WO2016010116A1 - 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット - Google Patents

波長変換シート用保護フィルム、波長変換シート及びバックライトユニット Download PDF

Info

Publication number
WO2016010116A1
WO2016010116A1 PCT/JP2015/070421 JP2015070421W WO2016010116A1 WO 2016010116 A1 WO2016010116 A1 WO 2016010116A1 JP 2015070421 W JP2015070421 W JP 2015070421W WO 2016010116 A1 WO2016010116 A1 WO 2016010116A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
conversion sheet
barrier
protective film
Prior art date
Application number
PCT/JP2015/070421
Other languages
English (en)
French (fr)
Inventor
時野谷 修
吏里 北原
健 西川
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55078602&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016010116(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP15821598.8A priority Critical patent/EP3171072A4/en
Priority to JP2015560891A priority patent/JP5900719B1/ja
Priority to CN201580002853.1A priority patent/CN105793034A/zh
Priority to KR1020167012897A priority patent/KR101760225B1/ko
Priority to KR1020177014292A priority patent/KR20170060193A/ko
Priority to US15/109,332 priority patent/US20160327690A1/en
Publication of WO2016010116A1 publication Critical patent/WO2016010116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source

Definitions

  • the present invention relates to a protective film for a wavelength conversion sheet, and a wavelength conversion sheet and a backlight unit using the same.
  • a liquid crystal display is a display device that displays an image or the like by controlling the alignment state of liquid crystal by applying a voltage and transmitting or blocking light in each region.
  • a light source of the liquid crystal display a backlight provided on the back surface of the liquid crystal display is used.
  • a cold cathode tube is used for the backlight, but recently, an LED (light emitting diode) is being used instead of the cold cathode tube for reasons such as long life and good color development.
  • the white LED technology is very important.
  • white LED technology a cerium-doped YAG: Ce (yttrium, aluminum, garnet: cerium) down-conversion phosphor is generally excited with a blue (450 nm) LED chip.
  • white light is obtained by mixing the blue light of the LED with yellow light having a wide wavelength range generated from the YAG: Ce phosphor.
  • this white light is often somewhat bluish and often gives the impression of “cold” or “cool” white.
  • Quantum dots are light-emitting semiconductor nanoparticles with a diameter range of about 1 to 20 nm. Since quantum dots show a wide excitation spectrum and high quantum efficiency, they can be used as phosphors for LED wavelength conversion. Furthermore, there is an advantage that the wavelength of light emission can be completely adjusted over the entire visible range only by changing the dot size or the type of semiconductor material. As such, quantum dots have the potential to create virtually any color, especially the warm white that is highly desired in the lighting industry. In addition, it is possible to obtain white light having different color rendering index by combining three types of dots corresponding to red, green, and blue emission wavelengths. In this way, with a liquid crystal display using a quantum dot backlight, the color tone is improved and many colors that can be identified by humans can be expressed without increasing the thickness, power consumption, cost, and manufacturing process. become.
  • a backlight using a white LED as described above diffuses a phosphor having a predetermined emission spectrum (quantum dots and YAG: Ce, etc.) into the film, and seals the surface with a barrier film.
  • a phosphor having a predetermined emission spectrum quantum dots and YAG: Ce, etc.
  • the barrier film forms a thin film by vapor deposition or the like on the surface of a base material such as a plastic film to prevent moisture and gas from permeating.
  • this barrier film is required to prevent appearance defects such as splash, scratches and wrinkles.
  • splash is a phenomenon in which the vapor deposition material is scattered as high-temperature fine particles, and the vapor deposition material directly adheres to the base material and becomes a foreign object, or a hole is made in the base material. The phenomenon that ends up.
  • many of the conventional barrier films have been used as packaging materials such as foods and medical products and packaging materials such as electronic devices, so that satisfactory performance cannot be obtained. There was a problem.
  • Patent Document 1 proposes a backlight having a structure in which a phosphor is sandwiched between barrier films in order to suppress degradation of the phosphor.
  • the present invention has been made in view of such circumstances, and as a protective film for protecting the phosphor in the wavelength conversion sheet, it can exhibit excellent barrier properties over a long period of time, and splash, scratches, It aims at providing the protective film for wavelength conversion sheets which can suppress generation
  • the present invention provides a protective film for a wavelength conversion sheet for protecting a phosphor in a wavelength conversion sheet, which is provided on a base material and at least one surface of the base material.
  • a protective film for wavelength conversion sheet by having a structure in which two or more of the barrier films are laminated, an excellent barrier property can be exhibited over a long period of time, and the influence of splash, scratches, wrinkles, etc. Occurrence of poor appearance due to the above can be suppressed.
  • two or more barrier films having a laminated structure of a substrate and a barrier layer are laminated, and this structure is adopted.
  • the protective film for wavelength conversion sheets of the present invention can also exhibit the effect of reducing the occurrence of interference fringes.
  • the wavelength conversion sheet protective film of the present invention preferably further includes a coating layer having an optical function, and the coating layer is preferably disposed on at least one surface of the wavelength conversion sheet protective film.
  • the optical function is preferably an interference fringe prevention function.
  • the said coating layer contains binder resin and the microparticles
  • the substrate is preferably a polyethylene terephthalate film or a polyethylene naphthalate film. Thereby, more excellent transparency and barrier properties can be obtained.
  • the barrier layer includes an inorganic thin film layer laminated on one surface of the base material, and a gas barrier coating layer laminated on the inorganic thin film layer. Is preferred. Thereby, the more superior barrier property with respect to a water
  • the barrier layer may have a structure in which two or more layers of the inorganic thin film layer and the gas barrier coating layer are alternately laminated. In this case, further excellent barrier properties can be obtained over a longer period.
  • the inorganic thin film layer is preferably a layer containing at least one of silicon oxide and aluminum oxide. Thereby, more excellent barrier properties can be obtained.
  • the gas barrier coating layer may be a layer containing at least one of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer. preferable. Thereby, more excellent barrier properties can be obtained.
  • the two or more barrier films are preferably laminated using an adhesive layer containing any one of acrylic resin, urethane resin, and ester resin. Thereby, more excellent transparency and adhesiveness can be obtained.
  • the two or more barrier films are laminated using an adhesive layer, and the barrier layer of one of the two adjacent barrier films and the other barrier You may have the structure arrange
  • the wavelength conversion sheet protective film is disposed with the barrier layer of the other barrier film facing the phosphor, so that the barrier layer can be provided at a location close to the phosphor.
  • the barrier performance against the phosphor can be more effectively exhibited.
  • the barrier films are laminated using an adhesive layer, and the barrier layers of two adjacent barrier films are interposed via the adhesive layer. And may be arranged so as to face each other.
  • the base material can be disposed between the barrier layer and the phosphor, so that even if irregularities or foreign matter exist on the phosphor, the base material reduces the impact.
  • damage to the barrier layer can be suppressed. Therefore, adverse effects on the barrier layer due to splash, scratches, wrinkles and the like can be minimized, and more excellent barrier properties can be obtained.
  • the protective film for wavelength conversion sheet of the present invention further includes a coating layer having an optical function disposed on at least one surface, the barrier layer includes a silica vapor deposition layer as an inorganic thin film layer, and the silica vapor deposition
  • the O / Si ratio of oxygen and silicon contained in the layer is 1.7 to 2.0 in terms of atomic ratio
  • the refractive index of the silica deposited layer is 1.5 to 1.7
  • wavelength 450 nm wavelength At all wavelengths of 540 nm and 620 nm
  • the wavelength conversion sheet protective film may have a reflectance of 10% to 20% and a transmittance of 80% to 95%.
  • this protective film for wavelength conversion sheet since the O / Si ratio is 1.7 or more in atomic ratio, the ratio of Si—Si bonds in the silica vapor deposition layer can be kept low, and the number of colored metals can be reduced. The transmittance of the silica vapor deposition layer is improved. Moreover, since the O / Si ratio is 2.0 or less in terms of atomic ratio, the growth of the deposited film becomes dense and the silica deposited layer has excellent barrier properties.
  • This protective film for wavelength conversion sheets can reduce intrusion of water vapor and the like.
  • the backlight unit when a backlight unit including a wavelength conversion sheet having the protective film for wavelength conversion sheet is produced, the backlight unit maintains a high luminance for a long period of time, and color unevenness during display application and Suppresses the occurrence of black spots and maintains an excellent appearance.
  • the refractive index of the silica vapor deposition layer is 1.5 or more and 1.7 or less
  • the reflectance of the protective film for wavelength conversion sheet is 10% or more and 20% or less
  • the transmittance is 80% or more and 95% or less. It is.
  • this protective film for wavelength conversion sheets reduces the optical interference in a film, and improves the brightness
  • the present invention also provides a wavelength conversion sheet comprising a phosphor layer containing a phosphor, and the protective film for wavelength conversion sheet of the present invention laminated on at least one surface of the phosphor layer.
  • a wavelength conversion sheet comprising a phosphor layer containing a phosphor, and the protective film for wavelength conversion sheet of the present invention laminated on at least one surface of the phosphor layer.
  • the present invention is also a wavelength conversion sheet comprising a phosphor layer containing a phosphor, and the wavelength conversion sheet protective film of the present invention laminated on at least one surface of the phosphor layer, Two or more of the barrier films in the protective film for wavelength conversion sheet are laminated using an adhesive layer, and one of the two adjacent barrier films is a barrier layer of one barrier film and a base material of the other barrier film. Are provided so as to face each other with the adhesive layer interposed therebetween, and a wavelength conversion sheet having a structure in which the barrier layer of the other barrier film is arranged toward the phosphor layer side is provided.
  • the wavelength conversion sheet protective film of the present invention since the wavelength conversion sheet protective film of the present invention is provided, it is possible to exhibit excellent barrier properties over a long period of time, and a barrier due to the influence of splash, scratches, wrinkles and the like. The occurrence of defects can be suppressed, and the occurrence of interference fringes can be reduced. Further, the barrier layer of the other barrier film in the protective film for wavelength conversion sheet is disposed toward the phosphor layer side, so that a barrier layer is provided at a location close to the phosphor layer, and the phosphor layer The barrier performance with respect to can be exhibited more effectively.
  • the wavelength conversion sheet protective film has a coating layer having an optical function on a surface opposite to the side facing the phosphor layer.
  • the present invention further provides a backlight unit comprising an LED light source, a light guide plate, and the wavelength conversion sheet of the present invention.
  • a backlight unit comprising an LED light source, a light guide plate, and the wavelength conversion sheet of the present invention.
  • the wavelength conversion sheet of the present invention by including the wavelength conversion sheet of the present invention, the decrease in luminance is suppressed over a long period of time, the influence of poor appearance is suppressed, and has a vivid color close to nature,
  • the protective film for protecting the phosphor in the wavelength conversion sheet can exhibit excellent barrier properties over a long period of time, and the occurrence of barrier failure due to the influence of splash, scratches, wrinkles, etc. It is possible to provide a protective film for a wavelength conversion sheet that can suppress light, and a wavelength conversion sheet and a backlight unit using the same.
  • FIG. 1 is a schematic cross-sectional view of a wavelength conversion sheet according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a wavelength conversion sheet according to the second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a wavelength conversion sheet protective film according to a third embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a wavelength conversion sheet according to the first embodiment of the present invention.
  • the wavelength conversion sheet shown in FIG. 1 contains a phosphor such as a quantum dot, and can be used for a backlight unit, for example, for LED wavelength conversion.
  • the wavelength conversion sheet 100 of the present embodiment includes a phosphor layer (wavelength conversion layer) 1 containing a phosphor, and one surface 2 a side and the other surface 2 b side of the phosphor layer 1.
  • a wavelength conversion sheet protective film hereinafter also simply referred to as “protective film” 2 and 2 is provided.
  • the phosphor layer 1 is encapsulated (ie, sealed) between the protective films 2 and 2.
  • a backlight unit is generally composed of a light guide plate and an LED light source.
  • the LED light source is installed on the side surface of the light guide plate.
  • a plurality of LED elements whose emission color is blue are provided inside the LED light source.
  • This LED element may be a purple LED or even a lower wavelength LED.
  • the LED light source emits light toward the side surface of the light guide plate.
  • the irradiated light is, for example, a layer (phosphor layer) 1 in which a resin such as acrylic or epoxy is mixed with a phosphor through a light guide plate. Will be incident on.
  • the phosphor layer 1 since it is necessary to provide the phosphor layer 1 with a barrier property, it is desirable that the phosphor layer 1 is sandwiched between the pair of protective films 2 and 2 for wavelength conversion sheet.
  • each layer constituting the wavelength conversion sheet 100 will be described in detail.
  • the phosphor layer 1 is a thin film having a thickness of several tens to several hundreds of ⁇ m including the sealing resin 4 and the phosphor 3.
  • the sealing resin 4 for example, a photosensitive resin or a thermosetting resin can be used.
  • the sealing resin 4 is sealed in a state where one or more phosphors 3 are mixed.
  • the sealing resin 4 plays a role of joining the phosphor layer 1 and the pair of protective films 2 and 2 and filling these gaps while laminating them.
  • the phosphor layer 1 may be a laminate in which two or more phosphor layers in which only one kind of phosphor 3 is sealed are laminated.
  • the two or more kinds of phosphors 3 used in the one or more phosphor layers those having the same excitation wavelength are selected.
  • This excitation wavelength is selected based on the wavelength of light emitted by the LED light source.
  • the fluorescent colors of two or more types of phosphors 3 are different from each other. When two types of phosphors 3 are used, the fluorescent colors are preferably red and green.
  • the wavelength of each fluorescence and the wavelength of light emitted from the LED light source are selected based on the spectral characteristics of the color filter.
  • the peak wavelengths of fluorescence are, for example, 610 nm for red and 550 nm for green.
  • quantum dots are preferably used.
  • the quantum dots include those in which a core as a light emitting portion is coated with a shell as a protective film.
  • the core include cadmium selenide (CdSe), and examples of the shell include zinc sulfide (ZnS). Quantum efficiency is improved by covering surface defects of CdSe particles with ZnS having a large band gap.
  • the phosphor 3 may be one in which the core is double-coated with the first shell and the second shell.
  • CsSe can be used for the core
  • zinc selenide (ZnSe) can be used for the first shell
  • ZnS can be used for the second shell
  • YAG: Ce etc. can also be used as fluorescent substance 3 other than a quantum dot.
  • the average particle diameter of the phosphor 3 is preferably 1 to 20 nm.
  • the thickness of the phosphor layer 1 is preferably 1 to 500 ⁇ m.
  • the content of the phosphor 3 in the phosphor layer 1 is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass based on the total amount of the phosphor layer 1.
  • sealing resin 4 for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. These resins can be used singly or in combination of two or more.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, and vinylidene chloride and copolymers thereof.
  • Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Linear polyester resins; Fluorine Resin; and polycarbonate resin etc. can be used.
  • thermosetting resins examples include phenolic resins, urea melamine resins, polyester resins, and silicone resins.
  • the ultraviolet curable resin examples include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, these photopolymerizable prepolymers can be the main components, and monofunctional or polyfunctional monomers can be used as diluents.
  • the wavelength conversion sheet protective film 2 includes two barrier films 5 each having a base material 8 and a barrier layer 9, an adhesive layer 6, and a coating layer 7.
  • the barrier layer 9 provided on the one surface 8 a of the substrate 8 is laminated so as to face the other substrate 8 with the adhesive layer 6 interposed therebetween.
  • each protective film 2 and 2 is laminated
  • the barrier film 5 has a base material 8 and a barrier layer 9 provided on one surface 8a of the base material 8, as shown in FIG.
  • the substrate 8 is not particularly limited, but a substrate having a total light transmittance of 85% or more is desirable.
  • a substrate having a total light transmittance of 85% or more is desirable.
  • a polyethylene terephthalate film, a polyethylene naphthalate film, or the like can be used as a substrate having high transparency and excellent heat resistance.
  • the thickness of the substrate 8 is not particularly limited, but is desirably 50 ⁇ m or less in order to reduce the total thickness of the wavelength conversion sheet 100. Further, the thickness of the substrate 8 is desirably 12 ⁇ m or more in order to obtain excellent barrier properties.
  • the barrier layer 9 includes an inorganic thin film layer 10 and a gas barrier coating layer 11. As shown in FIG. 1, the barrier layer 9 has an inorganic thin film layer 10 laminated on one surface (one surface) 8 a of the substrate 8, and a gas barrier coating layer 11 on the inorganic thin film layer 10. Are laminated.
  • the inorganic thin film layer (inorganic oxide thin film layer) 10 is not particularly limited.
  • aluminum oxide, silicon oxide, magnesium oxide, or a mixture thereof can be used. Among these, it is desirable to use aluminum oxide or silicon oxide from the viewpoint of barrier properties and productivity.
  • the thickness (film thickness) of the inorganic thin film layer 10 is preferably in the range of 5 to 500 nm, more preferably in the range of 10 to 100 nm.
  • the film thickness is 5 nm or more, it is easy to form a uniform film, and the function as a gas barrier material tends to be more sufficiently achieved.
  • the film thickness is 500 nm or less, sufficient flexibility can be maintained by the thin film, and it is possible to more reliably prevent the thin film from cracking due to external factors such as bending and pulling after the film formation. There is a tendency to be able to.
  • the gas barrier coating layer 11 is provided in order to prevent various secondary damages in a later process and to impart high barrier properties.
  • the gas barrier coating layer 11 contains, as a component, at least one selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer from the viewpoint of obtaining excellent barrier properties. It is preferable.
  • hydroxyl group-containing polymer compound examples include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and starch, and the barrier property is most excellent particularly when polyvinyl alcohol is used.
  • the metal alkoxide is represented by the general formula: M (OR) n (M represents a metal atom such as Si, Ti, Al, Zr, R represents an alkyl group such as —CH 3 , —C 2 H 5 , and n represents M Represents an integer corresponding to the valence of.
  • M represents a metal atom such as Si, Ti, Al, Zr
  • R represents an alkyl group such as —CH 3 , —C 2 H 5
  • n represents M Represents an integer corresponding to the valence of.
  • Specific examples include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like. Tetraethoxysilane and triisopropoxyaluminum are preferable because they are relatively stable in an aqueous solvent after hydrolysis.
  • hydrolyzate and polymer of metal alkoxide include, for example, silicic acid (Si (OH) 4 ) as a hydrolyzate or polymer of tetraethoxysilane, and a hydrolyzate or polymer of tripropoxyaluminum.
  • silicic acid Si (OH) 4
  • examples of the hydrolyzate and polymer of metal alkoxide include, for example, silicic acid (Si (OH) 4 ) as a hydrolyzate or polymer of tetraethoxysilane, and a hydrolyzate or polymer of tripropoxyaluminum.
  • Al (OH) 3 aluminum hydroxide
  • the thickness (film thickness) of the gas barrier coating layer 11 is preferably in the range of 50 to 1000 nm, and more preferably in the range of 100 to 500 nm.
  • the film thickness is 50 nm or more, a sufficient gas barrier property tends to be obtained, and when it is 1000 nm or less, a sufficient flexibility tends to be maintained by the thin film.
  • the two barrier films 5 are formed so that the barrier layer 9 of the other substrate 8 is interposed via the barrier layer 9 and the adhesive layer 6 provided on one surface 8 a of the substrate 8. It is provided so as to face the surface 8b side that is not provided.
  • the first barrier film 5 is used.
  • the first base material 8 and the second base material 8 of the second barrier film 5 are laminated via the adhesive layer 6 so as to sandwich the barrier layer 9 of the first barrier film. .
  • the first substrate 8 of the first barrier film 5 and the second substrate 8 of the second barrier film 5 are further used. Since the barrier layers 9 are sandwiched between them, and each barrier layer 9 is disposed closer to the phosphor layer 1, defects such as minute pinholes are generated in the barrier layer 9. Even in this case, the barrier performance can be more effectively exhibited.
  • the thickness of the two base materials 8 may be the same or different. From the viewpoint of making the thickness of the wavelength conversion sheet 100 thinner, the thickness of the second substrate 8 of the second barrier film 5 disposed on the side closer to the phosphor layer 1 is set to the side far from the phosphor layer 1. You may make it thinner than the 1st base material 8 of the 1st barrier film 5 arrange
  • the adhesive layer 6 is provided between the two barrier films 5 in order to bond and laminate the two barrier films 5 together.
  • Adhesives and adhesives such as an acryl-type material, a urethane type material, and a polyester-type material, can be used. More specifically, an acrylic pressure-sensitive adhesive, an acrylic adhesive, a urethane adhesive, or an ester adhesive can be used.
  • the thickness of the adhesive layer 6 is not particularly limited, but is desirably 10 ⁇ m or less in order to reduce the total thickness of the wavelength conversion sheet protective film 2 and the wavelength conversion sheet 100. On the other hand, from the viewpoint of obtaining better adhesiveness, the thickness of the adhesive layer 6 is desirably 3 ⁇ m or more.
  • the coating layer 7 is provided on each surface of the two wavelength conversion sheet protective films 2, 2, that is, both surfaces of the wavelength conversion sheet 100, in order to exhibit one or more optical functions and antistatic functions.
  • the optical function is not particularly limited, and examples thereof include an interference fringe (moire) prevention function, an antireflection function, and a diffusion function.
  • the coating layer 7 preferably has at least an interference fringe preventing function as an optical function. In the present embodiment, a case where the coating layer 7 has at least an interference fringe preventing function will be described.
  • the coating layer 7 may include a binder resin and fine particles. Then, fine irregularities may be formed on the surface of the coating layer 7 by embedding the fine particles in the binder resin so that a part of the fine particles is exposed from the surface of the coating layer 7.
  • the binder resin is not particularly limited, but a resin excellent in optical transparency can be used. More specifically, for example, polyester resins, acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, urethane resins, epoxy resins, polycarbonate resins, polyamide resins, polyimide resins.
  • Thermoplastic resins such as melamine resins and phenol resins, thermosetting resins, ionizing radiation curable resins, and the like can be used. Among these, it is desirable to use an acrylic resin excellent in light resistance and optical characteristics. These can be used in combination of not only one type but also a plurality of types.
  • the fine particles are not particularly limited.
  • inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, and alumina
  • styrene resin urethane resin
  • silicone resin organic fine particles such as acrylic resin can be used. These can be used in combination of not only one type but also a plurality of types.
  • the average particle diameter of the fine particles is preferably from 0.1 to 30 ⁇ m, and more preferably from 0.5 to 10 ⁇ m.
  • the average particle size of the fine particles is 0.1 ⁇ m or more, an excellent interference fringe prevention function tends to be obtained, and when it is 30 ⁇ m or less, the transparency tends to be further improved.
  • the content of fine particles in the coating layer 7 is preferably 0.5 to 30% by mass, more preferably 3 to 10% by mass based on the total amount of the coating layer 7.
  • the content of the fine particles is 0.5% by mass or more, the light diffusion function and the effect of preventing the generation of interference fringes tend to be further improved, and when the content is 30% by mass or less, the luminance is not reduced. .
  • the wavelength conversion sheet protective film 2 having the above-described configuration is only between the first substrate 8 of the first barrier film 5 and the second substrate 8 of the second barrier film 5. It is a laminate film in which two barrier films 5 are laminated so that the barrier layer 9 is sandwiched between them, and since the influence of the barrier layer 9 due to splash or the like can be suppressed, it has excellent barrier properties. Further, by sandwiching the barrier layer 9 with a base material 8 such as a PET film having excellent thermal stability, more excellent barrier properties can be exhibited. Furthermore, since the coating layer 7 is provided on the surface of the protective film 2 for wavelength conversion sheet, it is possible to suppress the occurrence of interference fringes and to suppress variations in light from the light source.
  • this protective film 2 for wavelength conversion sheets as a protective film for protecting the fluorescent substance of the wavelength conversion sheet 100, the performance of the wavelength conversion sheet 100 using fluorescent substances, such as a quantum dot, is exhibited to the maximum. It becomes possible to do.
  • the barrier layer 9 toward the phosphor side, it is possible to prevent intrusion of moisture and gas from the end face, and to further prevent deterioration of the phosphor layer 1.
  • the coating layer 7 having an optical function on the surface opposite to the side facing the phosphor layer 1 the occurrence of interference fringes such as Newton rings can be prevented, and as a result, high efficiency and A high-definition and long-life display can be obtained.
  • the obtained display can display an image having a vivid color closer to nature and an excellent color tone.
  • the manufacturing method of the wavelength conversion sheet 100 of this embodiment is demonstrated.
  • the fluorescent substance layer 1 can be laminated
  • the coating layer 7 is formed on one surface 8 b of the first substrate 8. Specifically, the coating layer 7 is formed by applying a coating liquid in which a binder resin, fine particles, and a solvent as necessary are mixed on the surface 8b of the first base member 8 and drying it. Next, the inorganic thin film layer 10 is laminated
  • a coating agent mainly comprising an aqueous solution or a water / alcohol mixed solution containing at least one component selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer.
  • the gas barrier coating layer 11 is formed by applying on the surface of the inorganic thin film layer 10 and drying.
  • the coating layer 7 is provided on one surface of the first base material 8 and the barrier layer 9 including the inorganic thin film layer 10 and the gas barrier coating layer 11 is provided on the other surface.
  • a first barrier film 5 is obtained.
  • the second barrier film 5 provided with the barrier layer 9 is obtained by performing the same operation as above except that the coating layer 7 is not formed on the one surface 8a of the second base material 8.
  • the first barrier film 5 on which the coating layer 7 is formed and the second barrier film 5 on which the coating layer 7 is not formed are bonded together using the adhesive layer 6 and laminated.
  • the barrier layer 9 of the first barrier film 5 provided with the coating layer 7 is opposed to the surface of the second barrier film 5 not provided with the coating layer 7 where the barrier layer 9 is not provided.
  • Lamination is performed using the adhesive layer 6.
  • the adhesive layer 6 any of an acrylic pressure-sensitive adhesive, an acrylic adhesive, a urethane adhesive, and an ester adhesive can be used.
  • the example in which the coating layer 7 is formed first has been described.
  • the timing at which the coating layer 7 is formed is not particularly limited, and for example, the first barrier film 5 before the coating layer 7 is formed. And the second barrier film 5 may be bonded together, and the coating layer 7 may be formed on the surface of the first barrier film 5.
  • the sealing resin 4 is a photosensitive resin
  • the wavelength conversion sheet 100 of the present embodiment can be obtained by curing the photosensitive resin by UV irradiation (UV curing).
  • the photosensitive resin may be further thermally cured after UV curing.
  • a thermosetting resin, a chemical curable resin, or the like may be used as the sealing resin 4.
  • the UV curing can be performed, for example, at 100 to 1000 mJ / cm 2 .
  • the thermosetting can be performed at 60 to 120 ° C. for 0.1 to 3 minutes, for example.
  • the phosphor layer 1 is formed on the surface of the wavelength conversion sheet protective film 2 on which the coating layer 7 is not provided, and then the other wavelength conversion is performed on the surface of the phosphor layer 1.
  • stacks the protective film 2 for sheets was demonstrated, it is not limited to this.
  • FIG. 2 is a schematic cross-sectional view of a wavelength conversion sheet according to the second embodiment of the present invention.
  • the wavelength conversion sheet 200 of the second embodiment differs from the wavelength conversion sheet 100 of the first embodiment only in the configuration of the wavelength conversion sheet protective film 20. Therefore, about the wavelength conversion sheet 200 of 2nd Embodiment, the same code
  • the wavelength conversion sheet 200 of the present embodiment includes a phosphor layer (wavelength conversion layer) 1 containing a phosphor, and one surface 2 a side and the other surface 2 b side of the phosphor layer 1.
  • the wavelength conversion sheet protective films 20 and 20 provided are roughly configured.
  • the phosphor layer 1 is enclosed (sealed) between the wavelength conversion sheet protective films 20 and 20.
  • the protective film 20 for wavelength conversion sheet of this embodiment has two barrier films 5 having a base material 8 and a barrier layer 9, an adhesive layer 6, and a coating layer 7.
  • the barrier layer 9 provided on the one surface 8a of the first substrate 8 of the first barrier film 5 and the one surface 8a of the second substrate 8 of the second barrier film 5 are provided.
  • the barrier layer 9 is laminated so as to oppose the adhesive layer 6.
  • the protective film 20 for wavelength conversion sheet is formed between the barrier films 5 such that the respective barrier layers 9 of the two barrier films 5 are sandwiched between the first substrate 8 and the second substrate 8.
  • the protective film 20 for wavelength conversion sheet since the base material 8 is disposed between the barrier layer 9 and the phosphor layer 1 to be protected, there are irregularities and foreign matters on the phosphor layer 1. However, the impact can be alleviated by the base material 8, and the barrier layer 9 can be prevented from being damaged.
  • each protective film 20 for wavelength conversion sheets 20 and 20 is the 2nd base material 8 of the 2nd barrier film 5.
  • Lamination is performed with the side surface facing the phosphor layer 1 side.
  • the wavelength conversion sheet protective films 20 and 20 are provided with the barrier layer 9 of the second base material 8 of the second barrier film 5 having no coating layer 7.
  • the surfaces 8 b opposite to the formed surfaces are stacked so as to be sandwiched between the phosphor layers 1. That is, also in this embodiment, the coating layer 7 is provided on each surface of the wavelength conversion sheet protective films 20 and 20 and is provided on both surfaces of the wavelength conversion sheet 200.
  • the thickness of the two base materials 8 of the protective film 20 for wavelength conversion sheet may be the same or different. From the viewpoint of making the thickness of the wavelength conversion sheet 200 thinner, the thickness of the second substrate 8 of the second barrier film 5 disposed on the side close to the phosphor layer 1 is set to the side far from the phosphor layer 1. You may make it thinner than the 1st base material 8 of the 1st barrier film 5 arrange
  • the permeation of moisture and oxygen occurs not only from the surface of the barrier film 5 but also from the end face, so that the thinner the second substrate 8 can suppress the intrusion of moisture and oxygen from the end face. For this reason, it is desirable that the thickness of the second base material 8 adjacent to the phosphor layer 1 be 40 ⁇ m or less.
  • the same effects as those of the wavelength conversion sheet 100 of the first embodiment described above can be obtained.
  • a backlight unit for a liquid crystal display can be provided using the wavelength conversion sheet 100 or 200 described above.
  • the backlight unit according to the present embodiment includes an LED (light emitting diode) light source, a light guide plate, and a wavelength conversion sheet 100 or 200.
  • the LED light source is installed on the side surface of the light guide plate, and the wavelength conversion sheet 100 or 200 is disposed on the light guide plate (light traveling direction).
  • the light guide plate efficiently guides light emitted from the LED light source, and a known material is used.
  • a known material for example, acrylic, polycarbonate, and cycloolefin film are used.
  • the light guide plate can be formed by, for example, a silk printing method, a molding method such as injection molding or extrusion molding, or an ink jet method.
  • the thickness of the light guide plate is, for example, 100 to 1000 ⁇ m.
  • the configuration of the wavelength conversion sheets 100 and 200 and the configuration of the protective films 2 and 20 for the wavelength conversion sheet of the first and second embodiments described above are examples, and the present invention is not limited thereto.
  • the phosphor layer 1 is sandwiched between the same wavelength conversion sheet protective films 2 and 2 (or 20, 20). Or may be sandwiched between protective films for wavelength conversion sheets having different configurations.
  • the wavelength conversion sheet of the present invention may have a configuration in which any one of the wavelength conversion sheet protective films covering the phosphor layer 1 has the coating layer 7,
  • the structure which has the coating layer 7 may be sufficient as both the protective films for wavelength conversion sheets.
  • the wavelength conversion sheet of the present invention in order to improve the adhesion between the protective film for wavelength conversion sheet and the phosphor layer 1 on the surface in contact with the phosphor layer 1 of the protective film for wavelength conversion sheet, A modification treatment may be performed, or an easy adhesion layer made of urethane resin or the like may be provided.
  • the barrier layer 9 has the inorganic thin film layer 10 and the gas barrier coating layer 11 one by one. Two or more layers of the thin film layer 10 and the gas barrier coating layer 11 may be provided. In this case, the inorganic thin film layers 10 and the gas barrier coating layers 11 are preferably laminated alternately.
  • both end faces of the phosphor layer 1 are sealed. It may be sealed with a resin, and the entire phosphor layer 1 may be covered with a sealing resin.
  • the wavelength conversion sheet protective film 300 having the configuration shown in FIG. 3 may be used as the wavelength conversion sheet protective film.
  • the protective film 300 for wavelength conversion sheets is demonstrated.
  • FIG. 3 is a schematic cross-sectional view of a protective film for a wavelength conversion sheet according to a third embodiment of the present invention.
  • the wavelength conversion sheet protective film 300 includes a first barrier film 50, a second barrier film 60, an adhesive layer 30, and a coating layer 31.
  • the adhesive layer 30 is located between the first barrier film 50 and the second barrier film 60 and bonds the first barrier film 50 and the second barrier film 60 together.
  • the coating layer 31 is provided on the surface of the second barrier film 60 opposite to the surface where the second barrier film 60 is in contact with the adhesive layer 30.
  • the coating layer 31 is a layer having one or more optical functions, and can have the same configuration as the coating layer 7 in the wavelength conversion sheets 100 and 200 described above.
  • the coating layer 31 preferably has a light diffusion function as an optical function.
  • a preferred embodiment of the coating layer 31 (diffusion layer 31) having a light diffusion function will be described in detail below.
  • the coating layer 31 has, for example, a concavo-convex shape on the surface thereof to impart light diffusibility. Further, an interference fringe (moire) prevention function and an antireflection function are also provided.
  • the uneven shape is formed by, for example, a method of coating an organic layer in which particles or the like are dispersed and a method of further embossing the organic layer after coating.
  • fine particles are embedded so that a part of the fine particles is exposed from the surface of the organic layer. Thereby, fine irregularities are generated on the surface of the coating layer 31, and Newton's rings are prevented from occurring in the coating layer 31.
  • the organic layer is, for example, a layer containing a polymer resin such as a polyester resin, an acrylic resin, an acrylic urethane resin, a polyester acrylate resin, a polyurethane acrylate resin, an epoxy acrylate resin, and a urethane resin. it can.
  • a polymer resin such as a polyester resin, an acrylic resin, an acrylic urethane resin, a polyester acrylate resin, a polyurethane acrylate resin, an epoxy acrylate resin, and a urethane resin. it can.
  • the organic layer can be a layer containing a polymer resin such as a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin.
  • a polymer resin such as a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin.
  • thermoplastic resin examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Resins, acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, fluororesins, polycarbonates
  • resins examples include resins.
  • thermosetting resin examples include phenol resin, urea melamine resin, polyester resin, and silicone resin.
  • the ultraviolet curable resin examples include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate. Further, the ultraviolet curable resin can be constituted by using the above-mentioned photopolymerizable prepolymer as a main component and using a monofunctional or polyfunctional monomer as a diluent.
  • the thickness (film thickness) of the organic layer is preferably in the range of 0.1 to 20 ⁇ m, and particularly preferably in the range of 0.3 to 10 ⁇ m.
  • the film thickness of the organic layer is less than 0.1 ⁇ m because a uniform film cannot be obtained because the film thickness is too thin or an optical function cannot be sufficiently achieved. Absent.
  • the film thickness exceeds 20 ⁇ m, fine particles may not be exposed on the surface of the coating layer 31, and the unevenness imparting effect may not be obtained. This is not preferable because of inconsistency.
  • the particles dispersed in the organic layer can be inorganic fine particles such as silica, clay, talc, calcium carbonate, calcium sulfate, barium sulfate, aluminum silicate, titanium oxide, synthetic zeolite, alumina, smectite, and zirconia.
  • the particles dispersed in the organic layer may be, for example, organic fine particles made of styrene resin, urethane resin, benzoguanamine resin, silicone resin, acrylic resin, tetrafluoroethylene resin, polyethylene resin, epoxy resin, or the like. it can. Only one of these may be used, or two or more may be used.
  • the average primary particle size of the fine particles is preferably 0.5 to 30 ⁇ m.
  • the average primary particle size can be measured by a laser diffraction method. If the average particle size of the fine particles is less than 0.5 ⁇ m, the effect of imparting irregularities to the surface of the coating layer 31 cannot be obtained, which is not preferable. On the other hand, when the average particle size exceeds 30 ⁇ m, particles considerably larger than the organic layer thickness are used, which is not preferable because there is a problem that the light transmittance is lowered. On the other hand, when the average particle size is within the above range, the surface can be provided with an uneven shape while maintaining a high light transmittance.
  • the adhesive layer 30 can have the same configuration as the adhesive layer 6 in the wavelength conversion sheets 100 and 200 described above.
  • the first barrier film 50 includes a base material 51, an adhesion layer 52, a first silica vapor deposition layer 53 that is an inorganic thin film layer, a first gas barrier coating layer (first composite coating layer) 54, and a second silica that is an inorganic thin film layer.
  • a vapor deposition layer 55 and a second gas barrier coating layer (second composite coating layer) 56 are provided.
  • an adhesion layer 52, a first silica vapor deposition layer 53, a first gas barrier coating layer 54, a second silica vapor deposition layer 55, and a second gas barrier coating layer 56 are provided in this order.
  • a barrier layer is formed by the first silica deposited layer 53, the first gas barrier coating layer 54, the second silica deposited layer 55, and the second gas barrier coating layer 56.
  • the second gas barrier coating layer 56 adheres to the adhesive layer 30.
  • the second barrier film 60 includes a substrate 61, an adhesion layer 62, a first silica vapor deposition layer 63, a first gas barrier coating layer 64, a second silica vapor deposition layer 65, and a second gas barrier coating layer 66.
  • an adhesion layer 62, a first silica vapor deposition layer 63, a first gas barrier coating layer 64, a second silica vapor deposition layer 65, and a second gas barrier coating layer 66 are provided in this order.
  • a barrier layer is formed by the first silica vapor deposition layer 63, the first gas barrier coating layer 64, the second silica vapor deposition layer 65, and the second gas barrier coating layer 66.
  • the second gas barrier coating layer 66 adheres to the adhesive layer 30.
  • the base materials 51 and 61 can have the same configuration as the base material 8 in the wavelength conversion sheets 100 and 200 described above. Moreover, as the base materials 51 and 61, it is preferable to use a polyester film. Although it does not specifically limit as a polyester film, For example, it consists of a polyester film, such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN), polyethylene, a polypropylene, a cyclic olefin copolymer (COC), a cycloolefin polymer (COP), etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • COC cyclic olefin copolymer
  • COP cycloolefin polymer
  • the substrates 51 and 61 are particularly preferably biaxially stretched polyester films arbitrarily stretched in the biaxial direction.
  • a biaxially stretched polyester film is excellent in dimensional stability, heat resistance, and transparency.
  • the thickness of the substrates 51 and 61 is not particularly limited, but is preferably in the range of 3 ⁇ m to 200 ⁇ m, and more preferably in the range of 6 ⁇ m to 50 ⁇ m.
  • the thicknesses of the base materials 51 and 61 are the adhesion layers 52 and 62, the first silica vapor deposition layers 53 and 63, the first gas barrier coating layers 54 and 64, the second silica vapor deposition layers 55 and 65, and the second gas barrier coating. This is a value considering workability when the layers 56 and 66 are laminated.
  • plasma treatment, corona discharge treatment, ozone treatment, glow discharge treatment, and other pretreatments are optionally performed in order to improve the adhesion of each layer.
  • the base materials 51 and 61 it is particularly preferable to use a polyethylene terephthalate film having an acid value (mg number of potassium hydroxide necessary for neutralizing 1 g of resin) of 25 mgKOH / g or less.
  • an acid value molecular weight of the base materials 51 and 61
  • the acid value of the base materials 51 and 61 exceeds 25 mgKOH / g
  • the base material stability is deteriorated particularly in a high-temperature and high-humidity environment, and the barrier property is lowered.
  • the acid value is 25 mgKOH / g or less, the substrate stability is increased, and the barrier property is not lowered even in a high-temperature and high-humidity environment, which is preferable.
  • the cut base materials 51 and 61 are weighed and, for example, heated and dissolved in cresol, cooled, and then titrated with a potassium hydroxide ethanol solution or the like to determine the acid value.
  • a potassium hydroxide ethanol solution for example, a phenolphthalein solution can be used as the indicator (see JIS K0070).
  • the barrier properties of the base materials 51 and 61 are stably expressed in an accelerated deterioration test of a display function under a severe environment such as 60 ° C./90% RH and 85 ° C./85% RH. Therefore, it is preferable that the hydrolysis resistance is excellent.
  • the PET film as the base material 51 or 61 preferably has a weight average molecular weight of 60,000 or more. When the PET film has a weight average molecular weight of less than 60,000, it usually tends to cause hydrolysis, so that the barrier property of the PET film tends to deteriorate.
  • the concentration of the terminal carboxy group is reduced to 25 equivalents / 10 6 g or less.
  • concentration of the terminal carboxy group in polyester can be measured by the method described in literature (ANALYTICAL CHEMISTRY 26th volume, 1614 pages).
  • the weight average molecular weight is measured by a method such as room temperature GPC analysis.
  • the PET film is preferably a film excellent in light transmittance and smoothness. For this reason, in order to improve the light transmittance of the PET film, it is desirable to reduce the lubricant used in the PET film. In addition, when the first silica vapor deposition layer is laminated on the PET film, the first silica vapor deposition layer is not cracked, and the first silica vapor deposition layer is a uniform thin film.
  • the center line surface roughness (Ra) of the PET film is desirably 30 nm or less. If the center line surface roughness (Ra) is 30 nm or less, it can be said that the PET film has excellent smoothness.
  • the surface roughness of the PET film can be measured by a method according to JIS B0601.
  • the adhesion layers 52 and 62 are provided on the base materials 51 and 61.
  • the adhesion layers 52 and 62 are appropriately provided to obtain adhesion with the first silica vapor deposition layer.
  • the adhesion layers 52 and 62 are either one of an in-line method applied when the substrates 51 and 61 are stretched and an offline method applied offline after the substrates 51 and 61 are formed, or It can be formed by both an inline method and an offline method.
  • the adhesion layers 52 and 62 are not particularly limited, but the composition for the adhesion layer for forming the adhesion layers 52 and 62 by the in-line method can be, for example, an acrylic material or a urethane material.
  • the composition for the adhesion layer for forming the adhesion layers 52 and 62 by off-line can be, for example, a two-component reaction composite of a compound having a hydroxyl group such as acrylic polyol and an isocyanate compound having an isocyanate group.
  • the adhesion layers 52 and 62 may be provided on both sides as well as on one side.
  • the first silica vapor-deposited layers 53 and 63 and the second silica vapor-deposited layers 55 and 65 are layers that exhibit barrier properties, and are inorganic in the wavelength conversion sheets 100 and 200 described above. It corresponds to the thin film layer 10.
  • Examples of the inorganic compound exhibiting barrier properties as the vapor deposition layer include aluminum oxide, silicon oxide, tin oxide, magnesium oxide, zinc oxide, or a mixture thereof.
  • the silica vapor deposition layer containing silicon oxide is used. Selected.
  • the silica vapor deposition layer has moisture resistance in an accelerated deterioration test of a display function under a severe environment such as 60 ° C./90% RH and 85 ° C./85% RH.
  • a silica vapor deposition layer is produced by methods, such as a vacuum evaporation method, sputtering method, an ion plating method, plasma vapor deposition method (CVD), for example.
  • the O / Si ratio of oxygen and silicon constituting the silica vapor deposition layer is preferably 1.7 or more and 2.0 or less in terms of atomic ratio. If the O / Si ratio is less than 1.7 in terms of atomic ratio, the ratio of Si—Si bonds in the silica vapor deposition layer increases and a large amount of colored metal is contained, so that the transmittance of the silica vapor deposition layer may decrease. . On the other hand, when the O / Si ratio exceeds 2.0 in terms of atomic ratio, the barrier property of the silica deposited layer may be deteriorated.
  • the O / Si ratio of the silica deposited layer suitable for display applications is more preferably 1.85 to 2.0 in terms of atomic ratio.
  • the O / Si ratio of the silica vapor deposition layer is measured by, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the XPS measuring device can be, for example, an X-ray photoelectron spectrometer (JPS-90MXV manufactured by JEOL Ltd.).
  • Non-monochromated MgK ⁇ (1253.6 eV) is used for the X-ray source, and the X-ray output value can be, for example, 100 W (10 kV-10 mA).
  • a relative sensitivity factor of 2.28 is used for the 1s orbit of O
  • a relative sensitivity factor of 0.9 is used for the 2p orbit of Si.
  • the refractive index of the organic layer constituting the wavelength conversion sheet protective film 300 is preferably 1.5 to 1. .7.
  • the refractive index of a silica vapor deposition layer is 1.5 or more and 1.7 or less.
  • the refractive index of the silica vapor deposition layer is more preferably 1.6 to 1.65 from the viewpoint of transparency for display applications in addition to barrier properties.
  • silica vapor deposition films having different refractive indexes are formed on the PET film by physical vapor deposition (PVD).
  • the refractive index of the silica vapor deposition layer is calculated from the thickness of the silica vapor deposition layer and the transmittance curve generated by light interference.
  • the thickness of the silica vapor deposition layer is preferably in the range of 5 nm to 300 nm.
  • the thickness of the silica vapor deposition layer is less than 5 nm, it is difficult to obtain a uniform film and it is difficult to sufficiently perform the function as a gas barrier material.
  • the thickness of the silica vapor deposition layer exceeds 300 nm, it is difficult to maintain the flexibility of the silica vapor deposition layer, and after the vapor deposition film is formed, the vapor deposition film is likely to crack due to external factors such as bending and pulling. .
  • the thickness of the silica vapor deposition layer is more preferably in the range of 10 to 50 nm in consideration of productivity by in-line film formation.
  • any of vacuum vapor deposition, sputtering, ion plating, plasma vapor deposition (CVD), and the like may be used.
  • a heating means necessary for the vacuum deposition method any one of an electron beam heating method, a resistance heating method, and an induction heating method can be used.
  • a reactive vapor deposition method in which various gases such as oxygen are blown may be used.
  • the first gas barrier coating layers 54 and 64 and the second gas barrier coating layers 56 and 66 are coating layers having gas barrier properties, and the wavelength conversion sheet 100 described above. , 200 can be configured in the same manner as the gas barrier coating layer 11.
  • the gas barrier coating layer can be formed using a coating agent.
  • the coating agent is mainly composed of, for example, an aqueous solution containing at least one selected from the group consisting of water-soluble polymers, metal alkoxides, metal alkoxide hydrolysates, and silane coupling agents, or water / alcohol mixed solutions. .
  • the coating agent is produced, for example, by directly mixing a metal alkoxide, a hydrolyzate of metal alkoxide, and a silane coupling agent into an aqueous solution of a water-soluble polymer or a water / alcohol mixed solution.
  • the coating agent is prepared, for example, by mixing an aqueous solution of a water-soluble polymer or a water / alcohol mixed solution with a metal alkoxide and a silane coupling agent that have been subjected to a treatment such as hydrolysis in advance.
  • the coating agent solution is coated on the adhesion layers 52 and 62 and then dried by heating to form a gas barrier coating layer.
  • the coating agent solution forms a gas barrier coating layer by coating and heating and drying on the silica vapor deposition layer.
  • water-soluble polymer used in the coating agent examples include a hydroxyl group-containing polymer compound.
  • the hydroxyl group-containing polymer compound can be, for example, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate, and the like.
  • PVA polyvinyl alcohol
  • starch methyl cellulose, carboxymethyl cellulose, sodium alginate, and the like.
  • methyl cellulose carboxymethyl cellulose
  • sodium alginate sodium alginate
  • a gas barrier coating layer made of PVA is excellent in gas barrier properties.
  • the metal alkoxide is a general formula, M (OR) n (M: metal such as Si, Ti, Al, Zr, etc., alkyl group such as R: CH 3 , C 2 H 5, etc., n: number corresponding to the valence of M. ).
  • M metal such as Si, Ti, Al, Zr, etc.
  • alkyl group such as R: CH 3 , C 2 H 5, etc.
  • n number corresponding to the valence of M.
  • Specific examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxy aluminum [Al (O-2′-C 3 H 7 ) 3 ].
  • tetraethoxysilane and triisopropoxyaluminum are particularly preferable. Tetraethoxysilane and triisopropoxyaluminum are relatively stable in aqueous solvents after hydrolysis.
  • the silane coupling agent has a general formula, R 1 m Si (OR 2 ) 4-m (R 1 : an organic functional group, R 2 : an alkyl group such as CH 3 or C 2 H 5 , m: an integer of 1 to 3 ).
  • Specific examples of the silane coupling agent include ethyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and ⁇ -methacrylic acid.
  • Silane coupling agents such as loxypropyltrimethoxysilane and ⁇ -methacryloxypropylmethyldimethoxysilane can be used.
  • known additives such as isocyanate compounds or dispersants, stabilizers, viscosity modifiers, and colorants are added as necessary within a range not impairing the gas barrier properties. It is also possible.
  • the thickness of the gas barrier coating layer after drying is preferably 0.01 to 50 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the thickness of the gas barrier coating layer after drying is less than 0.01 ⁇ m, a uniform coating film cannot be obtained, so that sufficient gas barrier properties may not be obtained.
  • the thickness of the gas barrier coating layer after drying exceeds 50 ⁇ m, cracks are likely to occur in the gas barrier coating layer.
  • the wavelength conversion sheet protective film 300 in FIG. 3 has a reflectance of 10% or more and 20% or less at a wavelength of 450 nm in the blue region, a wavelength of 540 nm in the green region, and a wavelength of 620 nm in the red region. Is desirable.
  • the reflectance correlates with optical interference caused by the first and second barrier films 50 and 60. If the reflectance exceeds 20% at each wavelength, even when the wavelength conversion sheet protective film 300 is used as a diffusion sheet on the light guide plate in the backlight unit, color unevenness due to optical interference appears greatly, resulting in poor appearance. May occur.
  • the reflectance is less than 10% at each wavelength, the O / Si ratio and the refractive index of the silica deposited layers in the first and second barrier films 50 and 60 are likely to deviate from the above-described preferable value range. There is a possibility that the barrier properties of the second barrier films 50 and 60 are not sufficiently developed.
  • the transmittance of the wavelength conversion sheet protective film 300 is preferably 80% or more and 95% or less for each of the blue 450 nm wavelength, the green 540 nm wavelength, and the red 620 nm wavelength.
  • a transmittance of less than 80% is not preferable because the transmittance is low and the light conversion efficiency of the phosphor layer (quantum dot layer) may be lowered.
  • the wavelength conversion sheet protective film 300 described above can be manufactured by the same method as the wavelength conversion sheet protective films 2 and 20 except that the configuration of each layer is the above configuration.
  • the wavelength conversion sheet protective film 300 described above is used in place of the wavelength conversion sheet protection films 2 and 20, thereby providing two wavelength conversion sheets.
  • a wavelength conversion sheet having a structure in which the phosphor layer 1 is encapsulated (sealed) between the protective films 300 and 300 can be obtained.
  • each layer which comprises the protective film 2 for wavelength conversion sheets 2 and 20 of the wavelength conversion sheet 100, 200 shown in FIG.1 and FIG.2 is changed into the structure of each layer demonstrated in the protective film 300 for wavelength conversion sheets mentioned above. May be.
  • the inorganic thin film layer 10 is a silica vapor deposition layer, and the oxygen / silicon O / Si ratio contained in the silica vapor deposition layer is 1.7 to 2.0 in atomic ratio.
  • the refractive index of the silica vapor deposition layer is 1.5 or more and 1.7 or less, and the reflectivity of the wavelength conversion sheet protective film 2 or 20 is 10% or more at all wavelengths of 450 nm, 540 nm, and 620 nm.
  • the transmittance may be 20% or less and 80% or more and 95% or less.
  • Example 1 Preparation of protective film for wavelength conversion sheet
  • silicon oxide is provided as an inorganic thin film layer (silica vapor deposition layer) to a thickness of 250 mm by vacuum vapor deposition, and a coating liquid containing tetraethoxysilane and polyvinyl alcohol is further provided.
  • Coating was performed on the inorganic thin film layer by a wet coating method to form a gas barrier coating layer having a thickness of 0.3 ⁇ m.
  • a coating liquid containing an acrylic resin and silica fine particles (average particle size 3 ⁇ m) is applied to the surface side (base material side) opposite to the gas barrier coating layer of one barrier film by a wet coating method.
  • a coating layer having a thickness of 5 ⁇ m was formed. This obtained the barrier film with a coating layer.
  • Example 1 affix the gas barrier coating layer side of the barrier film with the coating layer and the side opposite to the gas barrier coating layer (base material side) of the barrier film without the coating layer using an acrylic resin adhesive.
  • the protective film for wavelength conversion sheets of Example 1 was obtained. Two protective films for wavelength conversion sheets were produced.
  • the backlight unit of Example 1 was produced by combining the obtained wavelength conversion sheet with an LED light source and a light guide plate.
  • Example 2 (Preparation of protective film for wavelength conversion sheet)
  • Example 1 the same except that the gas barrier coating layer side of the barrier film with the coating layer and the gas barrier coating layer side of the barrier film without the coating layer were bonded together using an acrylic resin adhesive
  • the protective film for wavelength conversion sheets of Example 2 was obtained by the operation. Two protective films for wavelength conversion sheets were produced.
  • a backlight unit of Example 2 was produced by combining the obtained wavelength conversion sheet with an LED light source and a light guide plate.
  • Example 3 In Example 1, the protective film for wavelength conversion sheets of Example 3 was obtained by the same operation except not providing a coating layer. Furthermore, the wavelength conversion sheet and backlight unit of Example 3 were obtained in the same manner as in Example 1 except that this wavelength conversion sheet protective film was used.
  • Example 1 the protective film for wavelength conversion sheets of the comparative example 1 was obtained in the same manner except having used the 25-micrometer-thick polyethylene terephthalate film instead of the barrier film with a coating layer. Furthermore, the wavelength conversion sheet and the backlight unit of Comparative Example 1 were obtained in the same manner as in Example 1 except that this wavelength conversion sheet protective film was used.
  • Example 2 In Example 1, a protective film for wavelength conversion sheet of Comparative Example 2 was obtained in the same manner except that a polyethylene terephthalate film having a thickness of 25 ⁇ m was used instead of the barrier film having no coating layer. Further, a wavelength conversion sheet and a backlight unit of Comparative Example 2 were obtained in the same manner as in Example 1 except that this wavelength conversion sheet protective film was used.
  • Example 3 a wavelength conversion sheet protective film of Comparative Example 3 was obtained in the same manner except that a polyethylene terephthalate film having a thickness of 12 ⁇ m was used instead of the barrier film with a coating layer. Further, a wavelength conversion sheet and a backlight unit of Comparative Example 3 were obtained in the same manner as in Example 2 except that this wavelength conversion sheet protective film was used.
  • silicon oxide is provided as a first inorganic thin film layer (silica vapor deposition layer) to a thickness of 250 mm by vacuum vapor deposition, and further contains tetraethoxysilane and polyvinyl alcohol.
  • the coating liquid was applied onto the first inorganic thin film layer by a wet coating method to form a first gas barrier coating layer having a thickness of 0.3 ⁇ m.
  • silicon oxide is provided as a second inorganic thin film layer (silica vapor deposition layer) to a thickness of 250 mm by vacuum vapor deposition, and further a coating liquid containing tetraethoxysilane and polyvinyl alcohol.
  • the protective film for a wavelength conversion sheet of Comparative Example 4 was obtained by bonding the gas barrier coating layer side of the barrier film and a polyethylene terephthalate film having a thickness of 25 ⁇ m using an acrylic resin adhesive. Two protective films for wavelength conversion sheets were produced. A wavelength conversion sheet and a backlight unit of Comparative Example 4 were obtained in the same manner as in Example 2 except that this wavelength conversion sheet protective film was used.
  • the wavelength conversion sheets of Comparative Examples 1 to 3 have a structure in which one barrier film and a polyester film are bonded together, the luminance is lowered because the barrier property is inferior particularly after the reliability test. In addition, not only the overall luminance was reduced but also a local luminance reduction was observed.
  • Example 4 (Preparation of protective film for wavelength conversion sheet)
  • the adhesive layer composition was applied to one side of a 16 ⁇ m thick PET film substrate formed using PET having a weight average molecular weight of 60,000, and an adhesive layer having a thickness of 0.1 ⁇ m was laminated.
  • the 1st silica vapor deposition layer was laminated
  • a first gas barrier coating layer (first composite coating layer) having a thickness of 1 ⁇ m was formed on the first silica vapor deposition layer by a wet coating method using the gas barrier coating layer composition.
  • a second silica vapor deposition layer was laminated on the first gas barrier coating layer so as to have a thickness of 30 nm.
  • a second gas barrier coating layer (second composite coating layer) having a thickness of 1 ⁇ m is formed on the second silica deposited layer by a wet coating method using the gas barrier coating layer composition, and the first barrier is formed.
  • a film was prepared.
  • the O / Si ratio in the first silica vapor deposition layer and the second silica vapor deposition layer was 1.8 in terms of atomic ratio, and the refractive index was 1.61.
  • the 2nd barrier film was produced by the method similar to a 1st barrier film.
  • the composition for the adhesion layer was an ethyl acetate solution of acrylic polyol and tolylene diisocyanate.
  • the OH group of the acrylic polyol and the NCO group of tolylene diisocyanate were made equal to each other.
  • the solid content concentration of the acrylic polyol and tolylene diisocyanate in the ethyl acetate solution was 5% by mass.
  • the gas barrier coating composition In the preparation of the gas barrier coating composition, 10.4 g of tetraethoxysilane was added to 89.6 g of 0.1N (normal concentration) hydrochloric acid, and this hydrochloric acid solution was stirred for 30 minutes to hydrolyze tetraethoxysilane. did. The concentration of solid content after hydrolysis was 3% by mass in terms of SiO 2 .
  • a composition for gas barrier coating layer was prepared by mixing a hydrolyzed solution of tetraethoxysilane and a 3% by mass aqueous solution of polyvinyl alcohol. The mixing ratio of the tetraethoxysilane hydrolyzed solution and polyvinyl alcohol was 50:50 in terms of mass%.
  • suitable vapor deposition conditions were determined by changing the vapor deposition conditions such as the type of material to be vapor deposited before the formation.
  • the O / Si ratio of the silica deposited layer was examined using an X-ray photoelectron spectroscopic analyzer (manufactured by JEOL Ltd., JPS-90MXV).
  • X-ray photoelectron spectroscopic analyzer manufactured by JEOL Ltd., JPS-90MXV.
  • the X-ray source non-monochromated MgK ⁇ (1253.6 eV) was used, and measurement was performed at an X-ray output of 100 W (10 kV-10 mA).
  • Quantitative analysis for obtaining the O / Si ratio of the silica deposited layer was performed using relative sensitivity factors of 2.28 for O1s and 0.9 for Si2p, respectively.
  • the refractive index of the silica vapor deposition layer was calculated by simulation using the thickness of the silica vapor deposition layer and the peak wavelength of the transmittance curve generated by light interference.
  • the adhesive layer was made of a two-component curable urethane adhesive.
  • the thickness of the adhesive layer after bonding was 5 ⁇ m.
  • a coating layer in which olefinic particles having a particle diameter of 2 ⁇ m were dispersed in a urethane binder was applied so that the thickness thereof was 3 ⁇ m.
  • a protective film for a first wavelength conversion sheet having a haze value of 60% (JIS K7136) was obtained.
  • the protective film for 2nd wavelength conversion sheets was produced by the method similar to the protective film for 1st wavelength conversion sheets.
  • a phosphor having a core-shell structure of CdSe / ZnS was obtained by the following method. First, a solution in which octylamine and cadmium acetate are added to octadecene and a solution in which selenium is dissolved in trioctylphosphine are mixed at a mass ratio of 1: 1, and the mixture is passed through a heated microchannel to form nuclear fine particles. As a result, a CdSe fine particle solution was obtained.
  • a CdSe fine particle solution and a solution in which [(CH 3 ) 2 NCSS] 2 Zn is dissolved in trioctylphosphine are mixed at a mass ratio of 1: 1 and passed through a heated microchannel.
  • a phosphor having a CdSe / ZnS structure was obtained.
  • the obtained phosphor was mixed with a photosensitive resin (epoxy resin) to obtain a quantum dot layer mixture.
  • the quantum dot layer mixture is applied on the base material of the first barrier film of the first wavelength conversion sheet protective film (on the surface opposite to the coating layer), and the second wavelength conversion sheet protective film is formed thereon.
  • the mixture for quantum dot layers was irradiated with UV, and the photosensitive resin contained in the mixture for quantum dot layers was cured. This produced the wavelength conversion sheet
  • the backlight unit of Example 4 was produced by combining the obtained wavelength conversion sheet with an LED light source and a light guide plate.
  • Example 5 The adhesive layer composition was applied to one side of a 16 ⁇ m thick PET film substrate formed using PET having a weight average molecular weight of 60,000, and an adhesive layer having a thickness of 0.1 ⁇ m was laminated. Next, the 1st silica vapor deposition layer was laminated
  • first composite coating layer having a thickness of 1 ⁇ m
  • the O / Si ratio in the first silica vapor deposition layer was 1.8 in terms of atomic ratio, and the refractive index was 1.61.
  • the 2nd barrier film was produced by the method similar to a 1st barrier film.
  • Each layer in the first and second barrier films was formed in the same manner as in Example 4.
  • Each of the first and second barrier films of Example 5 has a structure including a silica vapor deposition layer and a gas barrier coating layer, that is, from the first and second barrier films of Example 4, to the second silica vapor deposition layer. And it has the structure except the 2nd gas barrier coating layer.
  • a protective film for first and second wavelength conversion sheets having a haze value of 60% (JIS K7136) was obtained in the same manner as in Example 4 except that the first and second barrier films produced by the above method were used. Furthermore, a wavelength conversion sheet and a backlight unit using the same were obtained in the same manner as in Example 4 except that the protective films for the first and second wavelength conversion sheets were used.
  • Example 6 By changing the O / Si ratio of the SiO vapor deposition material and adjusting the conditions of physical vapor deposition, the O / Si ratio of the silica vapor deposition layer is 1.7 in atomic ratio and the refractive index is 1.55. Two silica deposited layers were prepared. A protective film for wavelength conversion sheet, a wavelength conversion sheet, and a backlight unit were obtained in the same manner as in Example 4 except for the values of the O / Si ratio and the refractive index of the silica deposited layer.
  • Table 2 is a table showing the evaluation results of the reflectance and transmittance of the protective films for wavelength conversion sheets produced in Examples 4 to 6.
  • Table 3 is a table showing the water vapor transmission rate of the protective films for wavelength conversion sheets produced in Examples 4 to 6, and the evaluation results of the luminance and appearance of the backlight unit.
  • the reflectance and transmittance of the protective film for wavelength conversion sheet were measured at wavelengths of 450 nm, 540 nm, and 620 nm using a spectrophotometer (trade name: SHIMAZU UV-2450). In the measurement, measurement light was irradiated from the surface opposite to the coating layer of the protective film for wavelength conversion sheet.
  • the water vapor transmission rate (g / m 2 ⁇ day) of the protective film for wavelength conversion sheet was measured in a 40 ° C./90% RH atmosphere using a water vapor transmission measuring device (Permatran 3/33 manufactured by Modern Control).
  • the measurement of the luminance of the backlight unit and the evaluation of the appearance were performed before and after a 1,000 hour storage experiment in an atmosphere of 60 ° C./90% RH.
  • “initial” indicates before the storage experiment, and “after storage” indicates after the storage experiment.
  • the luminance of the backlight unit was measured using a luminance meter (LS-100 manufactured by Konica Minolta).
  • the appearance of the backlight unit is evaluated as “A” when it has an appearance that can withstand the display application as the backlight unit. When there was a reproduction failure, it was evaluated as “B”.
  • the appearance evaluation 2 of the backlight unit was performed by the following method. That is, the appearance of the backlight unit was visually confirmed in the LED emission state, and the presence / absence of foreign matters (splash, scratches, wrinkles, etc.) and the occurrence of interference fringes were evaluated. The case where foreign matter and interference fringes were not confirmed was judged as “A”, and the case where foreign matter and interference fringes were confirmed was judged as “B”. This appearance evaluation was performed both at the initial stage and after storage for 500 hours in an environment of 60 ° C. and 90% RH.
  • the protective film for wavelength conversion sheets which is the laminate film which laminated
  • the backlight unit By using the backlight unit, it is possible to manufacture an excellent high-definition display.
  • SYMBOLS 1 Phosphor layer, 2, 20, 300 ... Protective film for wavelength conversion sheet, 3 ... Phosphor, 4 ... Sealing resin, 5 ... Barrier film, 6 ... Adhesive layer, 7 ... Coating layer, 8 ... Base material, DESCRIPTION OF SYMBOLS 9 ... Barrier layer, 10 ... Inorganic thin film layer, 11 ... Gas barrier coating layer, 31 ... Coating layer, 50 ... 1st barrier film, 51 ... Base material, 52 ... Adhesion layer, 53 ... 1st silica vapor deposition layer, 54 ... First gas barrier coating layer, 55 ... second silica vapor deposition layer, 56 ... second gas barrier coating layer, 60 ...
  • second barrier film 61 ... base material, 62 ... adhesion layer, 63 ... first silica vapor deposition layer, 64 ... 1st gas barrier coating layer, 65 ... 2nd silica vapor deposition layer, 66 ... 2nd gas barrier coating layer, 100,200 ... wavelength conversion sheet.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Led Device Packages (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 波長変換シートにおける蛍光体を保護するための波長変換シート用保護フィルムであって、基材と、該基材の少なくとも一方の面上に設けられた1以上のバリア層と、を有するバリアフィルムが、2以上積層された構造を有する、波長変換シート用保護フィルム。

