WO2013132824A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2013132824A1
WO2013132824A1 PCT/JP2013/001322 JP2013001322W WO2013132824A1 WO 2013132824 A1 WO2013132824 A1 WO 2013132824A1 JP 2013001322 W JP2013001322 W JP 2013001322W WO 2013132824 A1 WO2013132824 A1 WO 2013132824A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrolytic solution
battery
active material
electrode active
Prior art date
Application number
PCT/JP2013/001322
Other languages
English (en)
French (fr)
Inventor
林 圭一
佳世 水野
栄克 河端
貴之 弘瀬
英明 篠田
史弥 金武
阿部 徹
晃子 島
合田 信弘
三好 学
浩平 間瀬
友邦 阿部
友哉 佐藤
希世奈 吉田
昭裕 佐伯
賢佑 四本
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012143074A external-priority patent/JP2015097139A/ja
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013132824A1 publication Critical patent/WO2013132824A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having an improved electrolyte.
  • Lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers. In recent years, use of a battery mounted on a vehicle has been studied. *
  • a lithium ion secondary battery is composed of a positive electrode, a negative electrode, and an electrolytic solution.
  • the positive electrode is coated with a positive electrode active material composed of a metal composite oxide of lithium and a transition metal, such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide, and a positive electrode active material.
  • Current collector *
  • the negative electrode is formed by covering a current collector with a negative electrode active material.
  • the negative electrode active material is composed of a negative electrode active material capable of occluding and releasing lithium ions.
  • silicon Si
  • tin Sn
  • a negative electrode active material made of silicon and tin or a compound containing these expands or contracts in volume due to insertion and extraction of Li ions.
  • a film is formed on the surface of the negative electrode active material during charge and discharge. The coating prevents the electrolytic solution from coming into direct contact with the negative electrode active material and suppresses the deterioration of the electrolytic solution.
  • Japanese Patent Laid-Open No. 2006-196250 discloses that an electrolyte is coated with a lithium salt Li [P (C 2 O 4 ) 2 F 2 ] of 0.01 to 0.2 mol / L and fluoroethylene carbonate. It is described that it is added as a forming agent.
  • Japanese Patent Application Laid-Open No. 2011-90876 describes that 0.05 mol / L LiPF 2 (C 2 O 4 ) 2 and fluoroethylene carbonate are added to an electrolytic solution.
  • a negative electrode is formed by laminating a carbon particle-containing layer and a silicon-containing layer on the surface of a current collector, and a lithium salt LiPF 2 (C 2 O 4 ) 2 is added to the electrolytic solution. It has been shown that it may be.
  • a crack may generate
  • the electrolytic solution directly contacts the negative electrode active material, the electrolytic solution is deteriorated, and the charge / discharge cycle characteristics may be deteriorated.
  • JP 2011-187232 A stabilizes the coating formed on the surface of the negative electrode active material by including a halogenated cyclic carbonate and fluorine-based ethylene carbonate in the electrolyte.
  • JP 2011-090876 A, JP 2010-225378 A, JP 2010-218760 A, JP 2009-158330 A, JP 2007-048464 A, and JP 2007-35355 A has been shown to include halogenated cyclic esters in the electrolyte.
  • the inventor of the present application has further studied the optimum conditions when the electrolytic solution has a halogenated cyclic carbonate and a fluorine-based ethylene carbonate in order to further improve the charge / discharge cycle characteristics.
  • the negative electrode active material is made of a carbon material.
  • the battery characteristics are improved because the electrolyte contains fluoroethylene carbonate and a lithium salt. It is unclear whether it will be improved.
  • Japanese Patent Application Laid-Open No. 2006-073480 discloses that when a part of the negative electrode contains silicon, the electrolytic solution may contain a lithium salt.
  • a 1st subject is providing the lithium ion secondary battery excellent in the high temperature storage characteristic
  • a 2nd subject is the charging / discharging cycling characteristics of a battery.
  • An excellent lithium ion secondary battery is provided.
  • the lithium ion secondary battery of the first invention is an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element capable of being alloyed with lithium.
  • a lithium ion secondary battery comprising: a negative electrode having a negative electrode active material comprising a compound; a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions; and an electrolytic solution in which an electrolyte is dissolved in a solvent.
  • the solvent of the electrolytic solution contains fluorine-based ethylene carbonate, and the electrolytic solution contains a compound represented by the following chemical formula (1) as an additive.
  • M is P or B, X is a halogen group, R is a chain hydrocarbon group, n1 is 1 or 2, n2 is an integer of 1 to 4, and n3 is an integer of 0 to 3.
  • the lithium ion secondary battery of the second invention has a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions and a positive electrode active material capable of occluding and releasing lithium ions.
  • the compound represented by the following chemical formula (1) is included, and the molar concentration of the additive per liter of the electrolytic solution is more than 0 mol / L and less than 0.05 mol / L.
  • M is P or B, X is a halogen group, R is a chain hydrocarbon group, n1 is 1 or 2, n2 is an integer of 1 or more and 4 or less, and n3 is 0 or more. It is an integer of 3 or less.
  • the lithium ion secondary battery of the first invention includes an element that can be alloyed with lithium ions as a negative electrode active material, and is represented by the above-mentioned chemical formula (1) as a fluorine-based ethylene carbonate as an electrolyte and an additive. Contains compounds. For this reason, the outstanding high temperature storage characteristic can be exhibited.
  • the electrolyte solution contains fluorine-based ethylene carbonate and the compound represented by the above formula (1), the charge / discharge cycle characteristics are excellent.
  • FIG. 3 is a diagram showing a rate of increase in resistance of positive electrodes of batteries A1 to A3 after high temperature storage.
  • FIG. 6 is a graph showing a rate of increase in resistance of negative electrodes of batteries A1 to A3 after high-temperature storage. It is a figure which shows the capacity
  • FIG. 4 is a diagram showing charge / discharge cycle characteristics of batteries B1 to B4.
  • FIG. 6 is a diagram showing charge / discharge cycle characteristics of batteries B5 to B7.
  • FIG. 6 is a diagram showing charge / discharge cycle characteristics of batteries B13 to B16.
  • FIG. 6 is a diagram showing charge / discharge cycle characteristics of batteries B14 to B16.
  • the electrolytic solution of the lithium ion secondary battery contains fluorine-based ethylene carbonate and the compound represented by the above chemical formula (1) as an additive.
  • the charge / discharge cycle characteristics of the battery at room temperature will increase.
  • Fluorine-based ethylene carbonate is a component that easily undergoes a reduction reaction in the electrolytic solution. For this reason, it is considered that the degradation of the electrolyte and other solvents in the electrolytic solution can be suppressed by decomposing fluorine-based ethylene carbonate to become a film component, and the charge / discharge characteristics of the battery at room temperature are enhanced.
  • Fluorine-based ethylene carbonate has high stability at high temperatures at high potentials, but low stability at high temperatures at low potentials. For this reason, in the positive electrode which becomes a comparatively noble electric potential, fluorine-type ethylene carbonate is hard to be decomposed
  • the negative electrode active material contains an element that can be alloyed with lithium ions, and the volume change associated with insertion and extraction of lithium ions is relatively large. For this reason, the relatively thick film formed on the surface of the negative electrode active material tends to concentrate stress on the surface of the film and is easily destroyed. Therefore, it is required to be coated with a thin and stable coating that can flexibly follow the volume change of the active material.
  • the additive contained in the electrolytic solution is a compound represented by the above formula (1).
  • This additive has a high redox potential and is prone to reductive decomposition. For this reason, a secondary battery having an electrolytic solution containing an additive tends to form a thin stable coating on the entire surface of the negative electrode active material in the initial stage of use.
  • a thin film easily follows the volume change of the active material accompanying the insertion and extraction of lithium ions, and stress is less likely to concentrate. Therefore, direct contact between the negative electrode active material and the electrolytic solution can be suppressed, and further deterioration of the electrolytic solution can be suppressed. Moreover, the further production
  • a thin and stable film is formed on the entire surface of the positive electrode active material. For this reason, while suppressing further deterioration of electrolyte solution, the further production
  • the molar concentration of the additive per liter of the electrolyte is preferably 0.005 mol / L or more and 0.04 mol / L or less, and more preferably 0.005 mol / L or more and 0.02 mol / L or less. It is desirable that it is 0.01 mol / L or more and 0.02 mol / L or less. If the amount of additives in the electrolyte is too small, it is difficult to form a thin and stable film on the surfaces of the negative electrode active material and the positive electrode active material in the initial stage of use, and the film becomes thicker and resistance increases with use. , Storage stability may be reduced. When the additive is excessively contained in the electrolytic solution, the effect of the additive is saturated and further improvement of the effect cannot be expected.
  • the additive composed of the compound represented by the formula (1) has an ionic metal complex structure, and M at the center is composed of P (phosphorus) or B (boron). M forms part of the cyclic skeleton of the cyclic carboxylic acid and has at least one halogen group.
  • the electrons of M are biased toward the halogen group having a high electronegativity, and M is slightly positively charged. For this reason, M tends to attract the electrons of oxygen forming the ring structure in the cyclic carboxylic acid, and the ring is easily opened between M and O. Therefore, the additive has a higher redox potential than the other components in the electrolytic solution, and is reduced and decomposed prior to the other components.
  • X represents a halogen group.
  • the halogen group include F (fluorine), Cl (chlorine), Br (bromine), and I (iodine) At (astatin). Among them, F and Cl are preferable, and F is more preferable.
  • M is bonded with 1 to 4 halogen groups X (1 ⁇ n2 ⁇ 4).
  • R is a chain hydrocarbon group.
  • the chain hydrocarbon group may be an aliphatic alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, or a group in which hydrogen contained in an aliphatic alkyl group is substituted with a halogen group.
  • aliphatic alkyl groups lower aliphatic alkyl groups having 1 to 3 carbon atoms are preferable.
  • R is preferably a chain hydrocarbon group having a halogen group.
  • a halogen group is preferably bonded to carbon bonded to M among chain hydrocarbon groups. This is because the halogen group, together with the halogen group X directly bonded to M, easily attracts M electrons and facilitates ring opening of MO.
  • R may be bonded to M in Chemical Formula (1).
  • the bond number n3 of R is 0 to 3 (0 ⁇ n3 ⁇ 3).
  • R may not be bonded to M.
  • the compound as an additive has a cyclic carboxylic acid.
  • the number of cyclic carboxylic acids in the compound is 1 or more and 2 or less (1 ⁇ n1 ⁇ 2).
  • the additive may be a compound represented by the following chemical formula (2).
  • the compound represented by the formula (2) is LiPF 2 (C 2 O 4 ) 2 (hereinafter referred to as LPFO). Since LPFO has a high oxidation-reduction potential, it is easily reductively decomposed and suppresses decomposition of other components of the electrolytic solution. For this reason, the storage characteristic of a lithium ion secondary battery, especially a high temperature storage characteristic can be improved.
  • the following chemical formulas (3-1) to (3-5), or chemical formulas (4-1) or (4-2) shown below can be used.
  • the compound represented by Chemical Formula (2) and the compound represented by Chemical Formula (3-1) are compounds having two cyclic carboxylic acids with P interposed therebetween, and (3-2) to (3 -5) is a compound having one cyclic carboxylic acid containing P as a part of the ring structure.
  • the compound represented by the formula (4-1) or (4-2) is a cyclic carboxylic acid containing B as part of the ring structure, and has one cyclic carboxylic acid. *
  • the solvent of the electrolytic solution contains fluorine-based ethylene carbonate, and the electrolytic solution contains a compound represented by the following chemical formula (1) as an additive.
  • the charge / discharge cycle characteristics are good as shown in the experimental examples described later. The reason is considered as follows.
  • the additive added to the electrolytic solution is composed of a compound represented by chemical formula (1).
  • the compound represented by Formula (1) is a halogenated cyclic carbonate, and has a high redox potential and is easily reductively decomposed. For this reason, when charge / discharge is performed using an electrolytic solution containing an additive, a stable coating is formed on the surface of the negative electrode active material.
  • an additive can suppress decomposition
  • the solvent of electrolyte solution contains the fluorine-type ethylene carbonate.
  • Fluorine-based ethylene carbonate is a component that easily undergoes a reduction reaction in the electrolytic solution. For this reason, it is considered that degradation of the electrolyte and other solvents in the electrolytic solution can be suppressed by decomposing fluorine-based ethylene carbonate, and the charge / discharge cycle characteristics of the battery are enhanced.
  • the negative electrode active material contains an element that can be alloyed with lithium ions, and the volume change associated with insertion and extraction of lithium ions is relatively large. For this reason, when a relatively thick film is formed on the surface of the negative electrode active material, stress is likely to concentrate on the surface of the film and is easily broken. Therefore, it is required to be coated with a thin and stable coating that can flexibly follow the volume change of the active material.
  • Additives and fluorinated ethylene carbonate have a high redox potential and are prone to reductive decomposition. For this reason, a secondary battery having an electrolytic solution containing an additive and fluorine-based ethylene carbonate tends to form a thin and stable coating on the entire surface of the negative electrode active material in the initial stage of use.
  • a thin film easily follows the volume change of the active material accompanying the insertion and extraction of lithium ions, and stress is less likely to concentrate. Therefore, direct contact between the negative electrode active material and the electrolytic solution can be suppressed, and further deterioration of the electrolytic solution can be suppressed. Moreover, the further production
  • the internal resistance of the battery can be kept low compared to an electrolytic solution that includes the additive and does not include fluorine-based ethylene carbonate.
  • a thin stable film is formed also on the whole surface of the positive electrode active material. For this reason, while suppressing further deterioration of electrolyte solution, the further production
  • generation of a film can be suppressed and the electrical resistance of a positive electrode active material can be suppressed low.
  • the molar concentration of the additive per liter of the electrolyte is more than 0 mol / L and less than 0.05 mol / L. If it is 0.05 mol / L or more, the initial internal resistance of the battery may increase.
  • the additive is a compound that is easily reduced and decomposed among the components of the electrolytic solution, and the reduced decomposition product becomes a coating component formed on the surfaces of the negative electrode active material and the positive electrode active material. For this reason, when an additive is excessively contained in the electrolytic solution, the coating becomes thicker, leading to an increase in electrical resistance of the active material. Therefore, by suppressing the concentration of the additive to less than 0.05 mol / L, it is possible to keep the amount necessary for coating the entire active material surface, and it is possible to suppress the thickening of the coating. *
  • the molar concentration of the additive per liter of the electrolyte is preferably 0.005 mol / L or more and 0.04 mol / L or less, more preferably 0.01 mol / L or more and 0.02 mol / L or less. It is desirable to be. In this case, the entire surface of the active material can be covered with a coating to prevent direct contact between the active material and the electrolyte, and the internal resistance of the battery can be kept low by further effectively suppressing the thickening of the coating. . *
  • the concentration of the additive in the electrolytic solution is preferably 0.3 mol / L or less.
  • the higher the concentration of the additive the better the cycle characteristics of the battery.
  • the additive concentration exceeds 0.3 mol / L, it may be difficult to dissolve in the electrolyte.
  • the concentration of the additive is high. Under high voltage, for example, a case where the battery is charged to a voltage of 4.0 V or higher and further higher than 4.2 V at the time of charging is exemplified. *
  • the additive composed of the compound represented by formula (1) has an ionic metal complex structure, and the element M as the center is composed of P (phosphorus) or B (boron). M forms part of the cyclic skeleton of the cyclic carboxylic acid and has at least one halogen group.
  • the electrons of M are biased toward the halogen group having a high electronegativity, and M is slightly positively charged. For this reason, M tends to attract the electrons of oxygen forming the ring structure in the cyclic carboxylic acid, and the ring is easily opened between M and O. Therefore, the additive has a higher redox potential than the other components in the electrolytic solution, and is reduced and decomposed prior to the other components. *
  • n1 represents the number of ring structures bonded to the central element M, and is selected from 1 and 2.
  • One ring structure may be bonded to M, or two ring structures may be bonded to M.
  • the central element M is composed of P, one or two ring structures are bonded to M.
  • M consists of B, one ring structure is bonded to M.
  • X represents a halogen group.
  • the halogen group include F (fluorine), Cl (chlorine), Br (bromine), I (iodine), and At (astatine). Among them, F and Cl are preferable, and F is more preferable.
  • n2 represents the number of halogen groups bonded to the central element M, and is selected from integers of 1 or more and 4 or less. 1 to 4 halogen groups X are bonded to M. *
  • R is a chain hydrocarbon group.
  • the chain hydrocarbon group may be an aliphatic alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, or a group in which hydrogen contained in an aliphatic alkyl group is substituted with a halogen group.
  • n3 represents the number of chain hydrocarbon groups bonded to the central element M, and is selected from an integer of 0 or more and 3 or less.
  • the chain hydrocarbon group is preferably a lower aliphatic alkyl group having 1 to 3 carbon atoms among aliphatic alkyl groups. *
  • R is preferably a chain hydrocarbon group having a halogen group.
  • a halogen group is preferably bonded to carbon bonded to M among chain hydrocarbon groups. This is because the halogen group, together with the halogen group X directly bonded to M, easily attracts M electrons and facilitates ring opening of N—O.
  • R may be bonded to M in Chemical Formula (1).
  • the bond number n3 of R is 1 to 3.
  • R may not be bonded to M.
  • the additive is preferably the compound represented by the above formula (2).
  • the compound represented by the formula (2) is LiPF 2 (C 2 O 4 ) 2 (hereinafter referred to as LPFO). Since LPFO has a high oxidation-reduction potential, it is easily reductively decomposed and suppresses decomposition of other components of the electrolytic solution. For this reason, the charge / discharge cycle characteristics of the lithium ion secondary battery can be enhanced.
  • the compound represented by the above chemical formulas (3-1) to (3-5) or the compound represented by the chemical formula (4-1) or (4-2) is used.
  • the compound of chemical formula (2) and the compound of chemical formula (3-1) are compounds having two cyclic carboxylic acids across P
  • chemical compounds (3-2) to (3-5) are It is a compound having one cyclic carboxylic acid containing P as a part of the ring structure.
  • the compound represented by the formula (4-1) or (4-2) is a cyclic carboxylic acid containing B as part of the ring structure, and has one cyclic carboxylic acid. *
  • the molar concentration of the additive per liter of the electrolyte is 0.01 mol / L or more and 0.02 mol / L. The following is preferable. Further, when the central element M is bonded to one cyclic carboxylic acid, the molar concentration of the additive per liter of the electrolyte is 0.02 mol / L or more and 0.04 mol / L or less. It is preferable.
  • the number of sites that can be cleaved by reductive decomposition when M is bound to two cyclic carboxylic acids is twice the number of sites that can be cleaved by reductive degradation when bound to one cyclic carboxylic acid.
  • the cleaved dicarbonyl compound becomes a component of the film, and the additive tends to be thicker as the additive contains more dicarbonyl compound. Therefore, the molar concentration of the additive per liter of the electrolytic solution when the central element M is bonded to two cyclic carboxylic acids is the electrolytic solution when the central element M is bonded to one cyclic carboxylic acid. It is good to be 1/2 of the molar concentration of the additive per liter.
  • the additive can form a thin and stable film on the surface of the negative electrode active material, and can improve the charge / discharge cycle characteristics. For this reason, it is good to make content of an additive into a suitable range in proportion to the surface area of a negative electrode active material.
  • the additive content per 1 m 2 of surface area of the negative electrode active material is preferably 410 ⁇ mol / m 2 or less. In this case, the charge / discharge characteristics are excellent, and the internal resistance of the battery can be lowered.
  • the “surface area of the negative electrode active material” refers to the BET surface area of the negative electrode active material.
  • the negative electrode active material is a Si compound containing Si
  • the Si compound particularly has a large volume change due to insertion and extraction of Li ions among the negative electrode active materials. For this reason, it is preferable that a thin stable film is formed on the surface of the Si compound in the initial stage of use. Therefore, the content of the additive of surface area 1 m 2 per negative electrode active material having a Si compound is preferably 406.1 ⁇ mol / m 2 or less.
  • the content of the additive per 1 m 2 of the surface area of SiO is: It is preferably 406.1 ⁇ mol / m 2 or less.
  • the additive can easily form a thin stable film on the surface of SiOx, and the cycle characteristics are further improved.
  • Fluorine-based ethylene carbonate contained in the electrolytic solution is a compound in which fluorine is bonded to carbon of ethylene carbonate.
  • the fluorine group becomes a constituent element of the film formed on the surface of the negative electrode active material particles, and stabilizes the film.
  • at least one fluorine is bonded to carbon forming a cyclic structure.
  • the fluorine-based ethylene carbonate for example, monofluorinated ethylene carbonate, difluorinated ethylene carbonate, trifluorinated ethylene carbonate, or the like can be preferably used.
  • fluorinated ethylene carbonate examples include 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate, FEC) and 4-methyl-5-fluoro-1,3-dioxolan-2-one.
  • fluorinated ethylene carbonate examples include 4-fluoro-1,3-dioxolan-2-one (fluoroethylene carbonate, FEC) and 4-methyl-5-fluoro-1,3-dioxolan-2-one.
  • difluoroethylene carbonate examples include 4,5-difluoro-1,3-dioxolan-2-one and DFEC (difluoroethylene carbonate).
  • ethylene trifluoride carbonate examples include trifluoropropylene carbonate, 4-trifluoromethyl-1,3-dioxolane 2-one, and trifluoromethylene ethylene carbonate. In view of acid resistance, it is particularly preferable to use FEC.
  • the fluorine-based ethylene carbonate is preferably 1% by volume or more and 30% by volume or less.
  • the cycle characteristics of charging / discharging can be effectively improved, and the battery capacity can be further improved by suppressing the viscosity of the electrolytic solution to facilitate the movement of Li ions.
  • the fluorine-based ethylene carbonate is less than 1% by volume, the degree of improvement in cycle characteristics may be reduced.
  • the fluorine-based ethylene carbonate exceeds 30% by volume, the high-temperature characteristics of the electrolytic solution deteriorate, the fluorine-based ethylene carbonate is decomposed at a high temperature, and the decomposition product causes the internal resistance of the battery to increase.
  • the electrolytic solution may be a nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
  • the electrolyte is preferably a fluoride salt, and is preferably an alkali metal fluoride salt that is soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
  • the organic solvent of the nonaqueous electrolytic solution is preferably an aprotic organic solvent, and for example, cyclic carbonates, chain carbonates, ethers, and the like may be used.
  • the solvent of the electrolytic solution preferably has a cyclic carbonate containing fluorine-based ethylene carbonate and a chain carbonate. Cyclic carbonate has a high dielectric constant, and chain carbonate has low viscosity. For this reason, when electrolyte solution contains both a cyclic carbonate and a chain carbonate, the movement of Li ion is not prevented and battery capacity can be improved. *
  • the solvent of the electrolytic solution has a cyclic carbonate containing fluorine-based ethylene carbonate and a chain carbonate.
  • the cyclic carbonate is 30 to 50% by volume. Is preferably 50 to 70% by volume.
  • the cyclic carbonate increases the dielectric constant of the electrolytic solution, while having a high viscosity. As the dielectric constant of the electrolyte increases, the conductivity of the electrolyte improves. When the viscosity of the electrolytic solution is high, the movement of Li ions is hindered, resulting in poor conductivity.
  • Chain carbonate has a low dielectric constant but low viscosity.
  • the cyclic carbonate contains fluorine-based ethylene carbonate as an essential component, and in addition, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma
  • PC propylene carbonate
  • EC ethylene carbonate
  • butylene carbonate gamma butyrolactone
  • vinylene carbonate 2-methyl-gamma butyrolactone
  • 2-methyl-gamma butyrolactone acetyl-gamma butyrolactone
  • gamma gamma
  • valerolactone gamma
  • One or more selected from the group of valerolactone may be included.
  • the chain carbonate used for the organic solvent is not particularly limited as long as it is a chain.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • dibutyl carbonate dipropyl carbonate
  • propionic acid alkyl ester malonic acid dialkyl ester
  • acetic acid alkyl ester Can do.
  • ethers used in organic solvents include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and the like. Can be used. *
  • the organic solvent of the electrolytic solution may be made of fluorine-based ethylene carbonate, EC, EMC, and DMC. Furthermore, the organic solvent of the electrolytic solution may be composed of fluoroethylene carbonate (FEC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the total concentration of FEC and EC is preferably 30% by volume to 50% by volume
  • EMC and DMC is preferably 50% by volume to 70% by volume.
  • the dielectric constant of the electrolytic solution is high and the viscosity is relatively low, the conductivity of the electrolytic solution is increased, and the battery capacity is increased. *
  • the negative electrode active material is composed of an elemental material composed of an element capable of occluding and releasing lithium ions and capable of an alloying reaction with lithium, and / or an elemental compound having an element capable of an alloying reaction with lithium.
  • the negative electrode active material may contain a carbon material in addition to the element material or the element compound.
  • the negative electrode active material is preferably silicon or tin or / and a silicon compound or a tin compound.
  • the negative electrode active material may contain graphite in addition to the element or / and the element compound.
  • the negative electrode active material preferably contains graphite in addition to the elemental compound.
  • the negative electrode active material may contain graphite in addition to silicon or tin and / or silicon compound or tin compound. Also in this case, the electrolytic solution of the present invention is effective and excellent in high-temperature storage stability.
  • Elemental materials composed of elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be used. Among these, silicon (Si) or tin (Sn) is preferable. *
  • Elemental compounds having elements capable of alloying with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In , Si, Ge, Sn, Pb, Sb, and Bi may be a compound having at least one selected from the group.
  • a silicon compound or a tin compound is preferable.
  • the silicon compound is preferably SiOx (0.5 ⁇ x ⁇ 1.5).
  • Examples of the tin compound include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.). *
  • the negative electrode active material may include a Si-based material having Si (silicon).
  • the Si-based material can store and release lithium ions and is preferably made of silicon or / and a silicon compound.
  • the Si-based material is preferably made of SiOx (0.5 ⁇ x ⁇ 1.5). Silicon has a large theoretical discharge capacity.
  • the volume change during charging / discharging is large, the volume change can be reduced by using SiOx.
  • the Si-based material preferably has a Si phase and a SiO 2 phase.
  • the Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released.
  • the SiO 2 phase is made of SiO 2 and absorbs expansion and contraction of the Si phase. It is preferable to form a Si-based material composed of a Si phase and a SiO 2 phase by covering the Si phase with the SiO 2 phase. Furthermore, it is preferable that a plurality of micronized Si phases are covered with a SiO 2 phase to form particles integrally. In this case, the volume change of the entire Si-based material can be effectively suppressed.
  • the mass ratio of the SiO 2 phase to the Si phase in the Si-based material is preferably 1 to 3.
  • the mass ratio is less than 1, the Si-based material is greatly expanded / contracted, and a negative electrode active material layer made of the Si-based material may be cracked.
  • the mass ratio exceeds 3, the amount of insertion / extraction of Li ions in the negative electrode active material is small, and the electric capacity may be lowered.
  • Si-based material may be composed of Si phase and SiO 2 phase and only.
  • the Si-based material has a Si phase and a SiO 2 phase as main components, but may also contain a known active material.
  • Me x Si y O z (Me is Li , Ca, and the like, x, y, and z are integers) may be mixed.
  • a raw material powder containing silicon monoxide may be used as a raw material for the Si-based material.
  • silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase.
  • silicon monoxide SiOn: n is 0.5 ⁇ n ⁇ 1.5
  • SiO 2 phase a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1
  • the silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.
  • the disproportionation of silicon monoxide in the raw material powder proceeds by applying energy to the raw material powder.
  • energy for example, a method of heating or milling the raw material powder can be mentioned.
  • a raw material powder containing amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas.
  • a silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.
  • the raw material powder When milling the raw material powder, part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase, a silicon phase, and the like.
  • the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide. *
  • the average particle diameter D50 of the negative electrode active material is preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter D50 means a value of 50% diameter in the volume-based integrated fraction when the integrated volume is obtained from particles having a small particle size distribution, and is also referred to as a median diameter.
  • the negative electrode active material constitutes a negative electrode active material layer that covers at least the surface of the current collector.
  • a negative electrode is formed by covering a current collector with a negative electrode active material layer.
  • a metal mesh or metal foil such as copper or copper alloy may be used.
  • the negative electrode active material layer may contain a binder, a conductive auxiliary agent, and the like in addition to the negative electrode active material.
  • the binder is not particularly limited, and a known one may be used.
  • a resin that does not decompose even at a high potential such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used.
  • a material generally used for electrodes of nonaqueous electrolyte secondary batteries may be used.
  • conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers.
  • conductive carbon materials known conductive materials such as conductive organic compounds are also used.
  • An auxiliary agent may be used. One of these may be used alone or in combination of two or more.
  • the positive electrode used for the lithium ion secondary battery of this invention has a positive electrode active material which can occlude / release lithium ions.
  • the positive electrode is preferably composed of a current collector and a positive electrode active material layer that has a positive electrode active material and covers the surface of the current collector.
  • the positive electrode active material may constitute a positive electrode material together with a binder and / or a conductive aid.
  • the conductive auxiliary agent and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery. *
  • the positive electrode active material for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specific examples include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , Li 2 MnO 3 , and S.
  • an active material that does not contain lithium for example, sulfur alone or a sulfur-modified compound can be used. When both the positive electrode and the negative electrode do not contain lithium, it is necessary to pre-dope lithium.
  • the current collector for the positive electrode is not particularly limited as long as it is generally used for the positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel, and may have various shapes such as a mesh and a metal foil.
  • a separator is used as needed.
  • the separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do. *
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, a coin shape, and a laminated shape can be adopted. *
  • the lithium ion secondary battery may be mounted on a vehicle. By driving the traveling motor with a lithium ion secondary battery using negative electrode active material particles having the above particle size characteristics, it can be used for a long time with a large capacity and a large output.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of the lithium ion secondary battery include various home electric appliances, office equipment, and industrial equipment driven by batteries, such as personal computers and portable communication devices, in addition to vehicles.
  • Embodiments according to the first invention will be described.
  • Five types of lithium ion secondary batteries A1 to A5 were prepared as follows, and various battery characteristics were measured.
  • the batteries A2, A4, A5 are examples of the first invention, and the batteries A1, A3 are reference examples of the first invention.
  • Disproportionated Si-based material, graphite powder, conductive additive, and polyamideimide (PAI) as a binder were mixed, and a solvent was added to obtain a slurry-like mixture.
  • Acetylene black (AB) was used as the conductive assistant.
  • the solvent was N-methyl-2-pyrrolidone (NMP).
  • the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool.
  • the negative electrode formed by fixing the negative electrode material (negative electrode active material layer) on the surface of the current collector was formed.
  • a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry.
  • This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat welding except for a part to make a bag shape.
  • a laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • the opening portion of the aluminum film was completely hermetically sealed while evacuating.
  • the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery.
  • the lithium ion secondary battery was subjected to a conditioning treatment for initial charge / discharge at 25 ° C.
  • the electrolyte solution of the battery A2 further includes LPFO in addition to the electrolyte solution of the battery A1.
  • the concentration of LPFO in the electrolyte was 0.01 mol / L.
  • the concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
  • Other configurations of the battery A2 are the same as those of the battery A1.
  • the electrolyte solution of the battery A3 does not contain FEC.
  • the other configuration of the battery A3 is the same as that of the battery A1.
  • Battery A4 is the same as Battery A2 except that the concentration of LPFO in the electrolytic solution is 0.02 mol / L.
  • Battery A5 is the same as Battery A2 except that the concentration of LPFO in the electrolytic solution is 0.04 mol / L. Table 1 shows the components of the electrolytic solutions of the batteries A1 to A5.
  • ⁇ Charge / discharge cycle test> The batteries A1 and A3 were subjected to a charge / discharge cycle test at 25 ° C.
  • the charge condition of the cycle test was 1 C, 4.2 V CC (constant current) charge, and the discharge condition was 1 C, 2.5 V CC (constant current) discharge.
  • the first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 500th cycle.
  • the cycle characteristics of the battery A1 containing FEC improved compared to the battery A3 in which FEC was not contained in the electrolytic solution. This is because FEC becomes a constituent component of LiF in the coating, a stable and strong coating is generated, and the negative electrode active material is suppressed from coming into direct contact with the electrolytic solution, and the decomposition of the electrolytic solution is suppressed. it is conceivable that.
  • the electrical resistance of the entire battery corresponds to the internal resistance of the battery, and is the electrical resistance between the positive terminal and the negative terminal for external connection of the battery.
  • the increase rate ((After-Before) / Before ⁇ 100) of the electrical resistance (After) of the whole battery after storage with respect to the electrical resistance (Before) of the whole battery before storage was determined, and this was taken as the resistance increase rate.
  • the electrical resistance of the positive electrode is the electrical resistance in the thickness direction of the positive electrode material formed on the surface of the positive electrode current collector.
  • the electrical resistance of the positive electrode was measured by separating each of the positive electrode and the negative electrode in a triode cell.
  • the rate of increase in resistance of the positive electrode was calculated by the same method as the rate of increase in resistance of the entire battery described above.
  • the electrical resistance of the negative electrode is the electrical resistance in the thickness direction of the negative electrode material formed on the surface of the negative electrode current collector.
  • the electrical resistance of the negative electrode was measured by separating the positive electrode and the negative electrode in a triode cell.
  • the resistance increase rate of the negative electrode was calculated by the same method as the above-described resistance increase rate of the whole battery.
  • the overall resistance increase rate of the batteries A1, A2, and A3, the resistance increase rate of the positive electrode, and the resistance increase rate of the negative electrode are shown in FIG. 2, FIG. 3, and FIG.
  • the rate of increase in resistance of the entire battery (cell) decreased in the order of battery A1, battery A2, and battery A3.
  • the rate of increase in resistance of the positive electrode decreased in the order of battery A3, battery A1, and battery A2.
  • the resistance increase rate of the positive electrode of each battery was higher than the resistance increase rate of the entire battery of each battery.
  • the rate of increase in resistance of the negative electrode decreased in the order of battery A1, battery A2, and battery A3.
  • the resistance increase rate of the negative electrode of each battery was lower than the resistance increase rate of the entire battery of each battery.
  • FEC has good high-temperature stability at high potential, but it is not stable at high temperature at low potential. For this reason, in the positive electrode having a relatively noble potential, FEC is difficult to be decomposed, a film is hardly generated on the surface of the positive electrode active material, and the film thickness is thin. On the other hand, in a negative electrode having a relatively base potential, FEC is easily decomposed, a film is likely to be formed on the surface of the negative electrode active material, and the film tends to be thickened. Since the coating originally has high insulation resistance, the resistance of the coating itself is further increased by increasing the thickness of the coating.
  • the negative electrode active material is made of SiOx, and has a relatively large volume change due to insertion and extraction of lithium ions. For this reason, the film formed on the negative electrode active material surface is easily destroyed. It is therefore necessary to be coated with a thin stable coating.
  • LPFO contained in the electrolytic solution has a high oxidation-reduction potential and is easily reductively decomposed. For this reason, a secondary battery having an electrolyte solution containing LPFO tends to form a thin stable film on the entire surface of the negative electrode active material in the initial stage of use. Therefore, direct contact between the negative electrode active material and the electrolytic solution can be suppressed, and further deterioration of the electrolytic solution can be suppressed. Moreover, the further production
  • a thin and stable film is formed on the entire surface of the positive electrode active material. For this reason, while suppressing further deterioration of electrolyte solution, the further production
  • the batteries A1, A2, A4, and A5 after conditioning prepared as described above were charged to the 80% level and then subjected to a storage test.
  • the conditions for the storage test were 65 ° C. and 12.5 days.
  • the discharge capacity was measured before and after the storage test.
  • the percentage of the discharge capacity after the storage test with respect to the discharge capacity before the storage test was determined to obtain the capacity recovery rate.
  • the capacity recovery rate of each battery is shown in FIG.
  • the batteries A2, A4, A5 using the electrolyte containing LPFO had a higher capacity recovery rate than the battery A1 not containing LPFO.
  • the capacity recovery rate of the battery A3 was higher than that of the battery A2.
  • the capacity recovery rate of the battery A5 was not so different from that of the battery A4. Therefore, the amount of LPFO added is preferably 0.005 to 0.04 mol / L, more preferably 0.01 to 0.04 mol / L, and preferably 0.01 to 0.02 mol / L. I found it good.
  • the batteries B1 to B5 are reference examples of the second invention, and the batteries B6 and B7 are examples of the second invention. *
  • Disproportionated Si-based material, graphite powder (MAG), conductive additive and polyamideimide (PAI) as a binder were mixed, and a solvent was added to obtain a slurry-like mixture.
  • Ketjen black (KB) was used as a conductive aid.
  • the solvent was N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the disproportionated Si-based material and graphite powder are negative electrode active materials.
  • Artificial graphite (MAG: Massive Artificial Graphite) was used as the graphite powder. *
  • the slurry mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool.
  • the negative electrode formed by fixing the negative electrode material (negative electrode active material layer) on the surface of the current collector was formed.
  • the surface area per gram of SiO was 6.5 m 2 / g.
  • MAG had a particle size of 20 ⁇ m and a surface area per 1 g of 4.4 m 2 / g.
  • the area of the negative electrode current collector covered with the negative electrode material is 7.5 cm 2 , and the amount of negative electrode material attached per 1 cm 2 of current collector (weight per unit area) is 1.85 mg / It was cm 2.
  • the surface area of SiO contained in the negative electrode, the surface area of MAG, and the surface area of the negative electrode active material contained in the negative electrode were calculated by the following formulas (A), (B), and (C), respectively. *
  • a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed.
  • the slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat welding except for a part to make a bag shape.
  • a laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • the concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
  • the amount of the electrolyte contained in one battery was 0.3 mL.
  • the opening part of the aluminum film was completely airtightly sealed while evacuating.
  • the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery.
  • the lithium ion secondary battery was subjected to a conditioning treatment for initial charge / discharge at 25 ° C. *
  • Battery B2 The compound (LPFO) represented by Chemical formula (2) is contained as an additive in the electrolyte solution of the battery B2.
  • the concentration of LPFO in the electrolytic solution is 0.005 mol / L.
  • Other configurations are the same as those of the battery B1. *
  • Battery B3 0.01 mol / L LPFO is contained as an additive in the electrolyte solution of the battery B3.
  • Other configurations are the same as those of the battery B1.
  • Battery B4 The electrolyte of the battery B4 does not contain LPFO. Fluoroethylene carbonate (FEC) is contained instead of EC in the organic solvent of the electrolyte.
  • FEC Fluoroethylene carbonate
  • Other configurations are the same as those of the battery B1. *
  • the electrolyte of the battery B5 does not contain LPFO.
  • the organic solvent of the electrolytic solution contains FEC and EC.
  • Other configurations are the same as those of the battery B1. *
  • the electrolyte solution of the battery B6 contains 0.01 mol / L of LPFO.
  • the amount of the electrolyte contained in the battery was 0.3 mL, similar to the battery B1.
  • the electrolyte solution of the battery B7 contains 0.02 mol / L of LPFO.
  • concentration of LPFO per 1 m 2 of surface area of MAG, SiO, and negative electrode active material contained in the negative electrode active material was calculated in the same manner as in the above formulas (D), (E), and (F), 250 ⁇ mol / m 2 , They were 157.9 ⁇ mol / m 2 and 96.8 ⁇ mol / m 2 .
  • Other configurations are the same as those of the battery B1.
  • Table 2 shows the components of the electrolytic solutions of the batteries B1 to B7. *
  • the charge / discharge cycle characteristics of the battery improved in the order of battery B1, battery B2, battery B3, and battery B4. From this, it was found that when LPFO or FEC was added to the electrolytic solution, the cycle characteristics were improved, and when FEC was added to the electrolytic solution, the cycle characteristics were better than when LPFO was added. *
  • charge / discharge cycle tests of the batteries B5 to B7 were performed at 25 ° C.
  • the test method was the same as the cycle test shown in FIG.
  • the results of the charge / discharge cycle test of the batteries B5 to B7 are shown in FIG. *
  • the internal resistance was lower than when EC was used.
  • the internal resistance increased as the LPFO concentration increased. From this, the internal resistance is increased by having both FEC and LPFO in the electrolytic solution, and the internal resistance is low when the concentration of LPFO is 0.005 mol / L or more and less than 0.05 mol / L. It was found that the internal resistance was further reduced when the concentration was 0.01 mol / L or more and 0.02 mol / L or less.
  • ⁇ Porosity of negative electrode> The batteries B5 and B6 were subjected to a charge / discharge cycle test 600 times. The conditions for the charge / discharge cycle test were the same as in the above ⁇ charge / discharge cycle test>. After performing this charge / discharge cycle test 600 times, a cross-sectional photograph of the negative electrode was taken. The ratio of the area of the void to the entire area of the photographed cross-sectional photograph data was calculated as a percentage ((void area) / (total area) ⁇ 100).
  • the void portion refers to a void space in the negative electrode active material layer that does not have a negative electrode active material, a conductive auxiliary agent, a binder, and the like. The calculated value was defined as the porosity X (%) of the negative electrode of each battery. Table 4 shows the porosity of the negative electrode after 600 charge / discharge cycle tests. *
  • the porosity of the negative electrode of the battery B6 was larger than the porosity of the negative electrode of the battery B5. This is probably because in the battery B6, many deposits that reduce the voids are formed in the negative electrode active material layer formed of the negative electrode active material. Therefore, for the batteries B5 and B6, the mass change of the negative electrode active material layer was measured before and after the cycle test. *
  • the batteries B5 and B6 were subjected to a charge / discharge cycle test 600 times and 1000 times.
  • the conditions for the charge / discharge cycle test were the same as in the above ⁇ charge / discharge cycle test>.
  • the discharge capacity was measured, the negative electrode was taken out, and the mass of the negative electrode active material layer was measured.
  • the battery was disassembled and the negative electrode was taken out.
  • the negative electrode was thoroughly washed with a DMC (dimethyl carbonate) solvent to remove the electrolyte, and then vacuum-dried for 12 hours, and the negative electrode mass (W2) was measured.
  • the mass of the negative electrode after the conditioning and before the charge / discharge cycle test was measured in the same manner. Assuming that the measured negative electrode mass (W1), the mass change rate of the negative electrode was calculated by the following calculation formula (1).
  • Table 5 shows the mass of the negative electrode active material layer.
  • FIG. 8 shows the mass increase rate of the negative electrode active material layer with respect to the number of charge / discharge cycles for the batteries B5 and B6. *
  • FIG. 9 shows the relationship between the discharge capacity retention rate and the mass increase rate of the negative electrode active material layer for the batteries B5 and B6.
  • the discharge capacity maintenance rate of the battery B6 was higher than that of the battery B5. This is because when the LPFO is contained in the electrolyte (battery B6), the coating is more stable and thinner, the internal resistance is lower, and the electrolyte is less deteriorated than when the LPFO is not contained (battery B5). It is considered that the discharge capacity retention rate has increased.
  • ⁇ Negative film thickness> The batteries B5 and B6 were subjected to a charge / discharge cycle test after conditioning 600 times and 1000 times.
  • the conditions for the conditioning treatment and the charge / discharge cycle test were the same as the conditions for the conditioning treatment for battery B1 and ⁇ charge / discharge cycle test>.
  • the discharge capacity is measured, the negative electrode is taken out, and the film thickness of the negative electrode is determined. It was measured.
  • the film thickness of the negative electrode refers to the thickness of the negative electrode active material layer covering the current collector surface. The method for measuring the film thickness is based on observation with a cross-sectional SEM. *
  • ⁇ T600 100 ⁇ (T600-T0) / T0 (3)
  • ⁇ T1000 100 ⁇ (T1000-T0) / T0 (4)
  • FIG. 11 shows the relationship between the discharge capacity maintenance rate and the mass increase rate of the batteries B5 and B6.
  • the thickness of the negative electrode increased with the increase in the number of charge / discharge cycles in both batteries B5 and B6. Further, the film thickness of the negative electrode of the battery B6 after the conditioning treatment was larger than that of the battery B5. However, when the number of charge / discharge cycles increased in the cycle test, the rate of increase in the film thickness of the negative electrode of battery B6 was lower than that of battery B5. Further, the battery B6 had a higher discharge capacity retention rate than the battery B5. This indicates that when the electrolyte contained LPFO, a thin stable film was formed on the surface of the negative electrode active material during the conditioning treatment, and the film thickness of the negative electrode did not increase even after repeated charging and discharging. For this reason, the contact opportunity between the electrolytic solution and the negative electrode active material is suppressed low, the deterioration of the electrolytic solution is suppressed, and the internal resistance is suppressed low. *
  • Electrolyte decomposition products accumulate and the film thickness increases. Since electrolyte decomposition occurs actively on the new surface of the active material, if the negative electrode active material particles are exhausted (collapsed, cracked, pulverized) due to volume change accompanying Li occlusion / release during charge / discharge, the surface area of the negative electrode active material particles It is considered that the decomposition of the electrolytic solution is accelerated by increasing. In order to suppress exhaustion of the negative electrode active material particles, the initial film on the surface of the negative electrode active material particles needs to be stable. *
  • the battery configuration of the lithium ion secondary battery was the same as that of batteries B6 and B7.
  • the molar concentration of LPFO with respect to 1 L of the electrolyte solution is 0.005 mol / L, 0.04 mol / L, 0.005 mol / L, in addition to 0.01 mol / L and 0.02 mol / L as in batteries B6 and B7. 05 mol / L. Similar to the battery B1, the content of the electrolyte contained in the battery was 0.3 mL.
  • a positive electrode active material made of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , a conductive auxiliary agent made of acetylene black, and polyvinylidene fluoride (PVDF) ) was mixed to form a slurry. This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • the negative electrode is composed of a disproportionated Si-based material, graphite powder, ketjen black as a conductive additive, and polyamideimide (PAI) as a binder.
  • artificial graphite was used as the graphite powder.
  • the surface area of SiO used in the battery B8 was 2.8 m 2 / g.
  • Artificial graphite had a particle size of 10 ⁇ m and a surface area of 5.9 m 2 / g.
  • LiPF 6 as an electrolyte and LPFO as an additive were dissolved in an organic solvent.
  • the concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
  • the molar concentration of LPFO per liter of electrolyte is 0.01 mol / L.
  • the concentration of LPFO per 1 m 2 of surface area of artificial graphite and the concentration of LPFO per 1 m 2 of surface area of negative electrode active material were determined.
  • the concentration of LPFO surface area 1 m 2 per SiO is 58.1 ⁇ mol / m 2
  • the concentration of LPFO per surface area 1 m 2 of the negative electrode active material 13.5 ⁇ mol / m 2 .
  • the battery B8 was subjected to a conditioning process in the same manner as the battery B1.
  • Other battery configurations are the same as those of the battery B1.
  • the concentration of LPFO with respect to 1 L of the electrolytic solution was 0.023 mol / L.
  • the concentration of LPFO surface area 1 m 2 per artificial graphite is 40.6 ⁇ mol / m 2
  • the concentration of LPFO surface area 1 m 2 per SiO is 133.6 ⁇ mol / m 2
  • surface area 1 m 2 per negative electrode active material The concentration of LPFO was 31.1 ⁇ mol / m 2 .
  • the concentration of LPFO with respect to 1 L of the electrolytic solution was 0.036 mol / L.
  • the concentration of LPFO per 1 m 2 surface area of artificial graphite is 63.5 ⁇ mol / m 2
  • the concentration of LPFO per 1 m 2 surface area of SiO is 209.2 ⁇ mol / m 2
  • the LPFO per 1 m 2 surface area of negative electrode active material was 48.7 ⁇ mol / m 2 .
  • the concentration of LPFO with respect to 1 L of the electrolytic solution was 0.05 mol / L.
  • the concentration of LPFO per 1 m 2 of artificial graphite surface area is 88.2 ⁇ mol / m 2
  • the concentration of LPFO per 1 m 2 surface area of SiO is 290.5 ⁇ mol / m 2
  • the LPFO per 1 m 2 surface area of the negative electrode active material was 67.7 ⁇ mol / m 2 .
  • the concentration of LPFO with respect to 1 L of the electrolytic solution was 0.06 mol / L.
  • Surface area of artificial graphite 1m The concentration of LPFO per 2 is 105.9 ⁇ mol / m 2, the concentration of LPFO surface area 1 m 2 per SiO is 348.6 ⁇ mol / m 2, the concentration of LPFO surface area 1 m 2 per negative electrode active material 81.2Myumol / It was m 2.
  • the batteries B8 to B11 were subjected to a charge / discharge cycle test and a storage test.
  • the charge condition of the cycle test was 1C, 4.2V CC (constant current) charge
  • the discharge condition was 1C, 2.5V CC (constant current) discharge.
  • the charge / discharge cycle test was performed at 25 ° C. and 60 ° C.
  • the first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 500th cycle.
  • the batteries B8 to B12 having a charge rate (SOC) of 90% were stored at 40 ° C. and 60 ° C. for 30 days, respectively.
  • SOC charge rate
  • the capacity and resistance at each stage after storage at 60 ° C were measured.
  • the method for measuring the capacity and resistance is the same as in the case of the batteries B1 to B7.
  • Various parameters of the batteries B8 to B12 are shown in Table 8, the capacities of the batteries B8 to B11 are shown in Table 9, and the resistances of the batteries B8 to B11 are shown in Table 10. *
  • the batteries B6 and B7 and the batteries B9 and B10 are duplicated. I didn't find a range to do.
  • the batteries B6 and B7 and the batteries B9 and B10 are compared in terms of the LPFO concentration per surface area of the negative electrode active material of the battery, they are close to each other and overlap each other in the range of 48.4 to 48.7 ⁇ mol / m 2 .
  • the surface area of SiO is 6.5 m 2 / g in the batteries B6 and B7 and 2.8 m 2 / g in the batteries B9 and B10, which are quite different.
  • the concentration of LPFO with respect to the surface area of SiO approximated and overlapped each other in the range of 133.6 to 157.9 ⁇ mol / m 2 .
  • the overlapping range of the LPFO concentration with respect to the SiO surface area was wider than the overlapping range of the LPFO concentration with respect to the surface area of the negative electrode active material. This is because SiO has a large volume change due to insertion and extraction of Li ions, so that a thin and stable film is formed on the surface in the early stage of battery use, thereby preventing damage to the film due to volume change. This is considered to be because the deterioration of the electrolytic solution due to direct contact can be suppressed and the cycle characteristics can be effectively improved.
  • the negative electrode is composed of a disproportionated Si-based material, graphite powder, ketjen black as a conductive additive, and polyamideimide (PAI) as a binder.
  • the graphite powder used was artificial graphite.
  • the cycle test was done on high temperature high voltage conditions.
  • the cycle test was performed at 60 ° C., charged under conditions of CC (constant current) of 1C and 4.5V, discharged under conditions of CC (constant current) of 1C and 2.5V, and this was repeated 200 times.
  • the capacity maintenance rate with respect to the initial discharge capacity was measured as appropriate.
  • the results are shown in FIG. FIG. 13 shows the capacity retention rate after 200 cycles of the batteries B14 to B16.
  • the batteries B13, B15, and B16 using the electrolyte solution containing LPFO had improved cycle characteristics as compared with the battery B14 not containing LPFO.
  • the cycle characteristics were further improved as compared to the case where FEC was not included (Battery B13).
  • the capacity maintenance rate after 200 cycles was increased by increasing the LPFO concentration. It was found that the LPFO concentration should be 0.007M or higher if the capacity maintenance rate is 60% or higher, and 0.075M or higher if it is 70% or higher.
  • the upper limit of the LPFO concentration is the maximum concentration at which LPFO dissolves. From this, it was found that a battery using an electrolytic solution containing LPFO and FEC exhibits excellent cycle characteristics even when using high temperature and high voltage. It was found that when the battery is output at a high voltage at a high temperature, the concentration of LPFO in the electrolytic solution should be increased.
  • the LPFO concentration is preferably 0.007 mol / L or more, and in order to make the capacity maintenance ratio after 200 cycles 70% or more. It was found that 0.075 mol / L or more is preferable.
  • the upper limit of LPFO is considered to be a maximum concentration of LPFO that can be dissolved in the electrolytic solution (for example, 3 mol / L). From the viewpoint of the solubility of the additive in the electrolytic solution, the upper limit of the LPFO concentration at high temperature and high voltage is preferably 3 mol / L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出し得る負極活物質を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質を溶媒に溶解させてなる電解液とを有する。電解液の溶媒は、フッ素系エチレンカーボネートを含む。電解液は、添加剤として下記の化(1)で表される化合物を含んでいる。電解液1リットル当たりの添加物のモル濃度は、0モル/Lを超えて大きく0.05モル/L未満である。上記構成のリチウムイオン二次電池は、充放電サイクル特性に優れる。(Mは、P又はBであり、Xはハロゲン基であり、Rは鎖状炭化水素基であり、n1は1又は2であり、n2は1以上4以下の整数であり、n3は0以上3以下の整数である。)

Description

リチウムイオン二次電池
本発明は、電解液を改良したリチウムイオン二次電池に関する。
リチウムイオン二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。また、近年、電池を車両に搭載して使用することが検討されている。 
リチウムイオン二次電池は、正極と負極と電解液とから構成されている。正極は、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物からなる正極活物質と、正極活物質で被覆された集電体とからなる。 
負極は、負極活物質で集電体を被覆して形成されている。負極活物質は、リチウムイオンを吸蔵・放出可能な負極活物質からなり、近年、珪素(Si)や錫(Sn)又はこれらの元素を含む化合物の使用が検討されている。珪素及び錫又はこれらを含む化合物からなる負極活物質は、Liイオンの吸蔵・放出により体積が膨張したり収縮したりする。負極活物質の表面には、充放電時に被膜が形成される。被膜は、電解液が負極活物質と直接接触するのを防止して電解液の劣化を抑えている。
 近年、電池を車両に搭載して使用することが検討されている。車両は、過酷な環境下に晒されることが多い。電池を高温下で貯蔵すると、電池の内部抵抗が上昇するなど、電池特性が低下する。このため、電池には高温貯蔵安定性が必要とされる。
 そこで、種々の先行技術について検討した。例えば、特開2006-196250号公報には、電解液に、リチウム塩Li[P(C]を0.01~0.2モル/Lと、フルオロエチレンカーボネートとを被膜形成剤として添加することが記載されている。特開2011-90876号公報には、電解液に、0.05モル/LのLiPF(Cとフルオロエチレンカーボネートとを添加することが記載されている。特開2010-238506号公報、特開2010-205474号公報には、電解液に、オキサラト錯体をアニオンとするリチウム塩を0.01重量%以上と、フルオロエチレンカーボネートとを含むことが示されている。特開2006-073480号公報には、負極が、集電体の表面に炭素粒子含有層及びケイ素含有層を積層してなり、電解液にリチウム塩LiPF(Cを添加してもよいことが示されている。
また、被膜は、負極活物質の体積変化で亀裂が発生する場合がある。被膜に亀裂が生じると、電解液が負極活物質と直接接触して、電解液が劣化し、充放電のサイクル特性が低下するおそれがある。 
充放電サイクル特性を改良するために、特開2011-187232号公報には、電解液にハロゲン化環状炭酸エステル及びフッ素系エチレンカーボネートを含めることで、負極活物質表面に形成される被膜を安定化させることが示されている。また、特開2011-090876号公報、特開2010-225378号公報、特開2010-218760号公報、特開2009-158330号公報、特開2007-048464号公報、特開2007-35355号公報には、電解液にハロゲン化環状エステルを含めることが示されている。
特開2006-196250号公報 特開2011-090876号公報 特開2010-238506号公報 特開2010-205474号公報 特開2006-073480号公報 特開2011-187232号公報 特開2010-225378号公報 特開2010-218760号公報 特開2009-158330号公報 特開2007-048464号公報 特開2007-35355号公報
 本願発明者は、更に充放電サイクル特性を向上させるべく、電解液にハロゲン化環状炭酸エステル及びフッ素系エチレンカーボネートを有する場合の最適な条件について、更に検討を重ねた。
 また、特開2006-196250号公報、特開2011-90876号公報、特開2010-238506号公報、特開2010-205474号公報では、負極活物質が炭素材料からなる。このため、負極活物質がケイ素又は鉛を含む合金化可能な材料である場合に、これらの文献に記載されたように、フルオロエチレンカーボネートとリチウム塩とを電解液が含むことで、電池特性が改良されるか否かは不明である。また、特開2006-073480号公報では、負極の一部にケイ素を含む場合で、電解液にリチウム塩を含んでもよいことは示されている。しかし、フルオロエチレンカーボネートを電解液に添加した場合に、ケイ素又は鉛を含む合金化可能な負極活物質により電解液の劣化が抑制されるか否かは不明である。そもそも、上記の文献では、いずれも充放電サイクル特性やハイレート特性の向上を検討したものであり、高温貯蔵特性について検討したものではない。 
本発明はかかる事情に鑑みてなされたものであり、第1の課題は、高温貯蔵特性に優れたリチウムイオン二次電池を提供することであり、第2の課題は、電池の充放電サイクル特性に優れたリチウムイオン二次電池を提供することである。
 第1の課題を解決するために、第1発明のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質を溶媒に溶解させてなる電解液とを有するリチウムイオン二次電池であって、前記電解液の前記溶媒は、フッ素系エチレンカーボネートを含み、かつ、前記電解液は、添加剤として下記の化(1)で表される化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000001
(MはP又はB、Xはハロゲン基、Rは鎖状炭化水素基、n1は1又は2、n2は1~4の整数、n3は0~3の整数である。)
第2の課題を解決するために、第2発明のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出し得る負極活物質を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質を溶媒に溶解させてなる電解液とを有するリチウムイオン二次電池であって、前記電解液の前記溶媒は、フッ素系エチレンカーボネートを含み、かつ、前記電解液は、添加剤として下記の化(1)で表される化合物を含んでおり、前記電解液1リットル当たりの前記添加物のモル濃度は、0モル/Lを超えて大きく0.05モル/L未満であることを特徴とする。 
Figure JPOXMLDOC01-appb-C000002
(Mは、P又はBであり、Xはハロゲン基であり、Rは鎖状炭化水素基であり、n1は1又は2であり、n2は1以上4以下の整数であり、n3は0以上3以下の整数である。)
 第1発明のリチウムイオン二次電池は、負極活物質としてリチウムイオンと合金化可能な元素を含み、且つ、電解液にフッ素系エチレンカーボネートと、添加剤として上記の化(1)に表される化合物を含んでいる。このため、優れた高温貯蔵特性を発揮することができる。
第2発明のリチウムイオン二次電池によれば、電解液にフッ素系エチレンカーボネートと上記化(1)で表される化合物とを含むため、充放電サイクル特性に優れる。
電池A1、A3についての充放電サイクル特性を示す図である。 高温貯蔵後の電池A1~A3の電池全体の抵抗上昇率を示す図である。 高温貯蔵後の電池A1~A3の正極の抵抗上昇率を示す図である。 高温貯蔵後の電池A1~A3の負極の抵抗上昇率を示す図である。 電池A1、A2、A4、A5についての高温貯蔵試験後の容量回復率を示す図である。 電池B1~B4の充放電サイクル特性を示す線図である。 電池B5~B7の充放電サイクル特性を示す線図である。 電池B5、B6の充放電サイクル試験に伴う負極活物質層の質量増加率を示す線図である。 電池B5、B6の容量維持率と質量増加率との関係を示す線図である。 電池B5、B6の充放電サイクル試験に伴う、負極の膜厚の増加率を示す線図である。 電池B5、B6の容量維持率と負極の膜厚の増加率との関係を示す線図である。 電池B13~B16の充放電サイクル特性を示す線図である。 電池B14~B16の充放電サイクル特性を示す線図である。
 (第1発明)
 第1発明の実施形態に係るリチウムイオン二次電池について詳細に説明する。
 リチウムイオン二次電池の電解液には、フッ素系エチレンカーボネートと、添加剤としての上記の化(1)で表される化合物とが含まれている。
 電解液にフッ素系エチレンカーボネートが含まれると、常温時の電池の充放電サイクル特性が上昇する。その理由は以下のように考えられる。フッ素系エチレンカーボネートは、電解液の中で還元反応されやすい成分である。このため、フッ素系エチレンカーボネートが分解され被膜成分となることにより、電解液中の電解質や他の溶媒の劣化を抑えることができ、常温時の電池の充放電特性が高くなるものと考えられる。
 フッ素系エチレンカーボネートは、高い電位での高温時の安定性は高い一方、低い電位での高温時の安定性は低い。このため、比較的貴な電位となる正極においてはフッ素系エチレンカーボネートは分解されにくく、正極活物質表面に被膜が生成されにくく、被膜の膜厚は薄い。一方、比較的卑な電位となる負極では分解されやすく、負極活物質表面に被膜が生成しやすく、被膜が厚膜化する傾向にある。
 ここで、負極活物質は、リチウムイオンと合金化可能な元素を含み、リチウムイオンの吸蔵・放出に伴う体積変化が比較的大きい。このため、負極活物質表面に形成される比較的厚い被膜は、被膜表面部分に応力が集中しやすく破壊されやすい。ゆえに、活物質の体積変化に柔軟に追従し得る薄い安定な被膜で被覆されることが必要とされる。
 電解液に含まれる添加剤は、上記化(1)で表される化合物である。この添加剤は、酸化還元電位が高く、還元分解しやすい性質をもつ。このため、添加剤を含む電解液を有する二次電池は、使用初期に負極活物質表面全体に薄い安定な被膜を形成しやすい。薄い被膜は、リチウムイオンの吸蔵・放出に伴う活物質の体積変化に柔軟に追従しやすく、応力が集中しにくい。それゆえ、負極活物質と電解液とが直接接触することが抑えられ、電解液の更なる劣化を抑制することができる。また、被膜の更なる生成を抑えることができる。被膜が薄いため、負極活物質の電気抵抗を低く抑えることができる。
 また、正極活物質表面全体にも、薄い安定な被膜を形成する。このため、電解液の更なる劣化を抑制するとともに、被膜の更なる生成を抑え、正極活物質の電気抵抗を低く抑えることができる。
 ゆえに、貯蔵後においても電池特性の劣化が少なく、貯蔵安定性、特に高温貯蔵安定性に優れている。
 電解液1リットル当たりの添加剤のモル濃度は、0.005モル/L以上0.04モル/L以下であることが好ましく、更には、0.005モル/L以上0.02モル/L以下であり、0.01モル/L以上0.02モル/L以下であることが望ましい。電解液中の添加剤が過少である場合には、使用初期に、負極活物質及び正極活物質の表面に薄く安定な被膜が生成されにくく、使用に伴って被膜が厚くなり、抵抗が高くなり、貯蔵安定性が低下するおそれがある。電解液中に添加剤が過剰に含まれる場合には、添加剤による効果が飽和してそれ以上の効果の向上が期待できない。
 化(1)で表された化合物からなる添加剤は、イオン性金属錯体構造をもち、その中心となるMは、P(リン)又はB(ホウ素)からなる。そして、Mは、環状カルボン酸の環状骨格の一部をなすとともに、少なくとも1つのハロゲン基をもつ。Mの電子は、電気陰性度の高いハロゲン基側に偏り、Mはわずかに正電荷を帯びている。このため、Mは、環状カルボン酸の中の環構造を形成している酸素の電子を引き寄せる傾向にあり、MとOとの間で、開環しやすくなっている。それゆえ、添加剤は、電解液中の他の成分よりも酸化還元電位が高く、他の成分に先立って還元分解される。
 化(1)の中でXはハロゲン基を示す。ハロゲン基としては、F(フッ素)、Cl(塩素)、Br(臭素)、I(ヨウ素)At(アスタチン)が挙げられるが、中でもF、Clが好ましく、更にはFが望ましい。化(1)の中で、Mには、1~4のハロゲン基Xが結合している (1≦n2≦4)。
 化(1)の中でRは鎖状炭化水素基である。鎖状炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基などの脂肪族アルキル基、脂肪族アルキル基に含まれる水素がハロゲン基に置換したものでもよい。脂肪族アルキル基の中でも炭素数が1以上3以下の低級脂肪族アルキル基がよい。
 化(1)の中のMの電子を引き寄せるためには、Rは、ハロゲン基を有する鎖状炭化水素基であることがよい。この場合には、鎖状炭化水素基の中でもMに結合している炭素に、ハロゲン基が結合しているとよい。このハロゲン基は、Mに直接に結合しているハロゲン基Xとともに、Mの電子を引き寄せやすく、M-Oの結合を開環させやすくするからである。
 Rは、化(1)の中のMに結合していてもよい。RがMに結合している場合には、Rの結合数n3は0~3である(0≦n3≦3)。また、Rは、Mに結合していなくても良い。
 添加剤としての前記化合物は、環状カルボン酸を有する。化合物の中の環状カルボン酸の数は、1以上2以下(1≦n1≦2)である。
 添加剤は、下記の化(2)で表された化合物であることがよい。化(2)で表された化合物は、LiPF(C(以下、LPFOという。)である。LPFOは、酸化還元電位が高いため、還元分解されやすく、電解液の他の成分の分解を抑える。このため、リチウムイオン二次電池の貯蔵特性、特に高温貯蔵特性を高めることができる。
 また、添加剤としては、下記の化(3-1)~(3-5)、或いは下記の化(4-1)又は(4-2)を用いることができる。この中、化(2)で表された化合物、及び化(3-1)で表された化合物は、Pを挟んで環状カルボン酸を2つもつ化合物であり、(3-2)~(3-5)は、Pを環構造の一部に含む環状カルボン酸を1つもつ化合物である。また、化(4-1)又は(4-2)で表された化合物は、Bを環構造の一部に含む環状カルボン酸であり、環状カルボン酸を1つもつ。 
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 (第2発明)
 第2発明の実施形態に係るリチウムイオン二次電池について詳細に説明する。
 第2発明のリチウムイオン二次電池においては、電解液の溶媒は、フッ素系エチレンカーボネートを含み、かつ、電解液は、添加剤として下記の化(1)で表される化合物を含んでいる。このため、後述の実験例で示すように充放電のサイクル特性がよい。その理由は、以下のように考えられる。 
電解液に添加されている添加剤は、化(1)で表される化合物からなる。化(1)で表される化合物は、ハロゲン化環状炭酸エステルであり、酸化還元電位が高く、還元分解しやすい性質をもつ。このため、添加剤を含む電解液を用いて充放電を行うと、負極活物質表面に安定な被膜が形成される。また、添加剤は、電解液中の成分に先立って分解されることにより、電解液の溶媒や電解質の分解を抑制でき、充放電サイクル特性に優れる。 
また、電解液の溶媒は、フッ素系エチレンカーボネートを含んでいる。フッ素系エチレンカーボネートは、電解液の中で還元反応されやすい成分である。このため、フッ素系エチレンカーボネートが分解されることにより、電解液中の電解質や他の溶媒の劣化を抑えることができ、電池の充放電サイクル特性が高くなるものと考えられる。 
ここで、負極活物質は、リチウムイオンと合金化可能な元素を含み、リチウムイオンの吸蔵・放出に伴う体積変化が比較的大きい。このため、負極活物質表面に比較的厚い被膜が形成された場合には、被膜表面部分に応力が集中しやすく破壊されやすい。ゆえに、活物質の体積変化に柔軟に追従し得る薄い安定な被膜で被覆されることが必要とされる。 
添加剤及びフッ素系エチレンカーボネートは、酸化還元電位が高く、還元分解しやすい性質をもつ。このため、添加剤及びフッ素系エチレンカーボネートを含む電解液を有する二次電池は、使用初期に負極活物質表面全体に薄い安定な被膜を形成しやすい。薄い被膜は、リチウムイオンの吸蔵・放出に伴う活物質の体積変化に柔軟に追従しやすく、応力が集中しにくい。それゆえ、負極活物質と電解液とが直接接触することが抑えられ、電解液の更なる劣化を抑制することができる。また、被膜の更なる生成を抑えることができる。被膜が薄いため、負極活物質の電気抵抗を低く抑えることができる。 
また、電解液に添加剤及びフッ素系エチレンカーボネートを併有することで、添加剤を含みフッ素系エチレンカーボネートを含まない電解液に比べて、電池の内部抵抗が低く抑えられる。 
また、正極活物質表面全体にも、薄い安定な被膜を形成する。このため、電解液の更なる劣化を抑制するとともに、被膜の更なる生成を抑え、正極活物質の電気抵抗を低く抑えることができる。 
電解液1リットル当たりの上記添加剤のモル濃度は、0モル/Lを超えて大きく0.05モル/L未満である。0.05mol/L以上の場合には、電池の初期内部抵抗が増加するおそれがある。添加剤は、電解液の成分の中でも還元分解されやすい化合物であり、その還元分解物は、負極活物質及び正極活物質の表面に形成される被膜成分となる。このため、電解液に過剰に添加剤が含まれると、被膜が厚膜化して、活物質の電気抵抗増加を招くことになる。そのため、添加剤の濃度を0.05モル/L未満に抑えることで、活物質表面全体を被覆するに必要な分量に留めることができ、被膜の厚膜化を抑えることができる。 
電解液1リットル当たりの添加剤のモル濃度は、0.005モル/L以上0.04モル/L以下であることが好ましく、更には0.01モル/L以上0.02モル/L以下であることが望ましい。この場合には、活物質表面全体を被膜で被覆して活物質と電解液との直接接触を防ぎつつ、被膜の厚膜化を更に効果的に抑えて電池の内部抵抗を低く抑えることができる。 
電解液中の添加剤の濃度は、0.3モル/L以下であることが好ましい。添加剤の濃度は高いほど電池のサイクル特性が向上するが、0.3モル/Lを超えると電解液へ溶解しにくくなるおそれがある。特に高電圧下では、添加剤の濃度が高いことが好ましい。高電圧下とは、例えば、充電時に電圧4.0V以上、更には4.2Vよりも高い電圧まで充電される場合が例示される。 
化(1)で表された化合物からなる添加剤は、イオン性金属錯体構造をもち、その中心となる元素Mは、P(リン)又はB(ホウ素)からなる。そして、Mは、環状カルボン酸の環状骨格の一部をなすとともに、少なくとも1つのハロゲン基をもつ。Mの電子は、電気陰性度の高いハロゲン基側に偏り、Mはわずかに正電荷を帯びている。このため、Mは、環状カルボン酸の中の環構造を形成している酸素の電子を引き寄せる傾向にあり、MとOとの間で、開環しやすくなっている。それゆえ、添加剤は、電解液中の他の成分よりも酸化還元電位が高く、他の成分に先立って還元分解される。 
化(1)の中で、n1は、中心元素Mに結合している環構造の数を示し、1又は2から選ばれる。1つの環構造がMに結合していてもよいし、2つの環構造がMに結合していても良い。中心元素MがPからなる場合には、1又は2の環構造がMに結合する。MがBからなる場合には、1の環構造がMに結合する。 
化(1)の中でXはハロゲン基を示す。ハロゲン基としては、F(フッ素)、Cl(塩素)、Br(臭素)、I(ヨウ素)、At(アスタチン)が挙げられるが、中でもF、Clが好ましく、更にはFが望ましい。化(1)の中で、n2は、中心元素Mに結合しているハロゲン基の数を示し、1以上4以下の整数の中から選ばれる。Mには、1~4のハロゲン基Xが結合している。 
化(1)の中でRは鎖状炭化水素基である。鎖状炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基などの脂肪族アルキル基、脂肪族アルキル基に含まれる水素がハロゲン基に置換したものでもよい。化(1)の中で、n3は、中心元素Mに結合している鎖状炭化水素基の数を示し、0以上3以下の整数から選ばれる。鎖状炭化水素基は、脂肪族アルキル基の中でも炭素数1以上3以下の低級脂肪族アルキル基がよい。 
化(1)の中のMの電子を引き寄せるためには、Rは、ハロゲン基を有する鎖状炭化水素基であることがよい。この場合には、鎖状炭化水素基の中でもMに結合している炭素に、ハロゲン基が結合しているとよい。このハロゲン基は、Mに直接に結合しているハロゲン基Xとともに、Mの電子を引き寄せやすく、N-Oの結合を開環させやすくするからである。 
Rは、化(1)の中のMに結合していてもよい。RがMに結合している場合には、Rの結合数n3は1~3である。また、Rは、Mに結合していなくても良い。 
添加剤は、上記の化(2)で表された化合物がよい。化(2)で表された化合物は、LiPF(C(以下、LPFOという。)である。LPFOは、酸化還元電位が高いため、還元分解されやすく、電解液の他の成分の分解を抑える。このため、リチウムイオン二次電池の充放電サイクル特性を高めることができる。 
また、添加剤としては、上記の化(3-1)~(3-5)で表された化合物、或いは上記の化(4-1)又は(4-2)で表された化合物を用いることができる。この中、化(2)の化合物、及び化(3-1)の化合物は、Pを挟んで2つの環状カルボン酸をもつ化合物であり、化(3-2)~(3-5)は、Pを環構造の一部に含む1つの環状カルボン酸をもつ化合物である。また、化(4-1)又は(4-2)で表された化合物は、Bを環構造の一部に含む環状カルボン酸であり、環状カルボン酸を1つもつ。 
添加剤の中でも、中心元素Mが2つの環状カルボン酸に結合している場合には、電解液1リットル当たりの前記添加物のモル濃度は、0.01モル/L以上0.02モル/L以下であることが好ましい。また、中心元素Mが1つの環状カルボン酸に結合している場合には、電解液1リットル当たりの前記添加物のモル濃度は、0.02モル/L以上0.04モル/L以下であることが好ましい。Mが2つの環状カルボン酸に結合している場合の還元分解により開裂し得る部位の数は、1つの環状カルボン酸に結合している場合の還元分解により開裂し得る部位の数の2倍である。また、開裂したジカルボニル化合物は、被膜の成分となり、ジカルボニル化合物を多く含む添加剤ほど被膜が厚くなる傾向にある。このため、中心元素Mが2つの環状カルボン酸に結合している場合の電解液1リットル当たりの添加剤のモル濃度は、中心元素Mが1つの環状カルボン酸に結合している場合の電解液1リットル当たりの添加剤のモル濃度の1/2であるとよい。 
添加剤は、負極活物質の表面に薄い安定な被膜を形成し、充放電サイクル特性を向上させることができる。このため、負極活物質の表面積に比例して、添加剤の含有量を適切な範囲にするとよい。前記負極活物質の表面積1m当たりの前記添加剤の含有量は、410μmol/m以下であることが好ましい。この場合には、充放電特性に優れ、かつ電池の内部抵抗を低くすることができる。ここで、「負極活物質の表面積」は、負極活物質のBET表面積をいう。
負極活物質がSiを含むSi化合物である場合には、負極活物質の中でも特にSi化合物は、Liイオンの吸蔵・放出による体積変化が大きい。このため、Si化合物の表面には使用初期に薄い安定な被膜が形成されることが好ましい。このため、Si化合物を有する負極活物質の表面積1m当たりの前記添加剤の含有量は、406.1μmol/m以下であることが好ましい。
Si化合物が、後述のように、SiとSiOが不均化されたSiOx(0.5≦x≦1.5)である場合、SiOの表面積1m当たりの前記添加剤の含有量は、406.1μmol/m以下であることが好ましい。この場合には、添加剤がSiOxの表面に薄い安定な被膜を形成し易くなり、サイクル特性が更に向上する。 
以下、第1発明及び第2発明に共通する内容である。 電解液に含まれるフッ素系エチレンカーボネートは、エチレンカーボネートの炭素にフッ素が結合した化合物である。フッ素基が、負極活物質粒子表面に形成される被膜の構成元素となり、被膜を安定にする。好ましくは、フッ素系エチレンカーボネートは、環状構造を形成している炭素に少なくとも1のフッ素が結合しているとよい。フッ素系エチレンカーボネートとしては、例えば、一フッ化エチレンカーボネート、二フッ化エチレンカーボネート、三フッ系エチレンカーボネート等を好ましく用いることができる。フッ素化エチレンカーボネートとしては、4-フルオロ-1、3-ジオキソラン-2-オン(フルオロエチレンカーボネート、FEC)、4-メチル-5-フルオロ-1,3-ジオキソラン-2-オンが挙げられる。二フッ化エチレンカーボネートとしては、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、DFEC(ジフルオロエチレンカーボネート)が挙げられる。三フッ化エチレンカーボネートとしては、トリフルオロプロピレンカーボネート、4-トリフルオロメチル-1,3-ジオキソラン2-オン、トリフルオロメチレン炭酸エチレンが挙げられる。耐酸性を考慮すると、このうちFECを用いるのが特に好ましい。
電解液の溶媒全体を100体積%としたときに、フッ素系エチレンカーボネートは、1体積%以上30体積%以下であることが好ましい。この場合には、充放電のサイクル特性を効果的に向上させることができるとともに、電解液の粘性も低く抑えてLiイオンを移動させやすくして電池容量を更に向上させることができる。一方、フッ素系エチレンカーボネートが1体積%未満である場合には、サイクル特性向上の程度が低くなるおそれがある。フッ素系エチレンカーボネートが30体積%を超える場合には、電解液の高温特性が低下し、高温によってフッ素系エチレンカーボネートが分解し、その分解生成物により電池の内部抵抗が高くなる原因
となる。 
電解液は、非水電解液であるとよい。非水電解液は、有機溶媒に電解質を溶解させたものである。電解質は、フッ化塩であることがよく、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。 
非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、環状カーボネート、鎖状カーボネート、エーテル類などを用いるとよい。電解液の溶媒は、フッ素系エチレンカーボネートを含む環状カーボネートと、鎖状カーボネートとを有することが好ましい。環状カーボネートは誘電率が高く、鎖状カーボネートは粘性が低い。このため、電解液が環状カーボネートと鎖状カーボネートの双方を含むことにより、Liイオンの移動を妨げず、電池容量を向上させることができる。 
電解液の溶媒は、フッ素系エチレンカーボネートを含む環状カーボネートと、鎖状カーボネートを有し、電解液の溶媒全体を100体積%としたとき、環状カーボネートは30~50体積%であり、鎖状カーボネートは50~70体積%であるとよい。環状カーボネートは、電解液の誘電率を高くする一方、粘性が高い。電解液の誘電率が上がると電解液の導電性が良くなる。電解液の粘性が高いとLiイオンの移動が妨げられ導電性が悪くなる。鎖状カーボネートは、低い誘電率であるが、粘性は低い。両者を上記の配合比の範囲でバランスよく配合することで、溶媒の誘電率をある程度高く、また粘性も低くして、導電性のよい溶媒を調整でき、電池容量を向上させることができる。 
環状カーボネートは、フッ素系エチレンカーボネートを必須成分とし、そのほか、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、及びガンマバレロラクトンの群から選ばれる1種以上を含んでいても良い。 
有機溶媒に用いられる鎖状カーボネートは、鎖状なら特に限定しない。例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジブチルカーボネート、ジプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、及び酢酸アルキルエステルから選ばれる一種以上を用いることができる。 
また、有機溶媒に用いられるエーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等を用いることができる。 
電解液の有機溶媒は、フッ素系エチレンカーボネート、EC、EMC、及びDMCからなるとよい。更には、電解液の有機溶媒は、フルオロエチレンカーボネート(FEC)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、及びジメチルカーボネート(DMC)からなるとよい。この場合、電解液の有機溶媒において、FEC及びECの合計濃度は30体積%以上50体積%以下であり、EMC及びDMCの合計濃度は50体積%以上70体積%以下であることが好ましい。電解液の誘電率が高く、且つ粘性が比較的低くなり、電解液の導電性が高くなり、電池容量が高くなる。 
負極活物質は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素からなる元素材料又は/及びリチウムと合金化反応可能な元素を有する元素化合物からなる。なお、負極活物質には、前記元素材料又は前記元素化合物を含むほか、炭素材料を含んでいても良い。負極活物質は、珪素または錫或いは/及び珪素化合物または錫化合物であることが好ましい。
 負極活物質には、前記元素又は/及び前記元素化合物のほかに、黒鉛を含んでいても良い。負極活物質は、元素化合物の他に、黒鉛を含んでいることがよい。負極活物質は、珪素または錫或いは/及び珪素化合物または錫化合物の他に、黒鉛を含んでいても良い。この場合にも、本発明の電解液は有効であり、高温貯蔵安定性に優れる。
前記リチウムと合金化反応可能な元素からなる元素材料は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種からなる材料であるとよい。中でも、珪素(Si)または錫(Sn)からなるとよい。 
前記リチウムと合金化反応可能な元素を有する元素化合物は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種を有する化合物であるとよい。中でも、珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。 
中でも、負極活物質は、Si(珪素)を有するSi系材料を含んでいてもよい。Si系材料は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなるとよく、例えば、SiOx(0.5≦x≦1.5)からなるとよい。珪素は、理論放電容量が大きい。一方で、充放電時の体積変化が大きいため、SiOxとすることで体積変化を少なくすることができる。 
また、Si系材料は、Si相と、SiO相とをもつことが好ましい。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を吸収する。Si相がSiO相により被覆されることで、Si相とSiO相とからなるSi系材料を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって粒子を形成しているとよい。この場合には、Si系材料全体の体積変化を効果的に抑えることができる。 
Si系材料でのSi相に対するSiO相の質量比は、1~3であることが好ましい。前記質量比が1未満の場合には、Si系材料の膨張・収縮が大きく、Si系材料から構成された負極活物質層にクラックが生じるおそれがある。一方、前記質量比が3を超える場合には、負極活物質でのLiイオンの吸蔵・放出量が少なく、電気容量が低くなるおそれがある。 
Si系材料は、Si相とSiO相とのみから構成されていてもよい。また、Si系材料は、Si相とSiO相とを主成分としているが、その他に、公知の活物質を含んでいても良く、具体的には、MeSi(MeはLi,Caなど、x、y、zは整数)のうちの少なくとも1種を混合していてもよい。 
Si系材料の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiOn:nは0.5≦n≦1.5)が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。 
原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。 
原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中又は不活性ガス中などの不活性雰囲気中で800~1200℃、1~5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。 
原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。 
負極活物質の平均粒径D50は、2μm以上15μm以下であることが好ましい。ここで、平均粒径D50とは、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をいい、メジアン径とも称される。 
上記の負極活物質は、集電体の少なくとも表面を被覆する負極活物質層を構成する。一般的に、負極は、負極活物質層で集電体を被覆することで形成される。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。 
負極活物質層には、前記負極活物質の他に、結着剤、導電助剤等を含んでいても良い。 
結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05~1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 
導電助剤としては、非水電解質二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01~1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると電極材の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 
本発明のリチウムイオン二次電池に用いられる正極は、リチウムイオンを吸蔵・放出し得る正極活物質を有する。正極は、集電体と、正極活物質を有し集電体の表面を被覆する正極活物質層とからなるとよい。正極活物質は、結着剤及び/又は導電助剤とともに正極材を構成するとよい。導電助剤および結着剤は、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。 
正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、LiCoO、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiMnO、Sなどが挙げられる。正極活物質は、また、リチウムを含まない活物質、例えば硫黄単体、硫黄変性化合物などを用いることもできる。正極、負極共にリチウムを含まない場合はリチウムをプレドープする必要がある。 
正極用の集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよく、メッシュや金属箔などの種々の形状でよい。 
セパレータは、必要に応じて用いられる。セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 
正極および負極に必要に応じてセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。 
リチウムイオン二次電池の形状は、特に限定なく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。 
リチウムイオン二次電池は、車両に搭載してもよい。上記の粒径特性をもつ負極活物質粒子を用いたリチウムイオン二次電池で走行用モータを駆動することにより、大容量、大出力で、長時間使用することができる。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であれば良く,例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池は、車両以外にも、パーソナルコンピュータ,携帯通信機器など,電池で駆動される各種の家電製品,オフィス機器,産業機器が挙げられる。
 第1発明に係る実施例について説明する。リチウムイオン二次電池を以下のように電池A1~A5の5種類作製し、各種電池特性を測定した。電池A2、A4、A5は第1発明の実施例であり、電池A1,A3は第1発明の参考例である。
 (電池A1)
 まず、市販のSiO粉末をボールミルに入れて、Ar雰囲気下で、回転数450rpmで20時間ミリングし、その後、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、粒子状のSi系材料が得られた。このSi系材料について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、Si系材料には、単体珪素と二酸化珪素が生成していることがわかった。
 不均化されたSi系材料と、黒鉛粉末と、導電助剤と、結着剤としてのポリアミドイミド(PAI)とを混合し、溶媒を加えてスラリー状の混合物を得た。導電助剤としてはアセチレンブラック(AB)を用いた。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。Si系材料と、黒鉛粉末と、導電助剤と、結着剤との質量比は、百分率で、Si系材料/黒鉛粉末/導電助剤/結着剤=32/50/8/10であった。
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極材(負極活物質層)が固定されてなる負極が形成された。
 次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、正極集電体の表面に正極材(正極活物質層)を固定してなる正極を得た。
 正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。
 電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。電解液中のLiPFの濃度は、1モル/L(M)とした。
 その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池を得た。リチウムイオン二次電池に25℃で初期充放電を行うコンディショニング処理を行った。
 (電池A2)
 電池A2の電解液には、電池A1の電解液に更にLPFOが含まれている。電解液中のLPFOの濃度は0.01モル/Lとした。電解液中のLiPFの濃度は、1モル/L(M)とした。電解液中の有機溶媒は、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。電池A2のその他の構成は、電池A1と同様である。
 (電池A3)
 電池A3の電解液には、FECが含まれていない。電池A3の電解液中の有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でEC/EMC/DMC=30/30/40の配合比で混合して調製した。電池A3のその他の構成は、電池A1と同様である。
 (電池A4)
 電池A4は、電解液中のLPFOの濃度が0.02モル/Lである点を除いて、電池A2と同様である。
 (電池A5)
 電池A5は、電解液中のLPFOの濃度が0.04モル/Lである点を除いて、電池A2と同様である。上記電池A1~A5の電解液の成分を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 <充放電サイクル試験>
 電池A1、A3について、充放電サイクル試験を25℃で行った。サイクル試験の充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。
 図1に示すように、電解液にFECが含まれていない電池A3よりも、FECを含む電池A1の方が、サイクル特性が向上した。これは、FECが、被膜中のLiFの構成成分になり、安定で強固な被膜が生成され、負極活物質が電解液に直接接触することが抑制され、電解液の分解が抑えられたためであると考えられる。
 <高温貯蔵試験>
 上記で作製されたコンディショニング後の電池A1~A3について、定電流を流して満充電とした。満充電の電池A1~A3を 65℃で12.5日間貯蔵した。貯蔵の前と後とで各電池の電池全体の電気抵抗、正極の電気抵抗、及び負極の電気抵抗を測定した。
 電池全体の電気抵抗は、電池の内部抵抗に相当し、電池の外部接続用の正極端子と負極端子との間の電気抵抗である。貯蔵前の電池全体の電気抵抗(Before)に対する貯蔵後の電池全体の電気抵抗(After)の増加率((After-Before)/Before×100)を求め、これを抵抗上昇率とした。
 正極の電気抵抗は、正極集電体表面に形成されている正極材の厚み方向の電気抵抗である。正極の電気抵抗は、3 極セルで正極、負極それぞれ分離して測定した。正極の抵抗上昇率は前述の電池全体の抵抗上昇率と同様の方法で算出した。
 負極の電気抵抗は、負極集電体表面に形成されている負極材の厚み方向の電気抵抗である。負極の電気抵抗は、3 極セルで正極、負極それぞれ分離して測定した。負極の抵抗上昇率は前述の電池全体の抵抗上昇率と同様の方法で算出した。電池A1,A2,A3の電池全体の抵抗上昇率、正極の抵抗上昇率、及び負極の抵抗上昇率を、図2、図3、図4に示した。
 図2に示すように、電池(セル)全体の抵抗上昇率は、電池A1、電池A2、電池A3の順に低くなった。図3に示すように、正極の抵抗上昇率は、電池A3、電池A1、電池A2の順に低くなった。各電池の正極の抵抗上昇率は、各電池の電池全体の抵抗上昇率よりも高かった。図4に示すように、負極の抵抗上昇率は、電池A1、電池A2、電池A3の順に低くなった。各電池の負極の抵抗上昇率は、各電池の電池全体の抵抗上昇率よりも低かった。
 FECは高い電位での高温安定性はよいが、低い電位での高温時の安定性はよくない。このため、比較的貴な電位となる正極においては、FECは分解されにくく、正極活物質表面に被膜が生成されにくく、被膜の膜厚は薄い。一方、比較的卑な電位となる負極では、FECは分解されやすく、負極活物質表面に被膜が生成しやすく、被膜が厚膜化する傾向にある。被膜はもともと絶縁抵抗が高いため、被膜の厚膜化により被膜自体の抵抗が更に高くなる。
 ここで、負極活物質は、SiOxからなり、リチウムイオンの吸蔵・放出に伴う体積変化が比較的大きい。このため、負極活物質表面に形成される被膜は破壊されやすい。ゆえに、薄い安定な被膜で被覆されることが必要とされる。
 電解液に含まれるLPFOは、酸化還元電位が高く、還元分解しやすい性質をもつ。このため、LPFOを含む電解液を有する二次電池は、使用初期に負極活物質表面全体に薄い安定な被膜を形成しやすい。それゆえ、負極活物質と電解液とが直接接触することが抑えられ、電解液の更なる劣化を抑制することができる。また、被膜の更なる生成を抑えることができる。電気抵抗の高い被膜が薄いため、負極活物質の電気抵抗を低く抑えることができる。
 また、正極活物質表面全体にも、薄い安定な被膜を形成する。このため、電解液の更なる劣化を抑制するとともに、被膜の更なる生成を抑え、正極活物質の電気抵抗を低く抑えることができる。
 ゆえに、高温貯蔵後においても電池特性の劣化が少なく、高温貯蔵安定性に優れている。
 <LPFOの濃度と容量回復率との関係>
 電池A1,A2,A4,A5の貯蔵試験後の容量回復率を測定した。電池A1,A2,A4,A5では、いずれも、電解液中のLiPFの濃度は1モル/L(M)とし、電解液中の有機溶媒の成分比は、体積%でFEC/EC/EMC/DMC=4/26/30/40とした。電解液中のLPFOの濃度は、電池A1,A2,A4,A5の順に、0モル/L、0.01モル/L、0.02モル/L、0.04モル/Lである。
 上記で作製されたコンディショニング後の電池A1,A2,A4,A5について、80%レベルまで充電させた後に、貯蔵試験を行った。貯蔵試験の条件は、65℃、12.5日間とした。貯蔵試験の前と後とで、放電容量を測定した。貯蔵試験前の放電容量に対する貯蔵試験後の放電容量の百分率をもとめ、容量回復率とした。各電池の容量回復率を図5に示した。
 図5に示すように、LPFOを含む電解液を用いた電池A2,A4,A5は、LPFOを含まない電池A1に比べて、容量回復率が高かった。電池A3の容量回復率は、電池A2よりも高かった。電池A5の容量回復率は、電池A4とさほど変わらなかった。このことから、LPFOの添加量は0.005~0.04モル/Lがよく、更には0.01~0.04モル/L、望ましくは0.01~0.02モル/Lであることがよいことがわかった。
 電解液にLPFOを添加すると、貯蔵試験の初期段階で、負極活物質表面に被膜が形成され、過剰な被膜の形成が抑えられたため、活物質の抵抗が抑えられ、容量回復率が高くなったと考えられた。
次に、第2発明に係る実施例について説明する。リチウムイオン二次電池を以下のように電池B1~B7の7種類作製し、電池の充放電サイクル特性を測定した。電池B1~B5は第2発明の参考例であり、電池B6,B7は第2発明の実施例である。 
(電池B1) まず、市販のSiO粉末をボールミルに入れて、Ar雰囲気下で、回転数450rpmで20時間ミリングし、その後、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、粒子状のSi系材料が得られた。このSi系材料について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、Si系材料には、単体珪素と二酸化珪素が生成していることがわかった。Si系材料の平均粒径D50は、4.4μmであった。 
不均化されたSi系材料と、黒鉛粉末(MAG)と、導電助剤と、結着剤としてのポリアミドイミド(PAI)とを混合し、溶媒を加えてスラリー状の混合物を得た。導電助剤としてはケッチェンブラック(KB)を用いた。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。Si系材料と、黒鉛粉末と、導電助剤と、結着剤との質量比は、百分率で、Si系材料/黒鉛粉末/導電助剤/結着剤=42/40/8/10であった。不均化されたSi系材料及び黒鉛粉末は、負極活物質である。黒鉛粉末は、人造黒鉛(MAG:Massive Artificial Graphite)を用いた。 
次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極材(負極活物質層)が固定されてなる負極が形成された。 
SiOの1g当たりの表面積は、6.5m/gとした。MAGは、粒径が20μmであり、1g当たりの表面積は、4.4m/gとした。負極の集電体の負極材で被覆された部分の面積(電極面積)は、7.5cmであり、集電体1cm当たりの負極材の付着量(目付量)は、1.85mg/cmとした。 
負極に含まれるSiOの表面積、MAGの表面積、及び負極に含まれる負極活物質の表面積は、それぞれ以下の式(A)、(B)、(C)により算出した。 
(SiO表面積6.5m/g)×(目付量1.85mg/cm)×(電極面積7.5cm)×(SiO含有率0.42)=0.038m・・・(A) 
(MAG表面積4.4m/g)×(目付量1.85mg/cm)×(電極面積7.5cm)×(MAG含有率0.40)=0.024m・・・(B) 
(負極に含まれるSiOの表面積0.038m)+(負極に含まれるMAGの表面積0.024m)=0.062m・・・(C)
次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、正極集電体の表面に正極材(正極活物質層)を固定してなる正極を得た。 
正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。 
電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。電解液の有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でEC/EMC/DMC=30/30/40の配合比で混合して調製した。電解液中のLiPFの濃度は、1モル/L(M)とした。1つの電池に含まれる電解液の量は、0.3mLとした。 
その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池を得た。リチウムイオン二次電池に25℃で初期充放電を行うコンディショニング処理を行った。 
(電池B2) 電池B2の電解液には、化(2)で表される化合物(LPFO)が添加剤として含まれている。電解液中のLPFOの濃度は0.005モル/Lである。その他の構成は、電池B1と同様である。 
(電池B3) 電池B3の電解液には、0.01モル/LのLPFOが添加剤として含まれている。その他の構成は、電池B1と同様である。 
(電池B4) 電池B4の電解液には、LPFOが含まれていない。電解液の有機溶媒の中のECの代わりにフルオロエチレンカーボネート(FEC)が含まれている。電解液の有機溶媒の成分比は、体積%でFEC/EMC/DMC=30/30/40とした。その他の構成は、電池B1と同様である。 
(電池B5) 電池B5の電解液には、LPFOが含まれていない。電解液の有機溶媒には、FEC及びECが含まれている。電解液の有機溶媒の成分比は、体積%でFEC/EC/EMC/DMC=4/26/30/40とした。その他の構成は、電池B1と同様である。 
(電池B6) 電池B6の電解液には、0.01モル/LのLPFOが含まれている。電解液の有機溶媒の成分比は、体積%でFEC/EC/EMC/DMC=4/26/30/40とした。電池に含まれる電解液の量は、電池B1と同様に、0.3mLとした。負極活物質に含まれるMAGの表面積1m当たりのLPFOの濃度、負極活物質に含まれるSiOの表面積1m当たりのLPFOの濃度、及び負極活物質の表面積1m当たりのLPFOの濃度は、以下の式(D)、(E)、(F)により算出した。 
(電池中のLPFO量3μmol)÷(負極中の負極活物質の表面積0.062m)=48.4μmol/m・・・(D) 
(電池中のLPFO量3μmol)÷(負極中のSiOの表面積0.038m)=79.0μmol/m・・・(E) 
(電池中のLPFO量3μmol)÷(負極中のMAGの表面積0.024m)=125μmol/m・・・(F) 
その他の構成は、電池B1と同様である。 
(電池B7) 電池B7の電解液には、0.02モル/LのLPFOが含まれている。電解液の有機溶媒の成分比は、体積%でFEC/EC/EMC/DMC=4/26/30/40とした。負極活物質に含まれるMAG、SiO、負極活物質の表面積1m当たりのLPFOの濃度を、上記の式(D)、(E)、(F)と同様に算出したところ、250μmol/m、157.9μmol/m、96.8μmol/mであった。その他の構成は、電池B1と同様である。 
上記電池B1~7の電解液の成分を表2に示した。 
Figure JPOXMLDOC01-appb-T000002
電池B1~B4の充放電サイクル試験を25℃で行った。サイクル試験の充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。その結果を図6に示した。 
図6に示すように、電池の充放電サイクル特性は、電池B1、電池B2、電池B3、電池B4の順に良くなった。このことから、電解液にLPFO又はFECを添加するとサイクル特性が向上すること、FECを電解液に添加した場合にはLPFOを添加した場合よりもサイクル特性が良好であることがわかった。 
また、電池B5~B7の充放電サイクル試験を25℃で行った。試験方法は、上記の図6に示すサイクル試験と同様とした。電池B5~B7の充放電サイクル試験の結果を図7に示した。 
図7に示すように、充放電サイクル特性は、電池B5、電池B6、電池B7の順に良くなった。このことから、電解液にFECを含む場合よりも、FECとLPFOを併有している場合の方が、サイクル特性がよかった。 
<電池の内部抵抗> 電池の電解液中のLPFOの濃度を変化させたときの電池の内部抵抗への影響を評価した。各電池の電解液中のLPFOの濃度は、0.01モル/L、0.02モル/L、0.04モル/L、0.05モル/Lとした。また、電解液の有機溶媒が体積%でEC/EMC/DMC=30/30/40とした場合と、FEC/EMC/DMC=30/30/40とした場合について電池を作製した。その他の電池の構成は電池B1と同様とした。各電池の内部抵抗を測定した。内部抵抗の測定方法は、各電池を充電率(SOC)20%の状態にまで充電した。放電条件は、3Cで10秒とした。充電後の電池の正極端子と負極端子との間の抵抗を測定した。その結果を表3に示した。 
Figure JPOXMLDOC01-appb-T000003
表3に示すように、電解液の有機溶媒にFECを用いた場合には、ECを用いた場合よりも内部抵抗が低かった。LPFOの濃度が高くなるにつれて内部抵抗が高くなった。このことから、電解液にFECとLPFOを併有することにより、内部抵抗が高くなり、またLPFOの濃度は0.005モル/L以上0.05モル/L未満であると内部抵抗が低く、さらには、0.01モル/L以上0.02モル/L以下であると内部抵抗が更に低くなることがわかった。 
<負極の空隙率> 電池B5,B6について充放電サイクル試験を600回行った。充放電サイクル試験の条件は、上記の<充放電サイクル試験>と同様とした。この充放電サイクル試験を600回行った後に、負極の断面写真を撮影した。撮影した断面写真データの全体面積に対する空隙部の面積の比率を百分率で算出した((空隙部面積)/(全体面積)×100)。空隙部とは、負極活物質層の中で、負極活物質、導電助剤、及び結着剤などのない、空孔の空間部をいう。算出された値を、各電池の負極の空隙率X(%)とした。表4には、600回充放電サイクル試験後の負極の空隙率を示した。 
Figure JPOXMLDOC01-appb-T000004
表4に示すように、電池B5の負極の空隙率よりも電池B6の負極の空隙率が大きかった。これは、電池B6では、負極活物質で構成されている負極活物質層の中で、空隙を減らす堆積物が多く形成されていると考えられる。そこで、次に、電池B5,B6について、サイクル試験前後で、負極活物質層の質量変化を測定することにした。 
<負極の質量変化> 電池B5,B6について充放電サイクル試験を600回、1000回行った。充放電サイクル試験の条件は、上記の<充放電サイクル試験>と同様とした。コンディショニング処理
後で充放電サイクル試験を行う前と、600回、1000回行った後とで、放電容量を測定するとともに、負極を取り出して、負極活物質層の質量を測定した。 
負極活物質層の質量を測定するために、電池を分解し、負極を取り出した。その負極をDMC(ジメチルカーボネート)溶媒で充分洗浄して電解質を取り除いた後、12時間真空乾燥し、負極の質量(W2)を測定した。コンディショニング後で充放電サイクル試験前の負極の質量を同様に測定した。測定した負極の質量(W1)とすると、以下の算出式(1)により負極の質量変化率を算出した。表5に負極活物質層の質量を掲載した。図8には、電池B5,B6についての、充放電サイクル数に対する負極活物質層の質量増加率を示した。 
(W2-W1)/W1×100(%)・・・・(1) 
また、電池の放電容量については、コンディショニング処理前の放電容量を100%としたときのコンディショニング処理後の放電容量の比率、コンディショニング処理後のサイクル試験600回後の放電容量の比率、1000回後の放電容量の比率を放電容量維持率として百分率で示した。図9には、電池B5,B6についての、放電容量維持率と負極活物質層の質量増加率との関係を示した。 
Figure JPOXMLDOC01-appb-T000005
表5、図8、図9に示すように、電池B5,B6とも、充放電サイクル数の増加に伴い、負極活物質層の質量が増加した。電解液にLPFOを含む電池B6は、LPFOを含まない電池B5よりも負極活物質層の増加が抑えられた。充放電サイクル試験前では、電池B6の方が電池B5よりも、負極活物質層の質量が若干重かった。 
このことは、LPFOを電解液に含むと、サイクル試験の初期に負極活物質表面に薄い安定な被膜が形成され、それ以後に被膜の厚膜化が進行しないためであると考えられる。また、被膜自体は絶縁性が高いため、被膜が厚い場合には電池の内部抵抗が増加する。電池B6では、被膜は薄いため、電池の内部抵抗の増加が抑制され、サイクル数を重ねても高い放電容量維持率を示したと考えられる。 
また、電池B6の放電容量維持率は、電池B5よりも高かった。このことは、LPFOを電解液に含む場合(電池B6)には、LPFOを含まない場合(電池B5)よりも、被膜が安定で薄く、内部抵抗が低く、また、電解液の劣化も少ないから、放電容量維持率が高くなったと考えられる。 
<負極の膜厚> 電池B5,B6について、コンディショニング後の充放電サイクル試験を600回、1000回行った。コンディショニング処理及び充放電サイクル試験の条件は、上記の電池B1のコンディショニング処理の条件及び<充放電サイクル試験>と同様とした。コンディショニング処理及び充放電サイクル試験を行う前と、コンディショニング処理後、及び充放電サイクル試験を600回、1000回行った後とで、放電容量を測定するとともに、負極を取り出して、負極の膜厚を測定した。負極の膜厚とは、集電体表面を覆う負極活物質層の厚みをいう。膜厚を測定する方法は、断面SEMでの観察による。 
コンディショニング処理を行う前の膜厚T0と、コンディショニング処理後でサイクル試験までの膜厚Tinitialと、コンディショニング後に600回、1000回サイクル試験を行った後の膜厚T600、T1000とから、以下の算出式(2)、(3)、(4)を用いて、コンディショニング後の膜厚の増加率ΔTinitial、及び600回、1000回サイクル試験による膜厚の増加率ΔT600、ΔT1000を算出した。表6に負極の膜厚を掲載した。図10には、電池B5,B6の負極の膜厚の増加率を示した。 
ΔTinitial = 100×(Tinitial - T0)/T0・・・・(2) 
ΔT600 = 100×(T600 - T0)/T0・・・・(3) 
ΔT1000 = 100×(T1000 - T0)/T0・・・・(4) 
また、電池の放電容量については、コンディショニング処理前の放電容量を100%としたときのコンディショニング処理後の放電容量の比率、コンディショニング処理後のサイクル試験600回後の放電容量の比率、100回後の放電容量の比率を放電容量維持率として百分率で示した。図11には電池B5,B6の放電容量維持率と質量増加率との関係を示した。 
Figure JPOXMLDOC01-appb-T000006
表6、図10、図11に示すように、電池B5,B6とも、充放電サイクル数の増加に伴い、負極の膜厚が増加した。また、コンディショニング処理後の電池B6の負極の膜厚は、電池B5よりも大きかった。しかし、サイクル試験において充放電サイクル数が増加すると、電池B6の負極の膜厚の増加率は、電池B5よりも低くなった。また、電池B6の方が、電池B5よりも放電容量維持率が高かった。このことは、電解液にLPFOが含まれている方が、コンディショニング処理時に負極活物質表面に薄い安定な被膜が形成され、その後に充放電を繰り返しても負極の膜厚が増加しなかった。このため、電解液と負極活物質との接触機会が低く抑制され、電解液の劣化が抑制されるとともに、内部抵抗が低く抑えられたために、放電容量維持率が高かったと考えられる。 
電解液分解物が堆積して膜厚増加が起こる。電解液分解は活物質の新生面で活発に起こるので、充放電時のLi吸蔵・放出に伴う体積変化により負極活物質粒子が疲弊(崩壊、クラック、微粉化)すると、負極活物質粒子の表面積が大きくなり電解液の分解が加速されると考えられる。負極活物質粒子の疲弊を抑制するためには負極活物質粒子表面の初期被膜が安定であることが必要である。 
次に、リチウムイオン二次電池の電解液に含まれるLPFOの濃度と負極活物質(SiOとMAG)の表面積との関係を分析した。リチウムイオン二次電池の電池構成は、電池B6,7と同様とした。電解液1Lに対するLPFOのモル濃度は、電池B6、7のように0.01モル/L、0.02モル/Lに加えて、0.005モル/L、0.04モル/L、0.05モル/Lとした。電池B1と同様に、電池に含まれる電解液の含有量は、0.3mLとした。SiOは、不均化されたSiOであり、1g当たりの表面積は、6.5m/gとした。MAGは、粒径が20μmであり、1g当たりの表面積は、4.4m/gとした。負極の集電体の負極材で被覆された部分の面積(電極面積)は、7.5cmであり、集電体1cm当たりの負極材の付着量(目付量)は、1.85mg/cmとした。これらの数値を上記の式(A)~(F)に代入して、負極活物質に含まれるMAG、SiO、負極活物質の各表面積1m当たりのLPFOの濃度を求め、表7に示した。なお、正極活物質の電池特性に与える影響は、負極活物質よりも小さいと考えられるため、負極活物質と電解液との関係についてのみ分析する。
Figure JPOXMLDOC01-appb-T000007
上記の各種試験の結果、電解液1Lに対するLPFO濃度が0.01~0.02モル/Lの場合に、サイクル特性が良好で抵抗も低いことがわかっている。この結果を表7と照らし合わせると、電解液1Lに対するLPFO濃度が0.01~0.02モル/Lであって、負極活物質の表面積1mに対するLPFO濃度が48.4~96.8μmol/mである場合に、容量及び抵抗がともに良好であることがわかる。
(電池B8) 電池B8では、正極を作製するために、LiNi0.5Co0.2Mn0.3からなる正極活物質と、アセチレンブラックからなる導電助剤と、ポリフッ化ビニリデン(PVDF)からなる結着剤とを混合してスラリーとなした。このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。LiNi0.5Co0.2Mn0.3とアセチレンブラックとポリフッ化ビニリデンとの質量比は、LiNi0.5Co0.2Mn0.3/アセチレンブラック/ポリフッ化ビニリデン=94/3/3とした。これにより、正極集電体の表面に正極材(正極活物質層)を固定してなる正極を得た。
負極は、電池B1の負極と同様に、不均化されたSi系材料と、黒鉛粉末と、導電助剤としてのケッチェンブラックと、結着剤としてのポリアミドイミド(PAI)とからなり、これらの質量比は、百分率で、Si系材料/黒鉛粉末/導電助剤/結着剤=32/50/8/10とした。黒鉛粉末は、電池B1とは異なって、 人造黒鉛を用いた。本電池B8で用いたSiOの表面積は、上記電池B1~B7とは異なって、2.8m/gとした。人造黒鉛の粒径は10μmであり、表面積は5.9m/gとした。
電解液を調製するために、電解質としてのLiPF及び添加剤としてのLPFOを、有機溶媒に溶解した。電解液の有機溶媒は、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とからなる。これらの配合比は、体積%でFEC/EC/EMC/DMC=4/26/30/40とした。電解液中のLiPFの濃度は、1モル/L(M)とした。電解液1リットル当たりのLPFOのモル濃度は、0.01モル/Lである。
上記の式(A)~(F)と同様にして、人造黒鉛の表面積1m当たりのLPFOの濃度、及び負極活物質の表面積1m当たりのLPFOの濃度を求めたところ、人造黒鉛の表面積1m当たりのLPFOの濃度は17.6μmol/m、SiOの表面積1m当たりのLPFOの濃度は58.1μmol/m、負極活物質の表面積1m当たりのLPFOの濃度は13.5μmol/mであった。電池B8には、電池B1と同様にコンディショニング処理を行った。その他の電池構成は、電池B1と同様である。
(電池B9)電池B9では、電解液1Lに対するLPFOの濃度を0.023モル/Lとした。人造黒鉛の表面積1m当たりのLPFOの濃度は40.6μmol/mであり、SiOの表面積1m当たりのLPFOの濃度は133.6μmol/m、であり、負極活物質の表面積1m当たりのLPFOの濃度31.1μmol/mであった。
(電池B10)電池B10では、電解液1Lに対するLPFOの濃度を0.036モル/Lとした。人造黒鉛の表面積1m当たりのLPFOの濃度は63.5μmol/mであり、SiOの表面積1m当たりのLPFOの濃度は209.2μmol/m、負極活物質の表面積1m当たりのLPFOの濃度48.7μmol/mであった。
(電池B11)電池B11では、電解液1Lに対するLPFOの濃度を0.05モル/Lとした。人造黒鉛の表面積1m当たりのLPFOの濃度は88.2μmol/mであり、SiOの表面積1m当たりのLPFOの濃度は290.5μmol/m、負極活物質の表面積1m当たりのLPFOの濃度67.7μmol/mであった。
(電池B12)電池B12では、電解液1Lに対するLPFOの濃度を0.06モル/Lとした。人造黒鉛の表面積1m
当たりのLPFOの濃度は105.9μmol/mであり、SiOの表面積1m当たりのLPFOの濃度は348.6μmol/m、負極活物質の表面積1m当たりのLPFOの濃度81.2μmol/mであった。
<各種試験>電池B8~B11について、充放電サイクル試験と貯蔵試験を行った。充放電サイクル試験では、サイクル試験の充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。充放電サイクル試験は、25℃、60℃で行った。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。
貯蔵試験では、充電率(SOC)90%とした電池B8~B12について40℃、60℃でそれぞれ30日間貯蔵した。充放電サイクル試験前、25℃充放電サイクル試験後、60℃充放電サイクル試験後、40℃貯蔵後、60℃貯蔵後の各段階での容量及び抵抗を測定した。容量及び抵抗の測定方法は、上記電池B1~7の場合と同様である。電池B8~12の各種パラメータを表8に示し、電池B8~B11の各容量を表9に示し、電池B8~B11の各抵抗を表10に示した。 
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
表8~表10に示すように、電池B8~B11では、LPFO濃度が増加するに連れて試験後の容量維持率が高くなる一方、抵抗が増加した。中でも、電池B9,B10の場合に良好な電池特性を示した。電解液1Lに対するLPFO濃度が0.023~0.036モル/Lであって、負極活物質の表面積1mに対するLPFO濃度が31.3~48.7μmol/mである場合に、容量及び抵抗がともに良好であった。
表7、表8に示すように、電池特性の良好な電池B6,B7と電池B9、B10についての、電解液1Lに対するLPFO濃度を比較すると、電池B6、B7と電池B9、B10とでは、重複する範囲は見あたらなかった。電池B6,B7と電池B9、B10について、電池の負極活物質の表面積当たりのLPFOの濃度で比較すると、互いに近似し、48.4~48.7μmol/mの範囲で互いに重複している。SiOの表面積は電池B6,7では6.5m/gであり、電池B9,B10では2.8m/gであって、両者はかなり異なる。しかし、SiOの表面積に対するLPFOの濃度は近似し、133.6~157.9μmol/mの範囲で互いに重複した。 
電池B6,B7と電池B9、B10とでは、SiOの表面積に対するLPFOの濃度の重複する範囲の方が、負極活物質の表面積に対するLPFOの濃度の重複する範囲よりも広かった。これは、SiOはLiイオンの吸蔵・放出に伴う体積変化が大きいため、電池使用初期に薄く安定な被膜が表面に形成されることで、体積変化による被膜の損傷を防ぎ、SiOが電解液と直接接触することによる電解液の劣化を抑え、効果的にサイクル特性を向上させることができるからであると考えられる。
一方、電池B6,B7と電池B9、B10について、黒鉛の表面積当たりのLPFOの濃度で比較すると、かなり異なる数値となった。これは、LPFO が分解すると考えられるエッジの面積は、負極活物質の表面積とは相関しないことが考えられる。 
<高温高電圧でのサイクル試験> 高温高電圧でのサイクル試験を行った。試験に供したリチウムイオン二次電池は、正極は、正極活物質としてのLiNi0.5Co0.2Mn0.3とアセチレンブラックとポリフッ化ビニリデンとからなる正極材を正極集電体に固定した。正極材の質量比は、LiNi0.5Co0.2Mn0.3/アセチレンブラック/ポリフッ化ビニリデン=94/3/3とした。
負極は、電池B1の負極と同様に、不均化されたSi系材料と、黒鉛粉末と、導電助剤としてのケッチェンブラックと、結着剤としてのポリアミドイミド(PAI)とからなり、これらの質量比は、百分率で、Si系材料/黒鉛粉末/導電助剤/結着剤=32/50/8/10とした。黒鉛粉末は、電池B1とは異なって、人造黒鉛を用いた。
電解液は、電池B3,B5,B6と同様に構成したものをそれぞれ用いて、リチウムイオン二次電池を作製した。電池B3,B5,B6と同様の電解液組成を有する電池を、順に、電池B13,B14,B15とした。更に、電池B16として、電解液中のLPFOの濃度を0.087モル/Lとし、且つ電解液の溶媒構成を体積%でFEC/EC/EMC/DMC=4/26/30/40とした電池を作製した。電池B13~B16の電解液の成分組成を表11に示した。
作製した電池について、高温高電圧条件でサイクル試験を行った。サイクル試験は、60℃で行い、1C、4.5VのCC(定電流)の条件で充電し、1C、2.5VのCC(定電流)の条件で放電させ、これを200回繰り返した。適宜、初回放電容量に対する容量維持率を測定した。その結果を図12に示した。図13には、電池B14~B16の200サイクル後の容量維持率を示した。
図12に示すように、高温高電圧でのサイクル試験においても、LPFOを有する電解液を用いた電池B13,B15,B16は、LPFOを含まない電池B14に比べて、サイクル特性が向上した。LPFOに加えてFECを含む場合(電池B15、B16)には、FECを含まない場合(電池B13)に比べて、更にサイクル特性が向上した。
また、図13に示すように、LPFO濃度を高くすることで,200サイクル後の容量維持率は高くなった。容量維持率60%以上を目指すならばLPFO濃度を0.007M以上,70%以上ならば0.075M以上とすることがよいことがわかった。
LPFO濃度の上限はLPFOが溶解する最大濃度である。このことから、LPFO及びFECを含む電解液を用いた電池は、高温高電圧使用時にも、優れたサイクル特性を発揮することがわかった。電池を高温下高電圧で出力させる場合には、電解液中でのLPFOの濃度は、高くすることがよいことがわかった。200サイクル後の容量維持率を60%以上とするためには、LPFOの濃度を0.007モル/L以上とすることがよく、200サイクル後の容量維持率を70%以上とするためには、0.075モル/L以上とするとよいことがわかった。LPFOの上限は、電解液に溶解可能なLPFOの最大濃度(例えば、3モル/L)とするとよいと考えられる。添加剤の電解液への溶解度の観点から、高温高電圧でのLPFOの濃度の上限は3モル/Lであるとよい。
Figure JPOXMLDOC01-appb-T000011

Claims (14)

  1.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質を溶媒に溶解させてなる電解液とを有するリチウムイオン二次電池であって、
     前記電解液の前記溶媒は、フッ素系エチレンカーボネートを含み、かつ、
     前記電解液は、添加剤として下記の化(1)で表される化合物を含むことを特徴とするリチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000006
    (MはP又はB、Xはハロゲン基、Rは鎖状炭化水素基、n1は1又は2、n2は1~4の整数、n3は0~3の整数である。)
  2.  前記電解液1リットル当たりの前記添加剤のモル濃度は、0.005モル/L以上0.04モル/L以下であることを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記添加剤は、下記の化(2)で表される化合物である請求項1又は2に記載のリチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000007
  4.  前記電解液の前記溶媒全体を100体積%としたときに、前記フッ素系エチレンカーボネートは、1体積%以上30体積%以下である請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記負極活物質は、珪素または錫或いは/及び珪素化合物または錫化合物である請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  前記負極活物質は、前記元素又は/及び前記元素化合物のほかに、黒鉛を含む請求項1~5のいずれか1項に記載のリチウムイオン二次電池。
  7. リチウムイオンを吸蔵・放出し得る負極活物質を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質を溶媒に溶解させてなる電解液とを有するリチウムイオン二次電池であって、 前記電解液の前記溶媒は、フッ素系エチレンカーボネートを含み、かつ、 前記電解液は、添加剤として下記の化(1)で表される化合物を含んでおり、前記電解液1リットル当たりの前記添加物のモル濃度は、0モル/Lを超えて大きく0.05モル/L未満であることを特徴とするリチウムイオン二次電池。  
    Figure JPOXMLDOC01-appb-C000008
     (Mは、P又はBであり、Xはハロゲン基であり、Rは鎖状炭化水素基であり、n1は1又は2であり、n2は1以上4以下の整数であり、n3は0以上3以下の整数である。)
  8. 前記電解液の前記溶媒全体を100体積%としたときに、前記フッ素系エチレンカーボネートは、1体積%以上30体積%以下である請求項7記載のリチウムイオン二次電池。
  9. 前記添加剤は、下記の化(2)で表される化合物である請求項7又は8に記載のリチウムイオン二次電池。  
    Figure JPOXMLDOC01-appb-C000009
  10. 前記負極活物質の表面積1m当たりの前記添加剤の含有量は410μmol/m以下である請求項7~9のいずれか1項に記載のリチウムイオン二次電池。
  11. 前記電解液中の前記添加剤の濃度は、0.3モル/L以下である請求項7~10のいずれか1項に記載のリチウムイオン二次電池。
  12. 前記電解液の前記溶媒は、前記フッ素系エチレンカーボネートを含む環状カーボネートと、鎖状カーボネートを有し、 前記電解液の前記溶媒全体を100体積%としたとき、前記環状カーボネートは30体積%以上50体積%以下であり、前記鎖状カーボネートは50体積%以上70体積%以下である請求項7~11のいずれか1項に記載のリチウムイオン二次電池。
  13. 前記電解液の前記溶媒は、前記フッ素系エチレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、及びジメチルカーボネートからなる請求項7~12のいずれか1項に記載のリチウムイオン二次電池。
  14.  前記前記リチウムと合金化反応可能な元素は珪素または錫であり、前記リチウムと合金化反応可能な元素化合物は珪素化合物または錫化合物である請求項7~13のいずれか1項に記載のリチウムイオン二次電池。
PCT/JP2013/001322 2012-03-05 2013-03-04 リチウムイオン二次電池 WO2013132824A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012047493 2012-03-05
JP2012-047493 2012-03-05
JP2012-143074 2012-06-26
JP2012143074A JP2015097139A (ja) 2012-06-26 2012-06-26 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2013132824A1 true WO2013132824A1 (ja) 2013-09-12

Family

ID=49116320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001322 WO2013132824A1 (ja) 2012-03-05 2013-03-04 リチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2013132824A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136937A1 (en) * 2014-03-14 2015-09-17 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery and secondary battery
JP2016081609A (ja) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 非水電解液二次電池
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2024162105A1 (ja) * 2023-01-31 2024-08-08 パナソニックIpマネジメント株式会社 電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016424A (ja) * 2006-06-05 2008-01-24 Sony Corp 電解質およびこれを用いた電池、並びに電解質の製造方法
JP2010528431A (ja) * 2007-05-22 2010-08-19 タイアックス エルエルシー 非水系電界液及びこれを含む電気化学装置
JP2012190699A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2013051179A (ja) * 2011-08-31 2013-03-14 Mitsui Chemicals Inc 環状スルホン化合物を含有する非水電解液、及びそのリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016424A (ja) * 2006-06-05 2008-01-24 Sony Corp 電解質およびこれを用いた電池、並びに電解質の製造方法
JP2010528431A (ja) * 2007-05-22 2010-08-19 タイアックス エルエルシー 非水系電界液及びこれを含む電気化学装置
JP2012190699A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2013051179A (ja) * 2011-08-31 2013-03-14 Mitsui Chemicals Inc 環状スルホン化合物を含有する非水電解液、及びそのリチウム二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136937A1 (en) * 2014-03-14 2015-09-17 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery and secondary battery
CN106133951A (zh) * 2014-03-14 2016-11-16 丰田自动车株式会社 用于制造二次电池的方法以及二次电池
US10326172B2 (en) 2014-03-14 2019-06-18 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery and secondary battery
JP2016081609A (ja) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 非水電解液二次電池
US11196079B2 (en) 2014-10-10 2021-12-07 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2024162105A1 (ja) * 2023-01-31 2024-08-08 パナソニックIpマネジメント株式会社 電池

Similar Documents

Publication Publication Date Title
JP5748193B2 (ja) 二次電池
JP6024457B2 (ja) 二次電池およびそれに用いる二次電池用電解液
JP5796587B2 (ja) 負極活物質、非水電解質二次電池用負極ならびに非水電解質二次電池
CN110720156B (zh) 锂离子二次电池
JP5846040B2 (ja) 電解液およびそれを備えるリチウムイオン二次電池
JP6933216B2 (ja) 非水電解液及びリチウムイオン二次電池
JP5263416B1 (ja) 二次電池およびそれを搭載した車両
JP6011607B2 (ja) 非水系電解質二次電池
JP2013137873A (ja) リチウムイオン二次電池
JP6360831B2 (ja) 電解液、及びリチウムイオン二次電池
JP6135219B2 (ja) 電解液およびこれを備えるリチウムイオン二次電池
JP5811093B2 (ja) 二次電池
JPWO2017038816A1 (ja) 電解液およびリチウムイオン二次電池
WO2013132824A1 (ja) リチウムイオン二次電池
JP2014060029A (ja) 非水電解質二次電池
US11387442B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP6812966B2 (ja) リチウムイオン二次電池用負極および二次電池
JP5962467B2 (ja) リチウムイオン二次電池
WO2013128805A1 (ja) リチウムイオン二次電池
JP2016122579A (ja) 非水電解質二次電池およびその製造方法
JP2015097139A (ja) リチウムイオン二次電池
CN114303261B (zh) 非水电解质二次电池
JP5742876B2 (ja) 蓄電デバイス用非水系溶媒、蓄電デバイス用電解液、及び蓄電デバイス
JP2014216245A (ja) 正極活物質およびその製造方法、正極ならびに二次電池
US20230335783A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP