WO2020134048A1 - 一种无钴富锂三元正极材料nma及其制备方法 - Google Patents

一种无钴富锂三元正极材料nma及其制备方法 Download PDF

Info

Publication number
WO2020134048A1
WO2020134048A1 PCT/CN2019/097376 CN2019097376W WO2020134048A1 WO 2020134048 A1 WO2020134048 A1 WO 2020134048A1 CN 2019097376 W CN2019097376 W CN 2019097376W WO 2020134048 A1 WO2020134048 A1 WO 2020134048A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
lithium
precursor
cobalt
cathode material
Prior art date
Application number
PCT/CN2019/097376
Other languages
English (en)
French (fr)
Inventor
赵春阳
付烨
钟辉
Original Assignee
四川万邦胜辉机械设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川万邦胜辉机械设备有限公司 filed Critical 四川万邦胜辉机械设备有限公司
Publication of WO2020134048A1 publication Critical patent/WO2020134048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion battery material preparation, in particular to a cobalt-free lithium-rich ternary cathode material NMA and preparation method thereof.
  • the ternary cathode material NCA has the advantages of large capacity and high voltage platform. It is the new generation of high-capacity cathode material after the ternary cathode material NCM. A new hot spot for lithium battery research and development.
  • the nickel content in the precursor is gradually increased and the cobalt content is gradually reduced, which will reduce the stability of the layered structure of the ternary cathode material during charging and discharging, and it is prone to serious cation mixing, which makes the charging and discharging efficiency of the cathode material 3.
  • the stability of the reversible cycle is greatly reduced.
  • the best performance NCA is 811
  • the ratio of nickel to cobalt is 8:1 (molar ratio)
  • the cobalt content is still high, and its capacity is difficult to exceed 200mAh/g, which has become the technical bottleneck of the ternary cathode material NCA , Become the current ternary cathode material urgently need to solve key technical problems.
  • Layered lithium manganate LiMnO 2 is a high-capacity cathode material with a theoretical charge and discharge capacity of 285mAh/g, which is almost twice that of the currently used spinel-type lithium manganate LiMn 2 O 4 cathode material.
  • the structure of layered lithium manganate LiMnO 2 is extremely unstable, and the structure is prone to collapse during charge and discharge, and it is converted to spinel LiMn 2 O 4 with a lower capacity, which makes the cycle stability poor, which is also difficult to prepare at present.
  • Reasons for stabilizing layered lithium manganate LiMnO 2 .
  • the capacity of a lithium battery is closely related to the lithium content of the positive electrode material.
  • the higher the free lithium content of the positive electrode material the more lithium ions are deintercalated during charging, and the higher the capacity, therefore, lithium-rich It has also become one of the means to increase the capacity of cathode materials.
  • lithium-rich can only be attached to the surface of the material as lithium oxide, and can not enter the crystal structure of the material, so not only can not increase its capacity, it will increase the alkalinity of the material, but will reduce the cycle of the cathode material Stability, this is because the Li + content in the cathode material NCA is excessive (that is, lithium-rich), and contact with air will generate lithium carbonate and lithium hydroxide, which greatly hinders the extraction and insertion activity of Li ions, making its capacity and cycle stable Sexual decline.
  • the present invention is directed to the deficiencies in the background technology, and the technical problem to be solved is to provide a high stability, low cost non-cobalt-rich lithium-rich ternary cathode material NMA (composite of three elements of nickel, manganese and aluminum) and a preparation method thereof .
  • NMA non-cobalt-rich lithium-rich ternary cathode material
  • a cobalt-free lithium-rich ternary cathode material NMA and the chemical formula of the cobalt-free lithium-rich ternary cathode material NMA is Li 1+P Ni 1-xyz Mn x Al y M z O 2 , its precursor chemical formula is Ni 1-xyz Mn x Al y M z (OH) 2 , where: 0.03 ⁇ P ⁇ 0.3, 0.1 ⁇ X ⁇ 0.6, 0.01 ⁇ Y ⁇ 0.1, 0.01 ⁇ Z ⁇ 0.3, M is one or more of Ce 3+ , Ti 4+ , Zr 4+ , Mg 2+ ; the precursor is nano-sheet-like agglomerated particles, the thickness of the nano-sheet-like precursor 30-50 nm.
  • the precursor of the cobalt-free lithium-rich ternary cathode material NMA and the lithium source are uniformly mixed, calcined in an oxygen atmosphere, and then cooled to room temperature and then ground and sieved to prepare a cobalt-free lithium-rich ternary cathode material NMA.
  • the nickel salt in step 1) is one or more of nickel nitrate, nickel acetate, nickel chloride and nickel sulfate;
  • the manganese salt is one or more of manganese nitrate, manganese acetate, manganese chloride and manganese sulfate;
  • the aluminum salt is one or more of aluminum nitrate, aluminum chloride, aluminum sulfate, and aluminum acetate;
  • the cerium salt is one or more of cerium nitrate, cerium acetate, cerium chloride and cerium sulfate;
  • the titanium salt is one or more of titanium nitrate, titanium acetate, and cerium sulfate;
  • the zirconium salt is one or more of zirconium nitrate, zirconium acetate, and zirconium sulfate;
  • the magnesium salt is one or more of magnesium nitrate, magnesium acetate, magnesium sulfate, and magnesium chloride;
  • the metal cation concentration is 0.01 mol/L to 2.0 mol/L.
  • the precipitating agent is one or two of sodium hydroxide and potassium hydroxide
  • the hydroxide concentration in the precipitant solution is 0.1 mol/L to 10 mol/L.
  • the amount of bottom water added to the precipitation reactor in step 3) accounts for 20-30% of the total volume of the reaction; the co-precipitation reaction is carried out under the protection of an inert atmosphere, the reaction temperature is 40-90°C, and the reaction The time is 1-3h, and the pH of the reaction system is 7-13.
  • the lithium source is one or both of lithium hydroxide and lithium carbonate, and the amount of lithium added in the amount meets the requirement of the stoichiometric ratio of the NMA cobalt-free lithium-rich ternary cathode material NMA The molar amount of lithium.
  • the precursor and the lithium source are ball-milled and mixed, pre-baked at 350-700 degrees for 2-5 hours, and the pre-baked product is taken out and ground.
  • the ground pre-baked product is sintered in an oxygen atmosphere furnace, the sintering temperature is 700-850 degrees, and the time is 15-30 hours.
  • the present invention has the following beneficial effects: (1) In the NCA cathode material, cheap Mn is used to replace expensive Co, and by adding excess lithium (lithium-rich), the layered LiNiO 2 phase and the layered LiMnO The 2- phase composite prepared a lithium-rich layered structure NMA cathode material, so as to achieve the purpose of improving capacity and stability, and reducing costs.
  • the cobalt-free lithium-rich ternary positive electrode material of the present invention because it does not contain cobalt, greatly reduces the preparation cost, and the cost reduction range is 20-30%.
  • the precursor of the non-cobalt-rich lithium-rich ternary cathode material of the present invention Ni 1-xyz Mn x Al y M z (OH) 2 is a nano-sheet-like agglomerated particle with a small density, high specific surface area, and high chemical reactivity
  • the characteristics make the layer structure of the positive electrode material formed during the high-temperature calcination process more complete and the electrochemical performance more stable.
  • the precursor is co-precipitated under the condition of high concentration, low reaction time, and no complex ion NH 4 + is added.
  • each cation Precipitation is complete, the precipitation rate is ⁇ 99.99%, and the residual heavy metal ion content in the filtrate is less than 0.001g/l, which greatly reduces the pollution of heavy metal ions in the recovery process of the filtrate, on the other hand, the reaction efficiency is greatly improved (increased by 200-300%) The operating cost is reduced by 40-50%.
  • the prepared cobalt-free lithium-rich ternary cathode material has high electrochemical activity and cycle stability, its capacity reaches 190-200mAh/g, and the capacity retention rate of 100 cycles reaches 90-95%.
  • FIG. 1 is a SEM image of a precursor of a cobalt-free lithium-rich ternary cathode material NMA of the present invention
  • NMA cobalt-free lithium-rich ternary cathode material
  • FIG. 3 is a graph of the charge-discharge diagram (100 cycles) of the NMA cobalt-free lithium-rich ternary cathode material NMA of the present invention.
  • a cobalt-free lithium-rich ternary cathode material NMA the chemical formula of the cobalt-free lithium-rich ternary cathode material NMA is Li 1+P Ni 1-xyz Mn x Al y M z O 2, which is the precursor of the formula Ni 1-xyz Mn x Al y M z (OH) 2, wherein: 0.03 ⁇ P ⁇ 0.3,0.1 ⁇ X ⁇ 0.6,0.01 ⁇ Y ⁇ 0.1,0.01 ⁇ Z ⁇ 0.3, M is one or more of Ce 3+ , Ti 4+ , Zr 4+ , Mg 2+ ; the precursor is nano-sheet-like agglomerated particles, the specific shape is shown in FIG.
  • the nano-sheet-like precursor The thickness of the body is 30-50 nm.
  • the precursor morphology and structure of such a non-cobalt-free lithium-rich ternary cathode material NMA has the characteristics of small density, high specific surface area, and high chemical reaction activity.
  • the layered LiNiO 2 phase formed by calcination of the precursor at high temperature is combined with the layered LiMnO 2 phase to prepare a lithium-rich layered NMA cathode material with a more perfect layered structure, more stable electrochemical performance, and its capacity Achieve 190-200mAh/g, 100 cycles capacity retention rate reached 90-95%.
  • the nickel salt is one or more of nickel nitrate, nickel acetate, nickel chloride and nickel sulfate;
  • the manganese salt is one or more of manganese nitrate, manganese acetate, manganese chloride and manganese sulfate;
  • the aluminum salt is one or more of aluminum nitrate, aluminum chloride, aluminum sulfate, and aluminum acetate;
  • the cerium salt is one or more of cerium nitrate, cerium acetate, cerium chloride and cerium sulfate;
  • the titanium salt is one or more of titanium nitrate, titanium acetate, and cerium sulfate;
  • the zirconium salt is one or more of zirconium nitrate, zirconium acetate, and zirconium sulfate;
  • the magnesium salt is one or more of magnesium nitrate, magnesium acetate, magnesium sulfate, and magnesium chloride;
  • the metal cation concentration is 0.01 mol/L to 2.0 mol/L.
  • the precipitating agent is one or both of sodium hydroxide and potassium hydroxide; the hydroxide concentration in the precipitating agent solution is 0.1mol /L ⁇ 10mol/L.
  • the precursor of the cobalt-free lithium-rich ternary cathode material NMA and the lithium source are uniformly mixed, calcined in an oxygen atmosphere, and then cooled to room temperature and then ground and sieved to prepare a cobalt-free lithium-rich ternary cathode material NMA.
  • the lithium source is one or both of lithium hydroxide and lithium carbonate, and the amount of lithium added in the amount meets the required molar amount of lithium in the stoichiometric ratio of the NMA stoichiometric ratio of the cobalt-free lithium-rich ternary cathode material.
  • the precursor and the lithium source are ball-milled and mixed, pre-baked at 350-700 degrees for 2-5 hours, and the pre-baked product is taken out and ground.
  • the pre-baked product after grinding is sintered in an oxygen atmosphere furnace with a sintering temperature of 700-850 degrees and a time of 15-30 hours.
  • Co-precipitation method is used under the condition of high concentration, low reaction time, without adding complex ion NH 4 + .
  • the precipitation of each cation is complete, the precipitation rate is ⁇ 99.99%, and the residual heavy metal ion content in the filtrate is ⁇ 0.001g/l .
  • the reaction efficiency is greatly improved (increased by 200-300%), and the operating cost is reduced by 40-50%.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • Take 100g of this precursor add 50g of battery-grade lithium hydroxide monohydrate, grind and mix, then pre-bake in a tube-type oxygen atmosphere furnace, pre-bake temperature 350°C, pre-bake time 2h, take out after pre-bake, grind Then, sinter it in an oxygen atmosphere furnace, the sintering temperature is 750 °C, the sintering time is 20h, after the sintering is completed, take out, grind, sieve, that is, the target cathode material, and then perform electrical performance measurement.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • Solution B Converted to sodium hydroxide concentration of 4mol/l, this is Solution B.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • Take 100g of this precursor add 55g of battery-grade lithium hydroxide monohydrate, grind and mix, then pre-bake in a tube-type oxygen atmosphere furnace, pre-bake temperature 350 °C, pre-bake time 4h, take out after pre-bake, grinding And then sintered in an oxygen atmosphere furnace, the sintering temperature is 800 °C, the sintering time is 28h, after the sintering is completed, take out, grind, that is, the target cathode material, and then perform electrical performance measurement.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • the reaction conditions are: stirring intensity: medium, feeding time 30min, reaction time 2h, aging time 60min, and reaction temperature 60°C.
  • Vacuum filter while hot take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, take out the filter cake, add 1L deionized water, stir and wash at 60°C for 30min, vacuum filter, the filtrate is saved and used for Next time prepare nickel sulfate solution.
  • the filter cake is dried at 80°C for 3 hours, and then taken out and ground, which is the target cathode material precursor.
  • the positive electrode materials prepared in the examples were made into button batteries, and the electrical performance was tested.
  • the data are as follows:
  • Example 1 4.3V 0.1C 192 ⁇ 93%
  • Example 2 4.3V 0.1C 195 ⁇ 90%
  • Example 3 4.3V 0.1C 190 ⁇ 92%
  • Example 4 4.3V 0.1C 200 ⁇ 90%
  • Example 5 4.3V 0.1C 192 ⁇ 94%
  • Example 6 4.3V 0.1C 196 ⁇ 96%
  • Example 7 4.3V 0.1C 192 ⁇ 95%
  • a cheap Mn is used to replace the expensive Co, and by adding excess lithium (lithium-rich), a layered LiNiO 2 phase and a layered LiMnO 2 phase are combined to prepare a lithium-rich layered structure NMA cathode material. Because it does not contain cobalt, the manufacturing cost is reduced by 20-30%; the capacity of the positive electrode material reaches 190-200mAh/g, and the capacity retention rate for 100 cycles is 90-95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种无钴富锂三元正极材料NMA及其制备方法。其化学式为Li 1+ PNi 1-x-y-zMn xAl yM zO 2,其中:0.03<P<0.3,0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3,M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上;其前驱体为纳米片状团聚粒子,纳米片状前驱体的厚度30-50纳米。主要用途及优点:用廉价的Mn取代价值昂贵Co,并通过加入过量锂(富锂),将层状LiNiO 2相与层状LiMnO 2相复合制备出了一种富锂层状结构的NMA正极材料。因不含钴,制备成本下降20-30%;所述正极材料容量达到190-200mAh/g,100次循环容量保持率为90-95%。

Description

一种无钴富锂三元正极材料NMA及其制备方法 技术领域
本发明涉及锂离子电池材料制备领域,具体涉及一种无钴富锂三元正极材料NMA及其制备方法。
背景技术
随着新能源的高速发展,高容量锂离子动力电池成为全球新能源产和科技的发展热点。作为影响锂电池容量关键部分的正极材料,更是目前技术攻关的重点,三元正极材料NCA具有容量大、电压平台高等优点,是继三元正极材料NCM后新一代高容量正极材料,是目前锂电池研发的新热点。随着技术进步,在保持高稳定性前提下,提高三元正极材料(NCA、NCM)中镍的含量,降低价格昂贵的钴含量,甚至不含钴,是目前锂电池正极材料的发展方向,如从以前NCM的333、532、622(即Ni∶Co∶Mn=3∶3∶3,下同)到目前研发的NCA811,都遵循镍含量逐渐增高、钴含量逐渐降低的发展路径,使三元正极材料的容量大大提高、成本逐渐下降。
然而,前驱体中镍含量逐渐增高、钴含量逐渐降低,会使三元正极材料的层状结构在充放电过程中稳定性下降,并易发生严重的阳离子混排,使正极材料的充放电效率、可逆循环的稳定性大大下降。目前性能最好的NCA为811,其镍与钴之比为8∶1(摩尔比),钴含量仍较高,其容量也难以超过200mAh/g,这已经成为三元正极材料NCA的技术瓶颈,成为目前三元正极材料亟待解决关键技术问题。
层状锰酸锂LiMnO 2是一种高容量正极材料,其理论充放电容量达285mAh/g,差不多是目前常用的尖晶石型锰酸锂LiMn 2O 4正极材料的2倍。但层状锰酸锂LiMnO 2结构极不稳定,在充放电过程中结构易发生坍塌,而转变为容量较低的尖晶石型LiMn 2O 4,使循环稳定性差,这也是目前难以制备出稳定层状锰酸锂LiMnO 2的原因。
众所周知,锂电池的容量与正极材料的锂含量紧密相关,理论上,正极材料的可自由脱出的锂含量越高,充电中脱嵌的锂离子就越多,容量就越高,因此,富锂也成为正极材料增加容量的手段之一。但对镍基正极材料NCA而言,富锂只能作为氧化锂附着在材料的表面,不能进入材料晶体结构,所以不但不能增加其容量,会使材料碱度增高,反而将降低正极材料的循环稳定性,这是因为在正极材料NCA中Li +含量过量(即富锂),和空气接触会生成碳酸锂和氢氧化锂,大大阻碍了Li离子的脱出和嵌入活性,使其容量和循环稳定性下降。
发明内容
本发明针对背景技术中存在的不足,要解决的技术问题是:提供一种高稳定性、低成本的无钴富锂三元正极材料NMA(镍锰铝三种元素的复合)及其制备方法。
本发明为解决上述技术问题,采用的技术方案为:一种一种无钴富锂三元正极材料NMA,所述无钴富锂三元正极材料NMA的化学式为Li 1+PNi 1-x-y-zMn xAl yM zO 2,其前驱体化学式为Ni 1-x-y-zMn xAl yM z(OH) 2,其中:0.03<P<0.3,0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3,M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上;所述前驱体为纳米片状团聚粒子,所述纳米片状 前驱体的厚度30-50纳米。
一种如权利要求1所述无钴富锂三元正极材料NMA的制备方法,包括如下步骤:
1)将可溶性镍盐、锰盐、铝盐、铈盐、钛盐、锆盐、镁盐,按照所述无钴富锂三元正极材料NMA的前驱体化学式确定的所需成分相应的化学计量比例混合;加入去离子水,制得金属盐溶液;
2)将沉淀剂加入去离子水溶解,配成沉淀剂溶液;
3)在沉淀反应器中加入底水,将步骤1)制得的金属盐溶液、步骤2)配成的沉淀剂溶液各自加热后,并流注入到沉淀反应器中;然后保温、搅拌进行共沉淀反应,共沉淀反应结束、趁热过滤;最后对过滤出的沉淀物进行去离子水洗涤、真空干燥处理,得到所述无钴富锂三元正极材料NMA的前驱体;
4)将所述无钴富锂三元正极材料NMA的前驱体与锂源均匀混合,置于氧气氛围中煅烧,然后冷却至室温后研磨、过筛,制得无钴富锂三元正极材料NMA。
进一步,所述步骤1)中所述镍盐为硝酸镍、乙酸镍、氯化镍和硫酸镍中的一种或多种;
所述锰盐为硝酸锰、乙酸锰、氯化锰和硫酸锰中的一种或多种;
所述铝盐为硝酸铝、氯化铝、硫酸铝和醋酸铝中的一种或多种;
所述铈盐为硝酸铈、乙酸铈、氯化铈和硫酸铈中的一种或多种;
所述钛盐为硝酸钛、乙酸钛、硫酸铈中的一种或多种;
所述锆盐为硝酸锆、乙酸锆、硫酸锆中的一种或多种;
所述镁盐为硝酸镁、乙酸镁、硫酸镁、氯化镁中的一种或多种;
所述金属盐溶液中,金属阳离子浓度为0.01mol/L~2.0mol/L。
进一步,所述步骤2)中所述沉淀剂为氢氧化钠、氢氧化钾中的一种或两种;
所述沉淀剂溶液中氢氧根浓度为0.1mol/L~10mol/L。
进一步,所述步骤3)中所述沉淀反应器中底水加入量,占反应总体积的20-30%;所述共沉淀反应在惰性气氛保护下进行,反应温度为40-90℃,反应时间为1-3h,反应体系的pH值为7-13。
进一步,所述步骤4)中所述锂源为氢氧化锂、碳酸锂的一种或两种,其加入量中的锂符合所述无钴富锂三元正极材料NMA化学计量比的所需锂的摩尔量。
进一步,所述步骤4)中将所述前驱体与锂源进行球磨混合,于350-700度预焙烧2-5小时,取出预焙烧产物进行研磨。
进一步,将所述研磨后的预焙烧产物在氧气气氛炉中烧结,烧结温度为700-850度,时间为15-30小时。
本发明与现有技术相比,有益效果在于:(1)在NCA正极材料中用廉价的Mn取代价值昂贵Co,并通过加入过量锂(富锂),将层状LiNiO 2相与层状LiMnO 2相复合制备出了一种富锂层状结构的NMA正极材料,从而达到提高容量和稳定性、降低成本的目的。
(2)本发明无钴富锂三元正极材料,因为不含钴,使其制备成本大大下降,成本下降幅度达20-30%。
(3)本发明无钴富锂三元正极材料的前驱体Ni 1-x-y-zMn xAl yM z(OH) 2为纳米片状团聚粒子,具有密度小、比表面积高、化学反应活性高的特点,使在高温煅烧过程中形成的正极 材料层状结构更为完善,电化学性能更稳定。
(4)与现有的三元正极材料前驱体合成方法不同,所述前驱体采用共沉淀法在高浓度、低反应时间、不加入络离子NH 4 +条件下进行,一方面,使各阳离子沉淀完全,沉淀率≥99.99%,滤液中残存的重金属离子含量<0.001g/l,大大降低避免了滤液回收处理中的重金属离子污染,另一方面使反应效率大大提高(提高200-300%),操作成本下降40-50%。
(5)制得的无钴富锂三元正极材料,具有很高的电化学活性和循环稳定性,其容量达到190-200mAh/g,100次循环容量保持率达到90-95%。
附图说明
图1是本发明无钴富锂三元正极材料NMA的前驱体SEM图;
图2是本发明无钴富锂三元正极材料NMA的SEM图;
图3是本发明无钴富锂三元正极材料NMA的充放电图(100次循环)曲线图。
具体实施方式
下面结合附图对本发明的实施方式作进一步详细说明。
见图1至图3所示,一种一种无钴富锂三元正极材料NMA,所述无钴富锂三元正极材料NMA的化学式为Li 1+PNi 1-x-y-zMn xAl yM zO 2,其前驱体化学式为Ni 1-x-y-zMn xAl yM z(OH) 2,其中:0.03<P<0.3,0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3,M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上;所述前驱体为纳米片状团聚粒子,具体形状如图1所示,所述纳米片状前驱体的厚度30-50纳米。这样的无钴富锂三元正极材料NMA的前驱体形貌、结构具有密度小、比表面积高、化学反应活性高的特点。前驱体通过高温煅烧形成的层状LiNiO 2相与层状LiMnO 2相复合,制备出了一种富锂层状结构的NMA正极材料,层状结构更为完善,电化学性能更稳定,其容量达到190-200mAh/g,100次循环容量保持率达到90-95%。
一种如权利要求1所述无钴富锂三元正极材料NMA的制备方法,包括如下步骤:
1)将可溶性镍盐、锰盐、铝盐、铈盐、钛盐、锆盐、镁盐,按照所述无钴富锂三元正极材料NMA的前驱体化学式确定的所需成分相应的化学计量比例混合;加入去离子水,制得金属盐溶液;也就是根据无钴富锂三元正极材料NMA的化学式为Li 1+PNi 1-x-y-zMn xAl yM zO 2,前驱体化学式为Ni 1-x-y-zMn xAl yM z(OH) 2,其中:0.03<P<0.3,0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3,M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上,选定了需要生产制备的具体的目标前驱体,X、Y、Z具体数值就确定了,Ce 3+、Ti 4+、Zr 4+、Mg 2+中具体需要掺杂的元素种类及相应的摩尔量也就确定了,对应的镍盐、锰盐、铝盐、铈盐、钛盐、锆盐、镁盐中各自所需的摩尔量也就确定了。
所述镍盐为硝酸镍、乙酸镍、氯化镍和硫酸镍中的一种或多种;
所述锰盐为硝酸锰、乙酸锰、氯化锰和硫酸锰中的一种或多种;
所述铝盐为硝酸铝、氯化铝、硫酸铝和醋酸铝中的一种或多种;
所述铈盐为硝酸铈、乙酸铈、氯化铈和硫酸铈中的一种或多种;
所述钛盐为硝酸钛、乙酸钛、硫酸铈中的一种或多种;
所述锆盐为硝酸锆、乙酸锆、硫酸锆中的一种或多种;
所述镁盐为硝酸镁、乙酸镁、硫酸镁、氯化镁中的一种或多种;
实际制得的金属盐溶液中,金属阳离子浓度为0.01mol/L~2.0mol/L。
2)将沉淀剂加入去离子水溶解,配成沉淀剂溶液;所述沉淀剂为氢氧化钠、氢氧化钾中的一种或两种;所述沉淀剂溶液中氢氧根浓度为0.1mol/L~10mol/L。
3)在沉淀反应器中加入底水,将步骤1)制得的金属盐溶液、步骤2)配成的沉淀剂溶液各自加热后,并流注入到沉淀反应器中;然后保温、搅拌进行共沉淀反应,共沉淀反应结束、趁热过滤;最后对过滤出的沉淀物进行去离子水洗涤、真空干燥处理,得到所述无钴富锂三元正极材料NMA的前驱体;所述沉淀反应器中底水加入量,占反应总体积的20-30%(体积比);所述共沉淀反应在惰性气氛保护下进行,反应温度为40-90℃,反应时间为1-3h,反应体系的pH值为7-13。
4)将所述无钴富锂三元正极材料NMA的前驱体与锂源均匀混合,置于氧气氛围中煅烧,然后冷却至室温后研磨、过筛,制得无钴富锂三元正极材料NMA。所述锂源为氢氧化锂、碳酸锂的一种或两种,其加入量中的锂符合所述无钴富锂三元正极材料NMA化学计量比的所需锂的摩尔量。实际生产制备过程中,根据无钴富锂三元正极材料NMA的化学式为Li 1+ PNi 1-x-y-zMn xAl yM zO 2,其中0.03<P<0.3,也就是锂的摩尔与前驱体的摩尔比在(1.03-1.3)∶1之间具体选择,因此锂源的加入摩尔量也就确定了。
再将所述前驱体与锂源进行球磨混合,于350-700度预焙烧2-5小时,取出预焙烧产物进行研磨。将所述研磨后的预焙烧产物在氧气气氛炉中烧结,烧结温度为700-850度,时间为15-30小时。
因为不含钴,使其制备成本大大下降,成本下降幅度达20-30%。采用共沉淀法在高浓度、低反应时间、不加入络离子NH 4 +条件下进行,一方面,使各阳离子沉淀完全,沉淀率≥99.99%,滤液中残存的重金属离子含量<0.001g/l,大大降低避免了滤液回收处理中的重金属离子污染,另一方面使反应效率大大提高(提高200-300%),操作成本下降40-50%。
实施例1
取电池级六水硫酸镍462.6g,电池级单水硫酸锰30.4g,电池级十八水硫酸铝20g,分析纯硫酸锆1.1g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为2mol/l,此为溶液A;取分析纯氢氧化钠161.6g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为4mol/l,此为溶液B。用3L反应器取底水(去离子水)450ml,将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂50g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度350℃,预焙烧时间2h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为750℃,烧结时间为20h,烧结完成后取出,研磨,筛分,即为本目标正极材料,然后进行电性能测定。
实施例2
取电池级六水硫酸镍461.6g,电池级单水硫酸锰30.1g,电池级十八水硫酸铝20g,分析纯硫酸锆0.7g,分析纯硫酸钛1.0g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝、硫酸锆混合水溶液中总金属离子浓度为2mol/l,此为溶液A;取分析纯氢氧化 钠161.6g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为4mol/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂51g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度350℃,预焙烧时间2h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为780℃,烧结时间为20h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
实施例3
取电池级六水硫酸镍446.8g,电池级单水硫酸锰39.2g,电池级十八水硫酸铝20g,分析纯硫酸钛1.0g,分析纯硫酸铈1.6g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为2mol/l,此为溶液A;取分析纯氢氧化钠161.6g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为4mol/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂55g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度350℃,预焙烧时间4h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为800℃,烧结时间为28h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
实施例4
取电池级六水硫酸镍452.1g,电池级单水硫酸锰32.8g,电池级十八水硫酸铝24g,分析纯硫酸锆2.1g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为2mol/l,此为溶液A;取分析纯氢氧化钠161.6g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为4mol/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂56.4g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度350℃,预焙烧时间5h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为730℃,烧结时间为24h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
实施例5
取电池级六水硫酸镍355.1g,电池级单水硫酸锰28.4g,电池级十八水硫酸铝15g,分析纯硫酸钛0.4g,分析纯硫酸锆1.1g,分析纯硫酸铈0.6g,七水硫酸镁0.2,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为 1.5mol/l,此为溶液A;取分析纯氢氧化钠121.2g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为3m0l/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂42.3g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度350℃,预焙烧时间4h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为800℃,烧结时间为30h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
实施例6
取电池级六水硫酸镍218.2g,电池级单水硫酸锰20.3g,电池级十八水硫酸铝11.7g,分析纯酸钛0.5g,分析纯硫酸锆1.1g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为1mol/l,此为溶液A;取分析纯氢氧化钠80.8g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为2mol/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂28g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度500℃,预焙烧时间4h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为800℃,烧结时间为24h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
实施例7
取电池级六水硫酸镍446.8g,电池级单水硫酸锰33.8g,电池级十八水硫酸铝16g,分析纯硫酸铈2.4g,分析纯硫酸锆0.7g,分析纯七水硫酸镁9.9g,加入去离子水,配制成1L的溶液,换算为硫酸镍、硫酸锰、硫酸铝混合水溶液中总金属离子浓度为2mol/l,此为溶液A;取分析纯氢氧化钠161.6g,加入去离子水,配制成1L的溶液,换算为氢氧化钠浓度为4mol/l,此为溶液B。将A、B溶液同时并流泵入3L反应器进行共沉淀反应,反应条件是:搅拌强度:中,加料时间30min,反应时间2h,陈化时间60min,反应温度60℃。趁热真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤饼取出,加入1L去离子水,于60℃搅拌洗涤30min,真空过滤,滤液保存,并用于下次配制硫酸镍溶液。滤饼于80℃烘干3h,取出研磨,即为目标正极材料前驱体。将该前驱体取100g,加入电池级一水氢氧化锂56.4g,研磨混合,再于管式氧气气氛炉中进行预焙烧,预焙烧温度450℃,预焙烧时间5h,预焙烧完成后取出,研磨,再于氧气气氛炉中烧结,烧结温度为780℃,烧结时间为28h,烧结完成后取出,研磨,即为本目标正极材料,然后进行电性能测定。
充放电测试:
将实施例中所制备出的正极材料做成纽扣电池,进行电性能测试,数据如下:
基本电性能
名称 电压平台 充放电倍率 比容量mAh/g 100次容量保持率%
实施例1 4.3V 0.1C 192 ≥93%
实施例2 4.3V 0.1C 195 ≥90%
实施例3 4.3V 0.1C 190 ≥92%
实施例4 4.3V 0.1C 200 ≥90%
实施例5 4.3V 0.1C 192 ≥94%
实施例6 4.3V 0.1C 196 ≥96%
实施例7 4.3V 0.1C 192 ≥95%
采用本发明后,用廉价的Mn取代价值昂贵Co,并通过加入过量锂(富锂),将层状LiNiO 2相与层状LiMnO 2相复合制备出了一种富锂层状结构的NMA正极材料。因不含钴,制备成本下降20-30%;所述正极材料容量达到190-200mAh/g,100次循环容量保持率为90-95%。

Claims (11)

  1. 一种无钴富锂三元正极材料NMA,其特征在于:所述无钴富锂三元正极材料NMA的化学式为Li 1+PNi 1-x-y-zMn xAl yM zO 2,其前驱体化学式为Ni 1-x-y-zMn xAl yM z(OH) 2,其中:0.03<P<0.3,0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3;M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上;所述前驱体为纳米片状团聚粒子,所述纳米片状前驱体的厚度30-50纳米。
  2. 一种制备权利要求1所述无钴富锂三元正极材料NMA的方法,其特征在于:包括如下步骤:
    1)将可溶性镍盐、锰盐、铝盐、铈盐、钛盐、锆盐、镁盐,按照所述无钴富锂三元正极材料NMA的前驱体化学式确定的所需成分相应的化学计量比例混合;加入去离子水,制得金属盐溶液;
    2)将沉淀剂加入去离子水溶解,配成沉淀剂溶液;
    3)在沉淀反应器中加入底水,将步骤1)制得的金属盐溶液、步骤2)配成的沉淀剂溶液各自加热后,并流注入到沉淀反应器中;然后保温、搅拌进行共沉淀反应,共沉淀反应结束、趁热过滤;最后对过滤出的沉淀物进行去离子水洗涤、真空干燥处理,得到所述无钴富锂三元正极材料NMA的前驱体;
    4)将所述无钴富锂三元正极材料NMA的前驱体与锂源均匀混合,置于氧气氛围中煅烧,然后冷却至室温后研磨、过筛,制得无钴富锂三元正极材料NMA。
  3. 根据权利要求2所述的制备方法,其特征在于:所述步骤1)中所述镍盐为硝酸镍、乙酸镍、氯化镍和硫酸镍中的一种或多种;
    所述锰盐为硝酸锰、乙酸锰、氯化锰和硫酸锰中的一种或多种;
    所述铝盐为硝酸铝、氯化铝、硫酸铝和醋酸铝中的一种或多种;
    所述铈盐为硝酸铈、乙酸铈、氯化铈和硫酸铈中的一种或多种;
    所述钛盐为硝酸钛、乙酸钛、硫酸铈中的一种或多种;
    所述锆盐为硝酸锆、乙酸锆、硫酸锆中的一种或多种;
    所述镁盐为硝酸镁、乙酸镁、硫酸镁、氯化镁中的一种或多种;
    所述金属盐溶液中,金属阳离子浓度为0.01mol/L~2.0mol/L。
  4. 根据权利要求2所述的制备方法,其特征在于:所述步骤2)中所述沉淀剂为氢氧化钠、氢氧化钾中的一种或两种;所述沉淀剂溶液中氢氧根浓度为0.1mol/L~10mol/L。
  5. 根据权利要求2所述的制备方法,其特征在于:所述步骤3)中所述沉淀反应器中底水加入量,占反应总体积的20~30%;所述共沉淀反应在惰性气氛保护下进行,反应温度为40~90℃,反应时间为1~3h,反应体系的pH值为7~13。
  6. 根据权利要求2所述的制备方法,其特征在于:所述步骤4)中所述锂源为氢氧化锂、碳酸锂的一种或两种,其加入量中的锂符合所述无钴富锂三元正极材料NMA化学计量比的所需锂的摩尔量。
  7. 根据权利要求2所述的制备方法,其特征在于:所述步骤4)中将所述前驱体与锂源进行球磨混合,于350-700度预焙烧2-5小时,取出预焙烧产物进行研磨。
  8. 根据权利要求7所述的制备方法,其特征在于:将所述研磨后的预焙烧产物在氧气气氛炉中烧结,烧结温度为700-850度,时间为15-30小时。
  9. 一种三元正极材料NMA的前驱体,其特征在于:前驱体化学式为Ni 1-x-y-zMn xAl yM z(OH) 2,其中:0.1<X<0.6,0.01<Y<0.1,0.01<Z<0.3;M为Ce 3+、Ti 4+、Zr 4+、Mg 2+的一种或两种以上;所述前驱体为纳米片状团聚粒子, 所述纳米片状前驱体的厚度30-50纳米。
  10. 一种制备权利要求9所述前驱体的方法,包括:
    a)将可溶性镍盐、锰盐、铝盐、铈盐、钛盐、锆盐、镁盐,按照权利要求9所述的前驱体化学式确定的所需成分相应的化学计量比例混合;加入去离子水,制得金属盐溶液;
    b)将沉淀剂加入去离子水溶解,配成沉淀剂溶液;
    c)在沉淀反应器中加入底水,将步骤1)制得的金属盐溶液、步骤2)配成的沉淀剂溶液各自加热后,并流注入到沉淀反应器中;然后保温、搅拌进行共沉淀反应,共沉淀反应结束、趁热过滤;最后对过滤出的沉淀物进行去离子水洗涤、真空干燥处理,得到所述无钴富锂三元正极材料NMA的前驱体。
  11. 一种电池,该电池的正极包括权利要求1所述的无钴富锂三元正极材料NMA。
PCT/CN2019/097376 2018-12-27 2019-07-24 一种无钴富锂三元正极材料nma及其制备方法 WO2020134048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811607190.8 2018-12-27
CN201811607190.8A CN109686970A (zh) 2018-12-27 2018-12-27 一种无钴富锂三元正极材料nma及其制备方法

Publications (1)

Publication Number Publication Date
WO2020134048A1 true WO2020134048A1 (zh) 2020-07-02

Family

ID=66189917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097376 WO2020134048A1 (zh) 2018-12-27 2019-07-24 一种无钴富锂三元正极材料nma及其制备方法

Country Status (2)

Country Link
CN (1) CN109686970A (zh)
WO (1) WO2020134048A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582597A (zh) * 2020-11-20 2021-03-30 昆明理工大学 一种三元无钴正极材料的制备方法及改性方法
US20210226203A1 (en) * 2020-01-22 2021-07-22 Uchicago Argonne, Llc Cathode active materials for secondary batteries
CN113571695A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN114195201A (zh) * 2021-12-10 2022-03-18 合肥国轩高科动力能源有限公司 一种长寿命无钴正极材料的制备方法
CN114695877A (zh) * 2022-05-06 2022-07-01 广东工业大学 一种高镍无钴锂离子电池材料及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686970A (zh) * 2018-12-27 2019-04-26 四川万邦胜辉机械设备有限公司 一种无钴富锂三元正极材料nma及其制备方法
CN110534731A (zh) * 2019-09-11 2019-12-03 李旭意 一种梯度三元正极材料的制备方法
BR112022019431A2 (pt) 2020-03-27 2022-12-06 Univ Texas Materiais de cátodo de alta energia com baixo cobalto e sem cobalto para baterias de lítio
CN111653752B (zh) 2020-06-24 2021-11-09 蜂巢能源科技有限公司 一种正极材料、其制备方法和锂离子电池
CN111816877A (zh) * 2020-07-13 2020-10-23 四川长虹电器股份有限公司 一种高镍无钴四元正极材料及其制备方法
CN112382734B (zh) * 2020-08-25 2021-10-15 万向一二三股份公司 一种使用无钴高镍正极材料的锂离子电池正极片
CN111987305A (zh) * 2020-08-28 2020-11-24 四川虹微技术有限公司 一种无氨化共沉淀制备高容量富锂锰基正极材料的方法
CN112047391A (zh) * 2020-09-03 2020-12-08 浙江中金格派锂电产业股份有限公司 一种单晶型镍锰铝酸锂正极材料的制备方法
CN113735189A (zh) * 2021-08-13 2021-12-03 荆门市格林美新材料有限公司 一种Al、Zr掺杂的高比表面积无钴前驱体的制备方法
CN113716614B (zh) * 2021-08-31 2023-07-21 蜂巢能源科技有限公司 无钴无镍正极材料及其制备方法和锂离子电池
CN114530592B (zh) * 2022-04-24 2022-07-19 宜宾锂宝新材料有限公司 三元正极材料及其制备方法
CN115231626B (zh) * 2022-07-25 2024-01-23 西安电子科技大学 一种无钴高镍nma三元正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595689A (zh) * 2003-09-08 2005-03-16 中国科学院物理研究所 锰系正极材料及其制备与用途
KR20060007307A (ko) * 2004-07-19 2006-01-24 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 그를 포함하는 리튬 이차전지
CN101483265A (zh) * 2009-01-13 2009-07-15 深圳市贝特瑞新能源材料股份有限公司 金属氧化物锂离子电池正极材料及其制备方法
CN105322155A (zh) * 2014-06-06 2016-02-10 安泰科技股份有限公司 一种富锂锰基层状复合氧化物正极材料及其制备方法和用途
CN106129360A (zh) * 2016-07-22 2016-11-16 中物院成都科学技术发展中心 一种高振实密度富锂锰基正极材料及其制备方法
WO2017150915A1 (ko) * 2016-03-04 2017-09-08 주식회사 엘 앤 에프 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN109686970A (zh) * 2018-12-27 2019-04-26 四川万邦胜辉机械设备有限公司 一种无钴富锂三元正极材料nma及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595689A (zh) * 2003-09-08 2005-03-16 中国科学院物理研究所 锰系正极材料及其制备与用途
KR20060007307A (ko) * 2004-07-19 2006-01-24 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 그를 포함하는 리튬 이차전지
CN101483265A (zh) * 2009-01-13 2009-07-15 深圳市贝特瑞新能源材料股份有限公司 金属氧化物锂离子电池正极材料及其制备方法
CN105322155A (zh) * 2014-06-06 2016-02-10 安泰科技股份有限公司 一种富锂锰基层状复合氧化物正极材料及其制备方法和用途
WO2017150915A1 (ko) * 2016-03-04 2017-09-08 주식회사 엘 앤 에프 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN106129360A (zh) * 2016-07-22 2016-11-16 中物院成都科学技术发展中心 一种高振实密度富锂锰基正极材料及其制备方法
CN109686970A (zh) * 2018-12-27 2019-04-26 四川万邦胜辉机械设备有限公司 一种无钴富锂三元正极材料nma及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, HONGXU: "Study of Modification and Morphology Fabrication of Li-Ni-Mn-Al-O Lithium-Rich Cathode Materials", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 02, 15 February 2018 (2018-02-15) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210226203A1 (en) * 2020-01-22 2021-07-22 Uchicago Argonne, Llc Cathode active materials for secondary batteries
US11764355B2 (en) * 2020-01-22 2023-09-19 Uchicago Argonne, Llc Cathode active materials for secondary batteries
CN112582597A (zh) * 2020-11-20 2021-03-30 昆明理工大学 一种三元无钴正极材料的制备方法及改性方法
CN113571695A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN113571695B (zh) * 2021-09-23 2022-01-04 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN114195201A (zh) * 2021-12-10 2022-03-18 合肥国轩高科动力能源有限公司 一种长寿命无钴正极材料的制备方法
CN114195201B (zh) * 2021-12-10 2023-11-03 合肥国轩高科动力能源有限公司 一种长寿命无钴正极材料的制备方法
CN114695877A (zh) * 2022-05-06 2022-07-01 广东工业大学 一种高镍无钴锂离子电池材料及其制备方法
CN114695877B (zh) * 2022-05-06 2023-10-27 广东工业大学 一种高镍无钴锂离子电池材料及其制备方法

Also Published As

Publication number Publication date
CN109686970A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020134048A1 (zh) 一种无钴富锂三元正极材料nma及其制备方法
WO2021212729A1 (zh) 一种镍锰基正极材料前驱体及其正极材料的合成方法
WO2021136243A1 (zh) 改性镍钴铝酸锂正极材料及其制备方法与应用
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
WO2016180288A1 (zh) 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法
US20190386293A1 (en) Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
WO2016155315A1 (zh) 高镍型锂离子二次电池正极材料及其制备方法
CN104134790B (zh) 一种镍钴锰酸锂改性材料及其制备方法及其应用
JP2018503238A (ja) リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池
WO2023130779A1 (zh) 一种具有核壳结构的高电压三元正极材料及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN103137961A (zh) 正极材料及其制备方法及包含该正极材料的锂离子电池
CN111606362A (zh) 一种助熔剂辅助制备高镍三元材料的方法、得到的产品和用途
WO2014190662A1 (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
WO2019075910A1 (zh) 一种相结构比例梯度渐变的富锂层状氧化物材料及制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
WO2022089204A1 (zh) 一种包覆型高镍三元材料及其制备方法和应用
CN113845153A (zh) 一种多元高熵固溶体正极材料以及制备方法和用途
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
WO2024104240A1 (zh) 一种中高熵层状富锂正极氧化物及其制备方法
CN106920959A (zh) 一种单晶富锂锰基多元正极材料及其制备方法
CN111106343A (zh) 一种镧、氟共掺杂的高镍三元正极材料及其制备方法与应用
WO2023092886A1 (zh) 改性正极材料、其制备方法及锂离子电池
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN106684350A (zh) 一种高电压正极材料镍锰酸锂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903740

Country of ref document: EP

Kind code of ref document: A1