Description

波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
 本発明は、波長変換シート用保護フィルム、並びに、それを用いた波長変換シート及びバックライトユニットに関する。
 液晶ディスプレイは、電圧の印加により液晶の配向状態を制御し、領域ごとに光を透過又は遮断することで画像等を表示する表示装置である。この液晶ディスプレイの光源としては、液晶ディスプレイの背面に設けられたバックライトが利用される。バックライトには、従来、冷陰極管が使用されているが、最近では、長寿命、発色の良さ等の理由から、冷陰極管に代えてLED(発光ダイオード)が使用されつつある。
 バックライトに使用されるLEDにおいては、白色LED技術が非常に大きな重要度を占める。白色LED技術では、セリウムをドープしたYAG:Ce(イットリウム・アルミニウム・ガーネット:セリウム)下方変換用蛍光体を青色(450nm)LEDチップで励起する方法が一般的に用いられている。この場合、LEDの青色光と、YAG:Ce蛍光体から発生した波長範囲の広い黄色光とが混ざることで白色光となる。しかし、この白色光は幾分青味がかっていることが多く、しばしば「冷たい」とか「涼しげな」白色という印象を与える。
 ところで、近年、量子ドットを用いたナノサイズの蛍光体が製品化されている。量子ドットとは、発光性の半導体ナノ粒子で、直径の範囲は1~20nm程度である。量子ドットは幅広い励起スペクトルを示し量子効率が高いため、LED波長変換用蛍光体として使用することができる。さらに、ドットサイズや半導体材料の種類を変更するだけで、発光の波長を可視域全体にわたって完全に調整することができるという利点がある。そのため、量子ドットは事実上あらゆる色、特に照明業界で強く望まれている暖かい白色を作り出せる可能性を秘めているといえる。加えて、発光波長が赤、緑、青に対応する3種類のドットを組み合わせて、演色評価数の異なる白色光を得ることが可能となる。このように、量子ドットによるバックライトを用いた液晶ディスプレイでは、従来のものよりも厚みや消費電力、コスト、製造プロセスを増やすことなく、色調が向上し、人が識別できる色の多くを表現可能になる。
 上述したような白色LEDを用いたバックライトは、所定の発光スペクトルを持つ蛍光体(量子ドット及びYAG:Ce等)をフィルム内に拡散させ、その表面をバリアフィルムにて封止し、場合によってはエッジ部も封止した波長変換シートを、LED光源及び導光板と組み合わせた構成を有する。
 上記バリアフィルムは、プラスチックフィルム等の基材の表面に蒸着等によって薄膜を形成して、水分や気体の透過を防ぐものである。このバリアフィルムには、透明性及びバリア性の他に、スプラッシュ、キズ、シワといった外観不良を防ぐことが要求される。ここで、スプラッシュとは、蒸着用の材料が高温の微細な粒のまま飛散する現象であり、蒸着用の材料がそのまま基材に付着して異物になったり、基材に穴を開けたりしてしまう現象をいう。このような要求に対し、従来のバリアフィルムは、その多くが食品や医療品等の包装材料や電子デバイス等のパッケージ材料として用いられてきたものであるため、満足できる性能を得ることができないという課題があった。液晶ディスプレイへの用途としては、例えば特許文献1に、蛍光体の劣化を抑制するため、蛍光体をバリアフィルムで挟んだ構造を有するバックライトが提案されている。
特開2011-013567号公報
 しかしながら、特許文献1に記載されたバリアフィルムで量子ドットを封止したディスプレイを作製した場合、バリア性が不足するために得られた白色光の寿命が短かったり、フィルムのキズ、シワ、量子ドットの模様等で白色LEDの発光にムラが生じてしまうという問題があった。また、バリアフィルムにスプラッシュがあった場合には、それを起点としてバリア不良がおこり、部分的に輝度が低下してしまうという問題があった。
 本発明は、かかる事情を鑑みてなされたものであり、波長変換シートにおける蛍光体を保護するための保護フィルムとして、長期間にわたって優れたバリア性を発揮することができ、且つ、スプラッシュ、キズ、シワ等の影響による外観不良の発生を抑制することができる波長変換シート用保護フィルム、並びに、それを用いた波長変換シート及びバックライトユニットを提供することを目的とする。
 上記目的を達成するために、本発明は、波長変換シートにおける蛍光体を保護するための波長変換シート用保護フィルムであって、基材と、該基材の少なくとも一方の面上に設けられた1以上のバリア層と、を有するバリアフィルムが、2以上積層された構造を有する、波長変換シート用保護フィルムを提供する。
 かかる波長変換シート用保護フィルムによれば、上記バリアフィルムが2以上積層された構造を有することにより、長期間にわたって優れたバリア性を発揮することができ、且つ、スプラッシュ、キズ、シワ等の影響による外観不良の発生を抑制することができる。特に本発明においては、1枚の基材上に複数のバリア層を積層した場合とは異なり、基材とバリア層との積層構造を有するバリアフィルムを2以上積層しており、この構造を取ることより、スプラッシュ、キズ、シワ等の影響によるバリア不良発生に対する抑制効果を大幅に向上させることができる。かかる効果が得られるのは、上記構造を取ることにより、それぞれの基材及びバリア層が独立して存在することとなり、独立してバリア不良発生に対する抑制効果を発揮できるからであると考えられる。
 また、従来、量子ドット等の蛍光体を用いたバックライトでは、1枚の基材上に複数のバリア層を積層した結果、薄膜干渉によって、ニュートンリング等の干渉縞が発生しやすいという問題もあった。本発明の波長変換シート用保護フィルムによれば、上記構成を備えることにより、干渉縞の発生を低減する効果も奏することができる。
 本発明の波長変換シート用保護フィルムは、光学的機能を有するコーティング層を更に有し、上記コーティング層が波長変換シート用保護フィルムの少なくとも一方の表面に配置されていることが好ましい。ここで、上記光学的機能は、干渉縞防止機能であることが好ましい。また、上記コーティング層は、バインダー樹脂と、該バインダー樹脂中に分散された微粒子とを含むことが好ましい。コーティング層を波長変換シート用保護フィルムの表面に設けることにより、様々な光学的機能を付与することができる。特に、干渉縞防止機能を有するコーティング層を設けた場合、干渉縞の発生を抑制することができ、光源からの光のばらつきを抑制することができる。
 本発明の波長変換シート用保護フィルムにおいて、上記基材が、ポリエチレンテレフタレート系フィルム又はポリエチレンナフタレート系フィルムであることが好ましい。これにより、より優れた透明性やバリア性を得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、上記バリア層が、上記基材の一方の面上に積層された無機薄膜層と、該無機薄膜層上に積層されたガスバリア性被覆層とを含むことが好ましい。これにより、水分や気体に対するより優れたバリア性を得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、上記バリア層は、上記無機薄膜層と上記ガスバリア性被覆層とが交互に2層ずつ以上積層された構造を有していてもよい。この場合、更に優れたバリア性をより長期間にわたって得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、上記無機薄膜層が、酸化珪素及び酸化アルミニウムの少なくとも一方を含有する層であることが好ましい。これにより、より優れたバリア性を得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、上記ガスバリア性被覆層が、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物のうちの少なくとも一種を含有する層であることが好ましい。これにより、より優れたバリア性を得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、2以上の上記バリアフィルムは、アクリル系樹脂、ウレタン系樹脂及びエステル系樹脂のいずれか一種を含む接着層を用いて積層されていることが好ましい。これにより、より優れた透明性や密着性を得ることができる。
 本発明の波長変換シート用保護フィルムにおいて、2以上の上記バリアフィルムは、接着層を用いて積層されており、隣接する2つの上記バリアフィルムのうちの一方のバリアフィルムのバリア層と他方のバリアフィルムの基材とが、上記接着層を介して対向するように配置された構造を有していてもよい。この場合、波長変換シートを形成する際に、上記他方のバリアフィルムのバリア層を蛍光体側に向けて波長変換シート用保護フィルムを配置することで、蛍光体に近い場所にバリア層を設けることができ、蛍光体に対するバリア性能をより効果的に発揮することができる。
 また、本発明の波長変換シート用保護フィルムにおいて、2以上の上記バリアフィルムは、接着層を用いて積層されており、隣接する2つの上記バリアフィルムの上記バリア層同士が、上記接着層を介して対向するように配置された構造を有していてもよい。この場合、波長変換シートを形成する際に、バリア層と蛍光体との間に基材を配置することができるため、蛍光体上に凹凸や異物が存在する場合でも、基材によって衝撃が緩和され、バリア層が損傷することを抑制することができる。よって、スプラッシュ、キズ、シワ等によるバリア層への悪影響を最小限に抑えることができるとともに、より優れたバリア性を得ることができる。
 また、本発明の波長変換シート用保護フィルムは、少なくとも一方の表面に配置された光学的機能を有するコーティング層を更に有し、上記バリア層が無機薄膜層としてシリカ蒸着層を含み、上記シリカ蒸着層に含まれる酸素とケイ素のO/Si比が原子比で1.7以上2.0以下であり、上記シリカ蒸着層の屈折率が1.5以上1.7以下であり、波長450nm、波長540nm、及び波長620nmの全ての波長において、上記波長変換シート用保護フィルムの反射率が10%以上20%以下であり、且つ、透過率が80%以上95%以下であってもよい。
 この波長変換シート用保護フィルムによれば、O/Si比が原子比で1.7以上であるので、シリカ蒸着層内のSi-Si結合の割合が低く抑えられ、有色の金属が少なくなって、シリカ蒸着層の透過率が向上する。また、O/Si比が原子比で2.0以下であるので、蒸着膜の成長が密となり、シリカ蒸着層がバリア性に優れる。この波長変換シート用保護フィルムは、水蒸気などの侵入を低減させることができる。このため、この波長変換シート用保護フィルムを有する波長変換シートを含むバックライトユニットが作製されると、そのバックライトユニットは、長期間にわたって高い輝度を維持し、また、ディスプレイ適用時の色ムラ及び黒点などの発生を抑制して優れた外観を維持する。また、シリカ蒸着層の屈折率が1.5以上1.7以下であり、波長変換シート用保護フィルムの反射率が10%以上20%以下であり、且つ、透過率が80%以上95%以下である。このため、この波長変換シート用保護フィルムは、フィルム内での光学干渉を低減し、また、バックライトユニットの輝度を向上させる。
 本発明はまた、蛍光体を含む蛍光体層と、該蛍光体層の少なくとも一方の面上に積層された上記本発明の波長変換シート用保護フィルムと、を備える波長変換シートを提供する。かかる波長変換シートによれば、上記本発明の波長変換シート用保護フィルムを備えているため、長期間にわたって優れたバリア性を発揮することができ、且つ、スプラッシュ、キズ、シワ等の影響によるバリア不良の発生を抑制することができ、更には、干渉縞の発生を低減することができる。
 本発明はまた、蛍光体を含む蛍光体層と、該蛍光体層の少なくとも一方の面上に積層された上記本発明の波長変換シート用保護フィルムと、を備える波長変換シートであって、上記波長変換シート用保護フィルムにおける2以上の上記バリアフィルムは、接着層を用いて積層されており、隣接する2つの上記バリアフィルムのうちの一方のバリアフィルムのバリア層と他方のバリアフィルムの基材とが、上記接着層を介して対向するように配置され、且つ、上記他方のバリアフィルムのバリア層が上記蛍光体層側に向けて配置された構造を有する、波長変換シートを提供する。かかる波長変換シートによれば、上記本発明の波長変換シート用保護フィルムを備えているため、長期間にわたって優れたバリア性を発揮することができ、且つ、スプラッシュ、キズ、シワ等の影響によるバリア不良の発生を抑制することができ、更には、干渉縞の発生を低減することができる。また、上記波長変換シート用保護フィルムにおける上記他方のバリアフィルムのバリア層が上記蛍光体層側に向けて配置されていることで、蛍光体層に近い場所にバリア層が設けられ、蛍光体層に対するバリア性能をより効果的に発揮することができる。
 本発明の波長変換シートにおいて、上記波長変換シート用保護フィルムが、上記蛍光体層と対向する側とは反対側の面上に、光学的機能を有するコーティング層を有することが好ましい。
 本発明は更に、LED光源と、導光板と、上記本発明の波長変換シートと、を備えるバックライトユニットを提供する。かかるバックライトユニットによれば、上記本発明の波長変換シートを備えることにより、長期間にわたって輝度の低下が抑制されるとともに、外観不良の影響が抑制され、自然に近い鮮やかな色彩を有し、且つ色調の優れた画像を長期間にわたって安定して表示可能なディスプレイを提供することができる。
 本発明によれば、波長変換シートにおける蛍光体を保護するための保護フィルムとして、長期間にわたって優れたバリア性を発揮することができ、且つ、スプラッシュ、キズ、シワ等の影響によるバリア不良の発生を抑制することができる波長変換シート用保護フィルム、並びに、それを用いた波長変換シート及びバックライトユニットを提供することができる。
図1は、本発明の第1実施形態に係る波長変換シートの模式断面図である。 図2は、本発明の第2実施形態に係る波長変換シートの模式断面図である。 図3は、本発明の第3実施形態に係る波長変換シート用保護フィルムの模式断面図である。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
<第1実施形態に係る波長変換シート>
 先ず、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態に係る波長変換シートの模式断面図である。図1に示した波長変換シートは、量子ドット等の蛍光体を含んでおり、例えばLED波長変換用として、バックライトユニットに用いることができるものである。
 図1に示すように、本実施形態の波長変換シート100は、蛍光体を含む蛍光体層(波長変換層)1と、蛍光体層1の一方の面2a側および他方の面2b側にそれぞれ設けられた波長変換シート用保護フィルム(以下、単に「保護フィルム」ともいう)2,2とを備えて概略構成されている。これによって、保護フィルム2,2の間に蛍光体層1が包み込まれた(すなわち、封止された)構造となっている。
 ところで、一般にバックライトユニットは、導光板とLED光源とにより構成される。LED光源は、導光板の側面に設置されている。LED光源の内部には、発光色が青色のLED素子が複数個設けられている。このLED素子は、紫LED、又はさらに低波長のLEDであってもよい。LED光源は、導光板側面に向かって光を照射する。本実施形態の波長変換シート100を用いたバックライトユニットの場合、この照射された光は、例えば、導光板を経てアクリルやエポキシ等の樹脂と蛍光体とを混合した層(蛍光体層)1に入射することになる。ここで、蛍光体層1には、バリア性を付与する必要があることから、一対の波長変換シート用保護フィルム2,2によって、蛍光体層1を挟んだ構成にすることが望ましい。以下、波長変換シート100を構成する各層について詳細に説明する。
(蛍光体層)
 蛍光体層1は、封止樹脂4及び蛍光体3を含む数十~数百μmの厚みの薄膜である。封止樹脂4としては、例えば、感光性樹脂又は熱硬化性樹脂を使用することができる。封止樹脂4の内部には、蛍光体3が1種以上混合された状態で封止されている。封止樹脂4は、蛍光体層1と一対の保護フィルム2,2とを積層する際に、これらを接合するとともに、これらの空隙を埋める役割を果たす。また、蛍光体層1は、1種類の蛍光体3のみが封止された蛍光体層が2層以上積層されたものであってもよい。それら1層又は2層以上の蛍光体層に用いられる2種類以上の蛍光体3は、励起波長が同一のものが選択される。この励起波長は、LED光源が照射する光の波長に基づいて選択される。2種類以上の蛍光体3の蛍光色は相互に異なる。使用する蛍光体3が2種類の場合、各蛍光色は、好ましくは、赤色、緑色である。各蛍光の波長、及びLED光源が照射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば赤色が610nm、緑色が550nmである。
 次に、蛍光体3の粒子構造を説明する。蛍光体3としては、量子ドットが好ましく用いられる。量子ドットとしては、例えば、発光部としてのコアが保護膜としてのシェルにより被膜されたものが挙げられる。上記コアとしては、例えば、セレン化カドミウム(CdSe)等が挙げられ、上記シェルとしては、例えば、硫化亜鉛(ZnS)等が挙げられる。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子効率が向上する。また、蛍光体3は、コアが第1シェル及び第2シェルにより二重に被覆されたものであってもよい。この場合、コアにはCsSe、第1シェルにはセレン化亜鉛(ZnSe)、第2シェルにはZnSが使用できる。また、量子ドット以外の蛍光体3として、YAG:Ce等を用いることもできる。
 上記蛍光体3の平均粒子径は、好ましくは1~20nmである。また、蛍光体層1の厚さは、好ましくは1~500μmである。
 蛍光体層1における蛍光体3の含有量は、蛍光体層1全量を基準として、1~20質量%であることが好ましく、3~10質量%であることがより好ましい。
 封止樹脂4としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化型樹脂等を使用することができる。これらの樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 熱可塑性樹脂としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース及びメチルセルロース等のセルロース誘導体;酢酸ビニルとその共重合体、塩化ビニルとその共重合体、及び塩化ビニリデンとその共重合体等のビニル系樹脂;ポリビニルホルマール及びポリビニルブチラール等のアセタール樹脂;アクリル樹脂とその共重合体、メタアクリル樹脂とその共重合体等のアクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;フッ素樹脂;並びに、ポリカーボネート樹脂等を用いることができる。
 熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂、及びシリコーン樹脂等が挙げられる。
 紫外線硬化型樹脂としては、エポキシアクリレート、ウレタンアクリレート、及びポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、これら光重合性プレポリマーを主成分とし、希釈剤として単官能や多官能のモノマーを使用することもできる。
(波長変換シート用保護フィルム)
 波長変換シート用保護フィルム2は、基材8とバリア層9とを有するバリアフィルム5を2枚と、接着層6と、コーティング層7とを有している。そして、基材8の一方の面8a上に設けられたバリア層9が接着層6を介してもう一方の基材8に対向するように積層されている。また、本実施形態の保護フィルム2を形成する際には、図1に示すように、それぞれの保護フィルム2,2は、バリア層9を蛍光体層1側に向けて積層する。
 バリアフィルム5は、図1に示すように、基材8と、この基材8の一方の面8a上に設けられたバリア層9とを有している。
 基材8としては、特に限定されるものではないが、全光線透過率が85%以上の基材が望ましい。例えば透明性が高く、耐熱性に優れた基材として、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムなどを用いることができる。
 また、基材8の厚さは、特に限定されるものではないが、波長変換シート100の総厚を薄くするために、50μm以下とすることが望ましい。また、基材8の厚さは、優れたバリア性を得るために、12μm以上とすることが望ましい。
 バリア層9は、無機薄膜層10とガスバリア性被覆層11とを含んでいる。そして、図1に示すように、バリア層9は、基材8の一方の面(片面)8a上に無機薄膜層10が積層されるとともに、この無機薄膜層10の上にガスバリア性被覆層11が積層されて構成されている。
 無機薄膜層(無機酸化物薄膜層)10としては、特に限定されるものではないが、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウムあるいはそれらの混合物を用いることができる。これらの中でも、バリア性、生産性の観点から、酸化アルミニウム又は酸化珪素を用いることが望ましい。
 無機薄膜層10の厚さ(膜厚)は、5~500nmの範囲内とすることが好ましく、10~100nmの範囲内とすることがより好ましい。ここで、膜厚が5nm以上であると、均一な膜を形成しやすく、ガスバリア材としての機能をより十分に果たすことができる傾向がある。一方、膜厚が500nm以下であると、薄膜により十分なフレキシビリティを保持させることができ、成膜後に折り曲げ、引っ張りなどの外的要因により、薄膜に亀裂を生じることをより確実に防ぐことができる傾向がある。
 ガスバリア性被覆層11は、後工程での二次的な各種損傷を防止すると共に、高いバリア性を付与するために設けられるものである。このガスバリア性被覆層11は、優れたバリア性を得る観点から、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種を成分として含有していることが好ましい。
 水酸基含有高分子化合物としては、具体的には、例えば、ポリビニルアルコール、ポリビニルピロリドン、デンプン等の水溶性高分子が挙げられるが、特にポリビニルアルコールを用いた場合にバリア性が最も優れる。
 金属アルコキシドは、一般式:M(OR)(MはSi、Ti、Al、Zr等の金属原子を示し、Rは-CH、-C等のアルキル基を示し、nはMの価数に対応した整数を示す)で表される化合物である。具体的には、テトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウム〔Al(O-iso-C〕などが挙げられる。テトラエトキシシラン、トリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。また、金属アルコキシドの加水分解物及び重合物としては、例えば、テトラエトキシシランの加水分解物や重合物としてケイ酸(Si(OH))などが、トリプロポキシアルミニウムの加水分解物や重合物として水酸化アルミニウム(Al(OH))などが挙げられる。
 ガスバリア性被覆層11の厚さ(膜厚)は、50~1000nmの範囲内とすることが好ましく、100~500nmの範囲内とすることがより好ましい。ここで、膜厚が50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、薄膜により、十分なフレキシビリティを保持できる傾向がある。
 2枚のバリアフィルム5は、図1に示すように、基材8の一方の面8a上に設けられたバリア層9及び接着層6を介して、もう一方の基材8のバリア層9が設けられていない面8b側と対向するように設けられている。換言すると、2枚のバリアフィルム5は、蛍光体層1から遠い方を第1のバリアフィルム5、蛍光体層1に近い方を第2のバリアフィルム5とした場合、第1のバリアフィルム5の第1の基材8と第2のバリアフィルム5の第2の基材8との間に、第1のバリアフィルムのバリア層9を挟み込むように、接着層6を介して積層されている。このように、本実施形態ではバリアフィルムを2枚用いているため、さらには、第1のバリアフィルム5の第1の基材8と第2のバリアフィルム5の第2の基材8との間にバリア層9を挟み込んでおり、また、それぞれのバリア層9が、より蛍光体層1に近い場所に配置しているため、例えバリア層9に微小なピンホール等の欠陥が生じている場合であっても、より効果的にバリア性能を発揮することができる。
 2枚の基材8の厚さは、同一であっても異なっていてもよい。波長変換シート100の厚さをより薄くする観点から、蛍光体層1に近い側に配置される第2のバリアフィルム5の第2の基材8の厚さを、蛍光体層1から遠い側に配置される第1のバリアフィルム5の第1の基材8よりも薄くしてもよい。水分や気体は、波長変換シート100の表面から透過するため、第1の基材8の厚さを相対的に厚くして表面からの水分や酸素の透過を防ぎつつ、第2の基材8の厚さを相対的に薄くして波長変換シート100全体の厚さを薄くすることができる。水分や酸素の透過は、バリアフィルム5の表面からだけでなく、端面からも生じるため、第2の基材8の厚みと接着層6の厚みが薄い方が端面からの水分や酸素の侵入を抑制することができる。このため、接着層6に隣接する第2の基材8と、接着層6とを合わせた厚みを40μm以下とすることが望ましい。
 接着層6は、図1に示すように、2枚のバリアフィルム5を貼り合わせて積層するために、2枚のバリアフィルム5の間に設けられている。接着層6としては、特に限定されるものではないが、アクリル系材料、ウレタン系材料、ポリエステル系材料などの接着剤や粘着剤を用いることができる。より具体的には、アクリル系粘着剤、アクリル系接着剤、ウレタン系接着剤、エステル系接着剤のいずれかを用いることができる。
 また、接着層6の厚さとしては、特に限定されるものではないが、波長変換シート用保護フィルム2及び波長変換シート100の総厚を薄くするために、10μm以下とすることが望ましい。一方、より良好な接着性を得る観点から、接着層6の厚さは3μm以上であることが望ましい。
 コーティング層7は、1以上の光学的機能や帯電防止機能を発揮させるために、2つの波長変換シート用保護フィルム2,2のそれぞれの表面、すなわち、波長変換シート100の両表面に設けられている。ここで、光学的機能としては、特に限定されるものではないが、干渉縞(モアレ)防止機能、反射防止機能、拡散機能等が挙げられる。これらの中でも、コーティング層7は、光学的機能として少なくとも干渉縞防止機能を有することが好ましい。本実施形態では、コーティング層7が少なくとも干渉縞防止機能を有するものである場合について説明する。
 コーティング層7は、バインダー樹脂と、微粒子とを含んで構成されていてもよい。そして、コーティング層7の表面から微粒子の一部が露出するように微粒子がバインダー樹脂に埋め込まれることにより、コーティング層7の表面には微細な凹凸が生じていてもよい。このようにコーティング層7を波長変換シート用保護フィルム2,2のそれぞれの表面、すなわち、波長変換シート100の両表面に設けることにより、ニュートンリング等の干渉縞の発生をより十分に防止することができる。
 バインダー樹脂としては、特に限定されるものではないが、光学的透明性に優れた樹脂を用いることができる。より具体的には、例えば、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂などの熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などを用いることができる。これらの中でも耐光性や光学特性に優れるアクリル系樹脂を使用することが望ましい。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。
 微粒子としては、特に限定されるものではないが、例えば、シリカ、クレー、タルク、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、酸化チタン、アルミナなどの無機微粒子の他、スチレン樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂などの有機微粒子を用いることができる。これらは、1種だけでなく、複数種を組み合わせて使用することもできる。
 微粒子の平均粒径は、0.1~30μmであることが好ましく、0.5~10μmであることがより好ましい。微粒子の平均粒径が0.1μm以上であると、優れた干渉縞防止機能が得られる傾向があり、30μm以下であると、透明性がより向上する傾向がある。
 コーティング層7における微粒子の含有量は、コーティング層7全量を基準として0.5~30質量%であることが好ましく、3~10質量%であることがより好ましい。微粒子の含有量が0.5質量%以上であると、光拡散機能と干渉縞の発生を防止する効果がより向上する傾向があり、30質量%以下であると、輝度を低減させることがない。
 以上のような構成を有する波長変換シート用保護フィルム2は、第1のバリアフィルム5の第1の基材8及び第2のバリアフィルム5の第2の基材8との間に、一方だけのバリア層9を挟み込むように、バリアフィルム5を2層積層したラミネートフィルムであり、スプラッシュ等によるバリア層9の欠陥による影響を抑えることができるため、バリア性に優れる。また、バリア層9を熱安定性に優れたPETフィルム等の基材8によって挟み込むことで、より優れたバリア性を発揮できる。さらに、波長変換シート用保護フィルム2の表面にコーティング層7が設けられているため、干渉縞の発生を抑制するとともに光源からの光のばらつきを抑制することができる。そして、この波長変換シート用保護フィルム2を波長変換シート100の蛍光体を保護するための保護フィルムとして用いることにより、量子ドット等の蛍光体を用いた波長変換シート100の性能を最大限に発揮することが可能になる。また、バリア層9を蛍光体側に向けて配置することにより、端面からの水分やガスの侵入を防ぎ、蛍光体層1の劣化をより防止することができる。さらに蛍光体層1と対向する側とは反対側の面上に、光学的機能を有するコーティング層7を有することでニュートンリング等の干渉縞の発生を防止することができ、結果として高効率かつ高精細、長寿命のディスプレイを得ることが可能となる。また、得られたディスプレイは、より自然に近い鮮やかな色彩で、かつ色調の優れた画像を表示することが可能となる。
 次に、本実施形態の波長変換シート100の製造方法について説明する。本実施形態の波長変換シート100の製造方法では、例えば、以下の手順によって、蛍光体層1を一対の波長変換シート用保護フィルム2,2の間に積層することができる。
(波長変換シート用保護フィルム2の製造工程)
 波長変換シート用保護フィルム2,2の製造工程では、先ず、第1の基材8の片方の面8bに、コーティング層7を形成する。具体的には、第1の基材8片方の面8b上に、バインダー樹脂と微粒子と必要に応じて溶剤とを混合したコーティング液を塗布し、乾燥することで、コーティング層7を形成する。次に、第1の基材8の、コーティング層7が設けられた面とは反対側の面8a上に、無機薄膜層10を例えば蒸着法等によって積層する。次いで、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種の成分等を含む水溶液あるいは水/アルコール混合溶液を主剤とするコーティング剤を無機薄膜層10の表面上に塗布し、乾燥することで、ガスバリア性被覆層11を形成する。これにより、第1の基材8の一方の面上にコーティング層7が、他方の面に無機薄膜層10及びガスバリア性被覆層11からなるバリア層9がそれぞれ設けられた、コーティング層7付きの第1のバリアフィルム5が得られる。
 また、第2の基材8の片方の面8a上に、コーティング層7を形成しない以外は上記と同様の操作をすることでバリア層9が設けられた第2のバリアフィルム5が得られる。
 次に、コーティング層7を形成した第1のバリアフィルム5と、コーティング層7を形成していない第2のバリアフィルム5とを接着層6を用いて貼り合わせて、積層する。具体的には、コーティング層7を設けた第1のバリアフィルム5のバリア層9と、コーティング層7を設けていない第2のバリアフィルム5のバリア層9を設けていない面を対向させて、接着層6を用いて積層する。接着層6として、アクリル系粘着剤、アクリル系接着剤、ウレタン系接着剤、エステル系接着剤のいずれかを用いることができる。これにより、2枚のバリアフィルム5を、どちらか一方だけのバリア層9を挟み込むように積層された波長変換シート用保護フィルム2が得られる。
 なお、本実施形態では、初めにコーティング層7を形成する例を説明したが、コーティング層7を形成するタイミングは特に限定されず、例えば、コーティング層7を形成する前の第1のバリアフィルム5と第2のバリアフィルム5とを貼り合わせた後に、第1のバリアフィルム5の表面にコーティング層7を形成してもよい。
(蛍光体層1の製造工程)
 蛍光体層1の製造工程では、先ず、蛍光体3と封止樹脂4と必要に応じて溶剤とを混合して混合液を調製する。次いで、調製した混合液を、波長変換シート用保護フィルム2のコーティング層7が設けられていない側の表面に塗布する。次に、別に作製した他方の波長変換シート用保護フィルム2を積層する。この際、蛍光体層1の表面1a,1bと、2枚の波長変換シート用保護フィルム2のコーティング層7が設けられていない側の表面とがそれぞれ対向するように配置する。次いで、封止樹脂4が感光性樹脂である場合、紫外線の照射によって感光性樹脂を硬化(UV硬化)させることで、本実施形態の波長変換シート100を得ることができる。なお、感光性樹脂は、UV硬化の後に更に熱硬化させてもよい。また、封止樹脂4としては、感光性樹脂以外にも、熱硬化性樹脂や化学硬化性樹脂等を用いてもよい。
 ここで、UV硬化は、例えば、100~1000mJ/cmで行うことができる。また、熱硬化は、例えば、60~120℃で0.1~3分で行うことができる。
 なお、本実施形態では、蛍光体層1を、一方の波長変換シート用保護フィルム2のコーティング層7が設けられていない面上に形成した後、蛍光体層1の表面上に他方の波長変換シート用保護フィルム2を積層する例を説明したが、これに限定されるものではない。
<第2実施形態に係る波長変換シート>
 次に、本発明の第2実施形態について説明する。図2は、本発明の第2実施形態に係る波長変換シートの模式断面図である。第2実施形態の波長変換シート200は、第1実施形態の波長変換シート100とは、波長変換シート用保護フィルム20の構成のみが異なっている。したがって、第2実施形態の波長変換シート200については、第1実施形態と同一の構成部分については同じ符号を付すると共に説明を省略する。
 図2に示すように、本実施形態の波長変換シート200は、蛍光体を含む蛍光体層(波長変換層)1と、蛍光体層1の一方の面2a側および他方の面2b側にそれぞれ設けられた波長変換シート用保護フィルム20,20とを備えて概略構成されている。これによって、波長変換シート用保護フィルム20,20の間に蛍光体層1が包み込まれた(封止された)構造となっている。
(波長変換シート用保護フィルム)
 本実施形態の波長変換シート用保護フィルム20は、基材8とバリア層9とを有するバリアフィルム5を2枚と、接着層6と、コーティング層7とを有している。そして、2枚のバリアフィルム5は、蛍光体層1から遠い方を第1のバリアフィルム5、蛍光体層1に近い方を第2のバリアフィルム5とした場合、図2に示すように、第1のバリアフィルム5の第1の基材8の一方の面8a上に設けられたバリア層9と、第2のバリアフィルム5の第2の基材8の一方の面8a上に設けられたバリア層9とが、接着層6を介して対向するように積層されている。換言すると、波長変換シート用保護フィルム20は、第1の基材8と第2の基材8との間に、2つのバリアフィルム5のそれぞれのバリア層9を挟み込むように、バリアフィルム5同士が積層された構造を有している。この波長変換シート用保護フィルム20の構成によれば、バリア層9と保護する蛍光体層1の間に基材8が配置されているため、蛍光体層1上に凹凸や異物が存在する場合でも、基材8によって衝撃が緩和され、バリア層9が損傷することを抑制することができる。
 そして、本実施形態の波長変換シート200を構成する際には、図2に示すように、それぞれの波長変換シート用保護フィルム20,20は、第2のバリアフィルム5の第2の基材8側の面を蛍光体層1側に向けて積層する。より具体的には、波長変換シート200において、波長変換シート用保護フィルム20,20は、コーティング層7をもたない第2のバリアフィルム5の、第2の基材8のバリア層9が設けられた面と反対側の面8b同士が、蛍光体層1で挟み込むように積層されている。すなわち、本実施形態においても、コーティング層7は、波長変換シート用保護フィルム20,20のそれぞれの表面に設けられているとともに、波長変換シート200の両表面に設けられている。
 波長変換シート用保護フィルム20の2枚の基材8の厚さは、同一であっても異なっていてもよい。波長変換シート200の厚さをより薄くする観点から、蛍光体層1に近い側に配置される第2のバリアフィルム5の第2の基材8の厚さを、蛍光体層1から遠い側に配置される第1のバリアフィルム5の第1の基材8よりも薄くしてもよい。水分や気体は、波長変換シート200の表面から透過するため、第1の基材8の厚さを相対的に厚くして表面からの水分や酸素の透過を防ぎつつ、第2の基材8の厚さを相対的に薄くして波長変換シート200全体の厚さを薄くすることができる。水分や酸素の透過は、バリアフィルム5の表面からだけでなく、端面からも生じるため、第2の基材8の厚みが薄い方が端面からの水分や酸素の侵入を抑制することができる。このため、蛍光体層1に隣接する第2の基材8の厚みを40μm以下とすることが望ましい。
 以上説明した第2実施形態の波長変換シート200によれば、上述した第1実施形態の波長変換シート100と同様の効果を得ることができる。
<バックライトユニット>
 上述した波長変換シート100又は200を用いて、液晶ディスプレイ用のバックライトユニットを提供することができる。本実施形態に係るバックライトユニットは、LED(発光ダイオード)光源と、導光板と、波長変換シート100又は200とを備える。LED光源は、導光板の側面に設置され、導光板上(光の進行方向)に波長変換シート100又は200が配置される。
 導光板は、LED光源から照射された光を効率的に導くものであり、公知の材料が使用される。導光板としては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。導光板は、例えば、シルク印刷方式、射出成型や押出成型などの成型方式、インクジェット方式などにより形成することができる。導光板の厚さは、例えば、100~1000μmである。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述の第1及び第2実施形態の波長変換シート100,200の構成及び波長変換シート用保護フィルム2,20の構成は一例であり、これに限定されるものではない。
 また、本発明の波長変換シートは、上述の第1及び第2実施形態のように、蛍光体層1が、同一の波長変換シート用保護フィルム2,2(あるいは20,20)によって挟まれていてもよく、異なる構成の波長変換シート用保護フィルムによって挟まれていてもよい。
 また、本発明の波長変換シートは、蛍光体層1を被覆する波長変換シート用保護フィルムのうち、いずれか一方の波長変換シート用保護フィルムがコーティング層7を有する構成であってもよいし、両方の波長変換シート用保護フィルムがコーティング層7を有する構成であってもよい。
 また、本発明の波長変換シートにおいて、波長変換シート用保護フィルムの蛍光体層1に接する側の面には、波長変換シート用保護フィルムと蛍光体層1との接着性を向上するために、改質処理が施されていたり、ウレタン樹脂等からなる易接着層が設けられていてもよい。
 また、図1及び図2に示した波長変換シート100,200では、バリア層9が無機薄膜層10とガスバリア性被覆層11とを1層ずつ有する場合を示したが、バリア層9は、無機薄膜層10及びガスバリア性被覆層11の少なくとも一方を2層以上有していてもよい。この場合、無機薄膜層10とガスバリア性被覆層11とは交互に積層されていることが好ましい。
 さらに、図1及び図2に示した波長変換シート100,200において、蛍光体層1の両端面(波長変換シート用保護フィルム2,20で被覆されていない図中の左右の端面)が封止樹脂で封止されていてもよく、蛍光体層1全体が封止樹脂で覆われていてもよい。
<第3実施形態に係る波長変換シート用保護フィルム>
 図1及び図2に示した波長変換シート100,200において、波長変換シート用保護フィルムとして、図3に示す構成を有する波長変換シート用保護フィルム300を用いてもよい。以下、波長変換シート用保護フィルム300について説明する。
 図3は、本発明の第3実施形態に係る波長変換シート用保護フィルムの模式断面図である。図3に示すように、波長変換シート用保護フィルム300は、第1バリアフィルム50、第2バリアフィルム60、接着層30、及びコーティング層31を備える。接着層30は、第1バリアフィルム50と第2バリアフィルム60との間に位置し、第1バリアフィルム50と第2バリアフィルム60とを貼り合わせる。コーティング層31は、第2バリアフィルム60において、第2バリアフィルム60が接着層30と接する面とは反対側の面上に設けられる。
 コーティング層31は、1以上の光学的機能を有する層であり、上述した波長変換シート100,200におけるコーティング層7と同様の構成とすることができる。コーティング層31は、光学的機能として光の拡散機能を有していることが好ましい。光の拡散機能を有するコーティング層31(拡散層31)の好ましい態様について、以下に詳述する。
 コーティング層31は、例えば、その表面に凹凸形状が設けられ、光の拡散性が付与されている。また、干渉縞(モアレ)防止機能および反射防止機能なども付与されている。コーティング層31では、例えば、粒子などを分散させた有機層を被膜する方法、及び被膜後の有機層にエンボス加工を更に施す方法などによって、凹凸形状が形成される。粒子などを分散させた有機層を被膜する方法では、例えば、微粒子が、有機層の表面から微粒の一部が露出するように埋め込まれる。それにより、コーティング層31の表面には微細な凹凸が生じて、コーティング層31においてニュートンリングの発生が防止される。
 有機層は、例えば、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、及びウレタン系樹脂等の高分子樹脂を含む層であることができる。
 また、有機層は、例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化型樹脂等の高分子樹脂を含む層であることができる。
 熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂及びその共重合体、メタアクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、フッ素樹脂、ポリカーボネート樹脂等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。
 紫外線硬化型樹脂としては、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、紫外線硬化型樹脂を、上記の光重合性プレポリマーを主成分とし、希釈剤として単官能や多官能のモノマーを使用して構成することもできる。
 有機層の厚さ(膜厚)は、0.1~20μmの範囲内とすることが好ましく、0.3~10μmの範囲内にすることが特に好ましい。ここで、有機層の膜厚が0.1μm未満であると、膜厚が薄すぎるために均一な膜が得られない場合や、光学的機能を十分に果たすことができない場合が生じるために好ましくない。一方、膜厚が20μmを越える場合は、コーティング層31の表面へ微粒子が表出せず、凹凸付与効果が得られないおそれがあり、また、透明性の低下や少しでも薄膜化というディスプレイのトレンドとの不整合といった理由から好ましくない。
 有機層に分散される粒子は、例えば、シリカ、クレー、タルク、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、珪酸アルミニウム、酸化チタン、合成ゼオライト、アルミナ、スメクタイト、及びジルコニアなどの無機微粒子であることができる。また、有機層に分散される粒子は、例えば、スチレン樹脂、ウレタン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、アクリル樹脂、四フッ化エチレン樹脂、ポリエチレン樹脂、及びエポキシ樹脂などからなる有機微粒子などであることができる。これらのうち、いずれか一種類のみを用いてもよいし、二種以上を用いてもよい。
 微粒子の平均一次粒径は、0.5~30μmであることが好ましい。本実施形態では、レーザー回折法により、平均一次粒径を測定することができる。微粒子の平均粒径が0.5μm未満であると、コーティング層31の表面への凹凸の付与効果が得られないために好ましくない。一方、平均粒径が30μmを超えると、有機層厚よりもかなり大きな粒子を使用することになり、光線透過率の低下を招くという不具合があるために好ましくない。これに対して、平均粒径が上記範囲内であると、高い光線透過率を維持したまま、表面に凹凸形状をつけることができる。
 接着層30は、上述した波長変換シート100,200における接着層6と同様の構成とすることができる。
 第1バリアフィルム50は、基材51、密着層52、無機薄膜層である第1シリカ蒸着層53、第1ガスバリア性被覆層(第1複合被膜層)54、無機薄膜層である第2シリカ蒸着層55、及び第2ガスバリア性被覆層(第2複合被膜層)56を備える。基材51上に、密着層52、第1シリカ蒸着層53、第1ガスバリア性被覆層54、第2シリカ蒸着層55、及び第2ガスバリア性被覆層56が、この順に設けられる。第1バリアフィルム50においては、第1シリカ蒸着層53、第1ガスバリア性被覆層54、第2シリカ蒸着層55、及び第2ガスバリア性被覆層56によりバリア層が形成される。第2ガスバリア性被覆層56は、接着層30に接着する。
 第2バリアフィルム60は、基材61、密着層62、第1シリカ蒸着層63、第1ガスバリア性被覆層64、第2シリカ蒸着層65、及び第2ガスバリア性被覆層66を備える。基材61上に、密着層62、第1シリカ蒸着層63、第1ガスバリア性被覆層64、第2シリカ蒸着層65、及び第2ガスバリア性被覆層66が、この順に設けられる。第2バリアフィルム60においては、第1シリカ蒸着層63、第1ガスバリア性被覆層64、第2シリカ蒸着層65、及び第2ガスバリア性被覆層66によりバリア層が形成される。第2ガスバリア性被覆層66は、接着層30に接着する。
 基材51,61は、上述した波長変換シート100,200における基材8と同様の構成とすることができる。また、基材51,61としては、ポリエステルフィルムを用いることが好ましい。ポリエステルフィルムとしては、特に限定されないが、例えばポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等からなるポリエステルフィルム、ポリエチレン、ポリプロピレン、環状オレフィンコポリマー(COC)、及びシクロオレフィンポリマー(COP)等からなるポリオレフィンフィルム、ポリスチレンフィルム、6,6-ナイロン等からなるポリアミドフィルム、ポリカーボネートフィルム、ポリアクリロニトリルフィルム、及びポリイミドフィルム等のエンジニアリングプラスティックフィルム等が挙げられる。基材51,61は、特に、二軸方向に任意に延伸された二軸延伸ポリエステルフィルムであることが好ましい。二軸延伸ポリエステルフィルムは、寸法安定性、耐熱性、及び透明性に優れる。
 基材51,61の厚みは、特に限定されないが、3μm~200μmの範囲であることが好ましく、6μm~50μmの範囲であることがより好ましい。この基材51,61の厚みは、密着層52,62、第1シリカ蒸着層53,63、第1ガスバリア性被覆層54,64、第2シリカ蒸着層55,65、及び第2ガスバリア性被覆層56,66が積層されるときの加工性を考慮した値である。なお、各層の積層にあたっては、各層の密着性を向上させるために、例えば、プラズマ処理、コロナ放電処理、オゾン処理、及びグロー放電処理その他の前処理が任意に施される。
 基材51,61として、酸価(樹脂1gを中和するのに必要な水酸化カリウムのmg数)が25mgKOH/g以下のポリエチレンテレフタレート系フィルムを用いることが特に好ましい。ここで、基材51,61の酸価が25mgKOH/gを超えると、特に高温高湿環境下での基材安定性が損なわれ、バリア性の低下がおこるために好ましくない。一方、酸価が25mgKOH/g以下であると、基材安定性が増し、高温高湿環境下でもバリア性が低下せず安定しているために好ましい。なお、酸価の測定方法としては、カットした基材51,61を秤量し、例えば、クレゾールに加熱溶解後冷却、その後水酸化カリウムエタノール溶液などで滴定して酸価を定量することができる。指示薬としては、例えば、フェノールフタレイン溶液を用いることができる(JIS K0070参照)。
 基材51,61は、例えば60℃/90%RH及び85℃/85%RHなどの過酷な環境下でのディスプレイ機能の加速劣化試験において基材51,61のバリア性が安定して発現されるために、耐加水分解性能に優れることが好ましい。耐加水分解性能に優れるために、例えば、基材51,61としてのPETフィルムでは、重量平均分子量として6万以上であることが好ましい。PETフィルムは、その重量平均分子量が6万未満では、通常、加水分解を起こし易くなるので、PETフィルムのバリア性が劣化しやすい。PETフィルムでは、耐加水分解性能に優れるために、末端カルボキシ基の濃度が25当量/10g以下にまで減少することが好ましい。末端カルボキシ基の濃度が25当量/10g以下にまで減少すると反応点が減るので、PETフィルムの耐加水分解性能が向上する。ポリエステル中の末端カルボキシル基の濃度は、文献(ANALYTICAL CHEMISTRY 第26巻、1614頁)に記載された方法によって測定されることができる。重量平均分子量は、常温GPC分析といった方法によって測定される。
 PETフィルムは、光透過性と平滑性に優れたフィルムであることが好ましい。このため、PETフィルムの光透過性が向上するには、PETフィルムに用いられる滑剤を低減することが望ましい。また、PETフィルムに対して第1シリカ蒸着層が積層される際に、第1シリカ蒸着層に割れ等が発生せず、また、第1シリカ蒸着層が均一な薄膜になるようにするために、PETフィルムの中心線表面粗さ(Ra)は30nm以下であることが望ましい。中心線表面粗さ(Ra)が30nm以下であれば、PETフィルムは優れた平滑性を有していると言える。PETフィルムの表面粗さは、JIS B0601に準じた方法で測定されることができる。
 基材51,61の上に、密着層52,62が設けられる。密着層52,62は、第1シリカ蒸着層との密着を得るために適宜設けられる。密着層52,62は、基材51,61の延伸時に塗布されるインライン方式、及び基材51,61が製膜された後のオフラインで塗布されるオフライン方式のいずれか一の方法、或いは、インライン方式及びオフライン方式の双方によって形成されることができる。密着層52,62としては、特に限定されないが、インライン方式による密着層52,62を形成するための密着層用組成物は、例えば、アクリル材料やウレタン材料であることができる。オフラインによる密着層52,62を形成するための密着層用組成物は、例えば、アクリルポリオールなどの水酸基をもつ化合物とイソシアネート基をもつイソシアネート化合物との2液反応複合物であることができる。基材51,61では、その片面のみならず両面に、密着層52,62が設けられてもよい。
 第1シリカ蒸着層53,63及び第2シリカ蒸着層55,65(以下、単に「シリカ蒸着層」ともいう)は、バリア性を発現する層であり、上述した波長変換シート100,200における無機薄膜層10に相当する。蒸着層としてバリア性を発現する無機化合物としては、例えば酸化アルミニウム、酸化ケイ素、酸化錫、酸化マグネシウム、酸化亜鉛、或いはそれらの混合物などがあり、本実施形態では、酸化ケイ素を含むシリカ蒸着層が選択される。シリカ蒸着層は、60℃/90%RH及び85℃/85%RHなどの過酷な環境下でのディスプレイ機能の加速劣化試験での耐湿性を有している。シリカ蒸着層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)などといった方法により作製される。
 シリカ蒸着層を構成する酸素及びケイ素のO/Si比は、原子比で1.7以上2.0以下であることが好ましい。O/Si比が原子比で1.7未満であると、シリカ蒸着層内のSi-Si結合の割合が多くなり有色の金属を多く含むので、シリカ蒸着層の透過率が低下する場合がある。また、O/Si比が原子比で2.0を超えると、シリカ蒸着層のバリア性が低下する場合がある。ディスプレイ用途に好適なシリカ蒸着層のO/Si比としては、原子比で1.85~2.0であることがより好ましい。
 シリカ蒸着層のO/Si比は、例えば、X線光電子分光法(XPS)により測定される。XPS測定装置としては、具体的には、例えばX線光電子分光分析装置(日本電子株式会社製JPS-90MXV)であることができる。X線源には、非単色化MgKα(1253.6eV)が用いられ、X線出力値は、例えば100W(10kV-10mA)であることができる。O/Si比を求めるための定量分析には、例えば、Oの1s軌道に対して2.28の相対感度因子、Siの2p軌道に対して0.9の相対感度因子が用いられる。
 シリカ蒸着層と接する第1ガスバリア性被覆層54,64及び第2ガスバリア性被覆層56,66などの波長変換シート用保護フィルム300を構成する有機層の屈折率は、好ましくは1.5~1.7である。このため、波長変換シート用保護フィルム300内での光学干渉を防ぐために、シリカ蒸着層の屈折率は、1.5以上1.7以下であることが好ましい。シリカ蒸着層の屈折率としては、バリア性に加えて、ディスプレイ用途のために、透明性の点から、より好ましくは1.6~1.65である。なお、シリカ蒸着層の屈折率の測定に際しては、物理気相成長(PVD)法によってPETフィルム上に屈折率の異なるいくつかのシリカ蒸着膜が形成される。シリカ蒸着層の屈折率は、シリカ蒸着層の厚みと光干渉によって生じた透過率曲線とから算出される。
 シリカ蒸着層の厚みは、5nm~300nmの範囲内であることが好ましい。シリカ蒸着層の厚みが5nm未満であると、均一な膜が得られ難く、また、ガスバリア材としての機能を十分に果たし難い。シリカ蒸着層の厚みが300nmを超えると、シリカ蒸着層にフレキシビリティを保持させることが難しく、また、蒸着膜の成膜後に、折り曲げ及び引っ張りなどの外的要因により、蒸着膜に亀裂が生じ易い。シリカ蒸着層の厚みは、インライン製膜による生産性を考慮すると、より好ましくは10~50nmの範囲内である。
 シリカ蒸着層を形成する方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、及びプラズマ気相成長法(CVD)などのいずれであってもよい。真空蒸着法に必要な加熱手段としては、電子線加熱方式、抵抗加熱方式、及び誘導加熱方式のいずれか一の方式を用いることができる。シリカ蒸着層の光透過性を上げるために、例えば酸素等の各種ガスなどが吹き込まれる反応蒸着法が用いられてもよい。
 第1ガスバリア性被覆層54,64及び第2ガスバリア性被覆層56,66(以下、単に「ガスバリア性被覆層」ともいう)は、ガスバリア性を持った被膜層であり、上述した波長変換シート100,200におけるガスバリア性被覆層11と同様の構成とすることができる。ガスバリア性被覆層は、コーティング剤を用いて形成することができる。コーティング剤は、例えば、水溶性高分子、金属アルコキシド、金属アルコキシドの加水分解物、及び、シランカップリング剤からなる群より選択される少なくとも一種を含む水溶液、或いは水/アルコール混合溶液を主剤とする。
 コーティング剤は、具体的には、例えば、水溶性高分子の水溶液、或いは水/アルコール混合溶液に、金属アルコキシド、金属アルコキシドの加水分解物、及び、シランカップリング剤が直接混合されて作られる。或いは、コーティング剤は、例えば、水溶性高分子の水溶液、或いは水/アルコール混合溶液に、予め加水分解など処理が行われた金属アルコキシドとシランカップリング剤とが混合されて作られる。コーティング剤の溶液は、密着層52,62の上にコーティング後、加熱乾燥されることでガスバリア性被覆層を形成する。また、コーティング剤の溶液は、シリカ蒸着層上に、それぞれコーティング後、加熱乾燥されることでガスバリア性被覆層を形成する。
 コーティング剤に用いられる水溶性高分子としては、例えば、水酸基含有高分子化合物が挙げられる。水酸基含有高分子化合物は、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、及びアルギン酸ナトリウム等であることができる。コーティング剤としては、PVAが特に好ましい。PVAから作られたガスバリア性被覆層は、ガスバリア性に優れる。
 金属アルコキシドは、一般式、M(OR)(M:Si,Ti,Al,Zr等の金属、R:CH,C等のアルキル基、n:Mの価数に対応する数)で表される化合物である。金属アルコキシドとしては、具体的に、例えば、テトラエトキシシラン〔Si(OC〕、及びトリイソプロポキシアルミニウム〔Al(O-2’-C〕などがある。金属アルコキシドとしては、テトラエトキシシラン及びトリイソプロポキシアルミニウムが特に好ましい。テトラエトキシシラン及びトリイソプロポキシアルミニウムは、加水分解後、水系溶媒中において比較的安定である。
 シランカップリング剤は、一般式、R Si(OR4-m(R:有機官能基、R:CH,C等のアルキル基、m:1~3の整数)で表される化合物である。シランカップリング剤としては、具体的に、例えば、エチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、及びγ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤などであることができる。シランカップリング剤の溶液中には、ガスバリア性を損なわない範囲で、イソシアネート化合物、或いは、分散剤、安定化剤、粘度調整剤、及び着色剤などの公知の添加剤が必要に応じて加えられることも可能である。
 コーティング剤の塗布方法としては、例えば、ディッピング法、ロールコーティング法、スクリーン印刷法、スプレー法、及びグラビア印刷法などの従来公知の方法が用いられる。乾燥後のガスバリア性被覆層の厚みは、好ましくは0.01~50μmであり、より好ましくは0.1~10μmである。乾燥後のガスバリア性被覆層の厚みが0.01μm未満の場合は、均一な塗膜が得られないので、十分なガスバリア性を得られない場合がある。また、乾燥後のガスバリア性被覆層の厚みが50μmを超える場合は、ガスバリア性被覆層にクラックが生じ易くなる。
 なお、図3の波長変換シート用保護フィルム300としては、その反射率が、青色領域の波長450nm、緑色領域の波長540nm、赤色領域の波長620nmのそれぞれにおいて、10%以上20%以下であることが望ましい。反射率は、第1及び第2バリアフィルム50,60による光学干渉と相関がある。反射率が各波長において20%を超えると、バックライトユニットにおいて波長変換シート用保護フィルム300が導光板の上に拡散シートとして用いられた場合でも、光学干渉による色ムラが大きく現れて外観不良が生じる場合がある。反射率が各波長において10%未満では、第1及び第2バリアフィルム50,60中のシリカ蒸着層のO/Si比と屈折率とが上述の好ましい値の範囲から逸脱しやすく、第1及び第2バリアフィルム50,60のバリア性が十分に発現しない可能性がある。
 また、波長変換シート用保護フィルム300の透過率は、青色の450nm波長、緑色の540nm波長、赤色の620nm波長のそれぞれにおいて80%以上95%以下であることが望ましい。80%未満の透過率は、その透過率が低く蛍光体層(量子ドット層)の光変換効率を低下させる場合があるので好ましくない。
 上述した波長変換シート用保護フィルム300は、各層の構成が上記の構成となるようにすることと以外は、波長変換シート用保護フィルム2,20と同様の方法で製造することができる。
 図1及び図2に示した波長変換シート100,200において、波長変換シート用保護フィルム2,20に代えて、上述した波長変換シート用保護フィルム300を用いることで、2枚の波長変換シート用保護フィルム300,300の間に蛍光体層1が包み込まれた(封止された)構造を有する波長変換シートを得ることができる。
 また、図1及び図2に示した波長変換シート100,200の波長変換シート用保護フィルム2,20を構成する各層を、上述した波長変換シート用保護フィルム300において説明した各層の構成に変更してもよい。特に、波長変換シート用保護フィルム2,20において、無機薄膜層10をシリカ蒸着層とし、当該シリカ蒸着層に含まれる酸素とケイ素のO/Si比を原子比で1.7以上2.0以下とし、シリカ蒸着層の屈折率を1.5以上1.7以下とし、波長450nm、波長540nm、及び波長620nmの全ての波長において、波長変換シート用保護フィルム2,20の反射率を10%以上20%以下、且つ、透過率を80%以上95%以下としてもよい。これらの条件を満たすことにより、波長変換シート用保護フィルムは、バリア性により優れ、バックライトを構成した場合により長期間にわたって高い輝度を得ることができ、更に、ディスプレイを構成した場合に長期間にわたって、ディスプレイに色のムラなどによる色調変化、及び黒点などの色再現不良の発生がない優れた外観を得ることができる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(波長変換シート用保護フィルムの作製)
 基材としての厚み25μmのポリエチレンテレフタレートフィルムの片面に、無機薄膜層(シリカ蒸着層)として酸化珪素を真空蒸着法により250Åの厚みに設け、さらに、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により無機薄膜層上に塗工し、0.3μmの厚みのガスバリア性被覆層を形成した。これにより、基材の一方の面上に無機薄膜層及びガスバリア性被覆層からなるバリア層が設けられたバリアフィルムを得た。このバリアフィルムを2枚作製した。
 続いて、一方のバリアフィルムのガスバリア性被覆層とは反対の面側(基材側)に、アクリル樹脂と、シリカ微粒子(平均粒径3μm)とを含む塗液をウエットコーティング法により塗工し、5μmの厚みのコーティング層を形成した。これにより、コーティング層付きバリアフィルムを得た。
 次に、コーティング層付きバリアフィルムのガスバリア性被覆層側と、コーティング層を持たないバリアフィルムのガスバリア性被覆層とは反対の面側(基材側)とを、アクリル樹脂接着剤を用いて貼り合わせることにより、実施例1の波長変換シート用保護フィルムを得た。この波長変換シート用保護フィルムを2枚作製した。
(波長変換シートの作製)
 量子ドットとしてのCdSe/ZnS 530(商品名、SIGMA-ALDRICH社製)をエポキシ系感光性樹脂と混合後、混合液を上述した波長変換シート用保護フィルムのガスバリア性被覆層側に塗布し、そこに同じ構成の波長変換シート用保護フィルムを積層し、UV硬化ラミネートにより、図1に示した構造を有する実施例1の波長変換シートを得た。
(バックライトユニットの作製)
 得られた波長変換シートに、LED光源と導光板とを組み合わせて、実施例1のバックライトユニットを作製した。
[実施例2]
(波長変換シート用保護フィルムの作製)
 実施例1において、コーティング層付きバリアフィルムのガスバリア性被覆層側と、コーティング層を持たないバリアフィルムのガスバリア性被覆層側とを、アクリル樹脂接着剤を用いて貼り合わせたこと以外は、同様の操作にて実施例2の波長変換シート用保護フィルムを得た。この波長変換シート用保護フィルムを2枚作製した。
(波長変換シートの作製)
 CdSe/ZnS 530(商品名、SIGMA-ALDRICH社製)をエポキシ系感光性樹脂と混合後、混合液を上述した波長変換シート用保護フィルムの基材側(コーティング層とは反対の面側)に塗布し、そこに同じ構成の波長変換シート用保護フィルムを積層し、UV硬化ラミネートにより、図2に示した構造を有する実施例2の波長変換シートを得た。
(バックライトユニットの作製)
 得られた波長変換シートに、LED光源と導光板とを組み合わせて、実施例2のバックライトユニットを作製した。
[実施例3]
 実施例1において、コーティング層を設けない以外は、同様の操作にて実施例3の波長変換シート用保護フィルムを得た。更に、この波長変換シート用保護フィルムを用いたこと以外は実施例1と同様の操作にて、実施例3の波長変換シート及びバックライトユニットを得た。
[比較例1]
 実施例1において、コーティング層付きバリアフィルムの代わりに、厚み25μmのポリエチレンテレフタレートフィルムを用いたこと以外は、同様の操作にて比較例1の波長変換シート用保護フィルムを得た。更に、この波長変換シート用保護フィルムを用いたこと以外は実施例1と同様の操作にて、比較例1の波長変換シート及びバックライトユニットを得た。
[比較例2]
 実施例1において、コーティング層を持たないバリアフィルムの代わりに、厚み25μmのポリエチレンテレフタレートフィルムを用いたこと以外は、同様の操作にて比較例2の波長変換シート用保護フィルムを得た。更に、この波長変換シート用保護フィルムを用いたこと以外は実施例1と同様の操作にて、比較例2の波長変換シート及びバックライトユニットを得た。
[比較例3]
 実施例2において、コーティング層付きバリアフィルムの代わりに、厚み12μmのポリエチレンテレフタレートフィルムを用いたこと以外は、同様の操作にて比較例3の波長変換シート用保護フィルムを得た。更に、この波長変換シート用保護フィルムを用いたこと以外は実施例2と同様の操作にて、比較例3の波長変換シート及びバックライトユニットを得た。
[比較例4]
 基材としての厚み25μmのポリエチレンテレフタレートフィルムの片面に、第1の無機薄膜層(シリカ蒸着層)として酸化珪素を真空蒸着法により250Åの厚みに設け、さらに、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により第1の無機薄膜層上に塗工し、0.3μmの厚みの第1のガスバリア性被覆層を形成した。次いで、第1のガスバリア性被覆層上に、第2の無機薄膜層(シリカ蒸着層)として酸化珪素を真空蒸着法により250Åの厚みに設け、さらに、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により第2の無機薄膜層上に塗工し、0.3μmの厚みの第2のガスバリア性被覆層を形成した。これにより、基材の一方の面上に、第1の無機薄膜層、第1のガスバリア性被覆層、第2の無機薄膜層及び第2のガスバリア性被覆層からなるバリア層が設けられたバリアフィルムを得た。
 続いて、バリアフィルムのガスバリア性被覆層側と、厚み25μmのポリエチレンテレフタレートフィルムとを、アクリル樹脂接着剤を用いて貼り合わせることにより、比較例4の波長変換シート用保護フィルムを得た。この波長変換シート用保護フィルムを2枚作製した。この波長変換シート用保護フィルムを用いたこと以外は実施例2と同様の操作にて、比較例4の波長変換シート及びバックライトユニットを得た。
<輝度測定>
 実施例1~3及び比較例1~4で作製したバックライトユニットについて、輝度計(コニカミノルタ社製、商品名:LS-100)を用いてLED発光時の輝度(初期輝度)を測定した。次に、信頼性試験として、バックライトユニットを60℃、90%RHの環境下で500時間保存した後、輝度を測定した。初期輝度と500時間保存後の輝度との差が小さいほど、波長変換シート用保護フィルムのバリア性が優れていることを意味する。得られた結果を表1に示す。
<外観評価>
 実施例1~3及び比較例1~4で作製したバックライトユニットについて、LED発光状態で外観を目視確認し、異物(スプラッシュ、キズ、シワ等)の有無、及び、干渉縞の発生の有無をそれぞれ評価した。異物及び干渉縞が確認されなかったものを「A」、異物及び干渉縞が確認されたものを「B」と判定した。この外観評価は、輝度測定と同様に、初期及び60℃、90%RHの環境下で500時間保存した後の両方で行った。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、実施例1~3の波長変換シートを用いたバックライトユニットでは、バリアフィルムを2枚積層したことにより、スプラッシュ等の異物の影響が抑えられ、且つ、干渉縞の発生が抑制されることが確認された。また、実施例1~3の波長変換シートを用いることで、信頼性試験を経てもほとんど劣化のないバックライトユニットを得ることができた。
 一方、比較例1~3の波長変換シートでは、1枚のバリアフィルムとポリエステルフィルムとを貼り合わせた構造であるため、特に信頼性試験後には、バリア性が劣るために輝度の低下がみられ、外観上でも全体的な輝度低下だけでなく、局所的な輝度低下がみられた。
 また、比較例4の波長変換シートでは、バリア性は良好であるものの、薄膜層である無機薄膜層(シリカ蒸着層)及びガスバリア性被覆層を2回積層した結果、干渉縞がはっきりと見えるようになった。
[実施例4]
(波長変換シート用保護フィルムの作製)
 重量平均分子量6万のPETを用いて形成された厚み16μmのPETフィルムの基材の片面に、密着層用組成物を塗工して、厚み0.1μmの密着層を積層した。次に、密着層の上に、無機薄膜層として第1シリカ蒸着層をその厚みが30nmとなるように物理蒸着法によって積層した。第1シリカ蒸着層の上に、ガスバリア性被覆層用組成物を用いたウエットコーティング法によって、厚み1μmの第1ガスバリア性被覆層(第1複合被膜層)を形成した。更に、第1ガスバリア性被覆層の上に、第2シリカ蒸着層をその厚みが30nmとなるように積層した。続いて、第2シリカ蒸着層の上に、ガスバリア性被覆層用組成物を用いたウエットコーティング法によって、厚み1μmの第2ガスバリア性被覆層(第2複合被膜層)を形成し、第1バリアフィルムを作製した。第1シリカ蒸着層及び第2シリカ蒸着層におけるO/Si比は原子比で1.8とし、屈折率は1.61とした。また、第1バリアフィルムと同様の方法で、第2バリアフィルムを作製した。
 密着層用組成物は、アクリルポリオールとトリレンジイソシアネートとの酢酸エチル溶液とした。アクリルポリオールのOH基とトリレンジイソシアネートのNCO基とは互いに等量とした。酢酸エチル溶液におけるアクリルポリオールとトリレンジイソシアネートとを合わせた固形分の濃度は5質量%とした。
 ガスバリア性被覆層用組成物の作製においては、テトラエトキシシラン10.4gを0.1N(規定濃度)の塩酸89.6gに加え、この塩酸溶液を30分間撹拌して、テトラエトキシシランを加水分解した。加水分解後の固形分の濃度は、SiO換算で3質量%とした。テトラエトキシシランの加水分解溶液と、ポリビニルアルコールの3質量%水溶液とを混合してガスバリア性被覆層用組成物とした。テトラエトキシシランの加水分解溶液と、ポリビニルアルコールとの配合比は、質量%換算で50対50とした。
 第1及び第2シリカ蒸着層の形成においては、その形成前に、蒸着する材料の種類などの蒸着条件を変更して好適な蒸着条件を決めた。シリカ蒸着層のO/Si比は、X線光電子分光分析装置(日本電子株式会社製、JPS-90MXV)を用いて調べた。X線源は非単色化MgKα(1253.6eV)を使用し、X線出力100W(10kV-10mA)で測定した。シリカ蒸着層のO/Si比を求めるための定量分析は、それぞれO1sで2.28、Si2pで0.9の相対感度因子を用いて行った。シリカ蒸着層の屈折率は、シリカ蒸着層の厚みと光干渉によって生じた透過率曲線のピークの波長を利用してシミュレーションによって算出した。
 次に、接着層を介して、第1バリアフィルムと第2バリアフィルムとを貼り合せた。接着層は、2液硬化型のウレタン接着剤によって作製した。接着後の接着層の厚みは5μmであった。第2バリアフィルムのPETフィルムの上に、粒子径2μmのオレフィン系粒子がウレタンバインダー中に分散されたコーティング層を、その厚みが3μmになるように塗工した。ヘイズ値60%(JIS K7136)の第1波長変換シート用保護フィルムを得た。また、第1波長変換シート用保護フィルムと同様の方法で、第2波長変換シート用保護フィルムを作製した。
 (波長変換シートの作製)
 CdSe/ZnSのコア・シェル構造をもつ蛍光体を以下の方法で得た。初めに、オクタデセンに、オクチルアミン及び酢酸カドミウムを添加した溶液と、トリオクチルホスフィンにセレンを溶解させた溶液とを質量比1:1で混合し、加熱したマイクロ流路を通過させて、核微粒子としてのCdSe微粒子溶液を得た。続いて、CdSe微粒子溶液と、[(CHNCSS]Znをトリオクチルホスフィンに溶解させた溶液とを質量比で1:1となるように混合し、加熱されたマイクロ流路を通過させて、CdSe/ZnS構造の蛍光体を得た。得られた蛍光体を感光性樹脂(エポキシ樹脂)に混合し、量子ドット層用混合物を得た。続いて、第1波長変換シート保護フィルムの第1バリアフィルムの基材上(コーティング層とは反対側の面上)に量子ドット層用混合物を塗布し、その上に第2波長変換シート保護フィルムを、その第1バリアフィルムの基材側(コーティング層とは反対側)が第1波長変換シート保護フィルムと対向するように積層した。量子ドット層用混合物にUV照射を行い、量子ドット層用混合物に含まれる感光性樹脂を硬化させた。これにより、量子ドット層(蛍光体層)が第1及び第2波長変換シート保護フィルムによって挟まれた波長変換シートを作製した。
(バックライトユニットの作製)
 得られた波長変換シートに、LED光源と導光板とを組み合わせて、実施例4のバックライトユニットを作製した。
 [実施例5]
 重量平均分子量6万のPETを用いて形成された厚み16μmのPETフィルムの基材の片面に、密着層用組成物を塗工して、厚み0.1μmの密着層を積層した。次に、密着層の上に、無機薄膜層として第1シリカ蒸着層をその厚みが30nmとなるように物理蒸着法によって積層した。第1シリカ蒸着層の上に、ガスバリア性被覆層用組成物を用いたウエットコーティング法によって、厚み1μmの第1ガスバリア性被覆層(第1複合被膜層)を形成し、第1バリアフィルムを作製した。第1シリカ蒸着層におけるO/Si比は原子比で1.8とし、屈折率は1.61とした。また、第1バリアフィルムと同様の方法で、第2バリアフィルムを作製した。第1及び第2バリアフィルムにおける各層は、実施例4と同様の方法で形成した。実施例5の第1及び第2バリアフィルムはいずれも、シリカ蒸着層及びガスバリア性被覆層を1層ずつ有する構成、すなわち、実施例4の第1及び第2バリアフィルムから、第2シリカ蒸着層及び第2ガスバリア性被覆層を除いた構成を有する。
 上記方法で作製した第1及び第2バリアフィルムを用いた以外は実施例4と同様にして、ヘイズ値60%(JIS K7136)の第1及び第2波長変換シート用保護フィルムを得た。更に、この第1及び第2波長変換シート用保護フィルムを用いた以外は実施例4と同様にして、波長変換シート及びそれを用いたバックライトユニットを得た。
 [実施例6]
 SiO蒸着材料のO/Si比を変更し、物理蒸着の条件を調整することにより、シリカ蒸着層のO/Si比を原子比で1.7、屈折率を1.55として、第1及び第2シリカ蒸着層を作製した。シリカ蒸着層のO/Si比と屈折率との値以外は、実施例4と同様の方法によって、波長変換シート用保護フィルム、波長変換シート及びバックライトユニットを得た。
 <波長変換シート用保護フィルム及びバックライトユニットの評価>
 表2は、実施例4~6において作製した波長変換シート用保護フィルムの反射率及び透過率の評価結果を示す表である。表3は、実施例4~6において作製した波長変換シート用保護フィルムの水蒸気透過度、及び、バックライトユニットの輝度及び外観の評価結果を示す表である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 波長変換シート用保護フィルムの反射率及び透過率は、分光光度計(商品名:SHIMAZU UV-2450)を用い、波長450nm、540nm、及び620nmにおいて測定した。測定にあたっては、波長変換シート用保護フィルムのコーティング層とは反対側の面から測定光を照射した。波長変換シート用保護フィルムの水蒸気透過度(g/m・day)は、水蒸気透過度測定装置(Modern Control社製のPermatran3/33)を用い、40℃/90%RH雰囲気下において測定した。
 バックライトユニットの輝度の測定、及び外観の評価(外観評価1)は、60℃/90%RH雰囲気下での1,000時間保存実験の前後で実施された。表3において、初期とは、保存実験前を示し、保存後とは、保存実験後を示す。バックライトユニットの輝度は、輝度計(コニカミノルタ社製のLS-100)を用いて測定された。バックライトユニットの外観(外観評価1)は、バックライトユニットとしてのディスプレイ用途に耐えうる外観を有する場合に「A」と評価し、ディスプレイに色のムラなどによる色調変化が見られ黒点などの色再現不良がある場合に「B」と評価した。
 バックライトユニットの外観評価2は、以下の方法で行った。すなわち、バックライトユニットについて、LED発光状態で外観を目視確認し、異物(スプラッシュ、キズ、シワ等)の有無、及び、干渉縞の発生の有無をそれぞれ評価した。異物及び干渉縞が確認されなかったものを「A」、異物及び干渉縞が確認されたものを「B」と判定した。この外観評価は、初期及び60℃、90%RHの環境下で500時間保存した後の両方で行った。
 本発明の、2以上のバリアフィルム同士を積層したラミネートフィルムである波長変換シート用保護フィルム、この波長変換シート用保護フィルムによって蛍光体層を被覆した波長変換シート、及びこの波長変換シートを使用したバックライトユニットを用いることにより、優れた高精細ディスプレイを製造することが可能である。
 1…蛍光体層、2,20,300…波長変換シート用保護フィルム、3…蛍光体、4…封止樹脂、5…バリアフィルム、6…接着層、7…コーティング層、8…基材、9…バリア層、10…無機薄膜層、11…ガスバリア性被覆層、31…コーティング層、50…第1バリアフィルム、51…基材、52…密着層、53…第1シリカ蒸着層、54…第1ガスバリア性被覆層、55…第2シリカ蒸着層、56…第2ガスバリア性被覆層、60…第2バリアフィルム、61…基材、62…密着層、63…第1シリカ蒸着層、64…第1ガスバリア性被覆層、65…第2シリカ蒸着層、66…第2ガスバリア性被覆層、100,200…波長変換シート。

Claims (12)

  1.  波長変換シートにおける蛍光体を保護するための波長変換シート用保護フィルムであって、
     基材と、該基材の少なくとも一方の面上に設けられた1以上のバリア層と、を有するバリアフィルムが、2以上積層された構造を有する、波長変換シート用保護フィルム。
  2.  2以上の前記バリアフィルムは、接着層を用いて積層されており、
     隣接する2つの前記バリアフィルムの前記バリア層同士が、前記接着層を介して対向するように配置された構造を有する、請求項1に記載の波長変換シート用保護フィルム。
  3.  光学的機能を有するコーティング層を更に有し、前記コーティング層が波長変換シート用保護フィルムの少なくとも一方の表面に配置されている、請求項1又は2に記載の波長変換シート用保護フィルム。
  4.  前記光学的機能が干渉縞防止機能である、請求項3に記載の波長変換シート用保護フィルム。
  5.  前記コーティング層が、バインダー樹脂と、該バインダー樹脂中に分散された微粒子とを含む、請求項3又は4に記載の波長変換シート用保護フィルム。
  6.  前記バリア層が、前記基材の一方の面上に積層された無機薄膜層と、該無機薄膜層上に積層されたガスバリア性被覆層とを含む、請求項1~5のいずれか一項に記載の波長変換シート用保護フィルム。
  7.  前記バリア層が、前記無機薄膜層と前記ガスバリア性被覆層とが交互に2層ずつ以上積層された構造を有する、請求項6に記載の波長変換シート用保護フィルム。
  8.  前記ガスバリア性被覆層が、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物のうちの少なくとも一種を含有する層である、請求項6又は7に記載の波長変換シート用保護フィルム。
  9.  少なくとも一方の表面に配置された光学的機能を有するコーティング層を更に有し、
     前記バリア層が無機薄膜層としてシリカ蒸着層を含み、
     前記シリカ蒸着層に含まれる酸素とケイ素のO/Si比が原子比で1.7以上2.0以下であり、
     前記シリカ蒸着層の屈折率が1.5以上1.7以下であり、
     波長450nm、波長540nm、及び波長620nmの全ての波長において、前記波長変換シート用保護フィルムの反射率が10%以上20%以下であり、且つ、透過率が80%以上95%以下である、請求項1~8のいずれか一項に記載の波長変換シート用保護フィルム。
  10.  蛍光体を含む蛍光体層と、該蛍光体層の少なくとも一方の面上に積層された請求項1~9のいずれか一項に記載の波長変換シート用保護フィルムと、を備える波長変換シート。
  11.  前記波長変換シート用保護フィルムが、前記蛍光体層と対向する側とは反対側の面上に、光学的機能を有するコーティング層を有する、請求項10に記載の波長変換シート。
  12.  LED光源と、導光板と、請求項10又は11に記載の波長変換シートと、を備えるバックライトユニット。
PCT/JP2015/070421 2014-07-18 2015-07-16 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット WO2016010116A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15821598.8A EP3171072A4 (en) 2014-07-18 2015-07-16 Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
JP2015560891A JP5900719B1 (ja) 2014-07-18 2015-07-16 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
CN201580002853.1A CN105793034A (zh) 2014-07-18 2015-07-16 波长转换片材用保护膜、波长转换片材及背光单元
KR1020167012897A KR101760225B1 (ko) 2014-07-18 2015-07-16 파장 변환 시트용 보호 필름, 파장 변환 시트 및 백라이트 유닛
KR1020177014292A KR20170060193A (ko) 2014-07-18 2015-07-16 파장 변환 시트용 보호 필름, 파장 변환 시트 및 백라이트 유닛
US15/109,332 US20160327690A1 (en) 2014-07-18 2015-07-16 Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-147620 2014-07-18
JP2014147620 2014-07-18
JP2014-211857 2014-10-16
JP2014211857 2014-10-16

Publications (1)

Publication Number Publication Date
WO2016010116A1 true WO2016010116A1 (ja) 2016-01-21

Family

ID=55078602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070421 WO2016010116A1 (ja) 2014-07-18 2015-07-16 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット

Country Status (7)

Country Link
US (1) US20160327690A1 (ja)
EP (1) EP3171072A4 (ja)
JP (2) JP5900719B1 (ja)
KR (2) KR20170060193A (ja)
CN (2) CN107817540B (ja)
TW (1) TWI661216B (ja)
WO (1) WO2016010116A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143562A (ja) * 2015-02-02 2016-08-08 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP2016141743A (ja) * 2015-02-02 2016-08-08 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
WO2016140340A1 (ja) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 光学フィルムおよびこれを用いた光学デバイス
WO2016159366A1 (ja) * 2015-04-02 2016-10-06 凸版印刷株式会社 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
JP2017021297A (ja) * 2015-07-14 2017-01-26 大日本印刷株式会社 量子ドットシート、バックライト及び液晶表示装置
WO2017086319A1 (ja) * 2015-11-18 2017-05-26 凸版印刷株式会社 保護フィルム及び波長変換シート
JP2017134254A (ja) * 2016-01-28 2017-08-03 凸版印刷株式会社 波長変換シート用保護フィルム
JP2017136737A (ja) * 2016-02-03 2017-08-10 凸版印刷株式会社 蛍光体用保護フィルム、及びそれを用いた波長変換シート
WO2017169977A1 (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 バリアフィルム及びその製造方法、波長変換シート及びその製造方法、並びに、光学積層体及びその製造方法
JP2017177668A (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 バリアフィルム及びその製造方法、並びに、波長変換シート及びその製造方法
JP2017181900A (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 光学積層体及びその製造方法、並びに、波長変換シート及びその製造方法
WO2017179513A1 (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2017189880A (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 発光体保護フィルム、波長変換シート及びバックライトユニット
JP2017226090A (ja) * 2016-06-20 2017-12-28 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2018004928A (ja) * 2016-07-01 2018-01-11 東レ株式会社 色変換シート、それを含む光源ユニット、ディスプレイおよび照明
JP2018013724A (ja) * 2016-07-22 2018-01-25 大日本印刷株式会社 波長変換シート及びそれに用いられるバリアフィルム
JP2018022092A (ja) * 2016-08-05 2018-02-08 大日本印刷株式会社 波長変換シート用バリアフィルム、波長変換シート用バリアフィルムを用いた波長変換シート、及びを備えたバックライト光源を用いた表示装置
WO2018030401A1 (ja) * 2016-08-12 2018-02-15 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP2018091967A (ja) * 2016-12-01 2018-06-14 大日本印刷株式会社 波長変換シート及びそれに用いられるバリアフィルム
WO2018105213A1 (ja) * 2016-12-06 2018-06-14 凸版印刷株式会社 光学フィルム、並びに、それを用いた光学バリアフィルム、色変換フィルム及びバックライトユニット
JP2018130853A (ja) * 2017-02-14 2018-08-23 凸版印刷株式会社 バリアフィルム及びそれを用いた波長変換シート
US10078171B2 (en) 2015-06-12 2018-09-18 Samsung Electronics Co., Ltd. Back light unit and display apparatus including the same
KR20190012252A (ko) * 2016-07-11 2019-02-08 후지필름 가부시키가이샤 백라이트용 필름
WO2019130582A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 積層体、波長変換部材、バックライトユニット、及び画像表示装置
JP2020011400A (ja) * 2018-07-13 2020-01-23 三菱ケミカル株式会社 蛍光体積層シート
JP2020049836A (ja) * 2018-09-27 2020-04-02 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653143B (zh) * 2014-07-24 2019-03-11 日商凸版印刷股份有限公司 積層薄膜及積層體、以及波長轉換薄片、背光單元及電致發光發光單元
KR101691340B1 (ko) * 2014-10-16 2016-12-29 도판 인사츠 가부시키가이샤 양자 도트 보호 필름, 그것을 사용한 양자 도트 필름 및 백라이트 유닛
WO2016129419A1 (ja) 2015-02-09 2016-08-18 富士フイルム株式会社 波長変換部材、バックライトユニット、画像表示装置および波長変換部材の製造方法
JP6966851B2 (ja) * 2016-03-18 2021-11-17 日東電工株式会社 光学部材、ならびに、該光学部材を用いたバックライトユニットおよび液晶表示装置
JP6712925B2 (ja) * 2016-07-28 2020-06-24 富士フイルム株式会社 バックライト用フィルム
CN106195785A (zh) * 2016-08-17 2016-12-07 宁波东旭成新材料科技有限公司 色彩校正光学薄膜
JP6800721B2 (ja) * 2016-12-05 2020-12-16 東レエンジニアリング株式会社 光変換部材
JP6769307B2 (ja) * 2017-01-05 2020-10-14 凸版印刷株式会社 光学積層体及び波長変換シート
KR101973498B1 (ko) * 2017-03-22 2019-04-29 신화인터텍 주식회사 파장 변환 부재 및 이를 포함하는 디스플레이 장치
KR101966672B1 (ko) * 2017-03-22 2019-04-09 신화인터텍 주식회사 파장 변환 부재 및 이를 포함하는 디스플레이 장치
CN107101102A (zh) * 2017-05-10 2017-08-29 南通天鸿镭射科技有限公司 一种双面发光灯具
CN107132693A (zh) * 2017-05-10 2017-09-05 南通天鸿镭射科技有限公司 一种量子点荧光屏
TWI757521B (zh) * 2017-07-27 2022-03-11 日商日本電氣硝子股份有限公司 波長轉換構件及發光裝置
JP7259755B2 (ja) * 2017-10-05 2023-04-18 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
WO2020230783A1 (ja) * 2019-05-13 2020-11-19 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
JP2020193249A (ja) 2019-05-27 2020-12-03 信越化学工業株式会社 量子ドット、量子ドット組成物、波長変換材料、波長変換フィルム、バックライトユニット及び画像表示装置
CN110129027B (zh) * 2019-05-31 2022-06-07 苏州星烁纳米科技有限公司 量子点复合膜及其制备方法
CN111010838B (zh) * 2019-12-11 2021-01-29 维沃移动通信有限公司 壳体的制造方法、壳体以及电子设备
EP4134234A4 (en) * 2020-03-31 2024-07-03 Dainippon Printing Co Ltd BARRIER FILM, WAVELENGTH CONVERSION SHEET, BACKLIGHT AND DISPLAY DEVICE
CN111708211A (zh) * 2020-06-12 2020-09-25 惠州市华星光电技术有限公司 显示面板及显示装置
JP6926309B1 (ja) * 2020-08-19 2021-08-25 大日本印刷株式会社 バリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置
WO2022039014A1 (ja) 2020-08-19 2022-02-24 大日本印刷株式会社 バリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置、並びに、バリアフィルムの選定方法
KR102645172B1 (ko) * 2021-07-12 2024-03-07 도레이첨단소재 주식회사 광제어 배리어 필름, 이를 포함하는 파장변환필름, 및 디스플레이 패널
TWI847704B (zh) * 2022-01-17 2024-07-01 穎台科技股份有限公司 量子點光擴散板及其製法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039640A (ja) * 2002-07-09 2004-02-05 Samsung Electronics Co Ltd 導光装置とこれを有するバックライトアセンブリ及び液晶表示装置
JP2006123288A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性フィルム、並びにこれを用いたディスプレイ用基板及びディスプレイ
JP2009231273A (ja) * 2008-02-27 2009-10-08 Seiko Instruments Inc 照明装置及びこれを備える表示装置
JP2012129195A (ja) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology 色変換発光シート及びその製造方法
JP2013544018A (ja) * 2010-11-10 2013-12-09 ナノシス・インク. 量子ドットフィルム、照明装置、および照明方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939205A (en) * 1996-04-16 1999-08-17 Toyo Boseki Kabushiki Kaisha Gas barrier resin film
JPH10186098A (ja) * 1996-11-08 1998-07-14 Konica Corp 放射線像変換パネルとその製造方法
JP2002107495A (ja) * 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 放射線発光パネル
EP1425352B1 (en) * 2001-09-11 2005-01-12 3M Innovative Properties Company Smudge resistant nanocomposite hardcoats and methods for making same
JP4079073B2 (ja) * 2003-11-18 2008-04-23 コニカミノルタエムジー株式会社 放射線画像変換パネル及び放射線画像変換パネルの製造方法
TWI252325B (en) * 2004-02-06 2006-04-01 Lg Chemical Ltd Plastic substrate having multi-layer structure and method for preparing the same
JP4363209B2 (ja) * 2004-02-10 2009-11-11 凸版印刷株式会社 El表示素子の封止に用いる帯電防止付封止フイルム
US7781034B2 (en) * 2004-05-04 2010-08-24 Sigma Laboratories Of Arizona, Llc Composite modular barrier structures and packages
JP5086526B2 (ja) * 2004-09-24 2012-11-28 富士フイルム株式会社 ポリマー、該ポリマーの製造方法、光学フィルムおよび画像表示装置
JP4624152B2 (ja) * 2005-03-24 2011-02-02 富士フイルム株式会社 プラスチックフィルム、ガスバリアフィルム、およびそれを用いた画像表示素子
JP4716773B2 (ja) * 2005-04-06 2011-07-06 富士フイルム株式会社 ガスバリアフィルムとそれを用いた有機デバイス
CN101253041A (zh) * 2005-08-31 2008-08-27 三菱树脂株式会社 阻气性叠层膜
JP4172502B2 (ja) * 2006-06-14 2008-10-29 セイコーエプソン株式会社 スクリーン、リアプロジェクタ及び画像表示装置
JP2008010299A (ja) * 2006-06-29 2008-01-17 Toppan Printing Co Ltd 無機el素子の封止フィルム
JP5003148B2 (ja) * 2006-12-27 2012-08-15 凸版印刷株式会社 封止フィルム及び表示装置
JP2008230114A (ja) * 2007-03-22 2008-10-02 Hitachi Chem Co Ltd 封止フィルム
JP5033740B2 (ja) * 2007-10-26 2012-09-26 帝人株式会社 透明導電性積層体およびタッチパネル
JP5505309B2 (ja) * 2008-11-11 2014-05-28 大日本印刷株式会社 光学シート
JP5717949B2 (ja) * 2009-01-26 2015-05-13 デクセリアルズ株式会社 光学部材および表示装置
JP2010244016A (ja) * 2009-03-18 2010-10-28 Toppan Printing Co Ltd 防眩フィルム、偏光板、透過型液晶ディスプレイ
JP5255527B2 (ja) 2009-07-03 2013-08-07 デクセリアルズ株式会社 色変換部材および表示装置
JP5414426B2 (ja) * 2009-09-01 2014-02-12 富士フイルム株式会社 複合フィルム
JP5589616B2 (ja) * 2009-09-15 2014-09-17 ソニー株式会社 マイクロビーズ解析方法及びマイクロビーズ解析装置
WO2011122307A1 (ja) * 2010-03-29 2011-10-06 株式会社 きもと ニュートンリング防止シート、その製造方法及びタッチパネル
JP2012164742A (ja) * 2011-02-04 2012-08-30 Showa Denko Kk 照明装置および照明装置の製造方法
EP2711179B1 (en) * 2011-05-16 2018-07-04 LG Chem, Ltd. Protection film for solar cell application and solar cell having same
JP5937312B2 (ja) * 2011-07-25 2016-06-22 リンテック株式会社 ガスバリアフィルム積層体および電子部材
JP5746949B2 (ja) * 2011-09-30 2015-07-08 富士フイルム株式会社 防眩フィルム、偏光板、画像表示装置、及び防眩フィルムの製造方法
EP2823961B1 (en) * 2012-03-06 2019-05-01 LINTEC Corporation Gas barrier film laminate, adhesive film, and electronic component
CN103367611B (zh) * 2012-03-28 2017-08-08 日亚化学工业株式会社 波长变换用无机成型体及其制造方法以及发光装置
JP6087872B2 (ja) * 2013-08-12 2017-03-01 富士フイルム株式会社 光学フィルム、バリアフィルム、光変換部材、バックライトユニットおよび液晶表示装置
KR101335266B1 (ko) * 2013-08-20 2013-11-29 (주)아이컴포넌트 디스플레이용 광학 투명 복합 필름 및 이의 제조방법
JP6326003B2 (ja) * 2014-05-19 2018-05-16 富士フイルム株式会社 波長変換部材、バックライトユニット、および液晶表示装置、ならびに量子ドット含有重合性組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039640A (ja) * 2002-07-09 2004-02-05 Samsung Electronics Co Ltd 導光装置とこれを有するバックライトアセンブリ及び液晶表示装置
JP2006123288A (ja) * 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性フィルム、並びにこれを用いたディスプレイ用基板及びディスプレイ
JP2009231273A (ja) * 2008-02-27 2009-10-08 Seiko Instruments Inc 照明装置及びこれを備える表示装置
JP2013544018A (ja) * 2010-11-10 2013-12-09 ナノシス・インク. 量子ドットフィルム、照明装置、および照明方法
JP2012129195A (ja) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology 色変換発光シート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171072A4 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141743A (ja) * 2015-02-02 2016-08-08 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
WO2016125479A1 (ja) * 2015-02-02 2016-08-11 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
WO2016125480A1 (ja) * 2015-02-02 2016-08-11 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP2016143562A (ja) * 2015-02-02 2016-08-08 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JPWO2016140340A1 (ja) * 2015-03-04 2017-12-14 コニカミノルタ株式会社 光学フィルムおよびこれを用いた光学デバイス
WO2016140340A1 (ja) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 光学フィルムおよびこれを用いた光学デバイス
WO2016159366A1 (ja) * 2015-04-02 2016-10-06 凸版印刷株式会社 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
US10557970B2 (en) 2015-04-02 2020-02-11 Toppan Printing Co., Ltd. Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained by using the same
US10078171B2 (en) 2015-06-12 2018-09-18 Samsung Electronics Co., Ltd. Back light unit and display apparatus including the same
JP2017021297A (ja) * 2015-07-14 2017-01-26 大日本印刷株式会社 量子ドットシート、バックライト及び液晶表示装置
WO2017086319A1 (ja) * 2015-11-18 2017-05-26 凸版印刷株式会社 保護フィルム及び波長変換シート
JP2017134254A (ja) * 2016-01-28 2017-08-03 凸版印刷株式会社 波長変換シート用保護フィルム
JP2017136737A (ja) * 2016-02-03 2017-08-10 凸版印刷株式会社 蛍光体用保護フィルム、及びそれを用いた波長変換シート
CN109073800B (zh) * 2016-03-31 2022-09-02 凸版印刷株式会社 阻隔膜及其制造方法、波长转换片及其制造方法、以及光学层叠体及其制造方法
JP2017181900A (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 光学積層体及びその製造方法、並びに、波長変換シート及びその製造方法
JP2017177668A (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 バリアフィルム及びその製造方法、並びに、波長変換シート及びその製造方法
KR102451846B1 (ko) 2016-03-31 2022-10-07 도판 인사츠 가부시키가이샤 배리어 필름 및 그 제조 방법, 파장 변환 시트 및 그 제조 방법, 그리고, 광학 적층체 및 그 제조 방법
CN109073800A (zh) * 2016-03-31 2018-12-21 凸版印刷株式会社 阻隔膜及其制造方法、波长转换片及其制造方法、以及光学层叠体及其制造方法
KR20180132667A (ko) * 2016-03-31 2018-12-12 도판 인사츠 가부시키가이샤 배리어 필름 및 그 제조 방법, 파장 변환 시트 및 그 제조 방법, 그리고, 광학 적층체 및 그 제조 방법
WO2017169977A1 (ja) * 2016-03-31 2017-10-05 凸版印刷株式会社 バリアフィルム及びその製造方法、波長変換シート及びその製造方法、並びに、光学積層体及びその製造方法
US12107198B2 (en) 2016-03-31 2024-10-01 Toppan Printing Co., Ltd. Barrier film and method for manufacturing the same, wavelength conversion sheet and method for manufacturing the same, and optical laminate and method for manufacturing the same
CN109070539A (zh) * 2016-04-11 2018-12-21 凸版印刷株式会社 阻隔膜层叠体及其制造方法、波长转换片、背光单元、以及电致发光单元
US11254097B2 (en) 2016-04-11 2022-02-22 Toppan Printing Co., Ltd. Barrier film laminate, method of producing the same, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
WO2017179513A1 (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2017189880A (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 発光体保護フィルム、波長変換シート及びバックライトユニット
JP2017226090A (ja) * 2016-06-20 2017-12-28 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2018004928A (ja) * 2016-07-01 2018-01-11 東レ株式会社 色変換シート、それを含む光源ユニット、ディスプレイおよび照明
KR20190012252A (ko) * 2016-07-11 2019-02-08 후지필름 가부시키가이샤 백라이트용 필름
KR102141024B1 (ko) 2016-07-11 2020-08-04 후지필름 가부시키가이샤 면 형상 조명 장치
JP2018013724A (ja) * 2016-07-22 2018-01-25 大日本印刷株式会社 波長変換シート及びそれに用いられるバリアフィルム
JP2018022092A (ja) * 2016-08-05 2018-02-08 大日本印刷株式会社 波長変換シート用バリアフィルム、波長変換シート用バリアフィルムを用いた波長変換シート、及びを備えたバックライト光源を用いた表示装置
KR20190036563A (ko) * 2016-08-12 2019-04-04 도판 인사츠 가부시키가이샤 형광체 보호 필름, 파장 변환 시트 및 발광 유닛
JPWO2018030401A1 (ja) * 2016-08-12 2019-06-13 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
KR102648944B1 (ko) * 2016-08-12 2024-03-20 도판 홀딩스 가부시키가이샤 형광체 보호 필름, 파장 변환 시트 및 발광 유닛
US11561328B2 (en) 2016-08-12 2023-01-24 Toppan Printing Co., Ltd. Phosphor protection film, wavelength conversion sheet, and light-emitting unit
WO2018030401A1 (ja) * 2016-08-12 2018-02-15 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP7066967B2 (ja) 2016-12-01 2022-05-16 大日本印刷株式会社 波長変換シート及びそれに用いられるバリアフィルム
JP2018091967A (ja) * 2016-12-01 2018-06-14 大日本印刷株式会社 波長変換シート及びそれに用いられるバリアフィルム
WO2018105213A1 (ja) * 2016-12-06 2018-06-14 凸版印刷株式会社 光学フィルム、並びに、それを用いた光学バリアフィルム、色変換フィルム及びバックライトユニット
US11397287B2 (en) 2016-12-06 2022-07-26 Toppan Printing Co., Ltd. Optical film, and optical barrier film, color conversion film and backlight unit using the optical film
JPWO2018105213A1 (ja) * 2016-12-06 2019-10-24 凸版印刷株式会社 光学フィルム、並びに、それを用いた光学バリアフィルム、色変換フィルム及びバックライトユニット
JP2018130853A (ja) * 2017-02-14 2018-08-23 凸版印刷株式会社 バリアフィルム及びそれを用いた波長変換シート
WO2019130582A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 積層体、波長変換部材、バックライトユニット、及び画像表示装置
JP7139742B2 (ja) 2018-07-13 2022-09-21 三菱ケミカル株式会社 蛍光体積層シート
JP2020011400A (ja) * 2018-07-13 2020-01-23 三菱ケミカル株式会社 蛍光体積層シート
JP7091977B2 (ja) 2018-09-27 2022-06-28 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
JP2020049836A (ja) * 2018-09-27 2020-04-02 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置

Also Published As

Publication number Publication date
KR20160098191A (ko) 2016-08-18
JP6705213B2 (ja) 2020-06-03
JP5900719B1 (ja) 2016-04-06
EP3171072A4 (en) 2018-04-04
EP3171072A1 (en) 2017-05-24
TW201606336A (zh) 2016-02-16
KR101760225B1 (ko) 2017-07-20
JP2016122211A (ja) 2016-07-07
JPWO2016010116A1 (ja) 2017-04-27
TWI661216B (zh) 2019-06-01
KR20170060193A (ko) 2017-05-31
CN105793034A (zh) 2016-07-20
US20160327690A1 (en) 2016-11-10
CN107817540B (zh) 2020-04-14
CN107817540A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
JP5900719B1 (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
JP6460275B2 (ja) 波長変換シート及びバックライトユニット
TWI667134B (zh) 量子點保護膜、使用其之量子點薄膜及背光單元
US11254097B2 (en) Barrier film laminate, method of producing the same, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
JP5900720B1 (ja) 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
JP6760268B2 (ja) 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
WO2017126609A1 (ja) 発光体保護フィルム及びその製造方法、並びに波長変換シート及び発光ユニット
JP2016213369A (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
JP2016218339A (ja) 蛍光体保護フィルム、波長変換シート及びバックライトユニット
JP6710908B2 (ja) ガスバリア積層体、波長変換シート及びバックライトユニット
JP6705156B2 (ja) バリアフィルム積層体、波長変換シート及びバックライトユニット
JP6776591B2 (ja) 波長変換シート及びバックライトユニット
JP2017226090A (ja) バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012897

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015821598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821598

Country of ref document: EP