有络合剂II的溶液、所述氢氧化钠溶液和所述混合溶液流加加入所述反应釜的流速比为1∶(0.05~50)∶(0.1~10)∶(0.01~100)。
- 根据权利要求1所述的方法,其特征在于:所述含铝络合溶液流加加入固定体积的所述含有络合剂I的溶液中的流速为0.1mL/min~2000mL/min。
- 根据权利要求1所述的方法,其特征在于:所述反应釜中的搅拌速度为50~1000转/分钟。
- 根据权利要求1所述的方法,其特征在于:所述步骤c)中的反应温度为20~80℃。
- 根据权利要求1所述的方法,其特征在于:所述步骤c)中的反应时间为5至100小时。
- 一种梯铝型锂离子电池锂镍钴铝氧正极材料的制备方法,其特征在于,所述方法包括:1)采用如权利要求1-17所述的方法制备球形氢氧化镍钴铝前驱材料;2)将步骤1)获得的所述前驱材料洗涤、过滤和干燥;3)将所述前驱材料与氢氧化锂均匀混合后,置于氧气气氛炉中煅烧,冷却至室温后获得所述梯铝型锂离子电池复合正极材料。
- 根据权利要求17所述的方法,其特征在于:所述步骤2)包括:将所述前驱材料用20~80℃、浓度为3~30wt%的氯化钠溶液搅拌清洗10~60min;b)采用20~80℃的去离子水清洗沉淀数次,至最终pH值低于10;c)将清洗后的湿料置于于60~150℃下干燥6~60h。
- 根据权利要求18或19所述的方法,其特征在于:所述步骤3)包括:将清洗干燥后的前驱材料与氢氧化锂均匀混合,于氧气气氛炉中于650~850℃煅烧10~30h,冷却至室温后获得梯铝型锂镍钴铝氧正极材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16792138T PL3297072T3 (pl) | 2015-05-08 | 2016-05-06 | Metody przygotowywania materiału prekursorowego niklowo-kobaltowo-aluminiowego i materiału katodowego z gradientową dystrybucją aluminium w postaci pierwiastka |
KR1020177019081A KR101952210B1 (ko) | 2015-05-08 | 2016-05-06 | 알루미늄원소 구배 분포를 갖는 니켈-코발트-알루미늄 전구재료 및 정극재료 제조방법 |
US15/538,131 US10329162B2 (en) | 2015-05-08 | 2016-05-06 | Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element |
JP2017548519A JP6395951B2 (ja) | 2015-05-08 | 2016-05-06 | アルミニウム元素勾配分布を有するニッケルコバルトアルミニウム前駆体材料及び正極材料を製造する方法 |
EP16792138.6A EP3297072B1 (en) | 2015-05-08 | 2016-05-06 | Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510233112.6 | 2015-05-08 | ||
CN201510233112.6A CN104934595B (zh) | 2015-05-08 | 2015-05-08 | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016180288A1 true WO2016180288A1 (zh) | 2016-11-17 |
Family
ID=54121658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/081350 WO2016180288A1 (zh) | 2015-05-08 | 2016-05-06 | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10329162B2 (zh) |
EP (1) | EP3297072B1 (zh) |
JP (1) | JP6395951B2 (zh) |
KR (1) | KR101952210B1 (zh) |
CN (1) | CN104934595B (zh) |
PL (1) | PL3297072T3 (zh) |
WO (1) | WO2016180288A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110921719A (zh) * | 2019-11-16 | 2020-03-27 | 银隆新能源股份有限公司 | 一种利用共沉淀法制备锂离子电池nca正极材料的方法 |
CN112194193A (zh) * | 2020-08-27 | 2021-01-08 | 浙江美都海创锂电科技有限公司 | 一种高镍四元锂离子电池正极前驱体材料的制备方法 |
WO2021020531A1 (ja) | 2019-07-31 | 2021-02-04 | 日亜化学工業株式会社 | ニッケルコバルト複合酸化物の製造方法、ニッケルコバルト複合酸化物、正極活物質、全固体リチウムイオン二次電池用正極および全固体リチウムイオン二次電池 |
CN113912140A (zh) * | 2021-11-01 | 2022-01-11 | 广东佳纳能源科技有限公司 | 制备三元前驱体的方法及反应装置 |
CN114196997A (zh) * | 2021-12-31 | 2022-03-18 | 中国计量大学 | 一种镍钴钨梯度镀层的镀液、制备方法及电镀方法 |
CN115745016A (zh) * | 2021-09-07 | 2023-03-07 | 浙江海创锂电科技有限公司 | 一种梯度型ncm@ncma高镍前驱体连续式的制备方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104934595B (zh) | 2015-05-08 | 2017-08-08 | 广州锂宝新材料有限公司 | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 |
CN105390667B (zh) * | 2015-12-14 | 2018-03-30 | 山东精工电子科技有限公司 | 一种基于铝浓度呈正态分布制备球型锂电池正极材料镍钴铝酸锂的方法 |
CN106935844A (zh) * | 2015-12-31 | 2017-07-07 | 北京当升材料科技股份有限公司 | 一种锂离子电池正极材料的制备方法 |
CN106935803B (zh) * | 2015-12-31 | 2020-07-10 | 北京当升材料科技股份有限公司 | 一种锂离子电池正极材料的制备方法 |
CN106935797B (zh) * | 2015-12-31 | 2019-02-26 | 北京当升材料科技股份有限公司 | 一种锂离子电池用前驱体、正极材料、锂离子电池正极以及锂离子电池 |
CN105552361A (zh) * | 2016-01-25 | 2016-05-04 | 荆门市格林美新材料有限公司 | 一种锂离子电池正极材料前驱体及其制备方法 |
CN106058243B (zh) * | 2016-07-21 | 2018-08-24 | 天津巴莫科技股份有限公司 | 氟掺杂的镍钴铝前驱体及其制备方法和制备的氟掺杂的镍钴铝酸锂正极材料 |
CN106365211A (zh) * | 2016-08-31 | 2017-02-01 | 宋程 | 一种nca前驱体的制备方法 |
CN107342398A (zh) * | 2017-04-25 | 2017-11-10 | 山东玉皇新能源科技有限公司 | 一种锂离子电池正极活性材料及其制备方法 |
CN106953089B (zh) * | 2017-05-11 | 2019-08-20 | 浙江工业职业技术学院 | 一种溶胶絮凝法制备铝掺杂三元正极材料的方法 |
CN108011095B (zh) * | 2017-11-17 | 2020-05-05 | 中国科学院青岛生物能源与过程研究所 | 一种适用于动力型锂离子电池、高循环稳定性nca正极材料的制备方法 |
CN108417826A (zh) * | 2018-02-02 | 2018-08-17 | 昆明理工大学 | 一种镍钴铝三元素梯度分布的镍钴铝酸锂正极材料的制备方法 |
CN108804389B (zh) * | 2018-04-13 | 2022-03-25 | 广东佳纳能源科技有限公司 | 一种三元前驱体沉淀反应釜在线显示固含量的估算方法 |
CN108767216B (zh) * | 2018-05-15 | 2021-09-03 | 哈尔滨工业大学 | 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法 |
CN108649205A (zh) * | 2018-05-15 | 2018-10-12 | 哈尔滨工业大学 | 一种具有变斜率浓度梯度掺杂结构的锂离子电池正极材料及其制备 |
JP7210957B2 (ja) * | 2018-09-20 | 2023-01-24 | 住友金属鉱山株式会社 | ニッケル複合化合物粒子とその製造方法およびリチウムイオン二次電池用正極活物質の製造方法 |
EP3659974A1 (en) * | 2018-11-27 | 2020-06-03 | Basf Se | Process for making a nickel composite hydroxide |
CN109626447A (zh) * | 2018-12-13 | 2019-04-16 | 南开大学 | 一种浓度梯度镁掺杂高镍锂离子电池正极材料及其制备方法 |
CN111354941A (zh) * | 2018-12-24 | 2020-06-30 | 荆门市格林美新材料有限公司 | 一种在线制备不同结构的镍钴锰酸锂正极材料的装置以及方法 |
CN110028112B (zh) * | 2019-04-23 | 2021-09-28 | 金川集团股份有限公司 | 一种连续共沉淀合成宽粒度分布镍钴铝正极材料前驱体的方法 |
CN110127777B (zh) * | 2019-06-10 | 2021-04-20 | 浙江帕瓦新能源股份有限公司 | 一种湿法掺锆浓度梯度镍钴铝三元前驱体及其制备方法 |
CN110224123B (zh) * | 2019-06-13 | 2020-09-15 | 广东邦普循环科技有限公司 | 一种高电压钴酸锂正极材料及其制备方法和应用 |
CN112447951B (zh) * | 2019-09-02 | 2022-11-08 | 宁德时代新能源科技股份有限公司 | 正极活性材料、其制备方法、正极极片及锂离子二次电池 |
CN110683590A (zh) * | 2019-09-27 | 2020-01-14 | 天津大学 | 基于铝元素浓度梯度分布的氢氧化镍钴铝前驱体制备方法 |
CN111244459A (zh) * | 2020-01-21 | 2020-06-05 | 华东理工大学 | 高镍正极材料、镍钴前驱体材料及制备方法、锂离子电池 |
US20230223528A1 (en) * | 2020-05-12 | 2023-07-13 | Basf Se | Electrode active materials and method for their manufacture |
CN111732130B (zh) * | 2020-06-22 | 2023-11-03 | 陕西红马科技有限公司 | 一种微孔隙结构的梯度nca三元材料前驱体及其制备方法 |
CN111769277A (zh) * | 2020-06-30 | 2020-10-13 | 中国科学院上海微系统与信息技术研究所 | 一种梯度单晶高镍正极材料及其制备方法 |
CN111899989B (zh) * | 2020-08-06 | 2022-02-11 | 合肥工业大学 | 一种高稳定铝掺杂α相NiCo-LDHs电极材料的制备方法及其应用 |
CN113101910B (zh) * | 2021-03-31 | 2021-12-14 | 江苏晶晶新材料有限公司 | 一种具有还原性的大孔容氧化铝材料及其制备方法 |
CN113690415A (zh) * | 2021-08-04 | 2021-11-23 | 中国电子科技集团公司第十八研究所 | 一种长贮存正极材料及其制备方法 |
CN114349068B (zh) * | 2021-12-03 | 2023-06-16 | 宜宾光原锂电材料有限公司 | 一种大粒径镍钴铝三元正极材料前驱体的制备方法 |
CN115180657A (zh) * | 2022-06-30 | 2022-10-14 | 金川集团股份有限公司 | 一种掺铝基掺镍梯度碳酸钴材料的制备方法 |
CN117440934B (zh) * | 2023-09-14 | 2024-08-13 | 广东邦普循环科技有限公司 | 一种三元正极材料及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114557A1 (en) * | 2006-03-30 | 2007-10-11 | Industry-University Cooperation Foundation Hanyang University | Positive active material for lithium battery, method of preparing the same, and lithium battery including the same |
CN103400973A (zh) * | 2013-08-08 | 2013-11-20 | 郭建 | 一种镍钴铝酸锂及其前驱体的制备方法 |
CN103715424A (zh) * | 2014-01-06 | 2014-04-09 | 中国科学院宁波材料技术与工程研究所 | 一种核壳结构正极材料及其制备方法 |
CN103928673A (zh) * | 2014-05-04 | 2014-07-16 | 成都赛恩斯特科技有限公司 | 一种复合多元锂离子电池正极材料及其制备方法 |
CN104134798A (zh) * | 2014-08-08 | 2014-11-05 | 湖北金泉新材料有限责任公司 | 一种复合掺杂型镍钴正极材料及其制备方法 |
CN104409716A (zh) * | 2014-10-30 | 2015-03-11 | 中国科学院过程工程研究所 | 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法 |
CN104425815A (zh) * | 2013-08-19 | 2015-03-18 | 日电(中国)有限公司 | 高密度球形镍钴铝酸锂材料及其前驱体的制备方法 |
CN104934595A (zh) * | 2015-05-08 | 2015-09-23 | 广州锂宝新材料有限公司 | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009063613A1 (ja) | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
JP2009259798A (ja) | 2008-03-19 | 2009-11-05 | Panasonic Corp | 非水電解質二次電池 |
JP5359080B2 (ja) | 2008-07-18 | 2013-12-04 | 住友金属鉱山株式会社 | 水酸化アルミニウム被覆ニッケルコバルト複合水酸化物の製造方法 |
JP2010092817A (ja) * | 2008-10-10 | 2010-04-22 | Toyama Prefecture | リチウム電池用正極 |
JP2010170741A (ja) | 2009-01-20 | 2010-08-05 | Panasonic Corp | 非水電解質二次電池用正極活物質の製造方法 |
KR101185366B1 (ko) * | 2010-01-14 | 2012-09-24 | 주식회사 에코프로 | 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법 |
CN103078109A (zh) * | 2013-01-16 | 2013-05-01 | 中南大学 | 一种梯度包覆镍酸锂材料及其制备方法 |
CN103094546A (zh) * | 2013-01-25 | 2013-05-08 | 湖南邦普循环科技有限公司 | 一种制备锂离子电池正极材料镍钴铝酸锂的方法 |
JP5626382B2 (ja) * | 2013-01-30 | 2014-11-19 | 住友金属鉱山株式会社 | ニッケルコバルト複合水酸化物及びその製造方法 |
CN103553152B (zh) * | 2013-10-22 | 2015-09-23 | 金天能源材料有限公司 | 高密度球形镍钴铝前驱体材料及其制备方法 |
CN104201369B (zh) * | 2014-07-01 | 2016-04-06 | 宁波金和锂电材料有限公司 | 一种锂离子电池梯度正极材料前驱体及其制备方法 |
-
2015
- 2015-05-08 CN CN201510233112.6A patent/CN104934595B/zh active Active
-
2016
- 2016-05-06 JP JP2017548519A patent/JP6395951B2/ja active Active
- 2016-05-06 PL PL16792138T patent/PL3297072T3/pl unknown
- 2016-05-06 EP EP16792138.6A patent/EP3297072B1/en active Active
- 2016-05-06 US US15/538,131 patent/US10329162B2/en active Active
- 2016-05-06 WO PCT/CN2016/081350 patent/WO2016180288A1/zh active Application Filing
- 2016-05-06 KR KR1020177019081A patent/KR101952210B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114557A1 (en) * | 2006-03-30 | 2007-10-11 | Industry-University Cooperation Foundation Hanyang University | Positive active material for lithium battery, method of preparing the same, and lithium battery including the same |
CN103400973A (zh) * | 2013-08-08 | 2013-11-20 | 郭建 | 一种镍钴铝酸锂及其前驱体的制备方法 |
CN104425815A (zh) * | 2013-08-19 | 2015-03-18 | 日电(中国)有限公司 | 高密度球形镍钴铝酸锂材料及其前驱体的制备方法 |
CN103715424A (zh) * | 2014-01-06 | 2014-04-09 | 中国科学院宁波材料技术与工程研究所 | 一种核壳结构正极材料及其制备方法 |
CN103928673A (zh) * | 2014-05-04 | 2014-07-16 | 成都赛恩斯特科技有限公司 | 一种复合多元锂离子电池正极材料及其制备方法 |
CN104134798A (zh) * | 2014-08-08 | 2014-11-05 | 湖北金泉新材料有限责任公司 | 一种复合掺杂型镍钴正极材料及其制备方法 |
CN104409716A (zh) * | 2014-10-30 | 2015-03-11 | 中国科学院过程工程研究所 | 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法 |
CN104934595A (zh) * | 2015-05-08 | 2015-09-23 | 广州锂宝新材料有限公司 | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020531A1 (ja) | 2019-07-31 | 2021-02-04 | 日亜化学工業株式会社 | ニッケルコバルト複合酸化物の製造方法、ニッケルコバルト複合酸化物、正極活物質、全固体リチウムイオン二次電池用正極および全固体リチウムイオン二次電池 |
CN110921719A (zh) * | 2019-11-16 | 2020-03-27 | 银隆新能源股份有限公司 | 一种利用共沉淀法制备锂离子电池nca正极材料的方法 |
CN110921719B (zh) * | 2019-11-16 | 2024-01-19 | 银隆新能源股份有限公司 | 一种利用共沉淀法制备锂离子电池nca正极材料的方法 |
CN112194193A (zh) * | 2020-08-27 | 2021-01-08 | 浙江美都海创锂电科技有限公司 | 一种高镍四元锂离子电池正极前驱体材料的制备方法 |
CN115745016A (zh) * | 2021-09-07 | 2023-03-07 | 浙江海创锂电科技有限公司 | 一种梯度型ncm@ncma高镍前驱体连续式的制备方法 |
CN113912140A (zh) * | 2021-11-01 | 2022-01-11 | 广东佳纳能源科技有限公司 | 制备三元前驱体的方法及反应装置 |
CN113912140B (zh) * | 2021-11-01 | 2022-11-01 | 广东佳纳能源科技有限公司 | 制备三元前驱体的方法及反应装置 |
CN114196997A (zh) * | 2021-12-31 | 2022-03-18 | 中国计量大学 | 一种镍钴钨梯度镀层的镀液、制备方法及电镀方法 |
CN114196997B (zh) * | 2021-12-31 | 2023-06-09 | 中国计量大学 | 一种镍钴钨梯度镀层的镀液、制备方法及电镀方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3297072A4 (en) | 2018-10-31 |
KR101952210B1 (ko) | 2019-02-26 |
EP3297072A1 (en) | 2018-03-21 |
PL3297072T3 (pl) | 2020-03-31 |
EP3297072B1 (en) | 2019-09-25 |
CN104934595A (zh) | 2015-09-23 |
CN104934595B (zh) | 2017-08-08 |
US10329162B2 (en) | 2019-06-25 |
KR20170093241A (ko) | 2017-08-14 |
JP6395951B2 (ja) | 2018-09-26 |
JP2018504363A (ja) | 2018-02-15 |
US20180044200A1 (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016180288A1 (zh) | 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法 | |
US10446830B2 (en) | High-voltage ternary positive electrode material for lithium-ion battery and preparation method thereof | |
WO2020134048A1 (zh) | 一种无钴富锂三元正极材料nma及其制备方法 | |
CN107546383B (zh) | 一种高性能核壳结构高镍系材料、其制备方法及在锂离子电池的用途 | |
TWI352066B (en) | Preparation method of lithium-metal composite oxid | |
CN113488634B (zh) | 双层包覆改性高镍无钴单晶三元正极材料及其制备方法 | |
TW200810202A (en) | Lithium-metal composite oxides and electrochemical device using the same | |
WO2016155315A1 (zh) | 高镍型锂离子二次电池正极材料及其制备方法 | |
CN108598466A (zh) | 一种使元素含量呈梯度分布的镍钴锰三元材料的制备方法 | |
CN103825016A (zh) | 一种富锂高镍正极材料及其制备方法 | |
WO2019113870A1 (zh) | 一种富锂锰基材料及其制备和应用 | |
CN103904323A (zh) | 一种球形羟基氧化钴的制备方法 | |
CN102201573A (zh) | 一种核壳结构锂离子电池富锂正极材料及其制备方法 | |
CN108134064B (zh) | 一种正极材料前驱体及其制备方法和正极材料 | |
CN107611384B (zh) | 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途 | |
CN115000399A (zh) | 一种类球状钠离子电池正极材料及其制备方法和钠离子电池 | |
WO2007000075A1 (fr) | Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium | |
WO2022188480A1 (zh) | 锂电池复合正极材料的前驱体及复合正极材料的制备方法 | |
WO2005007577A1 (ja) | リチウム−ニッケル−マンガン複合酸化物及びその製造方法並びにその用途 | |
WO2023005251A1 (zh) | 一种多元素分区掺杂无钴正极材料及其制备方法 | |
CN110808363A (zh) | 一种硅酸锂包覆的富锂锰基正极材料及其制备方法与应用 | |
CN114520319A (zh) | 一种锂二次电池镍基正极材料及其制备方法 | |
CN106920959A (zh) | 一种单晶富锂锰基多元正极材料及其制备方法 | |
WO2023184996A1 (zh) | 一种改性高镍三元正极材料及其制备方法 | |
CN114843469A (zh) | 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16792138 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017548519 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016792138 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538131 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177019081 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |