WO2016117279A1 - 非水電解液電池用電解液及び非水電解液電池 - Google Patents
非水電解液電池用電解液及び非水電解液電池 Download PDFInfo
- Publication number
- WO2016117279A1 WO2016117279A1 PCT/JP2015/086515 JP2015086515W WO2016117279A1 WO 2016117279 A1 WO2016117279 A1 WO 2016117279A1 JP 2015086515 W JP2015086515 W JP 2015086515W WO 2016117279 A1 WO2016117279 A1 WO 2016117279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cis
- atom
- aqueous electrolyte
- group
- lithium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0563—Liquid materials, e.g. for Li-SOCl2 cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
- H01M50/437—Glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/002—Inorganic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an electrolyte and a non-aqueous electrolyte battery used in a non-aqueous electrolyte battery such as a lithium ion battery.
- non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, and lithium ion capacitors have been actively developed.
- SEI that has high ionic conductivity and low electronic conductivity and is stable over a long period of time.
- Various attempts have been made to positively form good SEI by adding a small amount (usually 0.01% by mass or more and 10% by mass or less) of a so-called compound to the electrolytic solution.
- Patent Document 1 vinylene carbonate is used.
- Patent Document 2 unsaturated cyclic sulfonic acid esters such as 1,3-propene sultone are used.
- Patent Document 3 carbon dioxide is used.
- Patent Document 4 1,2,3, Aromatic compounds such as 4-tetrahydronaphthalene, nitrogen-containing unsaturated compounds such as pyridine in Patent Document 5, lithium bisoxalate borate in Patent Document 6, and lithium difluorooxalatoborate in Patent Document 7 And boron and boron complexes are used as additives for forming effective SEI.
- Patent Document 8 discloses a method for producing an ionic complex used as an electrolyte for an electrochemical device.
- Patent Document 9 discloses a method for producing lithium trisoxalatotrinate.
- Patent Document 10 discloses an electrolytic solution that can improve the discharge capacity ratio of ⁇ 20 ° C./25° C.
- Non-Patent Document 1 discloses a method for producing a fluoro complex having silicon or the like as a complex center.
- JP-A-8-045545 (Patent No. 3573521) JP 2002-329528 (Patent No. 4190162) JP 7-176323 A JP 2003-007334 A (Patent No. 3417411) JP 2003-115324 A JP 2007-335143 A JP 2002-110235 (Patent No. 3722585) JP 2003-137890 (Patent 3907446) JP 2003-505464 (Patent 4695802) JP 2011-222193 (Patent No. 5573313)
- non-aqueous electrolyte batteries mainly lithium-ion batteries
- electrolysis with sufficient characteristics It cannot be said that the liquid is obtained.
- the present invention provides an electrolyte for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery that can exhibit high output characteristics at low temperatures even when the battery is used to some extent.
- the present invention relates to an electrolyte solution for a non-aqueous electrolyte battery comprising a difluoroionic complex (1-Cis) having a cis-form conformation represented by the general formula (1-Cis), a non-aqueous organic solvent, and a solute.
- a non-aqueous organic solvent and a solute.
- a + is any one selected from the group consisting of metal ions, protons and onium ions
- M is any one selected from the group consisting of Si, P, As and Sb.
- F is a fluorine atom
- O is an oxygen atom.
- M is Si
- t is 2.
- X is an oxygen atom or —N (R 1 ) —.
- N is a nitrogen atom
- R 1 is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, it has a branched chain or cyclic structure). Can also be used).
- Y is a carbon atom or a sulfur atom.
- Q is 1 when Y is a carbon atom.
- Q is 1 or 2 when Y is a sulfur atom.
- W is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used), or- N (R 2 ) — is represented.
- R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom which may have a halogen atom.
- R 2 can take a branched chain or a cyclic structure.
- p represents 0 or 1
- q represents an integer of 0 to 2
- r represents an integer of 0 to 2
- each element of the anion portion of the difluoroionic complex (1-Cis) is at least one combination selected from (a), (b), (c), and (d).
- the A + of the difluoroionic complex (1-Cis) is preferably a lithium ion, a sodium ion, a potassium ion, or a quaternary alkylammonium ion, and the difluoroionic complex (1-Cis) has a non-concentration. It is preferable that it is 0.001 mass% or more and 20 mass% or less with respect to the electrolyte solution for water electrolyte batteries.
- the electrolyte for a non-aqueous electrolyte battery of the present invention preferably further contains a difluoroionic complex (1-Trans) having a trans conformation represented by the general formula (1-Trans).
- a + is any one selected from the group consisting of metal ions, protons and onium ions
- M is any one selected from the group consisting of Si, P, As and Sb.
- F is a fluorine atom
- O is an oxygen atom.
- M is Si
- t is 2.
- M is P, As, or Sb
- t is 1.
- X is an oxygen atom or —N (R 1 ) —.
- N is a nitrogen atom
- R 1 is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, it has a branched chain or cyclic structure). Can also be used).
- Y is a carbon atom or a sulfur atom.
- Q is 1 when Y is a carbon atom.
- Q is 1 or 2 when Y is a sulfur atom.
- W is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used), or- N (R 2 ) — is represented.
- R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom which may have a halogen atom.
- R 2 can take a branched chain or a cyclic structure.
- p represents 0 or 1
- q represents an integer of 0 to 2
- r represents an integer of 0 to 2
- each element of the anion portion of the difluoroionic complex (1-Trans) is at least one combination selected from (a), (b), (c), and (d).
- the A + of the difluoroionic complex (1-Trans) is preferably a lithium ion, a sodium ion, a potassium ion, or a quaternary alkylammonium ion, and the content of the difluoroionic complex (1-Trans) is preferably
- the ratio of the difluoroionic complex (1-Cis) to the mass is preferably 0.0001 or more and 0.05 or less.
- the electrolyte for a non-aqueous electrolyte battery of the present invention preferably further contains a tetrafluoroionic complex (5) represented by the general formula (5).
- a + is any one selected from the group consisting of metal ions, protons and onium ions
- M is any one selected from the group consisting of Si, P, As and Sb. is there.
- F is a fluorine atom
- O is an oxygen atom.
- M is Si
- t is 2.
- M is P, As, or Sb
- t is 1.
- X is an oxygen atom or —N (R 1 ) —.
- N is a nitrogen atom
- R 1 is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, it has a branched chain or cyclic structure). Can also be used).
- Y is a carbon atom or a sulfur atom.
- Q is 1 when Y is a carbon atom.
- Q is 1 or 2 when Y is sulfur.
- W is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used), or- N (R 2 ) — is represented.
- R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom which may have a halogen atom.
- R 2 can take a branched chain or a cyclic structure.
- p represents 0 or 1
- q represents an integer of 0 to 2
- r represents an integer of 0 to 2
- each element of the anion part of the tetrafluoroionic complex (5) is any combination selected from (a), (b), (c), and (d).
- the A + of the tetrafluoroionic complex (5) is preferably a lithium ion, a sodium ion, a potassium ion, or a quaternary alkylammonium ion, and the difluoro having a content of the tetrafluoroionic complex (5).
- the ratio of the ionic complex (1-Cis) to the mass is preferably 0.02 or more and 0.25 or less.
- the non-aqueous organic solvent is preferably at least one selected from the group consisting of carbonates, esters, ethers, lactones, nitriles, amides, and sulfones. Further, the non-aqueous organic solvent is ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, methyl propionate, Ethyl propionate, diethyl ether, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, dibutyl ether, diisopropyl ether, 1,2-dimethoxyethane
- the non-aqueous organic solvent is selected from the group consisting of cyclic carbonate and chain carbonate
- the cyclic carbonate is at least one selected from the group consisting of ethylene carbonate and propylene carbonate
- the chain carbonate is ethylmethyl It is preferably at least one selected from the group consisting of carbonate, dimethyl carbonate, diethyl carbonate, and methyl propyl carbonate.
- the solute is at least one cation selected from the group consisting of lithium, sodium, potassium, and quaternary alkylammonium, hexafluorophosphoric acid, tetrafluoroboric acid, perchloric acid, hexafluoroarsenic acid, hexafluoroantimony Acid, trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imide, bis (pentafluoroethanesulfonyl) imide, (trifluoromethanesulfonyl) (pentafluoroethanesulfonyl) imide, bis (fluorosulfonyl) imide, (trifluoromethanesulfonyl) ( Fluorosulfonyl) imide, (pentafluoroethanesulfonyl) (fluorosulfonyl) imide, tris (trifluoromethanesulfon
- the present invention is preferably a non-aqueous electrolyte battery comprising the above non-aqueous electrolyte, a positive electrode, a negative electrode, and a separator.
- the present invention also provides: (A) the above non-aqueous electrolyte solution; (A) a positive electrode containing at least one oxide and / or polyanion compound as a positive electrode active material; (C) a negative electrode containing a negative electrode active material; (D) a separator mainly composed of polyolefin or cellulose,
- the positive electrode active material includes (A) a lithium transition metal composite oxide having at least one metal selected from nickel, manganese, and cobalt and having a layered structure, (B) a lithium manganese composite oxide having a spinel structure, C) at least one selected from the group consisting of lithium-containing olivine-type phosphate and (D) lithium-excess layered transition metal oxide having a layered rock salt-type structure,
- the negative electrode active material includes (E) a carbon material having a d-value of 0.340 nm or less in the lattice plane (002 plane) in X-ray diffraction, and (F) a
- Carbon material exceeding 340 nm (G) one or more metal oxides selected from Si, Sn, Al, (H) one or more metals selected from Si, Sn, Al, or alloys containing these metals, or these It is preferably at least one selected from the group consisting of a metal or an alloy of lithium and lithium, and (I) lithium titanium oxide.
- non-aqueous electrolyte battery electrolyte and a non-aqueous electrolyte battery that can exhibit high output characteristics at a low temperature even when the battery is used to some extent.
- FIG. 5 is an oltep diagram based on (1a-Cis) single crystal X-ray structural analysis according to Synthesis Example 1.
- Non-aqueous electrolyte battery electrolyte contains a non-aqueous organic solvent and a solute, and further has a cis-type conformation (1- 1) represented by the general formula (1-Cis). Cis).
- a + is any one selected from the group consisting of metal ions, protons and onium ions
- M is a group consisting of Si, P, As and Sb. Any one selected from F is a fluorine atom, and O is an oxygen atom.
- M Si
- t is 2.
- X is an oxygen atom or —N (R 1 ) —.
- N is a nitrogen atom
- R 1 is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, it has a branched chain or cyclic structure).
- Y is a carbon atom or a sulfur atom.
- Q is 1 when Y is a carbon atom.
- Q is 1 or 2 when Y is a sulfur atom.
- W is a hydrocarbon group which may have a heteroatom having 1 to 10 carbon atoms or a halogen atom (in the case of 3 or more carbon atoms, a branched chain or cyclic structure can be used), or- N (R 2 ) — is represented.
- R 2 represents a hydrogen atom, an alkali metal, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom which may have a halogen atom.
- R 2 can take a branched chain or a cyclic structure.
- alkali metal that can be used for R 2 include lithium.
- p represents 0 or 1
- q represents an integer of 0 to 2
- r represents an integer of 0 to 2
- the ligand (-X to O-) of the difluoroionic complex (1-Trans) may have the same structure as the ligand of the difluoroionic complex (1-Cis), Different structures may be used.
- the difluoroionic complex (1) is a hexacoordinate complex in which a bidentate ligand is coordinated to a central element M by bimolecular coordination, and fluorine (hereinafter F) is coordinated bimolecularly.
- F fluorine
- a complex in which a ligand is coordinated to the central element M (Si, P, As, Sb) via oxygen or nitrogen is stable, and isomerism due to exchange of the ligand in the absence of a catalyst.
- the reaction solution of the difluoroionic complex (1) obtained after improving the conditions described in Patent Document 8 and allowing the reaction to proceed excessively, or the trimolecular coordination compound synthesized with reference to Patent Document 9 is fluorine.
- a cis / trans mixture is obtained.
- (1-Cis) and (1-Trans) having a purity of 99.9 mol% or more Can be obtained separately.
- each of (1-Cis) and (1-Trans) may be selectively synthesized.
- the purity of each of (1-Cis) and (1-Trans) is preferably 95 mol% or more, more preferably 98 mol% or more, and even more preferably 99 mol% or more.
- the difluoroionic complex added to the nonaqueous electrolyte battery electrolyte of the present invention is not a cis / trans equivalent mixture, but is 95 mol% or more of the difluoroionic complex contained in the nonaqueous electrolyte battery electrolyte. Is preferably (1-Cis). That is, even when (1-Trans) is included in the electrolyte for a nonaqueous electrolyte battery, the mass ratio (1-Trans) / (1-Cis) between (1-Cis) and (1-Trans) is , 0.05 or less is preferable.
- Each element constituting the difluoroionic complex (1) is preferably any one of combinations of elements selected from the following (a) to (e).
- the type of A + which is a cation constituting the difluoroionic complex (1) is not particularly limited as long as it does not impair the performance of the non-aqueous electrolyte battery and non-aqueous electrolyte battery of the present invention.
- lithium ion, sodium ion, potassium ion, or quaternary alkyl ammonium ion is preferable from the viewpoint of helping ion conduction in the nonaqueous electrolyte battery.
- the quaternary alkylammonium ion is not particularly limited, and examples thereof include trimethylpropylammonium and 1-butyl-1-methylpyrrolidinium.
- the difluoroionic complex (1) preferably has a structure of a combination of the following elements.
- (1a-Cis) and (1a-Trans) are mixed at 1: 9 and 5: 5, respectively, is There is no change in the ratio between (1a-Cis) and (1a-Trans).
- the electrolyte for a non-aqueous electrolyte battery of the present invention is selected from a solute (main electrolyte), a mixture of a non-aqueous solvent or polymer, and an ionic complex having a cis conformation represented by the general formula (1-Cis).
- a solute main electrolyte
- a mixture of a non-aqueous solvent or polymer and an ionic complex having a cis conformation represented by the general formula (1-Cis).
- One or more kinds of ionic complexes are contained in an amount of 0.001% by mass or more and 20.0% by mass or less based on the non-aqueous electrolyte.
- the content of (1-Cis) in the electrolyte for a non-aqueous electrolyte battery is preferably 0.01% by mass or more and 10.0% by mass or less. More preferably, it is 0.1 mass% or more and 3.0 mass% or less. If the amount is less than 0.001% by mass, the effect of improving the output characteristics of the nonaqueous electrolyte battery at low temperatures may not be sufficiently obtained. On the other hand, if the amount exceeds 20.0% by mass, the viscosity of the electrolyte increases. Therefore, the movement of cations in the non-aqueous electrolyte battery is hindered, which may cause a decrease in battery performance.
- the ratio of (1-Trans) is 0.0001 or more and 0.05 or less, preferably 0.001 or more and 0.03 or less, more preferably 0.002 in terms of mass ratio to (1-Cis). It is 0.01 or less.
- NMR analysis as a method for quantifying the mass ratio (1-Trans) / (1-Cis) of (1-Cis) to (1-Trans) in the electrolyte, NMR analysis or liquid chromatography mass spectrometry (LC -MS).
- LC -MS liquid chromatography mass spectrometry
- a tetrafluoroionic complex (5) in which F is a four-molecule bond is added to the electrolyte for a non-aqueous electrolyte battery containing (1-Cis) or (1-Cis) + (1-Trans).
- the ratio of (5) is from 0.02 to 0.25, preferably from 0.05 to 0.22, more preferably from 0.07 to 0.00. 20 or less.
- Each element constituting the tetrafluoroionic complex (5) is preferably any combination of elements selected from the following (a) to (e).
- a + which is a cation constituting the tetrafluoroionic complex (5) is not particularly detrimental to the performance of the non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery of the present invention.
- lithium ion, sodium ion, potassium ion, or quaternary alkylammonium ion is preferable from the viewpoint of helping ion conduction in the nonaqueous electrolyte battery.
- the quaternary alkylammonium ion is not particularly limited, and examples thereof include trimethylpropylammonium and 1-butyl-1-methylpyrrolidinium.
- A Li
- M P
- X O
- Y C
- p q
- the selectivity and speed of the reaction with the functional groups on the electrode surface are different from the generation of a reduction reaction decomposition product due to a reduction reaction between the cis form and the trans form due to steric factors and electronic factors.
- the initiation of the reduction reaction between the negative electrode and the difluorophosphate complex (cis, trans) will first be considered from steric factors.
- the portion where the difluorophosphate complex receives electrons from the negative electrode and the reduction proceeds first is a ligand portion other than F. (If it is 1a, carbon of the carbonyl group) Therefore, in order for the reduction to proceed, it is necessary to approach the negative electrode from the surface where F is not bonded.
- F is bound to the top and bottom of the molecule, so it is inevitably only when the molecule approaches the electrode from the right or left, that is, within a total of 180 degrees left and right except 180 degrees above and below.
- the reduction reaction proceeds.
- the positions of F are gathered in the same direction in the cis isomer, it is sufficient that the cis isomer can be approached within the range of 200 to 250 degrees in the opposite direction, and the probability that the reduction reaction proceeds is higher than that of the trans isomer.
- the LUMO level is slightly lower in the cis isomer but lower than the trans isomer. For this reason, the cis form is more likely to receive electrons from the electrode, and the reduction reaction proceeds faster.
- the difluorophosphate complex before decomposition is a hexacoordinate phosphorus compound, but the difluorophosphate derivative that is one of the main components of SEI after decomposition is a pentacoordinate phosphorus compound.
- the difluorophosphate complex is decomposed to produce a highly active intermediate, and the intermediate reacts with a functional group on the negative electrode surface, it changes from 6-coordinate to 5-coordinate.
- the bond angle of FPF before decomposition (6-coordinate) is 180 degrees, but the bond angle of FPF after decomposition (5-coordinate) is about 100 degrees. , Requires major structural changes.
- the cis isomer has only a slight change from 90 degrees (6-coordinate, before decomposition) to about 100 degrees (5-coordinate, after decomposition). From this fact, it can be seen that the energy in the transition state of the reductive decomposition reaction is smaller in the cis form without a large structural change, and the reductive decomposition of the cis form is more advantageous than the reductive decomposition of the trans form.
- This is not limited to phosphorus as the central element, but the same can be said for arsenic, antimony, and silicon.
- the cis isomer has a fast reductive decomposition reaction, and SEI having a difluorophosphoric acid derivative and a carbonic acid derivative as main components is quickly formed.
- SEI composed of a difluorophosphoric acid derivative is excellent in improving the cycle characteristics, high-temperature storage characteristics, and output characteristics of the battery, and SEI composed of a carbonic acid derivative is superior in improving cycle characteristics and high-temperature storage characteristics. It has become clear.
- the reductive decomposition reaction of the trans isomer is slower than that of the cis isomer, and it is difficult to quickly form SEI consisting only of the difluorophosphoric acid derivative and the carbonic acid derivative.
- the reduction reaction of the solvent proceeds in parallel with the result, resulting in the formation of SEI mainly composed of a difluorophosphoric acid derivative and a carbonic acid derivative derived from a difluorophosphoric acid complex, and a mixture of carbonic acid and an alkyl carbonate derived from the solvent.
- the difluorophosphate complex is much easier to decompose than the solvent, but the number of solvent molecules is enormous and the decomposition of the solvent proceeds to a small extent.
- the SEI comprising the alkyl carbonate contained therein is a cycle. Although the characteristics and high temperature storage characteristics are improved, the cation conductivity is reduced as compared with SEI made of a carbonic acid derivative due to a decrease in the proportion of oxygen, and the effect of improving the output characteristics is limited or conversely reduced. is there.
- the negative electrode SEI made of an alkyl carbonate is disadvantageous in output characteristics because of its low ionic conductivity, but it is possible to suppress the release of lithium from the negative electrode during high temperature storage and to suppress the capacity drop after high temperature storage. .
- the high capacity is maintained even after high temperature storage, and when the high rate discharge capacity at low temperature is compared thereafter (output characteristics), the ratio of the amount of electricity obtained at high rate discharge compared to the low rate is Although it is lower than the electrolyte solution containing only (1-Cis), since the original capacity is large, the absolute value of the amount of electricity obtained during high-rate discharge is a certain amount of (1-Trans) relative to (1-Cis). ) Is added more than the electrolyte containing only (1-Cis).
- the tetrafluoroionic complex (5) in which F is bound to four molecules has a lower electron density of ligands other than F due to the strong electron withdrawing effect of F. However, it is in a state that is susceptible to nucleophilic attacks. Therefore, when a very small amount of water is present in the electrolytic solution, (5) is more selectively hydrolyzed than (1). For example, when the central element M is P, the tetrafluorophosphate site constituting (5) is converted to hexafluorophosphate by hydrolysis (disproportionation after elimination of ligands other than F) ).
- Ligand portions other than F are desorbed and decomposed from the central element P to release carbon dioxide and carbon monoxide.
- the amount of carbon dioxide and carbon monoxide released at this time is equivalent to 1 ⁇ 2 mole compared to (1), and as a result, the amount of carbon dioxide and carbon monoxide that causes an increase in internal pressure is greatly reduced. I can do it.
- the non-aqueous electrolyte battery electrolyte is generally called a non-aqueous electrolyte if a non-aqueous solvent is used, and is called a polymer solid electrolyte if a polymer is used.
- the polymer solid electrolyte includes those containing a non-aqueous solvent as a plasticizer.
- An electrochemical device using a positive electrode active material that can occlude / release alkali metal ions or alkaline earth metal ions is called a non-aqueous electrolyte battery.
- the solute is not particularly limited, and a salt composed of an arbitrary cation and anion pair can be used.
- a salt composed of an arbitrary cation and anion pair can be used.
- Specific examples include alkali metal ions such as lithium ions and sodium ions, alkaline earth metal ions, quaternary alkylammonium ions, etc. as cations.
- Examples of anions include hexafluorophosphoric acid, tetrafluoroboric acid, peroxides.
- solutes may be used alone, or two or more kinds of solutes may be mixed and used in any combination and ratio according to the application.
- the cation is lithium, sodium, magnesium, quaternary alkyl ammonium
- the anion is hexafluorophosphoric acid, tetrafluoroboric acid, bis (trifluoromethanesulfonyl) imide.
- Bis (fluorosulfonyl) imide and bis (difluorophosphonyl) imide are preferable.
- the non-aqueous solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving the ionic complex of the present invention.
- an aprotic solvent capable of dissolving the ionic complex of the present invention.
- carbonates, esters, ethers, lactones, nitriles, amides , Sulfones and the like can be used.
- not only a single solvent but 2 or more types of mixed solvents may be sufficient.
- ethyl methyl carbonate dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, Diethyl ether, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, furan, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, dibutyl ether, diisopropyl ether, 1,2-dimethoxyethane, N, N- Examples include dimethylformamide, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, and ⁇ -valerolactone.
- the nonaqueous solvent preferably contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
- cyclic carbonate include ethylene carbonate and propylene carbonate
- chain carbonate include ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, and methyl propyl carbonate.
- the polymer used for obtaining the polymer solid electrolyte containing the ionic complex of the present invention is not particularly limited as long as it is an aprotic polymer capable of dissolving the ionic complex or solute.
- examples thereof include polymers having polyethylene oxide in the main chain or side chain, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like.
- a plasticizer is added to these polymers, the above-mentioned aprotic non-aqueous solvent can be used.
- the solute concentration of the present invention in these ionic conductors is not particularly limited, but the lower limit is 0.5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol / L or more, Moreover, an upper limit is 5.0 mol / L or less, Preferably it is 4.0 mol / L or less, More preferably, it is the range of 2.0 mol / L or less.
- concentration is less than 0.5 mol / L, the ionic conductivity decreases, thereby reducing the cycle characteristics and output characteristics of the nonaqueous electrolyte battery.
- an additive generally used in the electrolyte for a non-aqueous electrolyte battery of the present invention may be added at an arbitrary ratio.
- Specific examples include cyclohexylbenzene, biphenyl, tert-butylbenzene, vinylene carbonate, vinylethylene carbonate, ethynylethylene carbonate, tert-amylbenzene, biphenyl, o-terphenyl, 4-fluorobiphenyl, fluorobenzene, 2,4- Overcharge prevention effect of difluorobenzene, difluoroanisole, fluoroethylene carbonate, propane sultone, 1,3-propene sultone, dimethyl vinylene carbonate, methylene methane disulfonate, dimethylene methane disulfonate, trimethylene methane disulfonate, negative electrode film formation
- the compound which has an effect and a positive electrode protective effect is mentioned.
- non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer, as in the case of use in a non-aqueous electrolyte battery called a polymer battery.
- Non-aqueous electrolyte battery of the present invention includes (a) the non-aqueous electrolyte described above, (b) a positive electrode, (c) a negative electrode, and (d) a separator.
- the non-aqueous electrolyte battery of the present invention has ⁇ 1.
- Non-aqueous electrolyte solution described in ⁇ Non-aqueous electrolyte solution> is provided.
- the positive electrode preferably contains at least one oxide and / or polyanion compound as a positive electrode active material.
- the positive electrode active material constituting the positive electrode is not particularly limited as long as it is various materials that can be charged and discharged.
- the positive electrode active material constituting the positive electrode is not particularly limited as long as it is various materials that can be charged and discharged.
- a lithium transition metal composite oxide containing at least one metal selected from nickel, manganese and cobalt and having a layered structure
- B a lithium manganese composite oxide having a spinel structure
- C examples include those containing at least one selected from the group consisting of a lithium-containing olivine-type phosphate and
- D a lithium-excess layered transition metal oxide having a layered rock salt-type structure.
- lithium transition metal composite oxide Cathode active material
- lithium transition metal composite oxides containing at least one metal selected from nickel, manganese and cobalt and having a layered structure include lithium-cobalt composite oxides and lithium-nickel composite oxides. Lithium / nickel / cobalt composite oxide, lithium / nickel / cobalt / aluminum composite oxide, lithium / cobalt / manganese composite oxide, lithium / nickel / manganese composite oxide, lithium / nickel / manganese / cobalt composite oxide Etc.
- transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Fe, Cu, Zn, Mg, Ga, Zr, Si, B, Ba, Y, Sn. Those substituted with other elements such as may also be used.
- lithium-cobalt composite oxide and the lithium-nickel composite oxide include LiCoO 2 , LiNiO 2 , lithium cobalt oxide to which a different element such as Mg, Zr, Al, and Ti is added (LiCo 0.98 Mg 0. 01 Zr 0.01 O 2 , LiCo 0.98 Mg 0.01 Al 0.01 O 2 , LiCo 0.975 Mg 0.01 Zr 0.005 Al 0.01 O 2 ), international application WO 2014/034043 You may use the lithium cobaltate etc. which fixed the rare earth compound to the surface as described in the gazette. Further, as described in Japanese Patent Application Laid-Open No. 2002-151077, etc., a part of the particle surface of LiCoO 2 particle powder coated with aluminum oxide may be used.
- the lithium / nickel / cobalt composite oxide and the lithium / nickel / cobalt / aluminum composite oxide are represented by the general formula (1-1).
- M 1 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, and B, a is 0.9 ⁇ a ⁇ 1.2, and b , C satisfy the conditions of 0.1 ⁇ b ⁇ 0.3 and 0 ⁇ c ⁇ 0.1.
- LiNi 0.8 Co 0.2 O 2 LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.87 Co 0.10 Al 0.03 O 2 , LiNi 0.6 Examples include Co 0.3 Al 0.1 O 2 .
- lithium / cobalt / manganese composite oxide and the lithium / nickel / manganese composite oxide include LiNi 0.5 Mn 0.5 O 2 and LiCo 0.5 Mn 0.5 O 2 .
- lithium / nickel / manganese / cobalt composite oxide examples include a lithium-containing composite oxide represented by the general formula (1-2). Li d Ni e Mn f Co g M 2 h O 2 (1-2)
- M 2 is at least one element selected from the group consisting of Al, Fe, Mg, Zr, Ti, B, and Sn, and d is 0.9 ⁇ d ⁇ 1.2.
- Lithium / nickel / manganese / cobalt composite oxides contain manganese in the range represented by the general formula (1-2) in order to improve structural stability and improve safety at high temperatures in lithium secondary batteries.
- Li [Ni 1/3 Mn 1/3 Co 1/3 ] O 2 Li [Ni 0.45 Mn 0.35 Co 0.2 ] having a charge / discharge region of 4.3 V or higher.
- O 2 Li [Ni 0.5 Mn 0.3 Co 0.2 ] O 2 , Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2 , Li [Ni 0.49 Mn 0.3 Co 0.2 Zr 0.01 ] O 2 , Li [Ni 0.49 Mn 0.3 Co 0.2 Mg 0.01 ] O 2 and the like.
- lithium manganese composite oxide having spinel structure examples include a spinel type lithium manganese composite oxide represented by the general formula (1-3). Li j (Mn 2 ⁇ k M 3 k ) O 4 (1-3)
- M 3 is at least one metal element selected from the group consisting of Ni, Co, Fe, Mg, Cr, Cu, Al, and Ti, and j is 1.05 ⁇ j ⁇ 1. 15 and k is 0 ⁇ k ⁇ 0.20.
- LiMn 2 O 4 LiMn 1.95 Al 0.05 O 4 , LiMn 1.9 Al 0.1 O 4 , LiMn 1.9 Ni 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 etc. are mentioned.
- (C) Lithium-containing olivine-type phosphate examples include those represented by the general formula (1-4). LiFe 1-n M 4 n PO 4 (1-4)
- M 4 is at least one selected from Co, Ni, Mn, Cu, Zn, Nb, Mg, Al, Ti, W, Zr, and Cd, and n is 0 ⁇ n ⁇ 1.
- LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like can be mentioned, among which LiFePO 4 and / or LiMnPO 4 are preferable.
- lithium-excess layered transition metal oxide examples include those represented by the general formula (1-5).
- x is 0 ⁇ a number satisfying x ⁇ 1
- M 5 is at least one or more metal elements mean oxidation number is 3 +
- M 6 the average oxide the number is at least one or more metal elements 4 +.
- M 5 is preferably one or more metal elements selected from trivalent Mn, Ni, Co, Fe, V, and Cr. The average oxidation number may be trivalent with an amount of metal.
- M 6 is preferably one or more metal elements selected from Mn, Zr, and Ti. Specifically, 0.5 [LiNi 0.5 Mn 0.5 O 2 ] ⁇ 0.5 [Li 2 MnO 3 ], 0.5 [LiNi 1/3 Co 1/3 Mn 1/3 O 2 ] 0.5 [Li 2 MnO 3 ], 0.5 [LiNi 0.375 Co 0.25 Mn 0.375 O 2 ], 0.5 [Li 2 MnO 3 ], 0.5 [LiNi 0.375 Co 0.125 Fe 0.125 Mn 0.375 O 2 ] ⁇ 0.5 [Li 2 MnO 3 ], 0.45 [LiNi 0.375 Co 0.25 Mn 0.375 O 2 ] ⁇ 0.10 [Li 2 TiO 3 ] ⁇ 0.45 [Li 2 MnO 3 ] and the like.
- the positive electrode active material (D) represented by the general formula (1-5) is known to exhibit a high capacity when charged at a high voltage of 4.4 V (Li standard) or higher (for example, US Pat. No. 7 , 135, 252).
- positive electrode active materials can be prepared according to the production methods described in, for example, JP 2008-270201 A, International Publication WO 2013/118661, JP 2013-030284 A, and the like.
- the positive electrode active material may contain at least one selected from the above (A) to (D) as a main component, but other examples include FeS 2 , TiS 2 , V 2 O 5. , Transition element chalcogenides such as MoO 3 and MoS 2 , or conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, and carbon materials.
- the positive electrode has a positive electrode current collector.
- the positive electrode current collector for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
- a positive electrode active material layer is formed on at least one surface of the positive electrode current collector.
- a positive electrode active material layer is comprised by the above-mentioned positive electrode active material, a binder, and a electrically conductive agent as needed, for example.
- binder examples include polytetrafluoroethylene, polyvinylidene fluoride, or styrene butadiene rubber (SBR) resin.
- SBR styrene butadiene rubber
- a carbon material such as acetylene black, ketjen black, carbon fiber, or graphite (granular graphite or flake graphite) can be used.
- acetylene black or ketjen black having low crystallinity.
- the negative electrode includes a negative electrode active material.
- the negative electrode active material constituting the negative electrode can be doped / dedoped with lithium ions.
- the negative electrode active material constituting the negative electrode can be doped / dedoped with lithium ions.
- E a carbon material having a d-value of 0.340 nm or less in the lattice plane (002 plane) in X-ray diffraction
- F a carbon having a d-value in the lattice plane (002 plane) in X-ray diffraction exceeding 0.340 nm.
- a material (G) an oxide of one or more metals selected from Si, Sn, Al, (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or these metals or alloys; Examples include an alloy with lithium and (I) at least one selected from lithium titanium oxide.
- These negative electrode active materials can be used individually by 1 type, and can also be used in combination of 2 or more type.
- Examples of the carbon material having a d value of 0.340 nm or less in the lattice plane (002 plane) in the negative electrode active material (E) X-ray diffraction include pyrolytic carbons and cokes (for example, pitch coke, needle coke, and petroleum coke).
- Graphites organic polymer compound fired bodies (for example, those obtained by firing and carbonizing a phenol resin, furan resin, etc.), carbon fibers, activated carbon, and the like. These may be graphitized.
- the carbon material has a (002) plane spacing (d002) of 0.340 nm or less measured by an X-ray diffraction method.
- d002 plane spacing
- graphite having a true density of 1.70 g / cm 3 or more, or A highly crystalline carbon material having close properties is preferred.
- amorphous carbon As the carbon material in which the d value of the lattice plane (002 plane) in the negative electrode active material (F) X-ray diffraction exceeds 0.340 nm, amorphous carbon can be cited, which is obtained by heat treatment at a high temperature of 2000 ° C. or higher. Is a carbon material whose stacking order hardly changes. Examples thereof include non-graphitizable carbon (hard carbon), mesocarbon microbeads (MCMB) baked at 1500 ° C. or less, and mesopage bitch carbon fiber (MCF). A typical example is Carbotron (registered trademark) P manufactured by Kureha Co., Ltd.
- Negative electrode active material (G) One or more metal oxides selected from Si, Sn, and Al)
- Negative electrode active material (G) One or more metal oxides selected from Si, Sn, and Al can be doped / dedoped with lithium ions, such as silicon oxide and tin oxide. .
- SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 .
- this material is used as the negative electrode active material, since Si that reacts with Li is ultrafine particles, charging and discharging are performed smoothly, while the SiO x particles having the above structure itself have a small surface area.
- the coating properties and the adhesion of the negative electrode mixture layer to the current collector when the composition (paste) is used to form the film are also good.
- SiO x large volume change during charge and discharge, SiO x and above the negative electrode active material negative active material with high capacity by combining a good charge-discharge cycle characteristics at a specific ratio and a graphite (E) And both.
- Negative electrode active material (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or alloys of these metals or alloys and lithium)
- Negative electrode active material (H) one or more metals selected from Si, Sn, Al, alloys containing these metals, or alloys of these metals or alloys and lithium include, for example, metals such as silicon, tin, and aluminum, and silicon alloys , Tin alloys, aluminum alloys, and the like, and materials in which these metals and alloys are alloyed with lithium during charge and discharge can also be used.
- Examples of the negative electrode active material (I) lithium titanium oxide include lithium titanate having a spinel structure and lithium titanate having a ramsdellite structure.
- lithium titanate having a spinel structure examples include Li 4 + ⁇ Ti 5 O 12 ( ⁇ varies within a range of 0 ⁇ ⁇ ⁇ 3 due to a charge / discharge reaction).
- examples of lithium titanate having a ramsdellite structure include Li 2 + ⁇ Ti 3 O 7 ( ⁇ varies within a range of 0 ⁇ ⁇ ⁇ 3 due to a charge / discharge reaction).
- These negative electrode active materials can be prepared according to the production methods described in, for example, Japanese Patent Application Laid-Open No. 2007-018883 and Japanese Patent Application Laid-Open No. 2009-176752.
- the cation in the nonaqueous electrolytic solution is mainly sodium
- hard carbon oxides such as TiO 2 , V 2 O 5 , and MoO 3 are used as the negative electrode active material.
- a sodium-containing transition metal composite oxide such as NaFeO 2 , NaCrO 2 , NaNiO 2 , NaMnO 2 , and NaCoO 2 as a positive electrode active material
- transition metals such as Fe, Cr, Ni, Mn, Co, etc.
- transition metal phosphate compounds such as Na 2 FeP 2 O 7 , NaCo 3 (PO 4 ) 2 P 2 O 7
- sulfides such as TiS 2 and FeS 2
- polyacetylene polypara Conductive polymers such as phenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, carbon Material and the like are used.
- the negative electrode has a negative electrode current collector.
- the negative electrode current collector for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
- a negative electrode active material layer is formed on at least one surface of the negative electrode current collector.
- a negative electrode active material layer is comprised by the above-mentioned negative electrode active material, a binder, and a electrically conductive agent as needed, for example.
- binder examples include polytetrafluoroethylene, polyvinylidene fluoride, or styrene butadiene rubber (SBR) resin.
- SBR styrene butadiene rubber
- a carbon material such as acetylene black, ketjen black, carbon fiber, or graphite (granular graphite or flake graphite) can be used.
- the electrode is obtained, for example, by dispersing and kneading an active material, a binder, and, if necessary, a conductive agent in a solvent such as N-methyl-2-pyrrolidone (NMP) or water in a predetermined blending amount.
- NMP N-methyl-2-pyrrolidone
- the paste can be applied to a current collector and dried to form an active material layer.
- the obtained electrode is preferably compressed by a method such as a roll press to adjust the electrode to an appropriate density.
- the non-aqueous electrolyte battery of the present invention includes (d) a separator.
- a separator for preventing the contact between the positive electrode and the (c) negative electrode a nonwoven fabric or a porous sheet made of polyolefin such as polypropylene or polyethylene, cellulose, paper, glass fiber or the like is used. These films are preferably microporous so that the electrolyte can penetrate and ions can easily pass therethrough.
- the polyolefin separator examples include a membrane that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, such as a microporous polymer film such as a porous polyolefin film.
- a porous polyolefin film for example, a porous polyethylene film alone or a porous polyethylene film and a porous polypropylene film may be overlapped and used as a multilayer film.
- the composite film etc. of the porous polyethylene film and the polypropylene film are mentioned.
- a metal can such as a coin shape, a cylindrical shape, or a square shape, or a laminate exterior body can be used.
- the metal can material include a steel plate subjected to nickel plating, a stainless steel plate, a stainless steel plate subjected to nickel plating, aluminum or an alloy thereof, nickel, and titanium.
- the laminate outer package for example, an aluminum laminate film, a SUS laminate film, a laminate film made of silica-coated polypropylene, polyethylene, or the like can be used.
- the configuration of the non-aqueous electrolyte battery according to the present embodiment is not particularly limited.
- an electrode element in which a positive electrode and a negative electrode are opposed to each other and a non-aqueous electrolyte are included in an outer package. It can be set as a structure.
- the shape of the non-aqueous electrolyte battery is not particularly limited, but an electrochemical device having a shape such as a coin shape, a cylindrical shape, a square shape, or an aluminum laminate sheet type is assembled from the above elements.
- a synthesis method of a difluoroionic complex (cis isomer / trans isomer) and a tetrafluoroionic complex is shown below.
- the ionic complex was synthesized using the method disclosed in Patent Document 8 or by applying the method disclosed in Non-Patent Document 1 and Patent Document 9, but synthesis by other methods is also possible. Is possible. In either case, the raw materials and products were handled in a nitrogen atmosphere with a dew point of -50 ° C or lower. The glass reactor used was one that had been dried at 150 ° C. for 12 hours or more and then cooled to room temperature under a nitrogen stream having a dew point of ⁇ 50 ° C. or less.
- DMC (60 mL) was added to dissolve the concentrated residue as much as possible, and then concentrated until the Li salt concentration was about 45% by mass. After removing insoluble components such as oxalic acid by filtration, 49 g of a DMC solution of a mixture containing (1a-Trans) and (1a-Cis) was obtained. Dichloromethane (hereinafter referred to as “CH 2 Cl 2 ”) was added to the DMC solution of the mixture at 25 ° C. and stirred for 12 hours to precipitate a solid. The solid and mother liquor were separated by filtration, and DMC was distilled off from the mother liquor until a solid was obtained under reduced pressure.
- CH 2 Cl 2 Dichloromethane
- the solid obtained by filtration and the solid obtained from the mother liquor were separately dissolved in DMC, and a DMC solution having a concentration of about 45% by mass was prepared separately, and then CH 2 Cl 2 was added to precipitate the solid.
- the solids were collected by filtration, and the same procedure was repeated several times to prepare a DMC solution having a concentration of about 45% by mass and solid precipitation to obtain (1a) having F and P purity of 99.9 mol% (from NMR). -Trans) and (1a-Cis) were obtained.
- FIG. 1 shows an altep diagram of (1a-Cis).
- (1a-Cis) is a cis conformation in which two molecules of fluorine are bonded in the same direction as viewed from the central element.
- (1a-Cis) and (1a-Trans) have the same mass and peaks are observed at different positions in F-NMR and P-NMR, they are compounds having the same atomic composition and different structures. it is obvious. Further, (1a-Trans) was confirmed by a single crystal X-ray structural analysis to be a trans conformation in which two molecules of fluorine were bonded in the opposite direction when viewed from the central element.
- a (1a-Trans) / EMC solution having a concentration of 10% by mass was prepared, and the dried ion exchange resin having a weight half the liquid weight was added thereto, followed by stirring at 25 ° C. for 6 hours. Thereafter, by removing the ion exchange resin by filtration, a (6a-Trans) / EMC solution (concentration of about 10% by mass) in which cations were exchanged from Li + to Na + was obtained. When the cation was quantified by ion chromatography, the ratio of Na + / Li + was 99.5.
- the (6a-Cis) / EMC solution having a concentration of about 10% by mass is similarly obtained. Obtained.
- a (6c-Cis) / EMC solution having a concentration of about 13% by mass was obtained in the same manner by using the same weight (1a-Cis) instead of (1a-Trans) in the above-described method.
- the cation was quantified by ion chromatography, the TMPA / Li + ratio in both solutions was 98.5.
- EMC is ethyl methyl carbonate
- EC is ethylene carbonate
- PC is propylene carbonate
- DEC diethyl carbonate
- FEC fluoroethylene carbonate.
- LiBF 4 is lithium tetrafluoroborate
- LiFSI is bis (fluorosulfonyl) imide lithium
- LiDFPI is bis (difluorophosphonyl) imide lithium
- NaPF 6 sodium hexafluorophosphate.
- the solutes listed in Tables 1 to 7 and the ionic complexes listed in Tables 1 to 7 were mixed in the nonaqueous organic solvents listed in Tables 1 to 7 in the proportions listed in Tables 1 to 7.
- electrolyte solutions 1 to 71 (corresponding to electrolyte numbers in the table) for non-aqueous electrolyte batteries were obtained.
- the electrolytes for nonaqueous electrolyte batteries listed in Tables 1 to 7 were prepared while maintaining the liquid temperature at 40 ° C. or lower.
- NMC Nickel, Manganese, Cobalt
- Mixing 90% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder with 5% by mass of polyvinylidene fluoride (hereinafter PVDF) (binder) and 5% by mass of acetylene black (conductive material), N-methylpyrrolidone (hereinafter referred to as NMP) was added to produce a positive electrode mixture paste.
- This paste was applied onto an aluminum foil (current collector), dried and pressurized, and then punched into a predetermined size to obtain a test NMC positive electrode.
- nonaqueous electrolyte battery (1) Assemble an aluminum laminate outer cell (capacity 30 mAh) comprising the above test NMC positive electrode, the test graphite negative electrode, and a cellulose separator impregnated with the electrolytes (1-31) shown in Tables 1 and 2.
- non-aqueous electrolyte batteries according to Examples 1-1 to 1-12, 2-1 to 2-3 and Comparative Examples 1-1 to 1-10 and 2-1 to 2-6 were obtained.
- Example 1-1 to 1-12 and Comparative Examples 1-2 to 1-10 are shown in Table 7 as relative values when the evaluation result of Comparative Example 1-1 is 100.
- the evaluation results of Example 2-1 and Comparative Example 2-1, Example 2-2 and Comparative Example 2-3, Example 2-3 and Comparative Example 2-5 are shown in Comparative Examples 2-2 and 2-
- the relative values when the evaluation results of 4 and 2-6 are set to 100 are shown in Table 8.
- Nonaqueous electrolyte battery (2) Aluminum laminate comprising the above-described test NaFe 0.5 Co 0.5 O 2 positive electrode, a test hard carbon negative electrode, and a cellulose separator impregnated with the electrolytic solution (32 to 34) shown in Table 2.
- a nonaqueous electrolyte battery according to Example 2-4 and Comparative Examples 2-7 and 2-8 was obtained by assembling the exterior cell (capacity 30 mAh).
- the non-aqueous electrolyte battery containing the difluoroionic complex (1a-Cis) according to the example has a higher discharge capacity after cycling than the non-aqueous electrolyte battery not containing the ionic complex (Comparative Example 1-1) ( 0 ° C.) was obtained.
- Comparative Example 1-1) 0 ° C.
- a cis-conformation difluoroionic complex was obtained. It was revealed that (1a-Cis) is more effective than the trans-conformation difluoroionic complex (1a-Trans).
- Example 1-1 the effect of the difluoroionic complex (1a-Cis) was confirmed slightly even when the content was 0.05% by mass. As in Examples 1-1 to 1-4, it was confirmed that the content of the ionic complex increased as it increased from 0.05% by mass to 0.1, 0.8, and 1.0% by mass. As in Example 1-5, when the content of the difluoroionic complex (1a-Cis) is 3% by mass, the effect is slightly reduced as compared with the case of 1% by mass, and Example 1-6 As in the case of 5% by mass, the effect was greatly reduced as compared with the case of 1% by mass.
- ionic complexes (1a-Cis), (6a-Cis), (6b-Cis) having Li + , Na + , and K + as cations. ) There was no difference in the effect, and a high discharge capacity after cycling (0 ° C.) was obtained in all cases. The tendency of the cis conformer to show a higher effect than the trans conformer was the same.
- Example 1-9, and Example 1-10 ionic complexes (1a-Cis), (6c-Cis), (6) having Li + , TMPA, and PP13 as cations 6d-Cis), the effect of Li + was the most excellent, although TMPA and PP13 were effective.
- TMPA and PP13 have a large cation molecular weight, so that the content on the anion side, which is an effective site, has decreased, and part of TMPA and PP13 is reduced or oxidatively decomposed, and the decomposition residue becomes a high resistance component. Presumably because it was deposited on the electrode surface.
- Example 1-11 when the central element M was changed from P to Si (1c-Cis), the solubility was low, and 1.0 mass% was not sufficiently dissolved, but 0.8 mass% was added. Comparatively good effect was observed. Furthermore, as in Example 1-12, when (1b-Cis) in which the ligand was changed was added, a high discharge capacity after cycling (0 ° C.) was obtained as compared with the case of no addition.
- the electrolyte battery had a higher post-cycle discharge capacity (0 ° C.) than the nonaqueous electrolyte batteries not containing the ionic complexes shown in Comparative Examples 2-1 to 2-8.
- Examples 3-1 to 3-16 are shown in Table 9 as relative values when the evaluation result of Comparative Example 3-1 is 100.
- the relative values are shown in Table 10.
- Each of the nonaqueous electrolyte batteries according to Examples 4-4 and 4-8 and Comparative Example 4-4 was subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after 3.8 V charge). Subsequently, after cooling to 25 ° C. and discharging to 1.5 V, the battery was charged to 3.8 V at 0 ° C. and 0.2 C rate, and maintained at 3.8 V for 1 hour. Further, the discharge at 5C rate was continued at 0 ° C. until reaching 1.5V, and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- the non-aqueous electrolyte battery containing both the cis-conformation and the trans-conformation difluoroionic complex according to the example is more effective than the non-aqueous electrolyte battery containing only the cis-conformation ionic complex. It was confirmed that the discharge capacity after storage (0 ° C.) was improved without reducing (0 ° C.). For example, in Examples 3-1 to 3-3, the ratio of the trans-conformation difluoroionic complex (1a-Trans) to the cis-conformation difluoroionic complex (1a-Cis) is 0.2% by mass to 0.8%.
- a non-aqueous electrolyte battery containing both difluoroionic complexes and having LiBF 4 , LiFSI, LiDFPI, and NaPF 6 as solutes is cycled compared to a non-aqueous electrolyte battery containing only the ionic complexes in cis conformation. It was confirmed that the post-storage discharge capacity (0 ° C.) was improved without reducing the post-discharge capacity (0 ° C.).
- Example 5-1 For each of the nonaqueous electrolyte batteries according to Examples 5-1 to 5-4 and Comparative Example 5-1, the post-cycle discharge capacity (0 ° C.) was evaluated in the same manner as in Example 1-1.
- the electrolyte solution for a non-aqueous electrolyte battery containing the difluoroionic complex (1a-Cis) and the tetrafluoroionic complex (5a) according to Examples 5-1 to 5-3 is a tetrafluoroionic complex (5a). It was revealed that the amount of gas generated during storage was small compared to the non-aqueous electrolyte battery electrolyte (Example 5-4) that did not contain, and the increase in internal pressure was suppressed.
- Nonaqueous electrolyte battery (6) Aluminum laminate comprising the aforementioned test NMC positive electrode, the test graphite negative electrode, and a cellulose separator impregnated with the electrolyte solutions (51 to 61, 2, 4, 5, 7) described in Tables 1 and 6
- Non-aqueous electrolyte batteries according to Examples 6-1 to 6-14 and Comparative Example 6-1 were obtained by assembling the exterior cell (capacity 30 mAh).
- Example 6-1 For each of the nonaqueous electrolyte batteries according to Examples 6-1 to 6-14 and Comparative Example 6-1, the post-cycle discharge capacity (0 ° C.) was evaluated in the same manner as in Example 1-1.
- Example 6-1 For each of the nonaqueous electrolyte batteries according to Examples 6-1 to 6-14 and Comparative Example 6-1, the discharge capacity after storage (0 ° C.) was evaluated in the same manner as in Example 3-1.
- Non-aqueous electrolysis comprising three kinds of cis- and trans-conformation difluoroionic complexes (1a-Cis) (1a-Trans) and tetrafluoroionic complexes (5a) according to Examples 6-1 to 6-7
- the liquid battery electrolyte was the same (1a-Cis) addition as the non-aqueous electrolyte battery electrolyte (Examples 6-12, 6-13, 6-14) not containing the tetrafluoroionic complex (5a)
- the amount of gas generated during storage was small and the increase in internal pressure was suppressed.
- the non-aqueous electrolyte battery containing the cis-conformation difluoroionic complex (1-Cis) greatly improves the discharge capacity after cycling (0 ° C.), and the trans-conformation difluoroionic complex ( By adding 1-Trans), it is possible to improve the post-storage discharge capacity (0 ° C.) without adversely affecting the post-cycle discharge capacity (0 ° C.). Furthermore, by adding a tetrafluoroionic complex (5) thereto, the electrolyte solution without reducing the discharge capacity after cycle (0 ° C.) and the discharge capacity (0 ° C.) after storage as a nonaqueous electrolyte battery can be obtained. It is possible to improve storage stability.
- Example 7-1 Comparative example 7-1
- a certain PVDF was uniformly dispersed in previously dissolved NMP, mixed, and NMP for viscosity adjustment was further added to prepare an NCA mixture paste.
- nonaqueous electrolyte battery (7-1) An aluminum laminate exterior cell (capacity 30 mAh) comprising the aforementioned test NCA positive electrode, the test graphite negative electrode, and a cellulose separator impregnated with the electrolytic solutions (54, 7) described in Tables 1 and 6 is assembled. Thus, non-aqueous electrolyte batteries according to Example 7-1 and Comparative Example 7-1 were obtained.
- Example 7-1 and Comparative Example 7-1 Each of the nonaqueous electrolyte batteries according to Example 7-1 and Comparative Example 7-1 was subjected to a storage test (stored for 10 days after charging 4.2 V) at an environmental temperature of 60 ° C. Subsequently, after cooling to 25 ° C. and discharging to 3.0 V, the battery was charged to 4.2 V at 0 ° C. and a 0.2 C rate, and maintained at 4.2 V for 1 hour. Further, the discharge at 5C rate was continued until reaching 3.0 V with 0 ° C., and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-1 The evaluation results of Example 7-1 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-1 is 100.
- LiMn 1.95 Al 0.05 O 4 (LMO) powder and acetylene black (conductive agent) are dry-mixed as a lithium manganese composite oxide, and uniformly dispersed in NMP in which PVDF as a binder is dissolved beforehand. Then, NMP for viscosity adjustment was further added to prepare an LMO mixture paste. This paste was applied on an aluminum foil (current collector), dried and pressurized, and then a test LMO positive electrode processed into a predetermined size was obtained.
- Non-aqueous electrolyte battery (7-2) An aluminum comprising the aforementioned test LMO positive electrode, a test graphite negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with an electrolytic solution (54, 7) described in Tables 1 and 7.
- a non-aqueous electrolyte battery according to Example 7-2 and Comparative Example 7-2 was obtained by assembling a laminate exterior cell (capacity 30 mAh). The separator was made of polypropylene on the positive electrode side.
- Example 7-2 Discharge capacity after cycle (0 ° C) + Discharge capacity after storage (0 ° C) Evaluation of the post-cycle discharge capacity (0 ° C.) + The post-storage discharge capacity (0 ° C.) for Example 7-2 and Comparative Example 7-2 in the same manner as in Example 7-1 and Comparative Example 7-1 Carried out.
- the evaluation results of Example 7-2 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-2 is 100.
- LiFePO 4 (LFP) positive electrode LiFePO 4 (LFP) powder, acetylene black (conductive agent 1), and vapor grown carbon fiber (VGCF (registered trademark) -H) (conductive agent 2) as a lithium-containing olivine-type phosphate are dried.
- the mixture was mixed and uniformly dispersed in NMP in which PVDF as a binder was previously dissolved, mixed, and NMP for viscosity adjustment was further added to prepare an LFP mixture paste. This paste was applied on an aluminum foil (current collector), dried and pressurized, and then a test LFP positive electrode processed into a predetermined size was obtained.
- Non-aqueous electrolyte battery (7-3) An aluminum comprising the aforementioned test LFP positive electrode, a test graphite negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with an electrolyte solution (54, 7) described in Tables 1 and 6.
- a non-aqueous electrolyte battery according to Example 7-3 and Comparative Example 7-3 was obtained by assembling a laminate exterior cell (capacity 30 mAh). The separator was made of polypropylene on the positive electrode side.
- Example 7-3 and Comparative Example 7-3 Each of the nonaqueous electrolyte batteries according to Example 7-3 and Comparative Example 7-3 was subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after 4.0 V charge). Subsequently, after cooling to 25 ° C. and discharging to 2.0 V, the battery was charged to 4.0 V at 0 ° C. and a 0.2 C rate and maintained at 4.0 V for 1 hour. Further, the discharge at 5C rate was continued at 0 ° C. until reaching 2.0V, and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-3 The evaluation results of Example 7-3 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-3 is 100.
- Example 7-4 Comparative Example 7-4
- amorphous carbon powder Kaboha Co., Ltd. Carbotron (registered trademark) P is used, and PVDF as a binder is uniformly dispersed and mixed in NMP previously dissolved, and further NMP for viscosity adjustment is added.
- an amorphous carbon mixture paste was prepared. This paste was applied onto a copper foil (current collector), dried and pressurized, and then an amorphous carbon negative electrode for testing processed into a predetermined size was obtained.
- Non-aqueous electrolyte battery (7-4) Aluminum laminate exterior comprising the aforementioned test NMC positive electrode, a test graphite negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with an electrolyte solution (62, 63) described in Table 7 By assembling the cells (capacity 30 mAh), nonaqueous electrolyte batteries according to Example 7-4 and Comparative Example 7-4 were obtained. The separator was made of polypropylene on the positive electrode side.
- Example 7-4 and Comparative Example 7-4 Each of the nonaqueous electrolyte batteries according to Example 7-4 and Comparative Example 7-4 was subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after being charged with 4.2 V). Subsequently, after cooling to 25 ° C. and discharging to 2.7 V, the battery was charged to 4.2 V at 0 ° C. and a 0.2 C rate, and maintained at 4.2 V for 1 hour. Furthermore, the discharge at 5C rate was continued at 0 ° C. until it reached 2.7 V, and the capacity obtained at this time was defined as the discharge capacity after storage (0 ° C.).
- Example 7-4 The evaluation results of Example 7-4 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-4 is 100.
- Example 7-5 Comparative Example 7-5
- artificial graphite SCMG (registered trademark) -AR powder manufactured by Showa Denko Co., Ltd., natural graphite particles manufactured by Kansai Thermochemical Co., Ltd. (average particle size 25 ⁇ m) as natural graphite, PVDF as a binder was previously prepared.
- the mixture was uniformly dispersed in the dissolved NMP, mixed, and NMP for viscosity adjustment was further added to prepare a mixture paste of (artificial graphite + natural graphite).
- This paste was applied on a copper foil (current collector), dried and pressurized, and then a test (artificial graphite + natural graphite mixed) negative electrode processed into a predetermined size was obtained.
- non-aqueous electrolyte battery (7-5) The test NMC positive electrode, a test (artificial graphite + natural graphite mixed) negative electrode, and a microporous polypropylene-polyethylene two-layer film impregnated with the electrolyte solution (64, 65) shown in Table 7
- a non-aqueous electrolyte battery according to Example 7-5 and Comparative Example 7-5 was obtained by assembling an aluminum laminate exterior cell (capacity 30 mAh) including a separator.
- the separator was made of polypropylene on the positive electrode side.
- Example 7-5 and Comparative Example 7-5 Each of the nonaqueous electrolyte batteries according to Example 7-5 and Comparative Example 7-5 was subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after being charged with 4.3 V). Subsequently, after cooling to 25 ° C. and discharging to 3.0 V, the battery was charged to 4.3 V at 0 ° C. and 0.2 C rate, and maintained at 4.3 V for 1 hour. Further, the discharge at 5C rate was continued until reaching 3.0 V with 0 ° C., and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-5 The evaluation results of Example 7-5 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-5 is 100.
- SiO x negative electrode As the silicon oxide powder, silicon oxide powder disproportionated by heat treatment (SiO x (x is 0.3 to 1.6) manufactured by Sigma-Aldrich Japan, average particle size 5 ⁇ m), and bulk artificial graphite powder Using a mixed powder of MAG-D (particle size 20 ⁇ m or less) manufactured by Hitachi Chemical Co., Ltd., uniformly dispersing it in NMP in which PVDF, a binder, was previously dissolved, and adding ketjen black (conductive agent) and mixing Further, NMP for viscosity adjustment was added to prepare a SiO x mixture paste.
- SiO x silicon oxide powder disproportionated by heat treatment
- MAG-D particle size 20 ⁇ m or less
- This paste was applied on a copper foil (current collector), dried and pressurized, and then a test SiO x negative electrode processed into a predetermined size was obtained.
- the amount of the NMC positive electrode active material and the SiO x powder is adjusted so that the charge capacity of the SiO x negative electrode is larger than the charge capacity of the NMC positive electrode so that lithium metal does not deposit on the SiO x negative electrode during the charge.
- the coating amount was also adjusted.
- Non-aqueous electrolyte battery (7-6) Aluminum laminate comprising the aforementioned test NMC positive electrode, the test SiO x negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with the electrolytic solution (66, 67) shown in Table 7
- a nonaqueous electrolyte battery according to Example 7-6 and Comparative Example 7-6 was obtained by assembling the exterior cell (capacity 30 mAh).
- the separator was made of polypropylene on the positive electrode side.
- Example 7-6 and Comparative Example 7-6 were subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after being charged with 4.2 V). Subsequently, after cooling to 25 ° C. and discharging to 2.5 V, the battery was charged to 4.2 V at 0 ° C. and a 0.2 C rate, and maintained at 4.2 V for 1 hour. Further, the discharge at 3C rate was continued at 0 ° C. until reaching 2.5V, and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-6 The evaluation results of Example 7-6 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-6 is 100.
- Black (conductive agent 1) and vapor-grown carbon fiber (Showa Denko VGCF (registered trademark) -H) (conductive agent 2) are added and mixed, and NMP for viscosity adjustment is further added to prepare a Si mixture paste. did. This paste was applied onto a copper foil (current collector), dried and pressurized, and then a test Si negative electrode processed into a predetermined size was obtained.
- the amount of the NMC positive electrode active material and the Si powder is adjusted so that the charge capacity of the Si negative electrode is larger than the charge capacity of the NMC positive electrode, and the coating amount is set so that lithium metal does not deposit on the Si negative electrode during the charge. Adjusted.
- Non-aqueous electrolyte battery (7-7) Aluminum laminate exterior comprising the aforementioned test NMC positive electrode, the test Si negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with the electrolyte solution (66, 67) shown in Table 7 By assembling the cells (capacity 30 mAh), nonaqueous electrolyte batteries according to Example 7-7 and Comparative Example 7-7 were obtained. The separator was made of polypropylene on the positive electrode side.
- Example 7-7 Discharge capacity after cycle (0 ° C) + Discharge capacity after storage (0 ° C) Evaluation of the post-cycle discharge capacity (0 ° C.) and the post-storage discharge capacity (0 ° C.) for Example 7-7 and Comparative Example 7-7 in the same manner as Example 7-6 and Comparative Example 7-6 Carried out.
- the evaluation results of Example 7-7 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-7 is 100.
- Example 7-8 Comparative Example 7-8
- Sn negative electrode for test As the Sn powder, an Sn powder having an average particle size of 10 ⁇ m was used, uniformly dispersed in NMP in which PVDF as a binder was previously dissolved, and graphite (KS-15 manufactured by Lonza) (conductive agent 1) and Vapor grown carbon fiber (VGCF (registered trademark) -H manufactured by Showa Denko) (conductive agent 2) was added and mixed, and NMP for viscosity adjustment was further added to prepare Sn mixture paste. This paste was applied on a copper foil (current collector), dried and pressurized, and then a test Sn negative electrode processed into a predetermined size was obtained.
- KS-15 manufactured by Lonza conductive agent 1
- VGCF Vapor grown carbon fiber
- the amount of the NMC positive electrode active material and the Sn powder is adjusted so that the charge capacity of the Sn negative electrode is larger than the charge capacity of the NMC positive electrode, and the coating amount is set so that lithium metal does not deposit on the Sn negative electrode during the charge. Also adjusted.
- Non-aqueous electrolyte battery (7-8) Aluminum laminate exterior comprising the aforementioned test NMC positive electrode, the test Sn negative electrode, and a separator made of a microporous polypropylene-polyethylene two-layer film soaked with the electrolytic solution (66, 67) shown in Table 7 By assembling the cells (capacity 30 mAh), nonaqueous electrolyte batteries according to Example 7-8 and Comparative Example 7-8 were obtained. The separator was made of polypropylene on the positive electrode side.
- Example 7-8 Discharge capacity after cycle (0 ° C) + Discharge capacity after storage (0 ° C) Evaluation of the post-cycle discharge capacity (0 ° C.) + The post-storage discharge capacity (0 ° C.) for Example 7-8 and Comparative Example 7-8 in the same manner as Example 7-6 and Comparative Example 7-6 Carried out.
- the evaluation results of Example 7-8 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-8 is 100.
- the composition of the negative electrode active material powder synthesized by cooling the reaction vessel to room temperature was analyzed.
- the Sn content was 49.5% by mass
- the Co content was 29.7% by mass
- the carbon content was The amount was 20.8% by mass
- the ratio of Co to the total of Sn and Co, and Co / (Sn + Co) was 37.5% by mass.
- the carbon content was measured by a carbon / sulfur analyzer, and the Sn and Co contents were measured by ICP-MS (inductively coupled plasma mass spectrometry).
- PVDF as a binder was uniformly dispersed in NMP previously dissolved, and further Ketjen black (conductive agent 1) and vapor grown carbon fiber (VGCF (registered trademark) manufactured by Showa Denko) -H) (Conductive agent 2) was added and mixed, and NMP for viscosity adjustment was further added to prepare a Sn alloy mixture paste.
- This paste was applied onto a copper foil (current collector), dried and pressurized, and then a test Si negative electrode processed into a predetermined size was obtained.
- Example 7-9 and Comparative Example 7-9 were evaluated for the discharge capacity after cycle (0 ° C.) and the discharge capacity after storage (0 ° C.). Carried out.
- the evaluation results of Example 7-9 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-9 is 100.
- Example 7-10 Comparative Example 7-10
- ketjen black ketjen black
- vapor grown carbon fiber Showa Denko VGCF (registered trademark) -H
- This paste was applied on an aluminum foil (current collector), dried and pressurized, and then a test LTO negative electrode processed into a predetermined size was obtained.
- Non-aqueous electrolyte battery (7-10) By assembling an aluminum laminate exterior cell (capacity 30 mAh) comprising the aforementioned test NMC positive electrode, the test LTO negative electrode, and a cellulose separator impregnated with the electrolytic solution (68, 69) described in Table 7 Non-aqueous electrolyte batteries according to Example 7-10 and Comparative Example 7-10 were obtained.
- Example 7-10 Each of the nonaqueous electrolyte batteries according to Example 7-10 and Comparative Example 7-10 was subjected to a storage test at an ambient temperature of 60 ° C. (stored for 10 days after 2.8 V charge). Subsequently, after cooling to 25 ° C. and discharging to 1.5 V, the battery was charged to 2.8 V at 0 ° C. and 0.2 C rate, and maintained at 2.8 V for 1 hour. Further, the discharge at 5C rate was continued at 0 ° C. until reaching 1.5V, and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-10 The evaluation results of Example 7-10 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-10 is 100.
- OLO-1 positive electrode > 0.5 [LiNi 0.5 Mn 0.5 O 2 ] .0.5 [Li 2 MnO 3 ] (OLO-1) powder and acetylene black (conductive agent 1), vapor grown carbon fiber (manufactured by Showa Denko KK) VGCF (registered trademark) -H ”) (conductive agent 2), dry-mixed, uniformly dispersed in NMP in which PVDF as a binder was previously dissolved, mixed, and further added NMP for viscosity adjustment, An OLO-1 mixture paste was prepared.
- This paste was applied onto an aluminum foil (current collector), dried and pressurized, and then a test OLO-1 positive electrode processed into a predetermined size was obtained.
- OLO-2 positive electrode > 0.45 [LiNi 0.375 Co 0.25 Mn 0.375 O 2 ] ⁇ 0.10 [Li 2 TiO 3 ] ⁇ 0.45 [Li 2 MnO 3 ] (OLO-2) powder and acetylene black (conductivity Agent 1) and vapor-grown carbon fiber (VGCF (registered trademark) -H "manufactured by Showa Denko KK) (conductive agent 2) are dry-mixed and uniformly in NMP in which PVDF as a binder is dissolved beforehand. Dispersed and mixed, and NMP for viscosity adjustment was further added to prepare an OLO-2 mixture paste.
- This paste was applied on an aluminum foil (current collector), dried and pressurized, and then a test OLO-2 cathode processed into a predetermined size was obtained.
- non-aqueous electrolyte battery (7-11, 7-12) Aluminum laminate exterior comprising the aforementioned test OLO-1 positive electrode or test OLO-2 positive electrode, a test graphite negative electrode, and a cellulose separator impregnated with the electrolytic solution (70, 71) shown in Table 7 By assembling cells (capacity 30 mAh), non-aqueous electrolyte batteries according to Examples 7-11 and 7-12 and Comparative Examples 7-11 and 7-12 were obtained.
- Example 7-11 and Comparative Example 7-11 Each of the nonaqueous electrolyte batteries according to Example 7-11 and Comparative Example 7-11 was subjected to a storage test at an environmental temperature of 60 ° C. (stored for 10 days after being charged with 4.6 V). Subsequently, after cooling to 25 ° C. and discharging to 2.5 V, the battery was charged to 4.6 V at 0 ° C. and 0.2 C rate, and maintained at 4.6 V for 1 hour. Further, the discharge at 3C rate was continued at 0 ° C. until reaching 2.5V, and the capacity obtained at this time was defined as the discharge capacity (0 ° C.) after storage.
- Example 7-11 The evaluation results of Example 7-11 are shown in Table 15 as relative values when the evaluation result of Comparative Example 7-11 is 100.
- Example 7-12 and Comparative Example 7-12 were also evaluated in the same manner as in Example 7-11 and Comparative Example 7-11.
- the evaluation results of Examples 7-12 are shown in Table 15 as relative values with Comparative Example 7-12 taken as 100.
- lithium transition metal composite oxide containing at least one metal of manganese, cobalt and having a layered structure lithium manganese composite oxide having a spinel structure, lithium-containing olivine-type iron phosphate salt, layered rock salt-type structure
- the cis-conformation difluoroionic complex (1-Cis) significantly improves the post-cycle discharge capacity (0 ° C.) of the nonaqueous electrolyte battery It can be seen that the trans-conformation difluoroionic complex (1-Trans) improved the discharge capacity (0 ° C.) after storage.
- the non-aqueous electrolyte solution of the present invention and a battery using the non-aqueous electrolyte solution do not depend on a specific positive electrode active material and negative electrode active material, and can exhibit high output characteristics at a low temperature even when the battery is used to some extent. It is apparent that sufficient performance can be exhibited at low temperatures even after storage at higher temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
なお、特許文献8には、電気化学ディバイス用電解質として用いられるイオン性錯体の製造方法が開示されている。また、特許文献9には、トリスオキサラトリン酸リチウムの製造方法が開示されている。また、特許文献10には、-20℃/25℃の放電容量比が改善できる電解液が開示されている。また、非特許文献1には、シリコンなどを錯体中心としたフルオロ錯体の製造方法が開示されている。
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。
pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
(ア)上記の非水系電解液と、
(イ)少なくとも1種の酸化物及び/又はポリアニオン化合物を正極活物質として含む正極と、
(ウ)負極活物質を含む負極と、
(エ)ポリオレフィン又はセルロースを主成分とするセパレータとを備え、
前記正極活物質は、(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物からなる群から選択される少なくとも1種以上であり、
前記負極活物質は、(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物、(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金、及び(I)リチウムチタン酸化物からなる群から選択される少なくとも1種以上であることが好ましい。
本発明の非水電解液電池用電解液は、非水有機溶媒と溶質を含有し、さらに一般式(1-Cis)で示される、シス型の立体配座をとるジフルオロイオン性錯体(1-Cis)を含有することを特徴とする。
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。R2に使用できるアルカリ金属としては、リチウムが挙げられる。
pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
(1a): A=Li、M=P、X=O、Y=C、p、q、t=1、r=0
(1b): A=Li、M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(1c): A=Li、M=Si、X=O、Y=C、p、q=1、t=2、r=0
(1d): A=Li、M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0
負極とジフルオロリン酸錯体(シス、トランス)の還元反応の開始について、まずは立体的要因から考察する。ジフルオロリン酸錯体が負極から電子を受け取り、還元が最初に進行する箇所はF以外の配位子部分である。(1aであればカルボニル基の炭素)そのため、還元が進行するためにはFが結合していない面から負極に接近する必要がある。トランス体はFが分子の上と下に結合しているため、必然的に右、または左から、すなわち上下180度を除いた左右の計180度の範囲の中で分子が電極に接近した場合にのみ還元反応が進行する。それに対してシス体は、Fの位置が同一方向にまとまっているため、その逆方向の200~250度の範囲の中で接近できれば良く、還元反応が進行する確率がトランス体よりも高くなる。
なお、この非水電解液電池用電解液と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが吸蔵・放出し得る負極活物質と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが吸蔵・放出し得る正極活物質を用いる電気化学ディバイスを非水電解液電池と呼ぶ。
本発明の非水系電解液電池は、(ア)上記の非水系電解液と、(イ)正極と、(ウ)負極と、(エ)セパレータとを備える。
本発明の非水系電解液電池は、<1.非水系電解液>で説明した非水系電解液を備える。
(イ)正極は、少なくとも1種の酸化物及び/又はポリアニオン化合物を正極活物質として含むことが好ましい。
非水系電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(イ)正極を構成する正極活物質は、充放電が可能な種々の材料であれば特に限定されるものでないが、例えば、(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩、及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物からなる群から選択される少なくとも1種を含有するものが挙げられる。
正極活物質(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物としては、例えば、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・マンガン・コバルト複合酸化物等が挙げられる。また、これらリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部を、Al、Ti、V、Cr、Fe、Cu、Zn、Mg、Ga、Zr、Si、B、Ba、Y、Sn等の他の元素で置換したものを用いても良い。
LiaNi1-b-cCobM1 cO2 (1-1)
LidNieMnfCogM2 hO2 (1-2)
正極活物質(B)スピネル構造を有するリチウムマンガン複合酸化物としては、例えば、一般式(1-3)で示されるスピネル型リチウムマンガン複合酸化物が挙げられる。
Lij(Mn2-kM3 k)O4 (1-3)
正極活物質(C)リチウム含有オリビン型リン酸塩としては、例えば一般式(1-4)で示されるものが挙げられる。
LiFe1-nM4 nPO4 (1-4)
正極活物質(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物としては、例えば一般式(1-5)で示されるものが挙げられる。
xLiM5O2・(1-x)Li2M6O3 (1-5)
(イ)正極は、正極集電体を有する。正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
(イ)正極は、例えば正極集電体の少なくとも一方の面に正極活物質層が形成される。正極活物質層は、例えば、前述の正極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
(ウ)負極は、負極活物質を含む。
非水系電解液中のカチオンがリチウム主体となるリチウムイオン二次電池の場合、(ウ)負極を構成する負極活物質としては、リチウムイオンのド-プ・脱ド-プが可能なものであり、例えば(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物、(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金、及び(I)リチウムチタン酸化物から選ばれる少なくとも1種を含有するものが挙げられる。これら負極活物質は、1種を単独で用いることができ、2種以上を組合せて用いることもできる。
負極活物質(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料としては、例えば熱分解炭素類、コークス類(例えばピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、有機高分子化合物焼成体(例えばフェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられ、これらは黒鉛化したものでもよい。当該炭素材料は、X線回折法で測定した(002)面の面間隔(d002)が0.340nm以下のものであり、中でも、その真密度が1.70g/cm3以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料が好ましい。
負極活物質(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料としては、非晶質炭素が挙げられ、これは、2000℃以上の高温で熱処理してもほとんど積層秩序が変化しない炭素材料である。例えば難黒鉛化炭素(ハードカーボン)、1500℃以下で焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)等が例示される。株式会社クレハ製のカーボトロン(登録商標)P等は、その代表的な事例である。
負極活物質(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物としては、リチウムイオンのド-プ・脱ド-プが可能な、例えば酸化シリコン、酸化スズ等が挙げられる。
負極活物質(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金としては、例えばシリコン、スズ、アルミニウム等の金属、シリコン合金、スズ合金、アルミニウム合金等が挙げられ、これらの金属や合金が、充放電に伴いリチウムと合金化した材料も使用できる。
負極活物質(I)リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム、ラムスデライト構造を有するチタン酸リチウム等を挙げることができる。
(ウ)負極は、負極集電体を有する。負極集電体としては、例えば、銅、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。
(ウ)負極は、例えば負極集電体の少なくとも一方の面に負極活物質層が形成される。負極活物質層は、例えば、前述の負極活物質と、結着剤と、必要に応じて導電剤とにより構成される。
電極は、例えば、活物質と、結着剤と、必要に応じて導電剤とを所定の配合量でN-メチル-2-ピロリドン(NMP)や水等の溶媒中に分散混練し、得られたペーストを集電体に塗布、乾燥して活物質層を形成することで得ることができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度の電極に調節することが好ましい。
本発明の非水系電解液電池は、(エ)セパレータを備える。(イ)正極と(ウ)負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、セルロース、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化されているものが好ましい。
非水系電解液電池を構成するにあたり、非水系電解液電池の外装体としては、例えばコイン型、円筒型、角型等の金属缶や、ラミネート外装体を用いることができる。金属缶材料としては、例えばニッケルメッキを施した鉄鋼板、ステンレス鋼板、ニッケルメッキを施したステンレス鋼板、アルミニウム又はその合金、ニッケル、チタン等が挙げられる。
ラミネート外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルム等を用いることができる。
いずれも原料や、生成物の取り扱いは露点が-50℃以下の窒素雰囲気下にて行った。また、使用する硝子製反応器は150℃で12時間以上乾燥させた後に、露点が-50℃以下の窒素気流下で室温まで冷却させたものを用いた。
特許文献9に開示された方法に従って、シュウ酸の三配位体であるトリスオキサラトリン酸リチウムを得た。トリスオキサラトリン酸リチウム(30g、99.4mmol)をジメチルカーボネート(以下DMC)(120mL)に溶解させ、フッ化水素(以下HF)(11.9g、596.4mmol)を添加した。25℃にて72時間攪拌させた後、減圧にて残留するHFとDMCの除去を行った。そしてDMC(60mL)を加えて濃縮残渣を可能な限り溶解させた後に、Li塩濃度が約45質量%となるまで濃縮を行った。シュウ酸を始めとする不溶解成分をろ過にて除去した後、(1a-Trans)と(1a-Cis)が含まれた混合物のDMC溶液49gを得た。
混合物のDMC溶液に対してジクロロメタン(以下、「CH2Cl2」という。)を25℃にて添加して12時間攪拌する事で固体が析出した。ろ過にて固体と母液に分離し、母液は減圧にて固形物が得られるまでDMCを留去した。ろ別した固体と、母液から得た固形物を別々にDMCに溶解させ、濃度約45質量%のDMC溶液を別々に調製した後にCH2Cl2を加えて固体を析出させた。ろ過にてそれぞれ固体を回収し、更に同様の手順にて数回の濃度約45質量%DMC溶液調製と固体析出を繰り返すことで、F、P純度99.9モル%(NMRより)の(1a-Trans)と(1a-Cis)が得られた。
特許文献8に記載された方法を参考に反応を実施した。20.0g(132mモル)のLiPF6とジメチルカーボネート(DMC)110mL、そしてシュウ酸11.9g(132mモル)を容積500mLの硝子製フラスコに加えた。このとき、LiPF6は完全に溶解したが、シュウ酸の大部分は溶け残っていた。25℃撹拌下、13.4g(79mモル)のSiCl4をフラスコ内へ滴下した後、撹拌を4時間継続した。続いて、減圧にてテトラフルオロシラン及び塩酸を除去し、イオン性錯体(5a)を主成分とする粗体(純度91モル%)のDMC溶液を得た。
この溶液を、Li塩濃度が約50質量%となるまで濃縮し、濃縮液51gを得た。濾過にて不溶解成分を除去した後にCH2Cl2を攪拌しながら室温にて添加した。12時間攪拌後、ろ過にて析出した固体を回収した。再度、DMCへ溶解させてLi塩濃度約50質量%のDMC溶液を調製した後、同様の手順にてCH2Cl2添加と、固体の析出、固体の回収を行うことでF、P純度99.9モル%である(5a)を得た。
ダウケミカル製強酸性陽イオン交換樹脂252(以後、イオン交換樹脂)を500g量り取り、0.1規定の水酸化ナトリウム水溶液(2.5kg)に浸漬させ、25℃で6時間攪拌を行った。ろ過でイオン交換樹脂を回収し、洗液のpHが8以下になるまで純水で充分に洗浄した。その後、12時間の減圧乾燥(120℃、1.3kPa)にて水分を除去した。
濃度10質量%の(1a-Trans)/EMC溶液を調製し、そこに液重量の半分の重量の乾燥済み前記イオン交換樹脂を加え、25℃にて6時間攪拌を行った。その後、ろ過にてイオン交換樹脂を取り除く事で、カチオンがLi+からNa+へ交換された(6a-Trans)/EMC溶液(濃度約10質量%)が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、Na+/Li+の比率は99.5であった。
また、上述の方法にて(1a-Trans)/EMC溶液の代わりに同濃度の(1a-Cis)/EMC溶液を用いる事で同様に濃度約10質量%の(6a-Cis)/EMC溶液が得られた。
合成例3で使用される0.1規定の水酸化ナトリウム水溶液(2.5kg)を0.1規定の水酸化カリウム水溶液(2.5kg)に変更する事で、カチオンがLi+からK+へ交換された濃度約10質量%の(6b-Trans)/EMC、(6b-Cis)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もK+/Li+の比率は99.6であった。
EMC 90gにトリメチルプロピルアンモニウムクロリド 5.7g(41.7mmol)と(1a-Trans) 10.0g(39.7mmol)を加え、45℃にて6時間攪拌を行った。5℃まで冷却した後に不溶解物をろ過で取り除く事でカチオンがLi+からトリメチルプロピルアンモニウムカチオン(以下、TMPA)へ交換された(6c-Trans)/EMC溶液(濃度約13質量%)が得られた。
また、上述の方法にて(1a-Trans)の代わりに同重量の(1a-Cis)を用いる事で同様に濃度約13質量%の(6c-Cis)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もTMPA/Li+の比率は98.5であった。
EMC 90gに1-ブチル-1-メチルピロリジニウムクロリド 7.4g(41.7mmol)と(1a-Trans) 10.0g(39.7mmol)を加え、45℃にて6時間攪拌を行った。5℃まで冷却した後に不溶解物をろ過で取り除く事でカチオンがLi+から1-ブチル-1-メチルピロリジニウムカチオン(以下、PP13)へ交換された(6d-Trans)/EMC溶液(濃度約15質量%)が得られた。
また、上述の方法にて(1a-Trans)の代わりに同重量の(1a-Cis)を用いる事で同様に濃度約15質量%の(6d-Cis)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もPP13/Li+の比率は98.3であった。
合成例3で使用される(1a-Trans)/EMC溶液の代わりに(5a)/EMC溶液を用いる事で、カチオンがLi+からNa+へ交換された濃度約10質量%の(5b)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、Na+/Li+の比率は99.4であった。
合成例3で使用される0.1規定の水酸化ナトリウム水溶液(2.5kg)の代わりに0.1規定の水酸化カリウム水溶液(2.5kg)を用い、(1a-Trans)/EMC溶液の代わりに(5a)/EMC溶液を用いる事で、カチオンがLi+からK+へ交換された濃度約10質量%の(5c)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、K+/Li+の比率は99.2であった。
合成例5で使用される(1a-Trans)10.0g(39.7mmol)の代わりに(5a)7.9g(39.7mmol)を用いる事で、カチオンがLi+からトリメチルプロピルアンモニウムカチオン(以下、TMPA)へ交換された(5d)/EMC溶液(濃度約11質量%)が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、TMPA/Li+の比率は98.6であった。
合成例6で使用される(1a-Trans)10.0g(39.7mmol)を(5a)7.9g(39.7mmol)へ変更する事で、カチオンがLi+から1-ブチル-1-メチルピロリジニウムカチオン(以下、PP13)へ交換された(5e)/EMC溶液(濃度約13質量%)が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、PP13/Li+の比率は98.2であった。
原料のシュウ酸をヘキサフルオロ-2-ヒドロキシイソ酪酸に変更した以外は合成例1と同様の手法にて、(1b-Trans)、(1b-Cis)をそれぞれ得た。
[合成例12] (1c-Trans)、(1c-Cis)の合成
非特許文献1に記載の方法を応用して(1c-Trans)、(1c-Cis)をそれぞれ得た。
表1~7に記載の溶質及び表1~7に記載のイオン性錯体を、表1~7に記載の割合で、表1~7に記載の非水有機溶媒に、溶質、イオン性錯体の順に混合し、1時間撹拌することで、非水電解液電池用電解液1~71(表中の電解液番号に該当)を得た。なお、表1~7に記載の非水電解液電池用電解液の調製は、液温を40℃以下に維持しながら行った。
LiNi1/3Mn1/3Co1/3O2粉末90質量%に、ポリフッ化ビニリデン(以下、PVDF)(バインダー)を5質量%、アセチレンブラック(導電材)を5質量%混合し、さらにN-メチルピロリドン(以下、NMP)を添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜く事で試験用NMC正極を得た。
黒鉛粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜く事で試験用黒鉛負極を得た。
上記の試験用NMC正極と、試験用黒鉛負極と、表1、2に記載の電解液(1~31)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例1-1~1-12、2-1~2-3及び比較例1-1~1-10、2-1~2-6に係る非水電解液電池を得た。
実施例1-1~1-12、2-1~2-3及び比較例1-1~1-10、2-1~2-6に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、3~4.3V)を実施した。続いて25℃まで冷却し3.0Vまで放電させた後に、0℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に0℃のまま5Cレートでの放電を3.0Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
実施例2-1と比較例2-1、実施例2-2と比較例2-3、実施例2-3と比較例2-5の評価結果を、それぞれ、比較例2-2、2-4、2-6の評価結果を100としたときの相対値として表8に示す。
NaFe0.5Co0.5O2粉末85質量%に、PVDF(バインダー)を5質量%、アセチレンブラック(導電材)を10質量%混合し、さらにNMPを添加し、正極合材ペーストを作製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜く事で試験用NaFe0.5Co0.5O2正極を得た。
ハードカーボン粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにNMPを添加し、負極合材ペーストを作製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに打ち抜く事で試験用ハードカーボン負極を得た。
上記の試験用NaFe0.5Co0.5O2正極と、試験用ハードカーボン負極と、表2に記載の電解液(32~34)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例2-4及び比較例2-7、2-8に係る非水電解液電池を得た。
実施例2-4及び比較例2-7、2-8に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、1.5~3.8V)を実施した。続いて25℃まで冷却し1.5Vまで放電させた後に、0℃、0.2Cレートにて3.8Vまで充電を行いそのまま1時間3.8Vを維持した。更に0℃のまま5Cレートでの放電を1.5Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
実施例2-4、比較例2-7の評価結果を、比較例2-8の評価結果を100としたときの相対値として表8に示す。
前述の試験用NMC正極と、試験用黒鉛負極と、表1、3に記載の電解液(35~43、4、7、11、13、15、17、19、21)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例3-1~3-16、4-1~4-3、4-5~4-7及び比較例3-1、4-1~4-3に係る非水電解液電池を得た。
<評価> サイクル後放電容量(0℃) + 貯蔵後放電容量(0℃)
実施例3-1~3-16、4-1~4-3、4-5~4-7及び比較例3-1、4-1~4-3に係る非水電解液電池のそれぞれについて、実施例1-1と同様にサイクル後放電容量(0℃)を評価した。
実施例4-1と4-5、4-2と4-6、4-3と4-7の評価結果を、それぞれ比較例4-1、4-2、4-3の評価結果を100としたときの相対値として、表10に示す。
前述の試験用NaFe0.5Co0.5O2正極と、試験用ハードカーボン負極と、表2、4に記載の電解液(32、33、47)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例4-4、4-8及び比較例4-4に係る非水電解液電池を得た。
<評価> サイクル後放電容量(0℃) + 貯蔵後放電容量(0℃)
実施例4-4、4-8及び比較例4-4に係る非水電解液電池のそれぞれについて、実施例2-4と同様に、サイクル後放電容量(0℃)を評価した。
例えば、実施例3-1~3-3において、シス配座のジフルオロイオン性錯体(1a-Cis)に対するトランス配座のジフルオロイオン性錯体(1a-Trans)割合が0.2質量%から0.5質量%、1.0質量%へと増えるにつれてサイクル後放電容量(0℃)に悪影響を与えることなく貯蔵後放電容量(0℃)が僅かずつではあるが向上する傾向が確認できた。
実施例3-9と3-16、3-8と3-15、3-6と3-13、3-7と3-14をそれぞれ比較すると、(1a-Trans)に比べて効果は少ないものの(1b-Trans)、(1c-Trans)、(6c-Trans)、(6d-Trans)をそれぞれ対応するシス配座のジフルオロイオン性錯体と併せて加える事で、同様にサイクル後放電容量(0℃)に悪影響を与えることなく貯蔵後放電容量(0℃)が僅かずつではあるが向上した。(1b-Trans)と(1c-Trans)の効果は(1a-Trans)と同等であった。
実施例3-3、3-4、3-5と、実施例3-6、3-7を比較すると、アニオンが同じで、カチオンがLi、Na、KからTMPAやPP13に代わる事で効果が低下するのは前述の通り、カチオンの分子量が大きいため、有効部位であるアニオン側の含有量が減少した事と、TMPA、PP13の一部が還元または酸化分解され、その分解残渣が高抵抗成分として電極表面上に堆積したためだと推測される。
前述の試験用NMC正極と、試験用黒鉛負極と、表1、5に記載の電解液(48~50、4、7)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例5-1~5-4及び比較例5-1に係る非水電解液電池を得た。
実施例5-1~5-4及び比較例5-1に係る非水電解液電池用電解液のそれぞれについて、保存時の安定性を評価するため加速試験を行った。圧力計を備え付けた20Lのステンレス製耐圧容器に非水電解液電池用電解液21kgをそれぞれ充填し、45℃の環境温度にて2ヶ月間保管した。その後、25℃環境温度下にて容器内の内圧を計測して保管中に発生したガス量の算出を行った。
実施例5-1~5-3を比較すると、このガス発生抑制効果は、テトラフルオロイオン性錯体(5a)のジフルオロイオン性錯体(1a-Cis)に対する割合が7質量%から12質量%、20質量%へと増えるにつれて高まることが判明した。
また、実施例5-1~5-3と5-4を比較すると、テトラフルオロイオン性錯体(5a)を加えてもサイクル後放電容量(0℃)に対する悪影響はない事が分かる。
前述の試験用NMC正極と、試験用黒鉛負極と、表1、6に記載の電解液(51~61、2、4、5、7)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例6-1~6-14及び比較例6-1に係る非水電解液電池を得た。
実施例6-1~6-14及び比較例6-1に係る非水電解液電池用電解液のそれぞれについて、実施例5-1と同様の方法で保存時ガス発生量を評価した。
<LiNi0.85Co0.10Al0.05O2(NCA)正極の作製>
リチウム・ニッケル・コバルト・アルミニウム複合酸化物としてLiNi0.85Co0.10Al0.05O2(NCA)粉末(戸田工業製)およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCA合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用NCA正極を得た。正極中の固形分比率は、NCA:導電剤:PVDF=85:5:10(質量比)とした。
前述の試験用NCA正極と、試験用黒鉛負極と、表1、6に記載の電解液(54、7)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-1及び比較例7-1に係る非水電解液電池を得た。
実施例7-1及び比較例7-1に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、3.0~4.2V)を実施した。続いて25℃まで冷却し3.0Vまで放電させた後に、0℃、0.2Cレートにて4.2Vまで充電を行いそのまま1時間4.2Vを維持した。更に0℃のまま5Cレートでの放電を3.0Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<LiMn1.95Al0.05O4(LMO)正極の作製>
リチウムマンガン複合酸化物としてLiMn1.95Al0.05O4(LMO)粉末およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、LMO合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LMO正極を得た。正極中の固形分比率は、LMO:導電剤:PVDF=85:5:10(質量比)とした。
前述の試験用LMO正極と、試験用黒鉛負極と、表1、7に記載の電解液(54、7)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-2及び比較例7-2に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-1及び比較例7-1と同様の方法で、実施例7-2及び比較例7-2についても、サイクル後放電容量(0℃)+貯蔵後放電容量(0℃)の評価を実施した。なお、実施例7-2の評価結果は、比較例7-2の評価結果を100としたときの相対値として表15に示す。
<LiFePO4(LFP)正極の作製>
リチウム含有オリビン型リン酸塩としてLiFePO4(LFP)粉末と、アセチレンブラック(導電剤1)と、気相法炭素繊維(昭和電工製VGCF(登録商標)-H)(導電剤2)とを乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、LFP合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LFP正極を得た。正極中の固形分比率は、LFP:導電剤1:導電剤2:PVDF=85:4:1:10(質量比)とした。
前述の試験用LFP正極と、試験用黒鉛負極と、表1、6に記載の電解液(54、7)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-3及び比較例7-3に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-3及び比較例7-3に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、2.0~4.0V)を実施した。続いて25℃まで冷却し2.0Vまで放電させた後に、0℃、0.2Cレートにて4.0Vまで充電を行いそのまま1時間4.0Vを維持した。更に0℃のまま5Cレートでの放電を2.0Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<非晶質炭素負極の作製>
非晶質炭素粉末としては、株式会社クレハ製のカーボトロン(登録商標)Pを用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、非晶質炭素合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用非晶質炭素負極を得た。負極中の固形分比率は、非晶質炭素粉末:PVDF=90:10(質量比)とした。
前述の試験用NMC正極と、試験用黒鉛負極と、表7に記載の電解液(62、63)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-4及び比較例7-4に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-4及び比較例7-4に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、2.7~4.2V)を実施した。続いて25℃まで冷却し2.7Vまで放電させた後に、0℃、0.2Cレートにて4.2Vまで充電を行いそのまま1時間4.2Vを維持した。更に0℃のまま5Cレートでの放電を2.7Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<試験用(人造黒鉛+天然黒鉛混合)負極の作製>
人造黒鉛としては、昭和電工(株)製SCMG(登録商標)-AR粉末、天然黒鉛として関西熱化学(株)製天然黒鉛粒子(平均粒子径25μm)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、(人造黒鉛+天然黒鉛)混合の合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用(人造黒鉛+天然黒鉛混合)負極を得た。負極中の固形分比率は、人造黒鉛粉末:天然黒鉛粉末:PVDF=72:18:10(質量比)とした。
前述の試験用NMC正極と、試験用(人造黒鉛+天然黒鉛混合)負極と、表7に記載の電解液(64、65)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-5及び比較例7-5に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-5及び比較例7-5に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 3Cレート、3.0~4.3V)を実施した。続いて25℃まで冷却し3.0Vまで放電させた後に、0℃、0.2Cレートにて4.3Vまで充電を行いそのまま1時間4.3Vを維持した。更に0℃のまま5Cレートでの放電を3.0Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<SiOx負極の作製>
ケイ素酸化物粉末としては、熱処理により不均化されたケイ素酸化物粉末(シグマアルドリッチジャパン株式会社製SiOx(xは0.3~1.6)、平均粒径5μm)、塊状人造黒鉛粉末として日立化成工業製MAG-D(粒径20μm以下)の混合粉末を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤)を加えて混合し、さらに粘度調整用NMPを加え、SiOx合剤ペーストを調製した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用SiOx負極を得た。負極中の固形分比率は、SiOx:MAG―D:導電剤:PVDF=35:47:8:10(質量比)とした。
なお、SiOx負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSiOx粉末との量を調節し、充電の途中でSiOx負極にリチウム金属が析出しないように塗布量も調節した。
前述の試験用NMC正極と、試験用SiOx負極と、表7に記載の電解液(66、67)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-6及び比較例7-6に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-6及び比較例7-6に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(200回 充電は1Cレート 放電は2Cレート、2.5~4.2V)を実施した。続いて25℃まで冷却し2.5Vまで放電させた後に、0℃、0.2Cレートにて4.2Vまで充電を行いそのまま1時間4.2Vを維持した。更に0℃のまま3Cレートでの放電を2.5Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<試験用Si負極の作製>
Si粉末としては、Si粉末(平均粒子径:10μm/6μm=質量比9/1の混合粉末)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤1)と気相法炭素繊維(昭和電工製VGCF(登録商標)-H)(導電剤2)とを加えて混合し、さらに粘度調整用NMPを加え、Si合剤ペーストを調製した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用Si負極を得た。
負極中の固形分比率は、Si粉末:導電剤1:導電剤2:PVDF=78:7:3:12(質量比)とした。
なお、Si負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSi粉末との量を調節し、充電の途中でSi負極にリチウム金属が析出しないように塗布量を調節した。
前述の試験用NMC正極と、試験用Si負極と、表7に記載の電解液(66、67)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-7及び比較例7-7に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-6及び比較例7-6と同様の方法で、実施例7-7及び比較例7-7についても、サイクル後放電容量(0℃)と貯蔵後放電容量(0℃)の評価を実施した。なお、実施例7-7の評価結果は、比較例7-7の評価結果を100としたときの相対値として表15に示す。
<試験用Sn負極の作製>
Sn粉末としては、平均粒子径:10μmのSn粉末を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにグラファイト(ロンザ製KS-15)(導電剤1)と気相法炭素繊維(昭和電工製VGCF(登録商標)-H)(導電剤2)とを加えて混合し、さらに粘度調整用NMPを加え、Sn合剤ペーストを調製した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用Sn負極を得た。
負極中の固形分比率は、Sn粉末:導電剤1:導電剤2:PVDF=78:8:3:11(質量比)とした。
なお、Sn負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSn粉末との量を調節し、充電の途中でSn負極にリチウム金属が析出しないように塗布量も調節した。
前述の試験用NMC正極と、試験用Sn負極と、表7に記載の電解液(66、67)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-8及び比較例7-8に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-6及び比較例7-6と同様の方法で、実施例7-8及び比較例7-8についても、サイクル後放電容量(0℃)+貯蔵後放電容量(0℃)の評価を実施した。なお、実施例7-8の評価結果は、比較例7-8の評価結果を100としたときの相対値として表15に示す。
<試験用Sn合金負極の作製>
本試験用Sn合金負極の作製については、特開2008-016424号公報に記載の手順に従った。すなわち、原料であるCo・Sn合金粉末と、炭素粉末とを所定の割合で混合し、全体の投入粉末量を10gとして乾式混合した。この混合物を直径9mmの鋼玉約400gとともに、遊星ボールミルの反応容器中にセットした。反応容器中をアルゴン雰囲気に置換し、毎分250回転の回転速度にて10分間の運転+10分間の休止の動作を、運転時間の合計が20時間になるまで繰り返した。その後、反応容器を室温まで冷却して合成された負極活物質粉末について組成分析を行ったところ、Snの含有量は49.5質量%、Coの含有量は29.7質量%、炭素の含有量は20.8質量%、SnとCoとの合計に対するCoの割合、Co/(Sn+Co)は37.5質量%であった。
なお、炭素の含有量は、炭素・硫黄分析装置により測定し、Sn、Coの含有量は、ICP-MS(誘導結合プラズマ質量分析法)により測定した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用Si負極を得た。
負極中の固形分比率は、Co・Sn合金粉末:導電剤1:導電剤2:PVDF=80:7:3:10(質量比)とした。
Sn合金負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSn合金粉末との量を調節し、充電の途中でSn合金負極にリチウム金属が析出しないように塗布量も調節した。
前述の試験用NMC正極と、試験用Sn合金負極と、表7に記載の電解液(66、67)を浸み込ませた微多孔性ポリプロピレン-ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例及び比較例に係る非水電解液電池を得た。なお、セパレータはポリプロピレンを正極側に配置した。
実施例7-6及び比較例7-6と同様の方法で、実施例7-9及び比較例7-9についても、サイクル後放電容量(0℃)と貯蔵後放電容量(0℃)の評価を実施した。なお、実施例7-9の評価結果は、比較例7-9の評価結果を100としたときの相対値として表15に示す。
<試験用LTO負極の作製>
Li4Ti5O12(LTO)粉末としては、LTO粉末(平均粒子径:0.90μm/3.40μm=質量比9/1の混合粉末)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤1)と気相法炭素繊維(昭和電工製VGCF(登録商標)-H)(導電剤2)を加えて混合し、さらに粘度調整用NMPを加え、LTO合剤ペーストを調製した。
このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LTO負極を得た。
負極中の固形分比率は、LTO粉末:導電剤1:導電剤2:PVDF=83:5:2:10(質量比)とした。
前述の試験用NMC正極と、試験用LTO負極と、表7に記載の電解液(68、69)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-10及び比較例7-10に係る非水電解液電池を得た。
実施例7-10及び比較例7-10に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(500回 2Cレート、1.5~2.8V)を実施した。続いて25℃まで冷却し1.5Vまで放電させた後に、0℃、0.2Cレートにて2.8Vまで充電を行いそのまま1時間2.8Vを維持した。更に0℃のまま5Cレートでの放電を1.5Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
<OLO-1正極の作製>
0.5[LiNi0.5Mn0.5O2]・0.5[Li2MnO3](OLO-1)粉末及びアセチレンブラック(導電剤1)、気相法炭素繊維(昭和電工社製VGCF(登録商標)-H」)(導電剤2)とを乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、OLO-1合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用OLO-1正極を得た。正極中の固形分比率は、OLO-1:導電剤1:導電剤2:PVDF=85:4:1:10(質量比)とした。
0.45[LiNi0.375Co0.25Mn0.375O2]・0.10[Li2TiO3]・0.45[Li2MnO3](OLO-2)粉末及びアセチレンブラック(導電剤1)、気相法炭素繊維(昭和電工社製VGCF(登録商標)-H」)(導電剤2)とを乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、OLO-2合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用OLO-2正極を得た。正極中の固形分比率は、OLO-2:導電剤1:導電剤2:PVDF=85:4:1:10(質量比)とした。
前述の試験用OLO-1正極又は試験用OLO-2正極と、試験用黒鉛負極と、表7に記載の電解液(70、71)を浸み込ませたセルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)を組み立てることで実施例7-11、7-12、比較例7-11、7-12に係る非水電解液電池を得た。
実施例7-11及び比較例7-11に係る非水電解液電池のそれぞれについて、60℃の環境温度での充放電試験(300回 2.5~4.6V、充電:1Cレート、放電:2Cレート)を実施した。続いて25℃まで冷却し2.5Vまで放電させた後に、0℃、0.2Cレートにて4.6Vまで充電を行いそのまま1時間4.6Vを維持した。更に0℃のまま3Cレートでの放電を2.5Vに達するまで行い、この時に得られる容量を、サイクル後放電容量(0℃)とした。
Claims (19)
- 一般式(1-Cis)で示される、シス型の立体配座をとるジフルオロイオン性錯体(1-Cis)と非水有機溶媒と溶質を含む非水電解液電池用電解液。
一般式(1-Cis)において、A+は金属イオン、プロトン及びオニウムイオンからなる群から選ばれるいずれか1つであり、MはSi、P、As及びSbからなる群から選ばれるいずれか1つである。Fはフッ素原子である。Oは酸素原子である。MがSiの場合はtは2、MがP、As又はSbの場合はtは1である。
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。
pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。 - 前記ジフルオロイオン性錯体(1-Cis)のアニオン部分の各元素が、以下に示される(ア)、(イ)、(ウ)及び(エ)からなる群より選ばれる少なくとも一つである、請求項1に記載の非水電解液電池用電解液。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0 - 前記ジフルオロイオン性錯体(1-Cis)の前記A+がリチウムイオン、ナトリウムイオン、カリウムイオン及び4級アルキルアンモニウムイオンからなる群より選ばれる少なくとも1種のイオンである、請求項1または2に記載の非水電解液電池用電解液。
- 前記ジフルオロイオン性錯体(1-Cis)の濃度が非水電解液電池用電解液に対して0.001質量%以上20質量%以下の範囲である、請求項1~3のいずれかに記載の非水電解液電池用電解液。
- さらに、一般式(1-Trans)で示される、トランス型の立体配座をとるジフルオロイオン性錯体(1-Trans)を含むことを特徴とする請求項1~4のいずれか1項に記載の非水電解液電池用電解液。
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。 - 前記ジフルオロイオン性錯体(1-Trans)のアニオン部分の各元素が、以下に示される(ア)、(イ)、(ウ)及び(エ)からなる群より選ばれる少なくとも一つである、請求項5に記載の非水電解液電池用電解液。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0 - 前記ジフルオロイオン性錯体(1-Trans)の前記A+が、リチウムイオン、ナトリウムイオン、カリウムイオン及び4級アルキルアンモニウムイオンからなる群より選ばれる少なくとも1種である、請求項5または6に記載の非水電解液電池用電解液。
- 前記ジフルオロイオン性錯体(1-Trans)の含有量の、前記ジフルオロイオン性錯体(1-Cis)の質量に対する割合が0.0001以上、0.05以下である、請求項5~7のいずれかに記載の非水電解液電池用電解液。
- さらに、一般式(5)で示されるテトラフルオロイオン性錯体(5)を含むことを特徴とする請求項1~8のいずれか1項に記載の非水電解液電池用電解液。
Xは酸素原子又は-N(R1)-である。Nは窒素原子であり、R1は炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)である。
Xが-N(R1)-でpが0の場合、XとWは直接結合し、その際は下記一般式(2)~(4)のような構造をとることもできる。直接結合が二重結合となる下記一般式(3)の場合、R1は存在しない。
Wは炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基(炭素数が3以上の場合にあっては、分岐鎖又は環状構造のものも使用できる)、又は-N(R2)-を表す。このとき、R2は水素原子、アルカリ金属、炭素数1~10のヘテロ原子やハロゲン原子を有していてもよい炭化水素基を表す。炭素数が3以上の場合にあっては、R2は分岐鎖又は環状構造をとることもできる。pは0又は1、qは0~2の整数、rは0~2の整数をそれぞれ表し、p+r≧1である。 - 前記テトラフルオロイオン性錯体(5)のアニオン部分の各元素が、(ア)、(イ)、(ウ)及び(エ)からなる群より選ばれるいずれかである、請求項9に記載の非水電解液電池用電解液。
(ア)M=P、X=O、Y=C、p、q、t=1、r=0
(イ)M=P、X=O、W=C(CF3)2、p、q=0、r、t=1
(ウ)M=Si、X=O、Y=C、p、q=1、t=2、r=0
(エ)M=P、X=N(R1)、Y=C、R1=CH3、p、q、t=1、r=0 - 前記テトラフルオロイオン性錯体(5)の前記A+が、リチウムイオン、ナトリウムイオン、カリウムイオン及び4級アルキルアンモニウムイオンからなる群より選ばれる少なくとも1種のイオンである、請求項9または10に記載の非水電解液電池用電解液。
- 前記テトラフルオロイオン性錯体(5)の含有量の、前記ジフルオロイオン性錯体(1-Cis)の質量に対する割合が、0.02以上0.25以下である、請求項9~11のいずれか1項に記載の非水電解液電池用電解液。
- 前記非水有機溶媒が、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類からなる群から選ばれる少なくとも1種である、請求項1から12のいずれか1項に記載の非水電解液電池用電解液。
- 前記非水有機溶媒が、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジエチルエーテル、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、フラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、ジブチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、及びγ-バレロラクトンからなる群から選ばれる少なくとも1種である請求項13に記載の非水電解液電池用電解液。
- 前記非水有機溶媒が、環状カーボネート及び鎖状カーボネートからなる群から選ばれる少なくとも1種を含有する、請求項13に記載の非水電解液電池用電解液。
- 前記環状カーボネートが、エチレンカーボネート、プロピレンカーボネートからなる群から選ばれる少なくとも1種であり、前記鎖状カーボネートが、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネートからなる群から選ばれる少なくとも1種である、請求項15に記載の非水電解液電池用電解液。
- 前記溶質が、リチウム、ナトリウム、カリウム、及び四級アルキルアンモニウムからなる群から選ばれる少なくとも1種のカチオンと、ヘキサフルオロリン酸、テトラフルオロホウ酸、過塩素酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロエタンスルホニル)イミド、(トリフルオロメタンスルホニル)(ペンタフルオロエタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、(トリフルオロメタンスルホニル)(フルオロスルホニル)イミド、(ペンタフルオロエタンスルホニル)(フルオロスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、及びビス(ジフルオロホスホニル)イミドからなる群から選ばれる少なくとも1種のアニオンの対からなる塩である、請求項1~16のいずれか1項に記載の非水電解液電池用電解液。
- 請求項1から17のいずれかに記載の非水系電解液と、正極と、負極と、セパレータとを備える非水系電解液電池。
- (ア)請求項1から17のいずれかに記載の非水系電解液と、
(イ)少なくとも1種の酸化物及び/又はポリアニオン化合物を正極活物質として含む正極と、
(ウ)負極活物質を含む負極と、
(エ)ポリオレフィン又はセルロースを主成分とするセパレータとを備え、
前記正極活物質は、(A)ニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、層状構造を有するリチウム遷移金属複合酸化物、(B)スピネル構造を有するリチウムマンガン複合酸化物、(C)リチウム含有オリビン型リン酸塩及び(D)層状岩塩型構造を有するリチウム過剰層状遷移金属酸化物からなる群から選択される少なくとも1種以上であり、
前記負極活物質は、(E)X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、(F)X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、(G)Si、Sn、Alから選ばれる1種以上の金属の酸化物、(H)Si、Sn、Alから選ばれる1種以上の金属若しくはこれら金属を含む合金又はこれら金属若しくは合金とリチウムとの合金、及び(I)リチウムチタン酸化物からなる群から選択される少なくとも1種以上である、非水系電解液電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15878967.7A EP3246982B1 (en) | 2015-01-23 | 2015-12-28 | Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell |
PL15878967T PL3246982T3 (pl) | 2015-01-23 | 2015-12-28 | Roztwór elektrolitu do ogniwa z niewodnym roztworem elektrolitu i ogniwo z niewodnym roztworem elektrolitu |
CN201580073996.1A CN107210484B (zh) | 2015-01-23 | 2015-12-28 | 非水电解液电池用电解液及非水电解液电池 |
KR1020177023175A KR101958880B1 (ko) | 2015-01-23 | 2015-12-28 | 비수전해액 전지용 전해액 및 비수전해액 전지 |
US15/545,187 US10454139B2 (en) | 2015-01-23 | 2015-12-28 | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
TW105101756A TW201640732A (zh) | 2015-01-23 | 2016-01-20 | 非水電解液電池用電解液及非水電解液電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-011731 | 2015-01-23 | ||
JP2015011731 | 2015-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117279A1 true WO2016117279A1 (ja) | 2016-07-28 |
Family
ID=56416836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/086515 WO2016117279A1 (ja) | 2015-01-23 | 2015-12-28 | 非水電解液電池用電解液及び非水電解液電池 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10454139B2 (ja) |
EP (1) | EP3246982B1 (ja) |
JP (1) | JP6004124B2 (ja) |
KR (1) | KR101958880B1 (ja) |
CN (1) | CN107210484B (ja) |
HU (1) | HUE049940T2 (ja) |
PL (1) | PL3246982T3 (ja) |
TW (1) | TW201640732A (ja) |
WO (1) | WO2016117279A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026181A1 (ja) * | 2015-08-12 | 2017-02-16 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2017216040A (ja) * | 2016-05-30 | 2017-12-07 | セントラル硝子株式会社 | 非水系電解液二次電池用電解液及びそれを用いた非水系電解液二次電池 |
WO2018008650A1 (ja) * | 2016-07-06 | 2018-01-11 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
WO2018200631A1 (en) * | 2017-04-25 | 2018-11-01 | Board Of Regents, The University Of Texas System | Electrolytes and electrochemical devices |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6468025B2 (ja) * | 2015-03-26 | 2019-02-13 | 株式会社豊田中央研究所 | 非水系リチウム二次電池 |
KR102498193B1 (ko) * | 2017-12-12 | 2023-02-09 | 샌트랄 글래스 컴퍼니 리미티드 | 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지 |
KR102675258B1 (ko) * | 2018-01-30 | 2024-06-17 | 주식회사 엘지에너지솔루션 | 고온 저장 특성이 향상된 리튬 이차전지 |
US11329313B2 (en) | 2018-01-30 | 2022-05-10 | Lg Energy Solution, Ltd. | Lithium secondary battery having improved high-temperature storage characteristics |
CN109053415A (zh) * | 2018-07-06 | 2018-12-21 | 中山弘毅新材料有限公司 | 一种四氟草酸磷酸锂的制备方法 |
CN109180730A (zh) * | 2018-08-29 | 2019-01-11 | 苏州松湖新能源材料有限公司 | 一种二氟双草酸磷酸盐的制备方法 |
CN111977685B (zh) * | 2020-06-09 | 2022-09-02 | 河南大学 | 一种钠离子电池负极材料的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137890A (ja) * | 2001-11-05 | 2003-05-14 | Central Glass Co Ltd | イオン性金属錯体の合成法 |
JP2007035357A (ja) * | 2005-07-25 | 2007-02-08 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2008004503A (ja) * | 2006-06-26 | 2008-01-10 | Sony Corp | 非水電解質組成物及び非水電解質二次電池 |
WO2011125397A1 (ja) * | 2010-04-06 | 2011-10-13 | セントラル硝子株式会社 | 非水電解液電池用電解液及びこれを用いる非水電解液電池 |
JP2013232417A (ja) * | 2012-04-30 | 2013-11-14 | Samsung Sdi Co Ltd | リチウム二次電池用電解液およびリチウム二次電池 |
WO2013180174A1 (ja) * | 2012-05-30 | 2013-12-05 | セントラル硝子株式会社 | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 |
WO2015174455A1 (ja) * | 2014-05-14 | 2015-11-19 | 宇部興産株式会社 | 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩 |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3066126B2 (ja) | 1991-09-10 | 2000-07-17 | 三洋電機株式会社 | 非水系電解液電池 |
JPH07176323A (ja) | 1993-12-21 | 1995-07-14 | Mitsubishi Cable Ind Ltd | Li二次電池用電解液及び負極 |
FR2719161B1 (fr) | 1994-04-22 | 1996-08-02 | Accumulateurs Fixes | Générateur électrochimique rechargeable au lithium à anode de carbone. |
DE19829030C1 (de) | 1998-06-30 | 1999-10-07 | Metallgesellschaft Ag | Lithium-bisoxalatoborat, Verfahren zu dessen Herstellung und dessen Verwendung |
CN1181592C (zh) | 1999-06-18 | 2004-12-22 | 三菱化学株式会社 | 非水系电解液蓄电池 |
JP2001006729A (ja) | 1999-06-18 | 2001-01-12 | Mitsubishi Chemicals Corp | 非水系電解液二次電池 |
DE19933898A1 (de) | 1999-07-22 | 2001-02-01 | Chemetall Gmbh | Tris(oxalato)phosphate, Verfahren zu deren Herstellung und deren Verwendung |
JP2001057235A (ja) | 1999-08-19 | 2001-02-27 | Mitsui Chemicals Inc | 非水電解液および非水電解液二次電池 |
US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
JP3722685B2 (ja) | 2000-10-03 | 2005-11-30 | セントラル硝子株式会社 | 電気化学ディバイス用電解質及びそれを用いた電池 |
DE60143070D1 (de) | 2000-10-03 | 2010-10-28 | Central Glass Co Ltd | Elektrolyt für elektrochemische Vorrichtung |
JP4973825B2 (ja) | 2000-11-14 | 2012-07-11 | 戸田工業株式会社 | 非水電解質二次電池用正極活物質の製造法、非水電解質二次電池 |
JP4190162B2 (ja) | 2001-03-01 | 2008-12-03 | 三井化学株式会社 | 非水電解液、それを用いた二次電池、および電解液用添加剤 |
JP2003115324A (ja) | 2001-10-04 | 2003-04-18 | Japan Storage Battery Co Ltd | 非水電解質電池。 |
US6849752B2 (en) | 2001-11-05 | 2005-02-01 | Central Glass Company, Ltd. | Process for synthesizing ionic metal complex |
US6652644B1 (en) | 2002-03-29 | 2003-11-25 | Silicon Light Machines, Inc. | Adjusting lithium oxide concentration in wafers using a two-phase lithium-rich source |
JP3417411B2 (ja) | 2002-05-17 | 2003-06-16 | 宇部興産株式会社 | 非水電解液及びリチウム二次電池 |
GB2395059B (en) | 2002-11-05 | 2005-03-16 | Imp College Innovations Ltd | Structured silicon anode |
WO2004100293A1 (ja) | 2003-05-09 | 2004-11-18 | Sony Corporation | 負極活物質及びその製造方法、これを用いた非水電解質二次電池 |
JP4423888B2 (ja) | 2003-06-11 | 2010-03-03 | ソニー株式会社 | リチウムイオン二次電池用電解質およびそれを用いたリチウムイオン二次電池 |
KR20060042201A (ko) | 2004-02-27 | 2006-05-12 | 산요덴키가부시키가이샤 | 리튬 2차 전지 |
JP2006196250A (ja) | 2005-01-12 | 2006-07-27 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP2007018883A (ja) | 2005-07-07 | 2007-01-25 | Toshiba Corp | 負極活物質、非水電解質電池及び電池パック |
GB0601319D0 (en) | 2006-01-23 | 2006-03-01 | Imp Innovations Ltd | A method of fabricating pillars composed of silicon-based material |
JP2007242411A (ja) | 2006-03-08 | 2007-09-20 | Sony Corp | 電池及び電解液組成物 |
JP4605133B2 (ja) | 2006-06-05 | 2011-01-05 | ソニー株式会社 | 非水電解質およびこれを用いた非水電解質電池、並びに非水電解質の製造方法 |
JP2007335143A (ja) | 2006-06-13 | 2007-12-27 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP5256816B2 (ja) | 2007-03-27 | 2013-08-07 | 学校法人神奈川大学 | リチウムイオン電池用正極材料 |
WO2009063613A1 (ja) | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
JP5258353B2 (ja) * | 2008-03-31 | 2013-08-07 | 三洋電機株式会社 | 非水電解質二次電池 |
JP5516418B2 (ja) | 2008-12-12 | 2014-06-11 | 株式会社村田製作所 | 非水電解液二次電池 |
JP5278442B2 (ja) * | 2009-01-06 | 2013-09-04 | 株式会社村田製作所 | 非水電解液二次電池 |
US8993177B2 (en) * | 2009-12-04 | 2015-03-31 | Envia Systems, Inc. | Lithium ion battery with high voltage electrolytes and additives |
KR101930558B1 (ko) | 2010-05-12 | 2018-12-18 | 미쯔비시 케미컬 주식회사 | 비수계 전해액 및 비수계 전해액 2차 전지 |
CN103329333B (zh) | 2011-01-25 | 2016-06-29 | 株式会社村田制作所 | 非水电解液充电电池 |
JP5989634B2 (ja) | 2011-02-28 | 2016-09-07 | 三洋電機株式会社 | 非水電解液二次電池 |
JP2013030284A (ja) | 2011-07-26 | 2013-02-07 | Mitsubishi Chemicals Corp | 非水系電解液電池 |
JP5674600B2 (ja) * | 2011-08-31 | 2015-02-25 | 三井化学株式会社 | 環状スルホン化合物を含有するリチウム二次電池用非水電解液、及びそのリチウム二次電池 |
CN103208652B (zh) | 2012-01-16 | 2017-03-01 | 株式会社杰士汤浅国际 | 蓄电元件、蓄电元件的制造方法及非水电解液 |
US9865872B2 (en) | 2012-02-06 | 2018-01-09 | Nec Corporation | Lithium-ion battery and method for producing same |
WO2013132824A1 (ja) | 2012-03-05 | 2013-09-12 | 株式会社豊田自動織機 | リチウムイオン二次電池 |
JP5710535B2 (ja) * | 2012-03-28 | 2015-04-30 | 株式会社東芝 | 非水電解質二次電池及び電池パック |
CN104685698B (zh) | 2012-08-27 | 2017-04-19 | 三洋电机株式会社 | 非水电解质二次电池 |
CN109301162A (zh) | 2013-03-27 | 2019-02-01 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质电池 |
-
2015
- 2015-12-28 WO PCT/JP2015/086515 patent/WO2016117279A1/ja active Application Filing
- 2015-12-28 PL PL15878967T patent/PL3246982T3/pl unknown
- 2015-12-28 EP EP15878967.7A patent/EP3246982B1/en active Active
- 2015-12-28 KR KR1020177023175A patent/KR101958880B1/ko active IP Right Grant
- 2015-12-28 US US15/545,187 patent/US10454139B2/en active Active
- 2015-12-28 CN CN201580073996.1A patent/CN107210484B/zh active Active
- 2015-12-28 HU HUE15878967A patent/HUE049940T2/hu unknown
-
2016
- 2016-01-06 JP JP2016000784A patent/JP6004124B2/ja active Active
- 2016-01-20 TW TW105101756A patent/TW201640732A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137890A (ja) * | 2001-11-05 | 2003-05-14 | Central Glass Co Ltd | イオン性金属錯体の合成法 |
JP2007035357A (ja) * | 2005-07-25 | 2007-02-08 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2008004503A (ja) * | 2006-06-26 | 2008-01-10 | Sony Corp | 非水電解質組成物及び非水電解質二次電池 |
WO2011125397A1 (ja) * | 2010-04-06 | 2011-10-13 | セントラル硝子株式会社 | 非水電解液電池用電解液及びこれを用いる非水電解液電池 |
JP2013232417A (ja) * | 2012-04-30 | 2013-11-14 | Samsung Sdi Co Ltd | リチウム二次電池用電解液およびリチウム二次電池 |
WO2013180174A1 (ja) * | 2012-05-30 | 2013-12-05 | セントラル硝子株式会社 | シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法 |
WO2015174455A1 (ja) * | 2014-05-14 | 2015-11-19 | 宇部興産株式会社 | 非水電解液、それを用いた蓄電デバイス、及びそれに用いるリチウム塩 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3246982A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026181A1 (ja) * | 2015-08-12 | 2017-02-16 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2017037808A (ja) * | 2015-08-12 | 2017-02-16 | セントラル硝子株式会社 | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 |
US11114693B2 (en) | 2015-08-12 | 2021-09-07 | Central Glass Company, Ltd. | Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery |
JP2017216040A (ja) * | 2016-05-30 | 2017-12-07 | セントラル硝子株式会社 | 非水系電解液二次電池用電解液及びそれを用いた非水系電解液二次電池 |
WO2017208944A1 (ja) * | 2016-05-30 | 2017-12-07 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
US10991983B2 (en) | 2016-05-30 | 2021-04-27 | Central Glass Company Limited | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery |
WO2018008650A1 (ja) * | 2016-07-06 | 2018-01-11 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2018014319A (ja) * | 2016-07-06 | 2018-01-25 | セントラル硝子株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
CN109155438A (zh) * | 2016-07-06 | 2019-01-04 | 中央硝子株式会社 | 非水系电解液及使用其的非水系电解液电池 |
US11101499B2 (en) | 2016-07-06 | 2021-08-24 | Central Glass Company Limited | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery |
WO2018200631A1 (en) * | 2017-04-25 | 2018-11-01 | Board Of Regents, The University Of Texas System | Electrolytes and electrochemical devices |
Also Published As
Publication number | Publication date |
---|---|
EP3246982B1 (en) | 2020-03-18 |
PL3246982T3 (pl) | 2020-09-07 |
HUE049940T2 (hu) | 2020-11-30 |
KR20170104609A (ko) | 2017-09-15 |
US10454139B2 (en) | 2019-10-22 |
EP3246982A1 (en) | 2017-11-22 |
CN107210484A (zh) | 2017-09-26 |
JP2016139605A (ja) | 2016-08-04 |
TW201640732A (zh) | 2016-11-16 |
JP6004124B2 (ja) | 2016-10-05 |
KR101958880B1 (ko) | 2019-03-15 |
CN107210484B (zh) | 2019-07-26 |
EP3246982A4 (en) | 2018-06-20 |
US20180062204A1 (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098684B2 (ja) | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 | |
JP6004124B2 (ja) | 非水電解液二次電池用電解液及び非水電解液二次電池 | |
JP7116314B2 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
KR102156865B1 (ko) | 비수계 전해액 및 그것을 이용한 비수계 전해액 전지 | |
KR102152365B1 (ko) | 유기전해액 및 상기 전해액을 채용한 리튬 전지 | |
JP6221669B2 (ja) | 二次電池 | |
KR102156861B1 (ko) | 비수계 전해액 및 그것을 이용한 비수계 전해액 전지 | |
JP6007994B2 (ja) | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 | |
WO2009110490A1 (ja) | 非水電解質電池 | |
WO2019111983A1 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
JP2019102451A (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
KR102341408B1 (ko) | 리튬 전지용 전해질, 및 이를 포함하는 리튬 전지 | |
WO2019111958A1 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15878967 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015878967 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177023175 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15545187 Country of ref document: US |