WO2009110490A1 - 非水電解質電池 - Google Patents

非水電解質電池 Download PDF

Info

Publication number
WO2009110490A1
WO2009110490A1 PCT/JP2009/054028 JP2009054028W WO2009110490A1 WO 2009110490 A1 WO2009110490 A1 WO 2009110490A1 JP 2009054028 W JP2009054028 W JP 2009054028W WO 2009110490 A1 WO2009110490 A1 WO 2009110490A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
carbon
battery
negative electrode
aqueous electrolyte
Prior art date
Application number
PCT/JP2009/054028
Other languages
English (en)
French (fr)
Inventor
和紗 大久保
功治 鋤納
茂樹 山手
小園 卓
禎弘 片山
温田 敏之
Original Assignee
株式会社ジーエス・ユアサコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジーエス・ユアサコーポレーション filed Critical 株式会社ジーエス・ユアサコーポレーション
Priority to CN200980104424XA priority Critical patent/CN101939874B/zh
Priority to EP09717799.2A priority patent/EP2262047B1/en
Priority to JP2009516430A priority patent/JP5429631B2/ja
Priority to US12/736,060 priority patent/US8501356B2/en
Publication of WO2009110490A1 publication Critical patent/WO2009110490A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte battery, and more particularly to a nonaqueous electrolyte battery including a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher.
  • Non-aqueous electrolyte batteries typified by lithium ion secondary batteries are frequently used in recent years as power sources for mobile devices typified by mobile phones because of their high energy density.
  • a transition metal oxide such as lithium cobaltate is used for the positive electrode active material
  • a carbonaceous material such as graphite is used for the negative electrode active material.
  • lithium ion insertion and desorption reactions are performed in a potential region of about 0.2 V or less with respect to the lithium potential.
  • a lithium ion secondary battery using the negative electrode can secure a high battery voltage and can have a high energy density. Yes.
  • the nonaqueous solvent used in the nonaqueous electrolyte contains a cyclic carbonate compound such as ethylene carbonate or propylene carbonate.
  • the cyclic carbonate compound has a high dielectric constant necessary to dissociate the electrolyte salt and express high ionic conductivity, and also has chemical stability and electrochemical stability at the interface between the negative electrode and the electrolyte. This is because it has a property of forming a protective coating necessary for securing the negative electrode surface.
  • Non-Patent Document 1 In lithium ion secondary batteries that use graphite or the like as the negative electrode active material, the characteristics of the protective film vary depending on the type of solvent used as the electrolyte and the characteristics of the additive, and affect ion transfer or charge transfer. It is known as a major factor in determining battery performance. (For example, see Non-Patent Document 1)
  • a lithium ion secondary battery using graphite or the like as the negative electrode active material has a problem in stability with an electrolyte solution at a high temperature due to its low negative electrode working potential, leading to a decrease in battery performance. there were. Further, when rapid charging is performed in a low temperature atmosphere, due to the low negative electrode operating potential, metallic lithium is deposited on the negative electrode to form dendrites, which also leads to a decrease in battery performance.
  • non-aqueous electrolyte batteries are not only developed for power supplies for small equipment, but also for medium and large-sized industrial applications such as power storage equipment power supplies and in-vehicle power supplies such as HEVs. It is.
  • batteries for hybrid vehicles have high output characteristics for instantaneously operating a motor that assists engine power, high input characteristics for regenerating energy when the automobile stops, especially at low temperatures where the conditions are severe. High output characteristics and high input characteristics are demanded.
  • the battery is exposed to high temperatures when traveling or parking in hot weather, the low temperature input / output characteristics need to be maintained after high temperature storage.
  • a large number of batteries are often used in a collective manner, and labor costs and other costs are required for battery replacement. A long life is required in terms of discharge cycle performance.
  • a material represented by lithium titanate in which the operating potential is about 1.5 V relative to the lithium potential, which is noble compared with the carbon material but causes stable lithium ion insertion / extraction reaction, is a negative electrode active material. As proposed.
  • Patent Document 1 describes an invention for an electrolytic solution for a capacitor comprising an electrolyte and an electrolyte solvent containing a compound having a Si-containing group.
  • a capacitor using an activated carbon electrode and using an electrolyte solvent containing a Si compound in a nonaqueous electrolytic solution has a reduced amount of leakage current and a small amount of product appearance deformation in a 70 ° C. load test.
  • Patent Document 1 describes the low-temperature output characteristics after high-temperature storage when applied to a non-aqueous electrolyte battery having a negative electrode with an operating potential of 1.2 V (vs. Li / Li + ) or higher. There is no description or suggestion, and in the non-aqueous electrolyte of the non-aqueous electrolyte battery having a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher, the following general formulas (1) to ( It cannot be derived from Patent Document 1 that the output characteristics at low temperature after high temperature storage can be improved by containing at least one selected from the compound group represented by 3).
  • Patent Document 2 discloses an invention characterized in that a nonaqueous solvent containing a compound having a (metal element, phosphorus or boron)-(oxygen)-(silicon) bond is used in a nonaqueous electrolyte for a lithium secondary battery. Is described. Table 1 of Patent Document 2 shows that in a coin-type battery composed of a graphite negative electrode and a metal lithium foil, (metal element, phosphorus or boron)-(oxygen)-in a solvent in which EC and DMC are mixed at a ratio of 40:60.
  • Patent Document 2 describes the low-temperature output characteristics after high-temperature storage when applied to a non-aqueous electrolyte battery including a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher.
  • a non-aqueous electrolyte battery including a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher there is no description or suggestion, and in the non-aqueous electrolyte of the non-aqueous electrolyte battery including the negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or more, the general formulas (1) to (3) It cannot be derived from Patent Document 2 that the output characteristics at low temperatures after high temperature storage can be improved by containing at least one selected from the group of compounds represented.
  • Patent Document 3 proposes a nonaqueous electrolyte battery characterized by containing a compound containing at least B and Si inside the nonaqueous electrolyte battery.
  • Patent Document 3 states that “by adding at least one of B and Si-containing compounds in a non-aqueous electrolyte battery, this compound forms a film on the surface of the negative electrode to suppress contact between the electrolyte and the negative electrode. It is possible to reduce the decomposition reaction of the electrolytic solution above, and thus, it is possible to realize a highly reliable battery having excellent storage characteristics ”(paragraph 0034), and LiCoO 2 as a positive electrode.
  • a negative electrode having a negative electrode active material into which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential is represented by the general formulas (1) to (3) in the non-aqueous electrolyte.
  • the output characteristics at low temperatures after storage at high temperatures can be improved, and in particular, carbonate esters contained in the nonaqueous solvent constituting the nonaqueous electrolyte. It cannot be derived from Patent Document 3 that the volume ratio of the cyclic carbonate occupying in the total volume of is preferably 10% by volume or less.
  • Patent Document 4 describes that in a non-aqueous lithium secondary battery characterized in that the non-aqueous electrolyte contains lithium oxalate and a Lewis acidic compound, the initial discharge capacity is increased.
  • the Lewis acidic compound is (CH 3 (CH 2 ) 2 O) 3 B, (CH 3 (CH 2 ) 3 O) ” 3 B, ((CH 3 ) 3 SiO) 3 B, ((CF 3 ) 2.
  • (Cho) 3 B, ((CH 3 ) 3 SiO) 3 P, and ((CF 3 ) 2 CHO) 3 P are at least one selected from “(Claim 2)”.
  • Patent Document 4 describes that “the addition of a Lewis acidic compound in addition to lithium oxalate, that is, the addition of a compound having an electron accepting property that is soluble in an organic solvent improves the solubility of lithium oxalate” (paragraph 0006), It is described that dissolving lithium oxalate in a non-aqueous electrolyte is important in providing a battery having a large initial discharge capacity.
  • a negative electrode having a negative electrode active material into which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential is represented by the general formulas (1) to (3) in the non-aqueous electrolyte.
  • the output characteristics at low temperatures after storage at high temperatures can be improved, and in particular, carbonate esters contained in the nonaqueous solvent constituting the nonaqueous electrolyte. It is not possible to derive from Patent Document 4 that the volume ratio of the cyclic carbonate occupying the total volume is preferably 10% by volume or less.
  • Patent Document 5 discloses a first additive having a reduction potential in the range of 0.3 to 0.5 eV in the LUMO value obtained by the AM1 calculation method in the quantum chemistry calculation method, and the AM1 calculation method in the quantum chemistry calculation method. And a second additive having a reduction potential in the range of ⁇ 0.2 to 0.3 eV or 0.5 eV to 1 eV.
  • Table 2 of Patent Document 5 trimethylsilyl phosphate or a mixture of LiBF 4 and trimethylsilyl phosphate is used as the first additive, and fluoroethylene carbonate, vinylene carbonate, or a mixture thereof is used as the second additive.
  • cycle characteristics are improved over a range of 10 to 60 ° C., a discharge capacity of ⁇ 20 ° C., suppression of swelling during storage at 85 ° C.
  • a negative electrode having a negative electrode active material into which lithium ions are inserted and desorbed at a potential of 1.2 V or more with respect to the lithium potential is represented by the general formulas (1) to (3) in the non-aqueous electrolyte.
  • the output characteristics at low temperatures after storage at high temperatures can be improved, and in particular, carbonate esters contained in the nonaqueous solvent constituting the nonaqueous electrolyte. It is not possible to derive from Patent Document 5 that the volume ratio of the cyclic carbonate occupying the total volume of is preferably 10% by volume or less.
  • Patent Documents 6 to 8 describe the general formula (3), and this general formula includes the compound represented by the general formula (1) characterized by the present invention as a subordinate concept.
  • batteries using an electrolytic solution to which trimethylsilyl methanesulfonate is added as a compound corresponding to the general formula (3) are described.
  • the non-aqueous electrolyte contains a chain carboxylic acid ester as an essential component, and the following formula Si—O—A (A is H, C , N, O, F, S, Si and / or a compound containing a compound containing a P), a positive electrode made of LiCoO 2 , a negative electrode made of graphite, and ethylene LiPF 6 to 1 mol / liter in a mixture of carbonate (EC), methyl ethyl carbonate (EMC) and methyl propionate (MP) or ethyl acetate (EA) or methyl acetate (MA) in a volume ratio of 3: 6: 1
  • EC carbonate
  • EMC methyl ethyl carbonate
  • MP methyl propionate
  • EA ethyl acetate
  • MA methyl acetate
  • the low-temperature output characteristics immediately after battery production are improved, but the output retention rate after a high-temperature storage test is equivalent to the case where no additive is used, thus solving the problems of the present invention.
  • it has a carbon material negative electrode whose operating potential is lower than 1.2 V (vs. Li / Li + ), and contains non-aqueous electrolytes such as chain carboxylic acid esters (methyl acetate, etc.) and cyclic carbonates (ethylene carbonate).
  • the ratio of ethylene carbonate in a non-aqueous solvent is set to 1 to 25% by volume, and the following formula Si—O—A (A is H , C, N, O, F, S, Si and / or a compound containing a compound containing a P), a positive electrode made of LiCoO 2 , a negative electrode made of graphite, and
  • A is H , C, N, O, F, S, Si and / or a compound containing a compound containing a P
  • a positive electrode made of LiCoO 2
  • a negative electrode made of graphite
  • trimethylsilyl methanesulfonate to a non-aqueous electrolyte battery composed of a non-aqueous electrolyte solution in which LiPF 6 is mixed at 1 mol / liter in a mixture of ethylene carbonate (EC) and methyl ethyl carbonate (EMC).
  • EC ethylene carbonate
  • EMC methyl ethyl carbonate
  • the negative electrode active material contains a metal oxide containing titanium that can occlude and release lithium, and the following formula Si—O is present in the molecule.
  • An invention characterized in that it comprises a compound containing -A (A is a group composed of H, C, N, O, F, S, Si and / or P) is described in Examples 4-6.
  • Uses a lithium-titanium composite oxide for the negative electrode and uses a mixture of ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate (volume ratio 3: 3: 4) to which trimethylsilyl methanesulfonate is added as a non-aqueous electrolyte solvent.
  • the output resistance is reduced.
  • trimethylsilyl methanesulfonate which has been shown to be able to improve output characteristics at low temperatures, has a negative electrode with an operating potential of 1.2 V (vs. Li / Li + ) or higher.
  • the low-temperature output characteristics immediately after the production of the battery are improved, but the output retention rate after the high-temperature storage test is the same as when no additive is used, and the problem of the present invention cannot be solved. .
  • a negative electrode having a negative electrode active material into which lithium ions are inserted / extracted at a potential of 1.2 V or more with respect to the lithium potential is represented by the general formulas (1) to (3) in the non-aqueous electrolyte. It cannot be derived from Patent Document 8 that the output characteristics at low temperatures after high temperature storage can be improved by containing at least one selected from the compound group.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a nonaqueous electrolyte battery having excellent low-temperature output characteristics even after high-temperature storage.
  • the present invention provides a nonaqueous electrolyte battery comprising a nonaqueous electrolyte containing a nonaqueous solvent and an electrolyte salt, a positive electrode, and a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher. , Containing a chain carbonate ester and / or a chain carboxylate ester as a main solvent in a proportion of 70% by volume or more of the total volume of the non-aqueous solvent, and represented by the general formula (1), (2) or (3) It is a nonaqueous electrolyte battery characterized by containing the compound represented by these.
  • R 1 to R 9 are organic groups having 1 to 12 carbon atoms which may be the same or different from each other.
  • R 10 to R 18 are organic groups having 1 to 12 carbon atoms which may be the same as or different from each other.
  • R 19 to R 30 are the same or different organic groups having 1 to 12 carbon atoms.
  • the nonaqueous electrolyte contains a chain carbonate ester in a proportion of more than 70% by volume of the total volume of the nonaqueous solvent, and the nonaqueous solvent contains carbon.
  • the total volume of the carbonic acid ester having no carbon double bond is 100 and the volume of the cyclic carbonic acid ester is a among the carbonic acid esters having no carbon-carbon double bond, 0 ⁇ a ⁇ 30 It is characterized by being.
  • the nonaqueous electrolyte battery of the present invention contains a chain carbonate in a proportion of 90% by volume or more of the total volume of the nonaqueous solvent, and the carbon-carbon contained in the nonaqueous solvent.
  • the total volume of carbonic acid ester having no double bond is 100
  • the volume of the cyclic carbonate of the carbonic acid ester having no carbon-carbon double bond is a, 0 ⁇ a ⁇ 10. It is characterized by.
  • the nonaqueous electrolyte contains the chain carbonate ester and the chain carboxylate ester in a proportion of more than 70% by volume of the total volume of the nonaqueous solvent.
  • the total volume of the carbonic acid ester having no carbon-carbon double bond and the chain carboxylic acid ester contained in the solvent is 100, and the volume of the cyclic carbonate of the carbonic acid ester having no carbon-carbon double bond is 100%.
  • b is 0 ⁇ b ⁇ 30.
  • the nonaqueous electrolyte contains the chain carboxylic acid ester in a proportion of more than 90% by volume of the total volume of the nonaqueous solvent, and the carbon contained in the nonaqueous solvent. -When the total volume of the carbonic acid ester having no carbon double bond and the chain carboxylic acid ester is 100, and the volume of the cyclic carbonic acid ester among the carbonic acid esters having no carbon-carbon double bond is c. , 0 ⁇ c ⁇ 10.
  • the nonaqueous electrolyte battery of the present invention is characterized in that the negative electrode contains spinel type lithium titanate.
  • Nonaqueous electrolyte battery includes a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher.
  • a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher” means that the negative electrode when charged and discharged in a non-aqueous electrolyte battery is 1 based on the potential of metallic lithium.
  • the non-aqueous electrolyte battery In order for the non-aqueous electrolyte battery to have a negative electrode having an operating potential of 1.2 V (vs. Li / Li + ) or higher, the negative electrode substantially operates as a battery at a potential of 1.2 V or higher.
  • a negative electrode active material in which lithium ions are inserted and desorbed at a potential of 1.2 V or higher with respect to the lithium potential It can achieve by providing the negative electrode which has.
  • the negative electrode active material from which lithium ions are inserted / extracted at a potential of 1.2 V or higher with respect to the lithium potential include tungsten oxide, molybdenum oxide, iron sulfide, titanium sulfide, and lithium titanate.
  • lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3) and having a spinel structure is preferable.
  • a material in which a part of Ti is substituted with another element may be used.
  • lithium titanate having a structure substituted with Al or Mg at a specific ratio lithium titanate having a structure substituted with Al or Mg at a specific ratio is used, potential flatness or high rate is obtained. This is preferable because the discharge characteristics can be improved.
  • the nonaqueous electrolyte battery according to the present invention is characterized by containing a compound represented by the general formula (1), (2) or (3). That is, any one selected from the compound groups represented by (1) to (3) may be used, or two or more may be used simultaneously.
  • R is an organic group having 1 to 12 carbon atoms which may be the same or different. Examples thereof include a methyl group, an ethyl group, and n-propyl. Chain alkyl groups such as isopropyl group, isopropyl group, butyl group and isobutyl group, cyclic alkyl groups such as cyclohexyl group, alkenyl groups such as vinyl group and allyl group, alkyl halide groups such as trifluoromethyl group, trimethylsilyl group, etc. And trialkylsiloxy groups such as a trialkylsilyl group and a trimethylsiloxy group.
  • the ratio of the compounds represented by the general formulas (1) to (3) is preferably 10 ppm (0.001% by mass) or more in total, more preferably 0.01% by mass or more, based on the total amount of the nonaqueous electrolyte. More preferably, it is 0.1% by mass or more. Moreover, although an upper limit changes also with the compounds to be used, Preferably it is 5 mass% or less, More preferably, it is 3 mass% or less.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte battery of the present invention includes a carbon-carbon contained in the non-aqueous solvent when the chain carbonate is a main solvent (a proportion greater than 70% by volume of the total volume of the non-aqueous solvent).
  • a carbon-carbon contained in the non-aqueous solvent when the chain carbonate is a main solvent a proportion greater than 70% by volume of the total volume of the non-aqueous solvent.
  • the value of a indicating the volume ratio of the cyclic carbonate to the volume of the carbonate ester when the volume of the carbonate ester having no carbon-carbon double bond contained in the nonaqueous solvent is 100 is the value after storage at high temperature. In order to further improve the low temperature output characteristics, 10 or less is more preferable. Moreover, in order to suppress the self-discharge at the time of high temperature storage, the value a is preferably 1 or more.
  • examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like.
  • the total volume of the carbonic acid ester having no carbon-carbon double bond and the chain carboxylic acid ester contained in the nonaqueous solvent is 100, and the carbon-carbon It is preferable that 0 ⁇ b ⁇ 30, where b is the volume of the cyclic carbonate among the carbonates having no double bond.
  • the chain carboxylic acid ester is more than 90% by volume, and the value of b is more preferably less than 10. Even if the cyclic carbonate is 0, there is a remarkable effect.
  • the carbonate ester having no carbon-carbon double bond contained in the non-aqueous solvent it is preferable to use a chain carbonate ester as a main solvent and a small amount of cyclic carbonate.
  • methyl ethyl carbonate may be used alone, but in order to achieve excellent low-temperature output characteristics, it is preferable to use a mixture of dimethyl carbonate.
  • the proportion of dimethyl carbonate in the volume of the carbonate ester is preferably 10 or more, more preferably 20 or more, when the volume of the carbonate ester having no carbon-carbon double bond contained in the non-aqueous solvent is 100. . However, if it is 60 or more, the low-temperature input characteristics are deteriorated. Therefore, it is necessary to be less than 60, and 50 or less is preferable.
  • a nonaqueous electrolyte battery having excellent low-temperature output characteristics after high-temperature storage can be provided.
  • the nonaqueous electrolyte used in the battery of the present invention is not prevented from containing a solvent other than those specifically described above.
  • cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, acetic acid It may contain chain esters such as ethyl, propyl acetate and methyl propylene, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, sulfolane, acetonitrile and various ionic liquids.
  • the solvent for the non-aqueous electrolyte used in the battery of the present invention may be a mixture of a carbonic acid ester having no carbon-carbon double bond or a carbonic acid ester having a carbon-carbon double bond.
  • vinylene carbonate which is a cyclic carbonate having a carbon-carbon double bond, or the like in a mixture of 10% by mass or less of the entire nonaqueous electrolyte, and particularly suppresses gas generation in the initial charge / discharge process. The excellent effect of is recognized.
  • the electrolyte salt used for the non-aqueous electrolyte is not particularly limited as long as it is known to be used as an electrolyte salt of a non-aqueous electrolyte battery.
  • lithium hexafluorophosphate LiPF 6
  • Inorganic fluoride salts such as lithium tetrafluoroborate (LiBF 4 ) and lithium hexafluoroarsenide (LiAsF 6
  • perhalogenates such as lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3) SO 3 ), fluorine-containing organic lithium salts such as bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ] and the like.
  • These electrolyte salts may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
  • separator examples include polyethylene, polypropylene, cellulose, a porous film containing polyvinylidene fluoride (PVdF), and a synthetic resin nonwoven fabric.
  • PVdF polyvinylidene fluoride
  • the negative electrode current collector is not particularly limited as long as it has resistance to the nonaqueous electrolyte to be used and resistance to electrochemical reaction on the negative electrode, and examples thereof include nickel, copper, stainless steel, and aluminum.
  • the positive electrode active material that can be used for the positive electrode included in the nonaqueous electrolyte battery according to the present invention is not limited as long as it can electrochemically insert and desorb lithium ions, and various kinds of oxidation materials can be used. And sulfides.
  • manganese dioxide MnO 2
  • iron oxide copper oxide
  • nickel oxide lithium manganese composite oxide
  • lithium nickel composite oxide eg, Li x NiO 2
  • Lithium cobalt composite oxide Li x CoO 2
  • lithium nickel cobalt composite oxide LiNi x Co 1-x O 2
  • lithium nickel cobalt manganese composite oxide LiNi x Co y Mn 1-xy O 2
  • spinel type lithium-manganese-nickel composite oxide LiMn 2-y Co x O 4
  • lithium phosphates having an olivine structure for example LiFePO 4, LiCoPO 4, LiVPO 4 , LiVPO 4 F, LiMnPO 4, LiMn 7/8 Fe 1/8 PO 4, LiNiVO 4, L CoPO 4, Li 3 V 2 ( PO4) 3, Fe 2 (SO4) 3, LiFeP 2 O 7, Li 3 Fe 2 (PO4) 3, Li 2
  • main metal atoms may be Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Mg, Ga, Zr, Si, etc. It may be substituted with other elements.
  • conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included.
  • a known conductive material or binder can be applied to the positive electrode by a known formulation and contained.
  • the conductive agent include acetylene black, carbon black, and graphite.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • fluorine-based rubber fluorine-based rubber.
  • a known material can be used by a known method. For example, aluminum or an aluminum alloy can be used.
  • a non-aqueous electrolyte having the following composition was used.
  • B1: 1.2M LiPF 6 EC: MEC 1: 99 (volume%) (Comparative example)
  • B2: 1.2M LiPF 6 EC: MEC 1: 99 (volume%) + 1 wt% trimethylsilyl methanesulfonate (Comparative Example)
  • B3: 1.2M LiPF 6 EC: MEC 1: 99 (volume%) + 1 wt
  • a positive electrode active material 91 parts by mass of lithium transition metal composite oxide (LiNi 1/6 Mn 1/6 Co 2/3 O 2 ) powder having a hexagonal rock salt type crystal structure, 4.5 mass of acetylene black as a conductive material Part and a positive electrode slurry containing 4.5 parts by weight of polyvinylidene fluoride (PVdF) as a binder and N-methylpyrrolidone (NMP) as a solvent on a positive electrode current collector (aluminum, thickness 20 ⁇ m) on one side
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • ⁇ Preparation of negative electrode Contains 87 parts by mass of spinel type lithium titanate (Li 4 Ti 5 O 12 ) powder as a negative electrode active material, 5 parts by mass of acetylene black as a conductive material, and 8 parts by mass of polyvinylidene fluoride (PVdF) as a binder.
  • a negative electrode slurry containing N-methylpyrrolidone (NMP) as a solvent is applied to a negative electrode current collector (copper, thickness 10 ⁇ m) so that the amount of electrode mixture on one side is 9 mg / cm 2 (not including the current collector). After the application, the electrode was dried and pressed so that the electrode thickness on both sides was 110 ⁇ m (including the current collector), thereby preparing a negative electrode.
  • NMP N-methylpyrrolidone
  • a wound electrode group formed by flatly winding the positive electrode and the negative electrode through a polyethylene porous separator is a rectangular battery case made of aluminum (height 49.3 mm, width 33. 7 mm, thickness 5.17 mm), and 3.5 g of nonaqueous electrolyte was injected under reduced pressure, and then the battery case was sealed and left at 25 ° C. overnight.
  • the conditions of the initial charge / discharge process were a temperature of 25 ° C., a charge current of 40 mA, a charge voltage of 2.5 V, a total charge time of 20 hours, a discharge current of 80 mA, and a discharge end voltage of 1.0 V.
  • the positive electrode potential at the end of 2.5V charge of this battery was about 4.0 V with respect to the lithium potential, and the negative electrode potential was about 1.5 V with respect to the lithium potential.
  • the charge / discharge process at 0 V was performed for 2 cycles.
  • the 1C discharge capacity in the second cycle at this time was defined as the initial capacity.
  • the battery for which the low temperature output characteristics were evaluated was charged by constant current and constant voltage charging with a charging current of 400 mA, a charging voltage of 2.5 V, and a total charging time of 3 hours.
  • This battery was stored in a constant temperature bath at 80 ° C. for 4 days, and after taking out, it was cooled at 25 ° C. for 5 hours or more, and then the thickness of the central part of the battery was measured and the low-temperature output characteristics were evaluated.
  • the battery capacity, the battery thickness after storage, the initial and post-storage output characteristics of the battery produced using the electrolytes A1 to K1 were measured and calculated.
  • Table 1 shows the battery thickness after storage, the output characteristics after initial storage, and the rate of change.
  • the symbol of electrolyte solution and an additive is as follows.
  • PC propylene carbonate EC: ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • GBL ⁇ -butyrolactone
  • TMSP tris (trimethylsilyl) phosphate
  • TMSB tris (trimethylsilyl) borate
  • TMST tetrakis (trimethylsiloxy) titanium
  • the battery using the non-aqueous electrolyte containing trimethylsilyl methanesulfonate as an additive showed excellent output characteristics in the initial characteristics as compared with the case where no additive was contained.
  • a chain carbonate as a main solvent and 70% of the total volume of the nonaqueous solvent When it contained by the ratio of volume%, the battery containing TMSP, TMSB, and TMST showed a high output maintenance factor, but the output maintenance factor of the battery containing methanesulfonic acid trimethylsilyl was low.
  • batteries containing TMSP have a cyclic carbonate ratio in the nonaqueous electrolyte of 10% by volume or less (a ratio of chain carbonate is 90%).
  • a ratio of chain carbonate is 90%.
  • the proportion of cyclic carbonate is 30% by volume (the proportion of chain carbonate is 70% by volume) (F3), the proportion of cyclic carbonate is 20% by volume (chain carbonate).
  • B3, C3, D3, E3 even when stored in a high-temperature atmosphere of 80 ° C. The surprising result is that the low-temperature output characteristics are not deteriorated at all.
  • the battery of J1 which does not contain chain carbonate ester in the ratio of 70 volume% or more with respect to the total volume of a nonaqueous solvent did not show the improvement of an output maintenance factor. From these results, it is preferable that the chain carbonate as the main solvent is more than 70% by volume of the total volume of the non-aqueous solvent, and the ratio of the cyclic carbonate has a carbon-carbon double bond. Less than 30% by volume in the total volume of carbonic acid ester (in the examples, the total volume of the nonaqueous solvent) is preferred.
  • the chain carbonate is more preferably 90% by volume or more of the total volume of the non-aqueous solvent, and the proportion of the cyclic carbonate is 10 volume in the total volume of the carbonate without carbon-carbon double bonds. % Or less is more preferable.
  • A1 to A5 non-aqueous electrolytes containing 100% by volume of chain carbonate were used, the battery voltage dropped to 0 V after standing at 80 ° C. for 4 days, and the battery capacity could not be taken out. Therefore, a nonaqueous electrolyte battery in which the chain carbonate is 100% by volume is excluded from the present invention.
  • a positive electrode active material 91 parts by mass of lithium transition metal composite oxide (LiNi 1/6 Mn 1/6 Co 2/3 O 2 ) powder having a hexagonal rock salt type crystal structure, 4.5 mass of acetylene black as a conductive material Part and a positive electrode slurry containing 4.5 parts by weight of polyvinylidene fluoride (PVdF) as a binder and N-methylpyrrolidone (NMP) as a solvent on a positive electrode current collector (aluminum, thickness 20 ⁇ m) on one side
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • ⁇ Preparation of negative electrode Contains 87 parts by mass of spinel type lithium titanate (Li 4 Ti 5 O 12 ) powder as a negative electrode active material, 5 parts by mass of acetylene black as a conductive material, and 8 parts by mass of polyvinylidene fluoride (PVdF) as a binder.
  • a negative electrode slurry containing N-methylpyrrolidone (NMP) as a solvent is applied to a negative electrode current collector (aluminum, thickness 20 ⁇ m), and the amount of electrode mixture on one side is 7.3 mg / cm 2 (not including the current collector). After being coated, the electrode was dried and pressed so that the electrode thickness on both sides was 99 ⁇ m (including the current collector), thereby preparing a negative electrode.
  • NMP N-methylpyrrolidone
  • a wound electrode group formed by flatly winding the positive electrode and the negative electrode through a polyethylene porous separator is a rectangular battery case made of aluminum (height 49.3 mm, width 33. 7 mm, thickness 5.17 mm), 2.8 g of nonaqueous electrolyte was injected under reduced pressure, and then the battery case was sealed and left at 25 ° C. overnight.
  • the conditions of the initial charge / discharge process were a temperature of 25 ° C., a charge current of 80 mA, a charge voltage of 2.5 V, a total charge time of 8 hours, a discharge current of 80 mA, and a discharge end voltage of 1.0 V.
  • the positive electrode potential at the end of 2.5V charge of this battery was about 4.05 V with respect to the lithium potential, and the negative electrode potential was about 1.55 V with respect to the lithium potential.
  • the charging current is 400 mA
  • the charging voltage is 2.5 V
  • the total charging time is 3 hours
  • the discharging current is 400 mA
  • the discharging end voltage is 1.
  • the charge / discharge process at 0 V was performed for 2 cycles.
  • the 1C discharge capacity in the second cycle at this time was defined as the initial capacity.
  • the lithium titanate negative electrode battery for which the low-temperature output characteristics were evaluated was charged by constant current and constant voltage charging with a charging current of 400 mA, a charging voltage of 2.5 V, and a total charging time of 3 hours. This battery was stored for 15 days in a 60 ° C. constant temperature bath, and after taking out, it was cooled at 25 ° C. for 5 hours or more, and then the thickness of the battery center was measured and the low temperature output characteristics were evaluated.
  • a positive electrode active material 91 parts by mass of lithium transition metal composite oxide (LiNi 1/6 Mn 1/6 Co 2/3 O 2 ) powder having a hexagonal rock salt type crystal structure, 4.5 mass of acetylene black as a conductive material Part and a positive electrode slurry containing 4.5 parts by weight of polyvinylidene fluoride (PVdF) as a binder and N-methylpyrrolidone (NMP) as a solvent on a positive electrode current collector (aluminum, thickness 20 ⁇ m) on one side
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a negative electrode active material a negative electrode slurry containing 95 parts by mass of a carbon material Carbotron P powder and 5 parts by mass of a polyvinylidene fluoride (PVdF) as a binder and using N-methylpyrrolidone (NMP) as a solvent is collected into the negative electrode.
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a wound electrode group formed by flatly winding the positive electrode and the negative electrode through a polyethylene porous separator is a rectangular battery case made of aluminum (height 49.3 mm, width 33. (7 mm, thickness 5.17 mm), 2.8 g of nonaqueous electrolyte was injected under reduced pressure, and then the battery case was sealed and left at 25 ° C. overnight.
  • the conditions of the initial charge / discharge process were a temperature of 25 ° C., a charge current of 80 mA, a charge voltage of 4.03 V, a total charge time of 8 hours, a discharge current of 80 mA, and a discharge end voltage of 2.25 V.
  • the positive electrode potential at the end of 4.03 V charge of this battery was about 4.05 V with respect to the lithium potential, and the negative electrode potential was about 0.02 V with respect to the lithium potential.
  • the charging / discharging process is performed for one cycle, and then a charging current of 400 mA, a charging voltage of 4.03 V, a total charging time of 3 hours, a discharging current of 400 mA, and a discharge end voltage of 2.
  • the charge / discharge process at 25 V was performed for 2 cycles.
  • the 1C discharge capacity in the second cycle at this time was defined as the initial capacity.
  • the carbon material negative electrode battery for which the low-temperature output characteristics were evaluated was charged by constant current and constant voltage charging with a charging current of 400 mA, a charging voltage of 4.03 V, and a total charging time of 3 hours. This battery was stored for 15 days in a 60 ° C. constant temperature bath, and after taking out, it was cooled at 25 ° C. for 5 hours or more, and then the thickness of the battery center was measured and the low temperature output characteristics were evaluated.
  • the battery capacity, the battery thickness after storage, the initial storage characteristics, and the output characteristics after storage were measured and calculated for the lithium titanate negative electrode batteries prepared using the electrolytic solutions L1 to T2.
  • the carbon material negative electrode battery made using the electrolyte solution of L1 ′ to O2 ′ which is the same electrolyte solution as L1 to O2 the battery capacity, the battery thickness after storage, the initial and post-storage output characteristics were measured, Calculated.
  • Table 2 shows the battery thickness after storage, the output characteristics after initial storage, and the rate of change.
  • the abbreviations for the negative electrode and the electrolytic solution are the same as those in Example 1 except for the following.
  • Li 4 Ti 5 O 12 Lithium titanate CTP: Carbotron P MA: Methyl acetate
  • the proportion of the chain carboxylate is more than 90% by volume of the total volume of the nonaqueous solvent (the proportion of the cyclic carbonate is less than 10% by volume) ( L2, M2, N2)
  • the output of the chain carboxylic acid ester is maintained more than when the volume of the non-aqueous solvent is 90% by volume (the ratio of the cyclic carbonate is 10% by volume) (O2).
  • the rate was great. From these results, it is preferable that the chain carboxylic acid ester as the main solvent is more than 90% by volume of the total volume of the non-aqueous solvent, and the ratio of the cyclic carbonate is the carbon contained in the non-aqueous solvent.
  • the ratio of the cyclic carbonate is small, and when the cyclic carbonate is 0 (Q2), the low-temperature output characteristics are not deteriorated at all even when stored in a high temperature atmosphere of 60 ° C. As shown, the increase in battery thickness after storage was extremely small.
  • the increase in battery thickness was large.
  • the chain carboxylic acid ester is 100% by volume, the battery greatly swells after the initial charge / discharge step, and the chain carboxylic acid ester is contained at a rate of 98% by volume in the total volume of the nonaqueous solvent. In this case, since the battery swelled greatly after storage at 60 ° C. for 7 days, a low-temperature output test could not be performed.
  • Carbon material negative batteries containing 95% by volume and 90% by volume of chain carboxylic acid esters in the total volume of non-aqueous solvent also have an increased battery thickness after storage compared to lithium titanate negative battery. It was big. Moreover, these carbon material negative electrodes (N1 ′ to O2 ′) showed excellent output characteristics in the initial characteristics, but in a low temperature output test conducted after being subjected to a storage test at 60 ° C. for 15 days. When TMST was added, the output retention rate was greatly reduced as in the case where TMST was not added. Therefore, from these results, the addition of TMST, TMSB and TMSP is effective in a non-aqueous electrolyte battery having a negative electrode whose operating potential is 1.2 V (vs.
  • Li / Li + Li / Li +
  • the carbon material negative electrode battery having an operating potential of less than 1.2 V (vs. Li / Li + ) is found to be ineffective, the effect of the present invention should be predicted from the carbon material negative electrode battery. I can't.
  • the application of the nonaqueous electrolyte battery of the present invention is not particularly limited, and can be used for various known applications.
  • the non-aqueous electrolyte battery of the present invention can be suitably used for many applications including in-vehicle power such as power storage equipment and HEV because it can obtain excellent low-temperature output characteristics after being left at a high temperature. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】チタン酸リチウムに代表される作動電位が1.2V(vs.Li/Li+)以上である負極を備え、低温出力特性が高温保存後においても維持される非水電解質電池を提供することを課題とする。 【解決手段】トリス(トリメチルシリル)ホスフェート、トリス(トリメチルシリル)ボレート、テトラキス(トリメチルシロキシ)チタニウム(化3)に代表される添加剤を、主溶媒(70体積%以上)が鎖状炭酸エステル及び/又は鎖状カルボン酸エステルである非水電解質に適用することで、上記課題を達成できる。ここで、非水電解質を構成する非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0≦a<30であることが好ましい(鎖状カルボン酸エステルを含有しない場合は、0<a<30)。   【化3】

Description

非水電解質電池
 本発明は、非水電解質電池に関し、特に、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に関する。
 リチウムイオン二次電池に代表される非水電解質電池は、エネルギー密度が高いことから、携帯電話に代表されるモバイル機器の電源として近年多用されている。
 現在の一般的なリチウムイオン二次電池は、正極活物質にコバルト酸リチウムなどの遷移金属酸化物、負極活物質に黒鉛などの炭素質材料が用いられている。負極活物質に黒鉛等を用いた負極においては、リチウムイオンの挿入・脱離反応はリチウム電位に対して約0.2V以下の電位領域にておこなわれる。このように、負極活物質に黒鉛等を用いた負極は、作動電位が低いために、これを用いたリチウムイオン二次電池は、高い電池電圧が確保でき、高エネルギー密度化が可能となっている。
 このように作動電位の低い負極を安定して作動させるために、非水電解質に用いる非水溶媒には、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート化合物を含有させることが不可避となっている。環状カーボネート化合物は、電解質塩を解離させ、高いイオン伝導性を発現するために必要な高誘電率性を有していると共に、負極と電解質との界面における化学的安定性及び電気化学的安定性を確保するために必要な保護被膜を負極表面に形成する性質を有しているためである。負極活物質に黒鉛等を用いたリチウムイオン二次電池において、前記保護被膜の特性は、電解液として用いられる溶媒の種類や添加剤の特性によって性質が変わり、イオン移動あるいは電荷移動に影響を与えて電池性能を決定づける上での主要因子として知られている。(例えば非特許文献1参照)
 しかし、負極活物質に黒鉛等を用いたリチウムイオン二次電池は、その低い負極作動電位のために、特に高温における電解液との安定性に課題があり、電池性能の低下を導くという問題があった。また、低温雰囲気下で急速充電を行うと、その低い負極作動電位のために、負極上に金属リチウムが析出してデンドライトを形成し、やはり電池性能の低下を導くという問題があった。
 近年、非水電解質電池は、小型機器用電源だけでなく、電力貯蔵設備用電源やHEVなどの車載用動力電源といった中大型産業用途への展開が見込まれているため、さかんに技術開発がおこなわれている。特にハイブリッド自動車用の電池は、エンジン動力をアシストするモーターを瞬間的に作動させるための高出力特性や、自動車が停止する時のエネルギーを回生するための高入力特性、特に条件が過酷な低温での高出力特性、高入力特性が求められている。また、走行時あるいは炎天下での駐車時には電池が高温に曝さることから、前記低温入出力特性が高温保存後に維持される必要がある。一方、このような用途においては、多数の電池を集合して用いることが多いことや、電池の交換に人件費等のコストがかかることから、高電圧、高エネルギー密度といった特性よりもむしろ、充放電サイクル性能の点で長寿命であることが求められている。
 そこで、リチウム電位に対して約1.5Vという、炭素材料に比べて作動電位が貴ではあるが安定してリチウムイオンの挿入・脱離反応が起こるチタン酸リチウムに代表される材料が負極活物質として提案されている。
 特許文献1には、電解質とSi含有基を有する化合物を含む電解質溶媒とからなるコンデンサ用電解液についての発明が記載されている。特許文献1には、活性炭電極を用い、非水電解液にSi化合物を含む電解質溶媒を使用したコンデンサは、漏れ電流量が低減され、また70℃負荷試験における製品外観変形量が小さくなることが記載されている。
 しかしながら、高温でのガス発生が抑制されたからといって、高温保存後の低温出力特性の維持率が向上するわけではなく、後述する実施例に示すように、高温放置後の電池厚みと出力特性とに相関関係は見出せない。また、特許文献1には、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載も示唆もなく、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池の非水電解質中に、後述する一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができることについては、特許文献1からは導き得ない。
 特許文献2には、リチウム二次電池用非水電解液に(金属元素、リン又はホウ素)-(酸素)-(ケイ素)結合を有する化合物を含有する非水溶媒を用いることを特徴とする発明が記載されている。特許文献2の表1には、黒鉛負極と金属リチウム箔からなるコイン型電池において、ECとDMCを40:60の割合で混合した溶媒に、(金属元素、リン又はホウ素)-(酸素)-(ケイ素)結合を有する化合物として、ホウ酸トリ(トリメチルシリル)、リン酸トリ(トリメチルシリル)、あるいはチタンテトラ(トリメチルシロキシド)を添加することで、充電を行った際に、黒鉛上での電解液の電気分解量をあらわす漏れ電流が小さくなったことが記載されている。
 しかしながら、特許文献2には、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載も示唆もなく、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池の非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができることについては、特許文献2から導き得ない。
 特許文献3には、非水電解質電池内部にB及びSiを少なくとも含有する化合物を含有することを特徴とする非水電解質電池が提案されている。特許文献3には、「非水電解質電池中にB及びSi含有化合物の少なくとも一種を添加することにより、この化合物が負極表面上に皮膜を形成し電解液と負極との接触を抑制し、負極上での電解液の分解反応を低減させることができ、従って、保存特性に優れた信頼性の高い電池を実現することができる。」(段落0034)との記載があり、正極にLiCoO、負極にメソフェーズ黒鉛を用い、非水電解質にホウ酸トリス(トリメチルシリル)を添加することで、80℃5日間保存後の容量回復率(保存後の容量/保存前の容量×100(%))が向上したことが記載されている。
 しかしながら、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載がなく、非水電解質を構成する非水溶媒中の鎖状炭酸エステルの比率が70体積%より多く、環状エステルの比率が30体積%未満である非水電解質電池についても記載がない。従って、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができること、なかでも、非水電解質を構成する非水溶媒が含有する炭酸エステルの全体積に占める環状炭酸エステルの体積比率が10体積%以下とすることが好ましいことについては、特許文献3からは導き得ない。
 特許文献4には、非水系電解液が蓚酸リチウムとルイス酸性化合物とを含有していることを特徴とする非水系リチウム二次電池において、初期放電容量が増大することが記載されており、「前記ルイス酸性化合物が、(CH(CHO)B、(CH(CHO)」B、((CHSiO)B、((CFCHO)B、((CHSiO)P、((CFCHO)Pから選択される少なくとも1種である」(請求項2)との記載がある。特許文献4には、「蓚酸リチウムに加えてルイス酸性化合物、すなわち有機溶媒に可溶性の電子受容性を有する化合物をも添加すると、蓚酸リチウムの溶解度が向上するので」(段落0006)と記載され、蓚酸リチウムを非水電解液に溶解させることが初期放電容量の大きい電池を提供する上で重要であることが記載されている。
 しかしながら、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載がなく、非水電解質を構成する非水溶媒中の鎖状炭酸エステルの比率が70体積%より多く、環状エステルの比率が30体積%未満である非水電解質電池についても記載がない。従って、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができること、なかでも、非水電解質を構成する非水溶媒が含有する炭酸エステルの全体積に占める環状炭酸エステルの体積比率が10体積%以下とすることが好ましいことについては、特許文献4からは導き得ない。
 特許文献5には、量子化学計算方法中、AM1計算法により求められたLUMO値が0.3ないし0.5eV範囲の還元電位を有する第1添加剤と、量子化学計算方法中、AM1計算法により求められたLUMO値が-0.2ないし0.3eV、又は、0.5eVないし1eVの範囲の還元電位を有する第2添加剤とを含むことを特徴とする発明が提案されている。特許文献5の表2には、上記第1添加剤としてトリメチルシリルリン酸、あるいはLiBFとトリメチルシリルリン酸の混合物を用い、第2添加剤としてフルオロエチレンカーボネート、ビニレンカーボネート、あるいはその混合物を用いた際に、-20℃の放電容量、85℃保存時のスエリング抑制、10~60℃の範囲にわたってのサイクル特性が向上することが記載されている。
 しかしながら、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載がなく、非水電解質を構成する非水溶媒中の鎖状炭酸エステルの比率が70体積%より多く、環状エステルの比率が30体積%未満である非水電解質電池についても記載がない。従って、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができること、なかでも、非水電解質を構成する非水溶媒が含有する炭酸エステルの全体積に占める環状炭酸エステルの体積比率が10体積%以下とすることが好ましいことについては、特許文献5からは導き得ない。
 特許文献6~8の請求項1には、一般式(3)が記載され、この一般式には、本発明が特徴とする一般式(1)で表される化合物を下位概念として含むものである。そして、特許文献6~8の実施例には、前記一般式(3)に該当する化合物としてメタンスルホン酸トリメチルシリルを添加した電解液を用いた電池が記載されている。
 特許文献6には、低温出力特性を向上させることを目的として、非水系電解液が鎖状カルボン酸エステルを必須成分として含むと共に、分子内に次式Si-O-A(AはH、C、N、O、F、S、Si及び/又はPから構成される基)を含有する化合物を含むことを特徴とする発明が記載され、LiCoOからなる正極と、黒鉛からなる負極と、エチレンカーボネート(EC)、メチルエチルカーボネート(EMC)、およびプロピオン酸メチル(MP)または酢酸エチル(EA)または酢酸メチル(MA)の体積比3:6:1の混合物にLiPFを1モル/リットルになるように混合した非水系電解液とからなる非水電解質電池にメタンスルホン酸トリメチルシリルを添加することで、-30℃での出力特性が向上することが記載されている。
 しかしながら、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載がなく、さらに、後述する実施例に示されるように、低温での出力特性を向上できることが示されたメタンスルホン酸トリメチルシリルを作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合、確かに電池作製直後の低温出力特性は向上するが、高温保存試験後の出力維持率は添加剤を用いない場合と同等であり、本発明の課題を解決できない。また、作動電位が1.2V(vs.Li/Li+)より低い炭素材料負極を備え、非水電解質に、鎖状カルボン酸エステル(酢酸メチル等)と環状炭酸エステル(エチレンカーボネート)とを含有する非水電解質電池に、特許文献6に記載された一般式に含まれる化合物を添加した場合にも、電池作製直後の低温出力特性は向上するが、高温保存試験後の出力維持率は添加剤を用いない場合と同等であり、本発明の課題を解決できない。したがって、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができることについては、特許文献6からは導き得ない。
 特許文献7には、低温出力特性を向上させることを目的として、非水溶媒中のエチレンカーボネートの割合を1~25容量%とすると共に、分子内に次式Si-O-A(AはH、C、N、O、F、S、Si及び/又はPから構成される基)を含有する化合物を含むことを特徴とする発明が記載され、LiCoOからなる正極と、黒鉛からなる負極と、エチレンカーボネート(EC)とメチルエチルカーボネート(EMC)の混合物にLiPFを1モル/リットルになるように混合した非水系電解液とからなる非水電解質電池にメタンスルホン酸トリメチルシリルを添加することで、-30℃での出力特性が向上することが記載されている。
 しかしながら、作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合の高温保存後の低温出力特性がどのようであるかについては記載がなく、さらに、後述する実施例に示されるように、低温での出力特性を向上できることが示されたメタンスルホン酸トリメチルシリルを作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合、確かに電池作製直後の低温出力特性は向上するが、高温保存試験後の出力維持率は添加剤を用いない場合と同等であり、本発明の課題を解決できない。したがって、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができることについては、特許文献7からは導き得ない。
 特許文献8には、低温出力特性を向上させることを目的として、負極活物質にリチウムを吸蔵、放出が可能であるチタンを含有する金属酸化物を含有すると共に、分子内に次式Si-O-A(AはH、C、N、O、F、S、Si及び/又はPから構成される基)を含有する化合物を含むことを特徴とする発明が記載され、実施例4~6には、負極にリチウムチタン複合酸化物を用い、非水電解液溶媒として、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートの混合物(体積比3:3:4)にメタンスルホン酸トリメチルシリルを添加したものを用いることによって、出力抵抗が低減したことが記載されている。
 しかしながら、後述する実施例に示されるように、低温での出力特性を向上できることが示されたメタンスルホン酸トリメチルシリルを作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池に適用した場合、確かに電池作製直後の低温出力特性は向上するが、高温保存試験後の出力維持率は添加剤を用いない場合と同等であり、本発明の課題を解決できない。したがって、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を用い、非水電解質中に一般式(1)~(3)で表される化合物群から選ばれる少なくとも一種類を含有することによって、高温保存後の低温での出力特性を優れたものとすることができることについては、特許文献8からは導き得ない。
J. Power Source, 68 (1997) 59~64
特開2001-52965号公報 特開2001-57237号公報 特開2001-283908号公報 特開2004-259682号公報 特開2006-12806号公報 特開2007-141831号公報 特開2007-149656号公報 特開2007-214120号公報
 本発明は、上記問題点に鑑みてなされたものであり、高温保存後でも優れた低温出力特性を備えた非水電解質電池を提供することを目的とする。
 本発明の構成及び作用効果は以下の通りである。但し、本明細書中に記載する作用機構には推定が含まれており、その正否は本発明を何ら制限するものではない。
 本発明は、非水溶媒及び電解質塩を含む非水電解質、正極及び作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池において、前記非水電解質は、主溶媒として鎖状炭酸エステル及び/又は鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち70体積%以上の割合で含有し、一般式(1)、(2)又は(3)で表される化合物を含有することを特徴とする非水電解質電池である。
Figure JPOXMLDOC01-appb-C000004
(R~Rは互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
Figure JPOXMLDOC01-appb-C000005
(R10~R18は互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
Figure JPOXMLDOC01-appb-C000006
(R19~R30は互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
 また、本発明の非水電解質電池は、前記非水電解質が、鎖状炭酸エステルを、前記非水溶媒の全体積のうち70体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0<a<30であることを特徴としている。
 本発明の非水電解質電池は、前記非水電解質が、鎖状炭酸エステルを、前記非水溶媒の全体積のうち90体積%以上の割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0<a≦10であることを特徴としている。
 本発明の非水電解質電池は、前記非水電解質が、前記鎖状炭酸エステル及び鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち70体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をbとしたとき、0≦b<30であることを特徴としている。
 本発明の非水電解質電池は、前記非水電解質が、前記鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち90体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をcとしたとき、0≦c<10であることを特徴としている。
 また、本発明の非水電解質電池は、前記負極は、スピネル型チタン酸リチウムを含有していることを特徴としている。
 本発明に係る非水電解質電池は、作動電位が1.2V(vs.Li/Li+)以上である負極を備えていることを特徴のひとつとしている。ここで、「作動電位が1.2V(vs.Li/Li+)以上である負極」とは、非水電解質電池において、充電及び放電を行ったときの負極が金属リチウムの電位を基準として1.2V以上の電位で作動する負極をいう。非水電解質電池が、作動電位が1.2V(vs.Li/Li+)以上である負極を備えているというためには、負極が1.2V以上の電位において電池として実質的に作動することを要するものであることはいうまでもない。例えば、負極に黒鉛を用いた電池を過放電状態としたときに、負極電位が上昇して1.2V以上となることが仮にあったとしても、負極電位が1.2V以上の領域における放電可能な容量は0(ゼロ)か限りなく0に等しいから、このような電池は、実質的に負極がリチウム電位に対して1.2V以上の電位で作動する電池とはいえず、本発明の範囲から除外される。本発明において、作動電位が1.2V(vs.Li/Li+)以上である負極を備えているというためには、電池が通常使用される条件下において放電がおこなわれるとき、例えばその放電容量の少なくとも50%以上が、負極電位が1.2V以上の負極作動領域と対応して担われていることと考えることが現実的である。
 作動電位が1.2V(vs.Li/Li+)以上である負極とするためには、例えば、リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質を有する負極を備えることで達成できる。リチウム電位に対して1.2V以上の電位にてリチウムイオンが挿入・脱離する負極活物質としては、例えば、酸化タングステン、酸化モリブデン、硫化鉄、硫化チタン、チタン酸リチウムなどが挙げられる。特に、化学式Li4+xTi12(0≦x≦3)で表され、スピネル型構造を有するチタン酸リチウムが好ましい。ここで、Tiの一部が他の元素に置換されたものを用いてもよく、例えば、AlやMgによって特定の比率で置換された構造のチタン酸リチウムを用いると、電位平坦性や高率放電特性の向上を図れるため、好ましい。
 本発明に係る非水電解質電池は、一般式(1)、(2)又は(3)で表される化合物を含有することを特徴としている。即ち、(1)~(3)で表される化合物群から選択されるいずれか1種を用いてもよく、2種以上を同時に用いてもよい。
 一般式(1)~(3)中、Rは互いに同一であっても異なっていてもよい炭素数1~12の有機基であるが、その例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基などの鎖状アルキル基、シクロヘキシル基などの環状アルキル基、ビニル基、アリル基などのアルケニル基、トリフルオロメチル基などのハロゲン化アルキル基、トリメチルシリル基などのトリアルキルシリル基、トリメチルシロキシ基などのトリアルキルシロキシ基などが挙げられる。
 一般式(1)~(3)で表される化合物の割合は、非水電解質全体に対して、合計で10ppm(0.001質量%)以上が好ましいが、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上である。また、上限は、用いる化合物によっても異なるが、好ましくは5質量%以下、より好ましくは3質量%以下である。
 また、一般式(1)~(3)で表される特定化合物は、非水電解質に含有させて実際に二次電池作製に供すると、その電池を解体して再び非水電解質を取り出しても、その中の含有量が著しく低下している場合が多い。電池から抜き出した非水電解質から、少なくとも上記特定化合物が検出できるものは、本発明の技術範囲に含まれる。
 本発明の非水電解質電池に用いる非水電解質は、鎖状炭酸エステルを主溶媒(非水溶媒の全体積のうち70体積%より多い割合)とする場合、非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0<a<30であることが好ましい。前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの体積を100としたときの該炭酸エステルの体積に占める環状炭酸エステルの体積割合を示すaの値は、高温保存後の低温出力特性をより優れたものとするためには、10以下がさらに好ましい。また、高温保存時の自己放電を抑制するために、上記aの値は、1以上が好ましい。ここで、前記環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などが挙げられる。
 主溶媒として鎖状カルボン酸エステル含有する場合には、非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をbとしたとき、0≦b<30であることが好ましい。高温保存後の低温出力特性をより優れたものとするためには、鎖状カルボン酸エステルが90体積%よりも多く、bの値が10未満がさらに好ましい。環状炭酸エステルが0であっても、顕著な効果を奏する。
 前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルとしては、鎖状炭酸エステルを主溶媒として、少量の環状炭酸エステルを混合して用いることが好ましい。鎖状炭酸エステルとしては、メチルエチルカーボネートを単独で用いてもよいが、低温出力特性を優れたものとするためには、ジメチルカーボネートを混合して用いることが好ましい。前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの体積を100としたときの該炭酸エステルの体積に占めるジメチルカーボネートの割合は、10以上が好ましく、20以上がより好ましい。しかし、60以上であると、低温入力特性を低下させることになるため、60未満であることが必要であり、50以下が好ましい。
 本発明によれば、高温保存後に優れた低温出力特性を備えた非水電解質電池を提供できる。
 本発明電池に用いる非水電解質は、上記に具体的に記載した以外の溶媒を含有することを妨げられるものではなく、例えば、γ-ブチロラクトン、γ-バレロラクトンなどの環状エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピレン酸メチルなどの鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピランなどの環状エーテル、スルホラン、アセトニトリル、各種イオン液体を含有していてもよい。
 本発明電池に用いる非水電解質の溶媒には、炭素-炭素二重結合を有さない炭酸エステルのほか、炭素-炭素二重結合を有する炭酸エステルを混合して用いてもよい。なかでも、炭素-炭素二重結合を有する環状炭酸エステルであるビニレンカーボネートなどを非水電解質全体の10質量%以下混合して用いることは好ましく、特に初期充放電工程でのガス発生を抑制するなどの優れた効果が認められている。
 非水電解質に用いる電解質塩としては、非水電解質電池の電解質塩として用いうることが知られているリチウム塩であれば特に制限はないが、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)などの無機フッ化物塩、過塩素酸リチウム(LiClO)などの過ハロゲン酸塩、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などの含フッ素有機リチウム塩などが挙げられる。これらの電解質塩は1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、又はポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を挙げることができる。
 負極集電体としては、使用する非水電解質に対する耐性や、負極上での電気化学反応に対する耐性を有しているものであればよく、例えばニッケル、銅、ステンレス鋼、アルミニウムなどが挙げられる。
 本発明にかかる非水電解質電池が備える正極に用いることのできる正極活物質としては、電気化学的にリチウムイオンを挿入・脱離できるものであれば、なんら限定されるものではなく、種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(LiNiCo1-x)、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn1-x-y)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2-yCo)、オリビン構造を有するリチウムリン酸化物(例えばLiFePO、LiCoPO、LiVPO、LiVPOF、LiMnPO、LiMn7/8Fe1/8PO、LiNiVO、LiCoPO、Li(PO4)、Fe(SO4)、LiFeP、LiFe(PO4)、LiCoSiO、LiMnSiO、LiFeSiO、LiTePO等)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。また、これらの主体となる金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Mg、Ga、Zr、Siなどのほかの元素で置換していてもよい。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げられる。
 前記正極には、周知の導電材や結着剤を周知の処方で適用し含有させることができる。導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムなどが挙げられる。正極集電体は、周知の材料を周知の方法で用いることができる。たとえば、アルミニウムあるいはアルミニウム合金を挙げることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。
≪電解液の作製≫
 非水電解質には、次に示す組成のものを用いた。
A1:1.2M LiPF6 MEC (比較例)
A2:1.2M LiPF6 MEC+1重量%メタンスルホン酸トリメチルシリル (比較例)
A3:1.2M LiPF6 MEC+1重量%TMSP (比較例)
A4:1.2M LiPF6 MEC+1重量%TMSB (比較例)
A5:1.2M LiPF6 MEC+1重量%TMST (比較例)
B1:1.2M LiPF6 EC:MEC=1:99(体積%) (比較例)
B2:1.2M LiPF6 EC:MEC=1:99(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
B3:1.2M LiPF6 EC:MEC=1:99(体積%)+1重量%TMSP (実施例)
C1:1.2M LiPF6 EC:MEC=2:98(体積%) (比較例)
C2:1.2M LiPF6 EC:MEC=2:98(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
C3:1.2M LiPF6 EC:MEC=2:98(体積%)+1重量%TMSP (実施例)
D1:1.2M LiPF6 EC:MEC=5:95(体積%) (比較例)
D2:1.2M LiPF6 EC:MEC=5:95(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
D3:1.2M LiPF6 EC:MEC=5:95(体積%)+1重量%TMSP (実施例)
E1:1.2M LiPF6 EC:MEC=10:90(体積%) (比較例)
E2:1.2M LiPF6 EC:MEC=10:90(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
E3:1.2M LiPF6 EC:MEC=10:90(体積%)+1重量%TMSP (実施例)
F1:1.2M LiPF6 EC:MEC=30:70(体積%) (比較例)
F2:1.2M LiPF6 EC:MEC=30:70(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
F3:1.2M LiPF6 EC:MEC=30:70(体積%)+1重量%TMSP (実施例)
F4:1.2M LiPF6 EC:MEC=30:70(体積%)+1重量%TMSB (実施例)
F5:1.2M LiPF6 EC:MEC=30:70(体積%)+1重量%TMST (実施例)
G1:1.2M LiPF6 PC:MEC=2:98(体積%) (比較例)
G2:1.2M LiPF6 PC:MEC=2:98(体積%)+1重量%メタンスルホン酸トリメチルシリル (比較例)
G3:1.2M LiPF6 PC:MEC=2:98(体積%)+1重量%TMSP (実施例)
H1:1.2M LiPF6 EC:MEC:DMC=10:60:30(体積%) (比較例)
H2:1.2M LiPF6 EC:MEC:DMC=10:60:30(体積%)+1重量%TMSP (実施例)
I1:1.2M LiPF6 EC:MEC:DEC=10:60:30(体積%) (比較例)
I2:1.2M LiPF6 EC:MEC:DEC=10:60:30(体積%)+1重量%TMSP (実施例)
J1:1.2M LiPF6 EC:GBL:DEC=1:1:4(体積%)+1重量%TMSP (比較例)
K1:1.2M LiPF6 EC:MEC=20:80(体積%)+1重量%TMSP (実施例)
≪正極の作製≫
 正極活物質として、六方晶岩塩型結晶構造を有するリチウム遷移金属複合酸化物(LiNi1/6Mn1/6Co2/3)粉末91質量部、導電材であるアセチレンブラック4.5質量部及び結着剤であるポリフッ化ビニリデン(PVdF)4.5質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする正極スラリーを正極集電体(アルミニウム製、厚み20μm)に、片面の電極合剤量が9mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが82μm(集電体含む)となるようにプレスすることにより正極を作製した。
≪負極の作製≫
 負極活物質であるスピネル型チタン酸リチウム(LiTi12)粉末87質量部、導電材であるアセチレンブラック5質量部及び結着剤であるポリフッ化ビニリデン(PVdF)8質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする負極スラリーを負極集電体(銅製、厚さ10μm)に、片面の電極合剤量が9mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが110μm(集電体含む)となるようにプレスすることにより負極を作製した。
≪電池の作製≫
 ポリエチレン製の多孔質セパレータ(旭化成社製、品番:H6022)を介して前記正極及び負極を扁平捲回してなる捲回極群をアルミニウム製の角形電槽缶(高さ49.3mm、幅33.7mm、厚み5.17mm)に収納し、減圧下にて非水電解質を3.5g注液後、前記電槽缶を封口し、25℃にて一晩放置した。
≪電池容量の測定≫
 次に、初期充放電工程に供した。初期充放電工程の条件は、温度25℃、充電電流40mA、充電電圧2.5V、総充電時間20時間、放電電流80mA、放電終止電圧1.0Vとした。この電池の2.5V充電末期時の正極電位はリチウム電位に対して約4.0V、負極電位はリチウム電位に対して約1.5Vであった。充電後及び放電後にそれぞれ10分の放置期間を設け、上記充放電工程を1サイクル行ったのち、充電電流400mA、充電電圧2.5V、総充電時間3時間、放電電流400mA、放電終止電圧1.0Vとした充放電工程を2サイクル行った。このときの2サイクル目の1C放電容量を初期容量とした。
≪出力特性の評価≫
 25℃環境下で、充電電流400mA、充電電圧2.5V、総充電時間3時間とした定電流定電圧充電を行ったのち、-30℃の温度雰囲気下で5時間以上放置し、電池を冷却した。その後、各々400、800、1200、1600mAの電流値で10秒間放電させ、10秒目の電圧を測定した。なお、それぞれの充電後には、1時間の休止を設け、休止後、同じ温度環境下にて、直前に行われた放電と同じ電気量を同じ電流値で充電し、さらに1時間の休止を設けた。この操作により、放電前の状態が常にSOC100%となるように調整した。
 放電開始10秒後の電圧を縦軸に、放電電流値を横軸にプロットして得た電流-電圧特性のグラフから、その勾配に相当する値であるDCR(直流抵抗)値を求めると共に、グラフを電流値0(ゼロ)に外挿して電圧Eを求め、放電終止電圧値として1.5Vを仮想して出力値Woutを算出した。
  V=E+IR(R<0)
  Wout=I×V=(1.5-E)/R×1.5
≪80℃保存試験≫
 低温出力特性の評価を行った電池を、充電電流400mA、充電電圧2.5V、総充電時間3時間とした定電流定電圧充電にて充電した。この電池を80℃恒温槽にて4日間保存し、取り出し後25℃にて5時間以上冷却してから、電池中央部の厚みの測定及び低温出力特性の評価を行った。
 以上のようにして、A1からK1の電解液を用いて作製した電池の電池容量、保存後の電池厚み、初期及び保存後出力特性を測定・算出した。保存後の電池厚み、初期及び保存後の出力特性とその変化率を表1に示した。なお、電解液及び添加剤の略号は次のとおりである。
PC:プロピレンカーボネート
EC:エチレンカーボネート
MEC:メチルエチルカーボネート
DMC:ジメチルカーボネート
DEC:ジエチルカーボネート
GBL:γ-ブチロラクトン
TMSP:トリス(トリメチルシリル)ホスフェート
TMSB:トリス(トリメチルシリル)ボレート
TMST:テトラキス(トリメチルシロキシ)チタニウム
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、添加剤としてメタンスルホン酸トリメチルシリルを含有する非水電解質を用いた電池は、初期特性においては、添加剤を含有しない場合に比べて優れた出力特性を示した。しかしながら、80℃にて4日間保存試験に供したのちに行った低温出力試験においては、F1~F5に示されるように、主溶媒として鎖状炭酸エステルを、非水溶媒の全体積のうち70体積%の割合で含有する場合、TMSP、TMSB及びTMSTを含有する電池は高い出力維持率を示したが、メタンスルホン酸トリメチルシリルを含有する電池の出力維持率は低かった。また、B1~E3、G1~G3、H1~I2に示されるように、TMSPを含有する電池は、非水電解質中の環状炭酸エステルの割合が10体積%以下(鎖状炭酸エステルの割合が90体積%以上)の場合には、環状炭酸エステルの割合が30体積%(鎖状炭酸エステルの割合が70体積%)の場合(F3)、環状炭酸エステルの割合が20体積%(鎖状炭酸エステルの割合が80体積%)の場合(K1)と比較して、出力維持率の向上が著しく、特に、B3、C3、D3、E3の場合は、80℃という高温雰囲気にて保存しても、まったく低温出力特性が低下しないという驚くべき結果を示した。なお、鎖状炭酸エステルを、非水溶媒の全体積のうち70体積%以上の割合で含有しないJ1の電池は、出力維持率の向上が見られなかった。これらの結果からみて、主溶媒である鎖状炭酸エステルは、非水溶媒の全体積のうち70体積%より多いことが好ましく、また、環状炭酸エステルの割合は、炭素-炭素二重結合を有さない炭酸エステルの全体積(実施例においては非水溶媒の全体積)中の30体積%未満が好ましい。さらに、鎖状炭酸エステルは、非水溶媒の全体積のうち90体積%以上がより好ましく、環状炭酸エステルの割合は、炭素-炭素二重結合を有さない炭酸エステルの全体積中の10体積%以下がより好ましい。但し、鎖状炭酸エステルが100体積%であるA1~A5の非水電解質を用いた場合、80℃4日間放置後には、電池電圧は0Vまで低下し、電池容量を取り出すことはできなかった。したがって、鎖状炭酸エステルが100体積%である非水電解質電池は、本発明から除かれる。
≪電解液の作製≫
 非水電解質には、次に示す組成のものを用いた。
L1:1.2M LiPF6 MA (比較例)
L2:1.2M LiPF6 MA+1重量%TMST (実施例)
L3:1.2M LiPF6 MA+1重量%TMSB (実施例)
L4:1.2M LiPF6 MA+1重量%TMSP (実施例)
M1:1.2M LiPF6 MA:EC=98:2(体積%) (比較例)
M2:1.2M LiPF6 MA:EC=98:2(体積%)+1重量%TMST (実施例)
N1:1.2M LiPF6 MA:EC=95:5(体積%) (比較例)
N2:1.2M LiPF6 MA:EC=95:5(体積%)+1重量%
TMST (実施例)
O1:1.2M LiPF6 MA:EC=90:10(体積%) (比較例)
O2:1.2M LiPF6 MA:EC=90:10(体積%)+1重量%TMST (実施例)
P1:1.2M LiPF6 MA:MEC=90:10(体積%) (比較例)
P2:1.2M LiPF6 MA:MEC=90:10(体積%)+1重量%TMST (実施例)
Q1:1.2M LiPF6 MA:EC=30:70(体積%) (比較例)
Q2:1.2M LiPF6 MA:EC=30:70(体積%)+1重量%TMST (実施例)
R1:1.2M LiPF6 MA:EC:MEC=10:20:70(体積%) (比較例)
R2:1.2M LiPF6 MA:EC:MEC=10:20:70(体積%)+1重量%TMST (実施例)
S1:1.2M LiPF6 MA:EC:MEC=30:20:50(体積%) (比較例)
S2:1.2M LiPF6 MA:EC:MEC=30:20:50(体積%)+1重量%TMST (実施例)
T1:1.2M LiPF6 MA:EC:MEC=50:10:40(体積%) (比較例)
T2:1.2M LiPF6 MA:EC:MEC=50:10:40(体積%)+1重量%TMST (実施例)
<チタン酸リチウム負極電池>
≪正極の作製≫
 正極活物質として、六方晶岩塩型結晶構造を有するリチウム遷移金属複合酸化物(LiNi1/6Mn1/6Co2/3)粉末91質量部、導電材であるアセチレンブラック4.5質量部及び結着剤であるポリフッ化ビニリデン(PVdF)4.5質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする正極スラリーを正極集電体(アルミニウム製、厚み20μm)に、片面の電極合剤量が8.8mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが81μm(集電体含む)となるようにプレスすることにより正極を作製した。
≪負極の作製≫
 負極活物質であるスピネル型チタン酸リチウム(LiTi12)粉末87質量部、導電材であるアセチレンブラック5質量部及び結着剤であるポリフッ化ビニリデン(PVdF)8質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする負極スラリーを負極集電体(アルミ製、厚さ20μm)に、片面の電極合剤量が7.3mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが99μm(集電体含む)となるようにプレスすることにより負極を作製した。
≪電池の作製≫
 ポリエチレン製の多孔質セパレータ(旭化成社製、品番:H6022)を介して前記正極及び負極を扁平捲回してなる捲回極群をアルミニウム製の角形電槽缶(高さ49.3mm、幅33.7mm、厚み5.17mm)に収納し、減圧下にて非水電解質を2.8g注液後、前記電槽缶を封口し、25℃にて一晩放置した。
≪電池容量の測定≫
 次に、初期充放電工程に供した。初期充放電工程の条件は、温度25℃、充電電流80mA、充電電圧2.5V、総充電時間8時間、放電電流80mA、放電終止電圧1.0Vとした。この電池の2.5V充電末期時の正極電位はリチウム電位に対して約4.05V、負極電位はリチウム電位に対して約1.55Vであった。充電後及び放電後にそれぞれ10分の放置期間を設け、上記充放電工程を1サイクル行ったのち、充電電流400mA、充電電圧2.5V、総充電時間3時間、放電電流400mA、放電終止電圧1.0Vとした充放電工程を2サイクル行った。このときの2サイクル目の1C放電容量を初期容量とした。
≪出力特性の評価≫
 25℃環境下で、充電電流400mA、充電電圧2.5V、総充電時間3時間とした定電流定電圧充電を行ったのち、-30℃の温度雰囲気下で5時間以上放置し、電池を冷却した。その後、各々400、800、1200、1600mAの電流値で10秒間放電させ、10秒目の電圧を測定した。なお、それぞれの充電後には、1時間の休止を設け、休止後、同じ温度環境下にて、直前に行われた放電と同じ電気量を同じ電流値で充電し、さらに1時間の休止を設けた。この操作により、放電前の状態が常に満充電状態となるように調整した。
 放電開始10秒後の電圧を縦軸に、放電電流値を横軸にプロットして得た電流-電圧特性のグラフから、その勾配に相当する値であるDCR(直流抵抗)値を求めると共に、グラフを電流値0(ゼロ)に外挿して電圧Eを求め、放電終止電圧値として1.5Vを仮想して出力値Woutを算出した。
  V=E+IR(R<0)
  Wout=I×V=(1.5-E)/R×1.5
≪60℃保存試験≫
 低温出力特性の評価を行ったチタン酸リチウム負極電池を、充電電流400mA、充電電圧2.5V、総充電時間3時間とした定電流定電圧充電にて充電した。この電池を60℃恒温槽にて15日間保存し、取り出し後25℃にて5時間以上冷却してから、電池中央部の厚みの測定及び低温出力特性の評価を行った。
<炭素材料負極電池>
≪正極の作製≫
 正極活物質として、六方晶岩塩型結晶構造を有するリチウム遷移金属複合酸化物(LiNi1/6Mn1/6Co2/3)粉末91質量部、導電材であるアセチレンブラック4.5質量部及び結着剤であるポリフッ化ビニリデン(PVdF)4.5質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする正極スラリーを正極集電体(アルミニウム製、厚み20μm)に、片面の電極合剤量が14.6mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが118μm(集電体含む)となるようにプレスすることにより正極を作製した。
≪負極の作製≫
 負極活物質として、炭素材料であるカーボトロンP粉末95質量部、結着剤であるポリフッ化ビニリデン(PVdF)5質量部を含有し、N-メチルピロリドン(NMP)を溶剤とする負極スラリーを負極集電体(銅製、厚さ10μm)に、片面の電極合材量が6.2mg/cm(集電体含まず)になるように塗布した後、乾燥し、両面の電極厚みが141μm(集電体含む)となるようにプレスすることにより負極を作製した。
≪電池の作製≫
 ポリエチレン製の多孔質セパレータ(旭化成社製、品番:H6022)を介して前記正極及び負極を扁平捲回してなる捲回極群をアルミニウム製の角形電槽缶(高さ49.3mm、幅33.7mm、厚みが5.17mm)に収納し、減圧下にて非水電解質を2.8g注液後、前記電槽缶を封口し、25℃にて一晩放置した。
≪電池容量の測定≫
 次に、初期充放電工程に供した。初期充放電工程の条件は、温度25℃、充電電流80mA、充電電圧4.03V、総充電時間8時間、放電電流80mA、放電終止電圧2.25Vとした。この電池の4.03V充電末期時の正極電位はリチウム電位に対して約4.05V、負極電位はリチウム電位に対して約0.02Vであった。充電後及び放電後にそれぞれ10分の放置期間を設け、上記充放電工程を1サイクル行ったのち、充電電流400mA、充電電圧4.03V、総充電時間3時間、放電電流400mA、放電終止電圧2.25Vとした充放電工程を2サイクル行った。このときの2サイクル目の1C放電容量を初期容量とした。
≪出力特性の評価≫
 25℃環境下で、充電電流400mA、充電電圧4.03V、総充電時間3時間とした定電流定電圧充電を行ったのち、-30℃の温度雰囲気下で5時間以上放置し、電池を冷却した。その後、各々400、800、1200、1600mAの電流値で10秒間放電させ、10秒目の電圧を測定した。なお、それぞれの充電後には、1時間の休止を設け、休止後、同じ温度環境下にて、直前に行われた放電と同じ電気量を同じ電流値で充電し、さらに1時間の休止を設けた。この操作により、放電前の状態が常に満充電状態となるように調整した。
 放電開始10秒後の電圧を縦軸に、放電電流値を横軸にプロットして得た電流-電圧特性のグラフから、その勾配に相当する値であるDCR(直流抵抗)値を求めると共に、グラフを電流値0(ゼロ)に外挿して電圧Eを求め、放電終止電圧値として2.25Vを仮想して出力値Woutを算出した。
  V=E+IR(R<0)
  Wout=I×V=(2.25-E)/R×2.25
≪60℃保存試験≫
 低温出力特性の評価を行った炭素材料負極電池を、充電電流400mA、充電電圧4.03V、総充電時間3時間とした定電流定電圧充電にて充電した。この電池を60℃恒温槽にて15日間保存し、取り出し後25℃にて5時間以上冷却してから、電池中央部の厚みの測定及び低温出力特性の評価を行った。
 以上のようにして、L1からT2の電解液を用いて作製したチタン酸リチウム負極電池について、それぞれ、電池容量、保存後の電池厚み、初期及び保存後出力特性を測定・算出した。また、L1からO2と同じ電解液であるL1′からO2′の電解液を用いて作製した炭素材料負極電池について、それぞれ、電池容量、保存後の電池厚み、初期及び保存後出力特性を測定・算出した。保存後の電池厚み、初期及び保存後の出力特性とその変化率を表2に示した。なお、負極及び電解液の略号は、以下のもの以外、実施例1と同じである。
LiTi12:チタン酸リチウム
CTP:カーボトロンP
MA:酢酸メチル
Figure JPOXMLDOC01-appb-T000008
 表2に示されるように、主溶媒として鎖状カルボン酸エステルを、非水溶媒の全体積のうち70体積%より多い割合で含有するチタン酸リチウム負極電池の場合、L1からP2に示されるように、60℃にて15日間保存試験に供したのちに行った低温出力試験においては、出力維持率の低下が大きかったが、TMST、TMSB又はTMSPを添加することにより、出力維持率が向上した。また、いずれの電池も、保存後の電池厚みの増加が小さかった。TMSTを添加したチタン酸リチウム負極電池で比較すると、鎖状カルボン酸エステルの割合が、非水溶媒の全体積のうち90体積%より多い(環状炭酸エステルの割合が10体積%未満)の場合(L2、M2、N2)には、鎖状カルボン酸エステルの割合が、非水溶媒の全体積のうち90体積%(環状炭酸エステルの割合が10体積%)の場合(O2)よりも、出力維持率が大きかった。これらの結果からみて、主溶媒としての鎖状カルボン酸エステルは、非水溶媒の全体積のうち90体積%より多いことが好ましく、また、環状炭酸エステルの割合は、非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積(実施例においては非水溶媒の全体積)中の10体積%未満が好ましい。
 鎖状炭酸エステル又は、鎖状炭酸エステル及び鎖状カルボン酸エステルの両者を主溶媒として、非水溶媒の全体積のうち70体積%より多い割合で含有するチタン酸リチウム負極電池の場合(Q1からT2)、出力維持率の低下は、鎖状カルボン酸エステルを主溶媒とする場合に比べて、大きくないが、TMSTを添加することにより、顕著に出力維持率が向上した。この場合にも、環状炭酸エステルの割合は少ない方が好ましく、環状炭酸エステルが0の場合(Q2)に、60℃という高温雰囲気にて保存しても、まったく低温出力特性が低下しないという結果を示し、保存後の電池厚みの増加も極めて小さかった。
 これに対して、主溶媒として鎖状カルボン酸エステルを、非水溶媒の全体積のうち70体積%より多い割合で含有する炭素材料負極電池では、電池の厚みの増加が大きかった。特に、鎖状カルボン酸エステルが100体積%の場合には、初期充放電工程後に電池が大きく膨れ、鎖状カルボン酸エステルを、非水溶媒の全体積のうち98体積%の割合で含有する場合には、60℃にて7日間保存後に電池が大きく膨れたので、低温出力試験を行うことができなかった。鎖状カルボン酸エステルを、非水溶媒の全体積のうち95体積%、90体積%の割合で含有する炭素材料負極電池も、保存後の電池厚みの増加が、チタン酸リチウム負極電池と比較して大きかった。また、これらの炭素材料負極電池(N1′からO2′)は、初期特性においては、優れた出力特性を示したが、60℃にて15日間保存試験に供したのちに行った低温出力試験においては、TMSTを添加した場合も、添加しない場合と同様に、出力維持率が大きく低下した。
 したがって、これらの結果から、TMST、TMSB及びTMSPの添加は、チタン酸リチウム負極電池などの作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池において有効であるが、作動電位が1.2V(vs.Li/Li+)未満である炭素材料負極電池においては、有効でないことが分かるから、本発明の効果は、炭素材料負極電池からは予測することができない。
 本発明の非水電解質電池の用途は特に限定されず、公知の各種の用途に用いることができる。特に、本発明の非水電解質電池は、高温放置後に優れた低温出力特性を得られることから、電力貯蔵設備やHEVなどの車載用動力を含む多くの用途に、好適に利用されるものである。

Claims (6)

  1.  非水溶媒及び電解質塩を含む非水電解質、正極及び作動電位が1.2V(vs.Li/Li+)以上である負極を備えた非水電解質電池において、前記非水電解質は、主溶媒として鎖状炭酸エステル及び/又は鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち70体積%以上の割合で含有し、一般式(1)、(2)又は(3)で表される化合物を含有することを特徴とする非水電解質電池。
    Figure JPOXMLDOC01-appb-C000001
    (R~Rは互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
    Figure JPOXMLDOC01-appb-C000002
    (R10~R18は互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
     
    Figure JPOXMLDOC01-appb-C000003
    (R19~R30は互いに同一であっても異なっていてもよい炭素数1~12の有機基。)
  2.  前記非水電解質は、鎖状炭酸エステルを、前記非水溶媒の全体積のうち70体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0<a<30であることを特徴とする請求項1記載の非水電解質電池。
  3.  前記非水電解質は、鎖状炭酸エステルを、前記非水溶媒の全体積のうち90体積%以上の割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をaとしたとき、0<a≦10であることを特徴とする請求項2記載の非水電解質電池。
  4.  前記非水電解質は、前記鎖状炭酸エステル及び鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち70体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をbとしたとき、0≦b<30であることを特徴とする請求項1記載の非水電解質電池。
  5.  前記非水電解質は、前記鎖状カルボン酸エステルを、前記非水溶媒の全体積のうち90体積%より多い割合で含有し、前記非水溶媒が含有する炭素-炭素二重結合を有さない炭酸エステル、及び鎖状カルボン酸エステルの全体積を100とし、前記炭素-炭素二重結合を有さない炭酸エステルのうち環状炭酸エステルの体積をcとしたとき、0≦c<10であることを特徴とする請求項1記載の非水電解質電池。
  6.  前記負極は、スピネル型チタン酸リチウムを含有していることを特徴とする請求項1~5のいずれか一項に記載の非水電解質電池。
PCT/JP2009/054028 2008-03-05 2009-03-04 非水電解質電池 WO2009110490A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980104424XA CN101939874B (zh) 2008-03-05 2009-03-04 非水电解质电池
EP09717799.2A EP2262047B1 (en) 2008-03-05 2009-03-04 Non-aqueous electrolyte battery
JP2009516430A JP5429631B2 (ja) 2008-03-05 2009-03-04 非水電解質電池
US12/736,060 US8501356B2 (en) 2008-03-05 2009-03-04 Nonaqueous electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-054942 2008-03-05
JP2008054942 2008-03-05

Publications (1)

Publication Number Publication Date
WO2009110490A1 true WO2009110490A1 (ja) 2009-09-11

Family

ID=41056043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054028 WO2009110490A1 (ja) 2008-03-05 2009-03-04 非水電解質電池

Country Status (6)

Country Link
US (1) US8501356B2 (ja)
EP (1) EP2262047B1 (ja)
JP (1) JP5429631B2 (ja)
KR (1) KR20100137415A (ja)
CN (1) CN101939874B (ja)
WO (1) WO2009110490A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205563A (ja) * 2009-03-03 2010-09-16 Gs Yuasa Corp 非水電解質電池
JP2012069352A (ja) * 2010-09-22 2012-04-05 Toshiba Corp 電極材料、電池用電極、それらの製造方法、非水電解質電池及び電池パック
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
JP2012199145A (ja) * 2011-03-22 2012-10-18 Toshiba Corp 非水電解質電池及び電池パック
JP2013033685A (ja) * 2011-08-03 2013-02-14 Showa Denko Kk 二次電池用負極および二次電池
JP2014049443A (ja) * 2012-08-29 2014-03-17 Samsung Sdi Co Ltd リチウム二次電池用非水電解質およびこれを含むリチウム二次電池
WO2015050254A1 (ja) * 2013-10-04 2015-04-09 旭化成株式会社 リチウムイオン二次電池及びその製造方法
JP2015525452A (ja) * 2012-07-10 2015-09-03 エルジー・ケム・リミテッド 電解液添加剤を含む二次電池
US10283810B2 (en) 2014-10-17 2019-05-07 Hitachi Chemical Company, Ltd. Lithium-ion battery
CN112630334A (zh) * 2020-12-15 2021-04-09 厦门海辰新能源科技有限公司 一种含tmsp的电解液的有机相比例检测方法
DE112020006663T5 (de) 2020-03-31 2022-11-24 Murata Manufacturing Co., Ltd. Sekundärbatterie

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068255A1 (ja) * 2009-12-04 2011-06-09 国立大学法人 東京大学 ピロリン酸塩化合物およびその製造方法
US9350048B2 (en) 2011-03-23 2016-05-24 Samsung Sdi Co., Ltd. Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US8308971B1 (en) 2011-06-09 2012-11-13 Wildcat Discovery Technologies, Inc. Materials for battery electrolytes and methods for use
US8734668B2 (en) 2011-06-09 2014-05-27 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
CN102394314A (zh) * 2011-11-30 2012-03-28 天津力神电池股份有限公司 一种锂离子电池电解液及锂离子二次电池
CN102403534A (zh) * 2011-12-01 2012-04-04 香河昆仑化学制品有限公司 一种高温锂离子电池电解液及制备方法
CN102593512B (zh) * 2012-02-14 2014-12-03 东莞新能源科技有限公司 锂离子电池及其电解液
CN104170149B (zh) * 2012-04-17 2017-07-18 株式会社Lg 化学 具有优异性能的锂二次电池
WO2013157855A1 (ko) * 2012-04-20 2013-10-24 주식회사 엘지화학 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20130118812A (ko) * 2012-04-20 2013-10-30 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157857A1 (ko) * 2012-04-20 2013-10-24 주식회사 엘지화학 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101683197B1 (ko) * 2012-04-30 2016-12-06 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR101656549B1 (ko) 2013-01-28 2016-09-09 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2015037852A1 (ko) 2013-09-10 2015-03-19 주식회사 엘지화학 비수계 전해액 및 이를 포함하는 리튬 이차전지
US10356032B2 (en) * 2013-12-26 2019-07-16 Palantir Technologies Inc. System and method for detecting confidential information emails
KR101579251B1 (ko) * 2014-05-16 2015-12-22 동국대학교 산학협력단 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
CN105449274B (zh) * 2014-09-26 2017-11-21 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN104466251B (zh) * 2014-12-12 2018-07-24 东莞新能源科技有限公司 一种电解液及使用该电解液的锂离子电池
KR20160099133A (ko) * 2015-02-11 2016-08-22 전자부품연구원 리튬이온 이차전지용 전해질 및 이를 갖는 리튬이온 이차전지
US20180191022A1 (en) * 2015-07-02 2018-07-05 Maxell Holdings, Ltd. Non-aqueous electrolyte battery and method for manufacturing same
CN105355968B (zh) * 2015-11-24 2019-01-08 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
DE102016200079A1 (de) * 2016-01-07 2017-07-13 Robert Bosch Gmbh Elektrolyt und Batteriezelle diesen enthaltend
KR20180108584A (ko) * 2016-02-09 2018-10-04 맥셀 홀딩스 가부시키가이샤 비수전해액 전지
DE102016104210A1 (de) 2016-03-08 2017-09-14 Westfälische Wilhelms-Universität Münster Verwendung von Trialkylsiloxy-basierten Metallkomplexen als Additiv in Lithium-Ionen-Batterien
KR102209829B1 (ko) * 2016-07-25 2021-01-29 삼성에스디아이 주식회사 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지
US20180069265A1 (en) 2016-08-30 2018-03-08 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
KR102553591B1 (ko) * 2017-06-12 2023-07-11 삼성전자주식회사 포스페이트계 첨가제를 포함하는 리튬이차전지
KR102488602B1 (ko) * 2017-09-06 2023-01-12 삼성에스디아이 주식회사 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
CN108336406A (zh) * 2018-01-16 2018-07-27 河南师范大学 一种锂离子电池低阻抗高电压添加剂及非水电解液
US10978752B2 (en) 2018-03-19 2021-04-13 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN108539273B (zh) * 2018-04-17 2021-03-26 广州天赐高新材料股份有限公司 一种新型锂二次电池电解液和一种锂二次电池
US11322778B2 (en) 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
CN109216768B (zh) * 2018-10-08 2020-06-26 河南师范大学 一种锂离子电池添加剂及含有该添加剂的锂离子电池非水电解液和应用
CN109786809B (zh) * 2019-02-21 2023-08-15 欣旺达电动汽车电池有限公司 一种电解液及二次电池
JP7039524B2 (ja) * 2019-06-24 2022-03-22 本田技研工業株式会社 リチウムイオン電池用正極、リチウムイオン電池及びリチウムイオン電池用正極の製造方法
CN112234252A (zh) * 2019-07-15 2021-01-15 杉杉新材料(衢州)有限公司 一种高电压用宽温型锂离子电池非水电解液及锂离子电池
KR102255398B1 (ko) * 2019-09-04 2021-05-24 동우 화인켐 주식회사 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
CN111987358A (zh) * 2019-11-27 2020-11-24 中节能万润股份有限公司 一种含钛类锂离子电池电解液添加剂及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052965A (ja) 1999-06-04 2001-02-23 Mitsui Chemicals Inc コンデンサ用非水電解液、電極、およびそれを用いたコンデンサ
JP2001057237A (ja) 1999-08-19 2001-02-27 Mitsui Chemicals Inc リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
JP2001283908A (ja) 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd 非水電解質電池および非水電解液
JP2004259682A (ja) 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 非水系リチウム二次電池
JP2006012806A (ja) 2004-06-21 2006-01-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池
JP2007042440A (ja) * 2005-08-03 2007-02-15 Sanyo Electric Co Ltd リチウム二次電池
JP2007141831A (ja) 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007149656A (ja) 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007214120A (ja) 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007273154A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 非水電解質電池、電池パック及び自動車
JP2008186803A (ja) * 2007-01-04 2008-08-14 Toshiba Corp 非水電解質電池、電池パック及び自動車

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787243B1 (fr) * 1998-12-10 2003-10-03 Cit Alcatel Generateur electrochimique rechargeable au lithium utilisable a basse temperature
US6379846B1 (en) * 1999-03-16 2002-04-30 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery using the same
AU5667801A (en) * 2000-05-12 2001-11-20 Kansai Electric Power Co., Inc., The Nonaqueous electrolyte lithium secondary cell
ES2370479T3 (es) * 2000-08-11 2011-12-16 Ube Industries, Ltd. Solución electrolítica no acuosa y batería secundaria de litio.
JP2005322420A (ja) * 2004-05-06 2005-11-17 Hitachi Ltd エネルギー貯蔵デバイス
KR100873632B1 (ko) * 2005-08-24 2008-12-12 삼성에스디아이 주식회사 유기전해액 및 이를 채용한 리튬 전지
JP4984524B2 (ja) * 2005-12-22 2012-07-25 株式会社Gsユアサ 非水電解質二次電池
JP5305678B2 (ja) * 2008-02-07 2013-10-02 株式会社東芝 非水電解液電池及び組電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052965A (ja) 1999-06-04 2001-02-23 Mitsui Chemicals Inc コンデンサ用非水電解液、電極、およびそれを用いたコンデンサ
JP2001057237A (ja) 1999-08-19 2001-02-27 Mitsui Chemicals Inc リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池
JP2001283908A (ja) 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd 非水電解質電池および非水電解液
JP2004259682A (ja) 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 非水系リチウム二次電池
JP2006012806A (ja) 2004-06-21 2006-01-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池
JP2007042440A (ja) * 2005-08-03 2007-02-15 Sanyo Electric Co Ltd リチウム二次電池
JP2007141831A (ja) 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007149656A (ja) 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007214120A (ja) 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007273154A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 非水電解質電池、電池パック及び自動車
JP2008186803A (ja) * 2007-01-04 2008-08-14 Toshiba Corp 非水電解質電池、電池パック及び自動車

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. POWER SOURCE, vol. 68, 1997, pages 59 - 64
See also references of EP2262047A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205563A (ja) * 2009-03-03 2010-09-16 Gs Yuasa Corp 非水電解質電池
JP2012069352A (ja) * 2010-09-22 2012-04-05 Toshiba Corp 電極材料、電池用電極、それらの製造方法、非水電解質電池及び電池パック
US9325013B2 (en) 2010-09-22 2016-04-26 Kabushiki Kaisha Toshiba Electrode material, a battery electrode, method of producing them, nonaqueous electrolyte battery and battery pack
US8895188B2 (en) 2010-09-22 2014-11-25 Kabushiki Kaisha Toshiba Electrode material, a battery electrode, method of producing them, nonaqueous electrolyte battery and battery pack
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery
JP2012199145A (ja) * 2011-03-22 2012-10-18 Toshiba Corp 非水電解質電池及び電池パック
JP2013033685A (ja) * 2011-08-03 2013-02-14 Showa Denko Kk 二次電池用負極および二次電池
JP2015525452A (ja) * 2012-07-10 2015-09-03 エルジー・ケム・リミテッド 電解液添加剤を含む二次電池
US10056648B2 (en) 2012-07-10 2018-08-21 Lg Chem, Ltd. Secondary battery including electrolyte additive
US10862165B2 (en) 2012-07-10 2020-12-08 Lg Chem, Ltd. Secondary battery including electrolyte additive
JP2014049443A (ja) * 2012-08-29 2014-03-17 Samsung Sdi Co Ltd リチウム二次電池用非水電解質およびこれを含むリチウム二次電池
WO2015050254A1 (ja) * 2013-10-04 2015-04-09 旭化成株式会社 リチウムイオン二次電池及びその製造方法
US10283810B2 (en) 2014-10-17 2019-05-07 Hitachi Chemical Company, Ltd. Lithium-ion battery
DE112020006663T5 (de) 2020-03-31 2022-11-24 Murata Manufacturing Co., Ltd. Sekundärbatterie
CN112630334A (zh) * 2020-12-15 2021-04-09 厦门海辰新能源科技有限公司 一种含tmsp的电解液的有机相比例检测方法
CN112630334B (zh) * 2020-12-15 2022-09-27 厦门海辰储能科技股份有限公司 一种含tmsp的电解液的有机相比例检测方法

Also Published As

Publication number Publication date
CN101939874B (zh) 2013-03-13
JP5429631B2 (ja) 2014-02-26
EP2262047A1 (en) 2010-12-15
KR20100137415A (ko) 2010-12-30
EP2262047B1 (en) 2015-04-29
US8501356B2 (en) 2013-08-06
EP2262047A4 (en) 2012-05-23
US20110027663A1 (en) 2011-02-03
JPWO2009110490A1 (ja) 2011-07-14
CN101939874A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5429631B2 (ja) 非水電解質電池
JP6004124B2 (ja) 非水電解液二次電池用電解液及び非水電解液二次電池
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
CN104508896A (zh) 非水电解液以及使用了该非水电解液的蓄电设备
WO2010016475A1 (ja) 非水電解液及びそれを用いたリチウム電池
KR101683211B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US20150214571A1 (en) Lithium secondary battery and method for producing same
KR20150083381A (ko) 리튬 이차 전지
KR20120104930A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20170000903A (ko) 리튬 이차 전지
CN104662728A (zh) 锂二次电池
CN109390629B (zh) 一种电解液以及电池
CN111048831B (zh) 用于二次电池的电解液以及包含电解液的锂二次电池
CN104718657A (zh) 锂二次电池
KR20210001837A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
CN108352571B (zh) 二次电池用非水电解液和二次电池
JP7301449B2 (ja) リチウム二次電池用非水電解液及びこれを含むリチウム二次電池
JP5311123B2 (ja) 非水電解質電池
JP6222389B1 (ja) 非水電解液およびそれを用いた非水電解液電池
JP2009283473A5 (ja)
JP2022528055A (ja) 化合物、それを含むリチウム二次電池用電解質およびリチウム二次電池
KR20200072723A (ko) 리튬 이차전지
KR102537722B1 (ko) 전해액 및 이를 포함하는 이차전지
KR101190463B1 (ko) 고온 저장 성능을 향상시키는 전해액 및 이를 포함하는이차 전지
KR20170058707A (ko) 리튬 이차 전지용 전해액 첨가제, 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104424.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009516430

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016562

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009717799

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE