WO2016125480A1 - 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法 - Google Patents

波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法 Download PDF

Info

Publication number
WO2016125480A1
WO2016125480A1 PCT/JP2016/000500 JP2016000500W WO2016125480A1 WO 2016125480 A1 WO2016125480 A1 WO 2016125480A1 JP 2016000500 W JP2016000500 W JP 2016000500W WO 2016125480 A1 WO2016125480 A1 WO 2016125480A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
film
layer
barrier
Prior art date
Application number
PCT/JP2016/000500
Other languages
English (en)
French (fr)
Inventor
亮 佐竹
誠 加茂
直良 山田
達也 大場
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680007989.6A priority Critical patent/CN107209298B/zh
Publication of WO2016125480A1 publication Critical patent/WO2016125480A1/ja
Priority to US15/660,333 priority patent/US10513655B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a wavelength conversion member having a wavelength conversion layer including a quantum dot that emits fluorescence when irradiated with excitation light, a backlight unit including the wavelength conversion member, and a liquid crystal display device.
  • the present invention also relates to a method of manufacturing a wavelength conversion member having a wavelength conversion layer including quantum dots that emit fluorescence when irradiated with excitation light.
  • the liquid crystal display device is composed of at least a backlight and a liquid crystal cell, and usually further includes members such as a backlight side polarizing plate and a viewing side polarizing plate.
  • the wavelength conversion member of the backlight unit has a structure including a wavelength conversion layer containing quantum dots (also referred to as Quantum Dot, QD, quantum dots) as a light emitting material. It has attracted attention (Patent Document 1, Patent Document 2, etc.).
  • the wavelength conversion member is a member that converts the wavelength of light incident from the planar light source and emits it as white light.
  • the wavelength conversion layer that includes the quantum dots as the light emitting material two or three of different light emission characteristics are used.
  • White light can be realized by using fluorescence in which a seed quantum dot is excited by light incident from a planar light source and emits light.
  • Fluorescence due to quantum dots has high brightness and a small half-value width, so that LCDs using quantum dots are excellent in color reproducibility.
  • the color gamut is expanded from 72% to 100% of the current TV standard (FHD, NTSC (National Television System Committee)) ratio.
  • LCDs equipped with wavelength conversion members using quantum dots have the above excellent color reproducibility, but the problem is that when the quantum dots are photooxidized by contact with oxygen, the emission intensity decreases (low light resistance). There is. Therefore, in order to realize an LCD with high luminance durability, that is, high long-term reliability, it is important to suppress contact between quantum dots and oxygen.
  • a wavelength conversion layer containing quantum dots as a light emitting material generally has an aspect in which quantum dots are dispersed substantially uniformly in an organic matrix (polymer matrix). It is. Therefore, in the wavelength conversion member, in order to suppress contact between the quantum dots and oxygen, reduction of the amount of oxygen reaching the wavelength conversion layer and suppression of contact of oxygen reaching the wavelength conversion layer with the quantum dots are required. is important.
  • Patent Document 1 discloses a barrier substrate that prevents oxygen from entering a layer containing quantum dots in order to protect the quantum dots from oxygen and the like. It is described that (barrier film) is laminated.
  • the barrier film has a mode in which a barrier layer composed of an inorganic layer or an organic layer having a barrier property is laminated on the surface of a film-like substrate, and the substrate itself has a barrier property without providing a barrier layer on the surface.
  • An embodiment composed of such an excellent material is known.
  • the inorganic layer having barrier properties inorganic layers such as inorganic oxides, inorganic nitrides, inorganic oxynitrides, and metals are preferably used.
  • Patent Document 2 describes an aspect in which a quantum dot is protected in the domain of a hydrophobic material that is impermeable to moisture and oxygen, and the matrix material includes an epoxy.
  • the photooxidation of the quantum dots in the wavelength conversion layer can be effectively suppressed by combining the wavelength conversion layer including the organic matrix having low oxygen permeability and the barrier base material.
  • a defect occurs in the wavelength conversion member due to lamination, such as a gap between the organic matrix of the wavelength conversion layer and the barrier base material, the performance of the organic matrix and the base material can be fully utilized. There is a possibility of not being able to.
  • the present invention has been made in view of the above circumstances, and is a wavelength conversion member that is excellent in light resistance and can obtain high luminance durability when incorporated in a liquid crystal display device, and a backlight including the same.
  • the purpose is to provide a unit.
  • Another object of the present invention is to provide a liquid crystal display device having excellent light resistance and high long-term luminance reliability.
  • Another object of the present invention is to provide a method for producing a wavelength conversion member that is excellent in light resistance and capable of obtaining high luminance durability when incorporated in a liquid crystal display device.
  • a polymer obtained by curing a curable composition containing an alicyclic epoxy compound is suitable as a matrix material for a wavelength conversion layer having low oxygen permeability.
  • an inorganic layer mainly composed of silicon nitride or silicon oxynitride is preferable.
  • the polymer obtained by curing a curable composition containing an alicyclic epoxy compound and the inorganic layer mainly composed of silicon nitride or silicon oxynitride may not have sufficient adhesion. Therefore, the present inventors have a wavelength conversion layer containing quantum dots in an organic matrix obtained by curing a curable composition containing an alicyclic epoxy compound, and silicon nitride and / or silicon oxynitride as main components.
  • the present invention was completed by intensively studying a structure in which the barrier layer to be laminated with good adhesion was made.
  • the wavelength conversion member of the present invention is A wavelength conversion layer comprising at least one quantum dot excited by excitation light and emitting fluorescence to be dispersed in an organic matrix;
  • a barrier layer comprising silicon nitride and / or silicon oxynitride as a main component, provided adjacent to at least one main surface of the wavelength conversion layer;
  • the organic matrix is obtained by curing a curable composition containing at least an alicyclic epoxy compound, and includes a chemical structure A formed by bonding with silicon nitride and / or silicon oxynitride which is a main component of the barrier layer.
  • the “barrier layer mainly composed of silicon nitride and / or silicon oxynitride” refers to silicon nitride, silicon oxynitride, or a mixture of silicon nitride and silicon oxynitride in a proportion of 90% by mass or more.
  • the barrier layer is preferably composed mainly of silicon nitride.
  • the chemical structure A is a structure formed by covalent bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, or hydrogen bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer. It is preferable that it is the structure which becomes.
  • the chemical structure A formed by covalent bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer includes a structure formed by siloxane bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer. preferable.
  • the chemical structure A formed by hydrogen bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, amino group, mercapto group, Or the structure formed by the hydrogen bond based on at least 1 among urethane structures is preferable.
  • the chemical structure A is an embodiment in which the chemical structure A is contained by being bonded to the organic matrix via the chemical structure B.
  • the chemical structure B is preferably a structure formed by covalent bonding with the organic matrix or a structure formed by hydrogen bonding with the organic matrix.
  • a structure formed by bonding with an organic matrix through a covalent bond based on at least one of an amino group, a mercapto group, or an epoxy group is preferable.
  • the chemical structure B formed by hydrogen bonding with the organic matrix is preferably a structure formed by bonding with the organic matrix through hydrogen bonding based on at least one of an amino group, a carboxyl group, or a hydroxy group.
  • the following alicyclic epoxy compound I can be preferably used.
  • the wavelength conversion layer is a compound that forms a chemical structure A by combining with quantum dots, an alicyclic epoxy compound, and silicon nitride and / or silicon oxynitride that are the main components of the barrier layer. It is preferable to be formed by curing a curable composition containing quantum dots.
  • the compound that forms the chemical structure A is more preferably a compound that forms the chemical structure B with the organic matrix.
  • the backlight unit of the present invention includes a planar light source that emits primary light;
  • the wavelength conversion member of the present invention provided on a planar light source;
  • a retroreflective member disposed opposite to the planar light source across the wavelength conversion member;
  • a backlight unit including a wavelength conversion member and a reflector disposed opposite to a surface light source,
  • the wavelength conversion member emits fluorescence using at least a part of the primary light emitted from the planar light source as excitation light, and emits at least light including secondary light composed of fluorescence.
  • the liquid crystal display device of the present invention comprises the backlight unit of the present invention described above, And a liquid crystal unit disposed opposite to the retroreflective member side of the backlight unit.
  • the method for producing a wavelength conversion member of the present invention includes a wavelength conversion layer in which at least one quantum dot that is excited by excitation light and emits fluorescence is dispersed and contained in an organic matrix;
  • a method for producing a wavelength conversion member comprising a barrier layer mainly composed of silicon nitride and / or silicon oxynitride, which is provided adjacent to at least one main surface of the wavelength conversion layer, Preparing a barrier film having a barrier layer on a substrate;
  • Quantum dots An alicyclic epoxy compound;
  • a compound capable of binding to silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, and / or bonded to silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, and bonded to the organic matrix
  • Forming a coating film of the curable composition by applying a quantum dot-containing curable composition comprising: And sequentially curing the coating film with light
  • the “inorganic layer” is a layer mainly composed of an inorganic material, and preferably a layer formed only from an inorganic material.
  • the “organic layer” is a layer mainly composed of an organic material, and preferably refers to a layer in which the organic material occupies 50% by mass or more, more preferably 80% by mass or more, particularly 90% by mass or more. Shall.
  • the “half width” of a peak refers to the width of the peak at a peak height of 1/2.
  • light having an emission center wavelength in the wavelength band of 430 nm or more and 480 nm or less is referred to as blue light
  • light having an emission center wavelength in the wavelength band of 500 nm or more and less than 600 nm is referred to as green light
  • light having the emission center wavelength is called red light.
  • the moisture permeability of the barrier layer is described in G. NISATO, PCPBOUTEN, PJSLIKKERVEER et al., SID Conference Record of the International Display Research Conference, pages 1435-1438, at a measurement temperature of 40 ° C. and a relative humidity of 90% RH. It is the value measured using the method (calcium method).
  • the unit of moisture permeability is [g / (m 2 ⁇ day ⁇ atm)].
  • a moisture permeability of 0.1 g / (m 2 ⁇ day ⁇ atm) corresponds to a moisture permeability of 1.14 ⁇ 10 ⁇ 11 g / (m 2 ⁇ s ⁇ Pa) in the SI unit system.
  • the oxygen transmission rate was measured using an oxygen gas transmission rate measurement device (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. Value.
  • the unit of the oxygen permeability is [cm 3 / (m 2 ⁇ day ⁇ atm)].
  • the oxygen permeability of 1.0 cm 3 / (m 2 ⁇ day ⁇ atm) corresponds to an oxygen permeability of 1.14 ⁇ 10 ⁇ 1 fm / (s ⁇ Pa) in the SI unit system.
  • the wavelength conversion member of the present invention comprises a wavelength conversion layer comprising at least one quantum dot that is excited by excitation light and emits fluorescence, dispersed in an organic matrix having a high barrier property, and a wavelength conversion layer A chemical structure comprising a barrier layer having a high barrier property adjacent to at least one main surface, and bonded to silicon nitride and / or silicon oxynitride as a main component of the barrier layer in an organic matrix of the wavelength conversion layer A is included. According to such a configuration, it is possible to effectively prevent oxygen from entering the wavelength conversion layer, and to suppress a decrease in emission intensity due to photooxidation of the quantum dots in the wavelength conversion layer.
  • the adhesion between the barrier layer and the barrier layer is high, there is a low possibility that oxygen will enter from the non-adhered portion between the wavelength conversion layer and the barrier layer. Therefore, according to the present invention, it is possible to provide a wavelength conversion member that has excellent light resistance and can obtain high luminance durability when incorporated in a liquid crystal display device, and a backlight unit including the wavelength conversion member. it can.
  • FIG. 1 is a schematic cross-sectional view of a wavelength conversion member according to an embodiment of the present invention, and a partially enlarged view of the vicinity of a wavelength conversion layer-barrier layer interface (schematic diagram showing a first aspect of chemical structure A).
  • FIG. 3 is a schematic diagram showing a second embodiment of chemical structure A in the vicinity of the wavelength conversion layer-barrier layer interface of the wavelength conversion member of FIG.
  • FIG. 3 is a schematic block diagram which shows an example of the wavelength conversion member manufacturing apparatus of one Embodiment concerning this invention. It is the elements on larger scale of the manufacturing apparatus shown in FIG.
  • It is a schematic structure sectional view of a liquid crystal display provided with the back light unit of one embodiment concerning the present invention.
  • FIG. 1 is a schematic cross-sectional view of a backlight unit including the wavelength conversion member of the present embodiment
  • FIG. 2 is a schematic cross-sectional view of the wavelength conversion member of the present embodiment and the wavelength conversion layer-barrier layer interface.
  • FIG. 2 is a partially enlarged view of the vicinity (schematic diagram showing a first embodiment of chemical structure A).
  • the scale of each part is appropriately changed and shown for easy visual recognition.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the backlight unit 2 includes a light source 1A that emits primary light (blue light L B ) and a light guide plate 1B that guides and emits the primary light emitted from the light source 1A.
  • the shape of the wavelength conversion member 1D is not particularly limited, and may be an arbitrary shape such as a sheet shape or a bar shape.
  • L B , L G , and L R emitted from the wavelength conversion member 1D are incident on the retroreflective member 2B, and each incident light is transmitted between the retroreflective member 2B and the reflector 2A. The reflection is repeated and passes through the wavelength conversion member 1D many times.
  • a sufficient amount of excitation light blue light L B
  • a necessary amount of fluorescence L G , L R
  • the white light LW is embodied and emitted from 2B.
  • red light emitted from the quantum dots 30A is obtained by making ultraviolet light incident as the excitation light on the wavelength conversion layer 30 including the quantum dots 30A, 30B, and 30C (not shown). It can be implemented green light emitted and by the blue light emitted by the quantum dots 30C, the white light L W by the quantum dot 30B.
  • the wavelength conversion member 30 includes a wavelength conversion layer 30 in which quantum dots 30A and 30B that are excited by excitation light (L B ) and emit fluorescence (L G , L R ) are dispersed in the organic matrix 30P.
  • the barrier layers 12 and 22 mainly composed of silicon nitride and / or silicon oxynitride provided adjacent to the main surface of the wavelength conversion layer 30, and the organic matrix 30P is at least alicyclic
  • a curable composition containing an epoxy compound is cured, and includes a chemical structure A formed by bonding with silicon nitride and / or silicon oxynitride which is a main component of the barrier layers 12 and 22 (FIG. 2). .
  • the wavelength conversion layer 30 includes barrier films 10 and 20 on both main surfaces (surfaces), and the barrier films 10 and 20 are formed on the base materials 11 and 21 and the surface thereof, respectively.
  • the barrier layers 12 and 22 are supported.
  • the upper side is the retroreflective member 2B side in the backlight unit 2
  • the lower side is the planar light source 1C side.
  • Oxygen and moisture that have entered the wavelength conversion member 1D have a configuration in which the barrier films 10 and 20 prevent entry into the wavelength conversion layer 30 on the retroreflective member 2B side and the planar light source 1C side. .
  • the barrier layers 12 and 22 are shown as being formed on the base materials 11 and 21, but are not limited to such a mode, and the barrier layers 12 and 22 are not formed on the base material. The aspect which becomes may be sufficient.
  • the barrier film 10 includes an unevenness imparting layer (mat layer) 13 that imparts an uneven structure on the surface opposite to the surface on the wavelength conversion layer 30 side.
  • the unevenness imparting layer 13 also has a function as a light diffusion layer.
  • FIG. 2 also shows a partially enlarged view of the vicinity of the interface of the wavelength conversion layer 30 and the barrier layer 12 (schematic diagram showing the first aspect of the chemical structure A).
  • the partial enlarged view shows only the vicinity of the interface of the wavelength conversion layer 30 and the barrier layer 12, but the interface of the wavelength conversion layer 30 and the barrier layer 22 may have the same configuration.
  • the chemical structure A included in the wavelength conversion layer 30 is included in the adhesive 40.
  • the adhesive 40 is a compound contained in a quantum dot-containing curable composition that is a raw material liquid of the wavelength conversion layer 30, and the chemical structure A and / or chemical structure in the wavelength conversion layer 30. It shall be used in the meaning of both of the partial structures formed by forming B.
  • the adhesion agent 40 is combined with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer 12 to form the chemical structure A, and It includes those formed by combining with the organic matrix 30P to form the chemical structure B.
  • the adhesion agent 40 is combined with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer 12 to form the chemical structure A, and is organic. What is included in the organic matrix 30P without being combined with the matrix 30P is included.
  • the wavelength conversion layer 30 may include an adhesive 40 that is included in the wavelength conversion layer 30 without forming the chemical structure A or the compound structure B. Note that in the adhesion agent 40, but can form a chemical structure A is shown a structure not forming a chemical structure A as A 0.
  • the chemical structure A is not particularly limited as long as it is a structure formed by bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, and a structure formed by covalent bonding with silicon nitride and / or silicon oxynitride, Or the structure formed by hydrogen bonding is illustrated preferably.
  • the chemical structure A formed by covalent bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer includes a structure formed by siloxane bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer.
  • the chemical structure A formed by hydrogen bonding with silicon nitride and / or silicon oxynitride, which is the main component of the barrier layer includes silicon nitride and / or silicon oxynitride, which is the main component of the barrier layer, amino group, mercapto A structure formed by hydrogen bonding based on at least one of a group or a urethane structure is preferable.
  • the chemical structure B is not particularly limited as long as it is a structure bonded to the organic matrix 30P, and is preferably a structure formed by covalent bonding with the organic matrix 30P or a structure formed by hydrogen bonding with the organic matrix 30P. .
  • the chemical structure B is particularly preferably formed by bonding with a chemical structure of an organic matrix derived from an alicyclic epoxy compound.
  • the chemical structure B formed by covalent bonding with the organic matrix 30P is preferably a structure formed by covalent bonding with the organic matrix 30P based on at least one of an amino group, a mercapto group, or an epoxy group.
  • the chemical structure B formed by hydrogen bonding with the organic matrix 30P is preferably a structure formed by bonding with the organic matrix 30P through hydrogen bonding based on at least one of an amino group, a carboxyl group, or a hydroxy group.
  • Specific examples of the adhesive 40 (compound) that can form the chemical structure A and / or the chemical structure B will be described in detail in the description of the curable composition described later.
  • the wavelength conversion member is configured to effectively suppress photooxidation of the quantum dots 30 ⁇ / b> A and 30 ⁇ / b> B included in the wavelength conversion layer 30.
  • the organic matrix 30P of the layer 30 an organic matrix obtained by curing a curable composition containing an alicyclic epoxy compound was used, and as the barrier layer, an inorganic layer mainly composed of silicon nitride or silicon oxynitride was used. Found the configuration. However, in this configuration, it is necessary to improve the adhesion between the wavelength conversion layer 30 and the barrier layers 12 and 22 in order to achieve both light resistance and high front luminance when incorporated in a liquid crystal display device. .
  • the wavelength conversion layer 30 in which the quantum dots 30A and 30B are dispersed in the organic matrix 30P obtained by curing the curable composition containing the alicyclic epoxy compound is the barrier layer.
  • 12 and 22 have a chemical structure A formed by bonding with silicon nitride and / or silicon oxynitride, which are the main components.
  • the wavelength conversion member 1D and the backlight unit 2 including the wavelength conversion member 1D are excellent in light resistance and can obtain high luminance durability when incorporated in a liquid crystal display device. Below, each component of wavelength conversion member 1D is demonstrated, and then the manufacturing method of a wavelength conversion member is demonstrated.
  • Wavelength conversion layer 30 has a quantum dot 30A that emits when excited fluorescence (red light) L R by the blue light L B in the organic matrix 30P, a being excited by the blue light L B fluorescence (green light) L G
  • the quantum dots 30B that emit light are dispersed. 2 and 3, the quantum dots 30A and 30B are greatly illustrated for easy visual recognition. Actually, however, the quantum dot diameter is 2 with respect to the thickness 50 to 100 ⁇ m of the wavelength conversion layer 30, for example. About 7 nm.
  • the thickness of the wavelength conversion layer 30 is preferably in the range of 1 to 500 ⁇ m, more preferably in the range of 10 to 250 ⁇ m, and still more preferably in the range of 30 to 150 ⁇ m.
  • a thickness of 1 ⁇ m or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 500 ⁇ m or less because the backlight unit can be thinned when incorporated in the backlight unit.
  • the shape of the wavelength conversion layer is not particularly limited, and can be an arbitrary shape.
  • the wavelength conversion layer 30 includes the quantum dots 30A and 30B, a compound (adhesive agent) 40 that forms a chemical structure A by bonding with silicon nitride and / or silicon oxynitride, which is a main component of the barrier layer, and is cured and organic. It can be formed by curing a quantum dot-containing curable composition containing a curable compound constituting the matrix 30P (hereinafter, basically referred to as a quantum dot-containing curable composition), and cured to form an organic matrix 30P.
  • the curable compound that constitutes alicyclic epoxy compounds That is, the wavelength conversion layer 30 is a cured layer obtained by curing the quantum dot-containing curable composition.
  • the adhesive 40 does not adversely affect the curing reaction of the polymerizable composition containing quantum dots.
  • the quantum dot-containing curable composition includes quantum dots 30A and 30B, an adhesion agent 40, and a curable compound including an alicyclic epoxy compound that is cured to be an organic matrix 30P.
  • the quantum dot-containing curable composition can contain other components such as a polymerization initiator.
  • the method for preparing the quantum dot-containing curable composition is not particularly limited and may be carried out according to a general procedure for preparing a polymerizable composition, but the adhesive 40 may be added at the final timing of the composition preparation. This is preferable because there are few factors that inhibit the bonding between the adhesive 40 and silicon nitride and / or silicon oxynitride, which are the main components of the barrier layers 12 and 22.
  • Quantum dots may contain different two or more quantum dot emission characteristics, in this embodiment, quantum dots, and quantum dots 30A are excited by the blue light L B which emits fluorescence (red light) L R a quantum dot 30B that emits when excited by the blue light L B fluorescence (green light) L G. Moreover, the quantum dots 30A are excited by ultraviolet light L UV to emit fluorescence (red light) L R, and the quantum dots 30B that emits fluorescence (green light) L G is excited by the ultraviolet light L UV, ultraviolet light L UV by being excited can also include quantum dots 30C that emits fluorescence (blue light) L B.
  • the known quantum dots include a quantum dot 30A having an emission center wavelength in a wavelength range of 600 nm to 680 nm, a quantum dot 30B having an emission center wavelength in a wavelength range of 520 nm to 560 nm, and a wavelength of 400 nm to 500 nm.
  • a quantum dot 30C (emitting blue light) having an emission center wavelength in a band is known.
  • quantum dots in addition to the above description, reference can be made to, for example, paragraphs 0060 to 0066 of JP2012-169271A, but is not limited thereto.
  • the quantum dots commercially available products can be used without any limitation, but core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability.
  • the core II-VI group semiconductor nanoparticles, III-V group semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specifically, CdSe, CdTe, CdS, ZnS , ZnSe, ZnTe, InP, InAs, InGaP, but CuInS 2, etc., without limitation.
  • CdSe, CdTe, InP, InGaP, and CuInS 2 are preferable from the viewpoint of emitting visible light with high efficiency.
  • the shell CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but not limited thereto.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • Quantum dots may be added to the polymerizable composition in the form of particles, or may be added in the form of a dispersion dispersed in a solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the solvent used here is not particularly limited.
  • the quantum dots can be added in an amount of, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot-containing curable composition.
  • the content of quantum dots is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass with respect to the total mass of the curable compound contained in the polymerizable composition. preferable.
  • the curable compound contained in the quantum dot-containing curable composition and cured to become the organic matrix 30P is not particularly limited as long as it contains 30% by mass or more of the alicyclic epoxy compound. From the viewpoint of oxygen barrier properties, the curable compound preferably contains 50% by mass or more of the alicyclic epoxy compound, more preferably 80% by mass or more, and still more preferably 100% by mass excluding impurities.
  • the said curable compound contains an alicyclic epoxy compound at least as a polymeric compound.
  • the alicyclic epoxy compound may be one kind or two or more kinds having different structures.
  • content regarding an alicyclic epoxy compound shall mean these total content, when using 2 or more types of alicyclic epoxy compounds from which a structure differs. This also applies to other components when two or more types having different structures are used.
  • the alicyclic epoxy compound has better curability by light irradiation than the aliphatic epoxy compound.
  • the use of a polymerizable compound having excellent photocurability is advantageous in that, in addition to improving productivity, a layer having uniform physical properties can be formed on the light irradiation side and the non-irradiation side. As a result, curling of the wavelength conversion layer can be suppressed and a wavelength conversion member with uniform quality can be provided.
  • epoxy compounds also tend to have less cure shrinkage during photocuring. This is advantageous in forming a smooth wavelength conversion layer with little deformation.
  • the alicyclic epoxy compound has at least one alicyclic epoxy group.
  • the alicyclic epoxy group means a monovalent substituent having a condensed ring of an epoxy ring and a saturated hydrocarbon ring, preferably a monovalent substituent having a condensed ring of an epoxy ring and a cycloalkane ring. It is.
  • the following structure in which an epoxy ring and a cyclohexane ring are condensed There may be mentioned those having one or more per molecule. Two or more structures may be contained in one molecule, and preferably one or two in one molecule.
  • the above structure may have one or more substituents.
  • substituents include alkyl groups (for example, alkyl groups having 1 to 6 carbon atoms), hydroxyl groups, alkoxy groups (for example, alkoxy groups having 1 to 6 carbon atoms), halogen atoms (for example, fluorine atoms, chlorine atoms, bromine atoms), cyano Group, amino group, nitro group, acyl group, carboxyl group and the like.
  • the above structure may have such a substituent, but is preferably unsubstituted.
  • the alicyclic epoxy compound may have a polymerizable functional group other than the alicyclic epoxy group.
  • the polymerizable functional group refers to a functional group capable of causing a polymerization reaction by radical polymerization or cationic polymerization, and examples thereof include a (meth) acryloyl group.
  • alicyclic epoxy compound Commercially available products that can be suitably used as the alicyclic epoxy compound include Daicel Chemical Industries, Ltd. Celoxide 2000, Celoxide 2021P, Celoxide 3000, Celoxide 8000, Cyclomer M100, Epolide GT301, Epolide GT401, and 4 manufactured by Sigma-Aldrich. -Vinylcyclohexene dioxide, D-limonene oxide from Nippon Terpene Chemical Co., Ltd., Sunsizer E-PS from Shin Nippon Rika Co., Ltd. These can be used individually by 1 type or in combination of 2 or more types.
  • the alicyclic epoxy compound I is commercially available as Daicel Chemical Industries, Ltd. Celoxide 2021P.
  • the alicyclic epoxy compound II is commercially available as Daicel Chemical Industries, Ltd. Cyclomer M100.
  • the alicyclic epoxy compound can also be produced by a known synthesis method.
  • the synthesis method is not limited.
  • Maruzen KK Publishing, 4th edition Experimental Chemistry Course 20 Organic Synthesis II, 213-, 1992, Ed.by Alfred Hasfner, John & Wiley and Sons An Interscience Publication, New York, 1985, Yoshimura, Adhesion, 29,12, 32, 1985, Yoshimura, Adhesion, 30,5, 42, 1986, Yoshimura, Adhesion, 30,7, 42, 1986, JP-A-11-1000037, Japanese Patent No. 2926262 and the like.
  • the curable compound may contain at least one other polymerizable compound (curable compound) in addition to at least one alicyclic epoxy compound.
  • curable compound may contain at least one other polymerizable compound (curable compound) in addition to at least one alicyclic epoxy compound.
  • other polymerizable compounds monofunctional (meth) acrylate compounds, (meth) acrylate compounds such as polyfunctional (meth) acrylate compounds, oxirane compounds, and oxetane compounds are preferable.
  • the (meth) acrylate compound or (meth) acrylate means a compound containing one or more (meth) acryloyl groups in one molecule, and (meth) acryloyl group and Is used to denote one or both of an acryloyl group and a methallyloyl group.
  • An oxirane compound is also called ethylene oxide, and is typically expressed as a functional group called a glycidyl group.
  • the oxetane compound is a 4-membered cyclic ether.
  • IPN interpenetrating polymer network
  • an oxirane compound and an oxetane compound can be copolymerized with the above-described alicyclic epoxy compound, and the mechanical properties and optical properties of the polymer can be suitably designed. Further, by using these compounds in combination, the viscosity of the composition before curing, the dispersibility of the quantum dots, and the solubility of the photopolymerization initiator and other additives described later can be adjusted.
  • the curable compound containing the alicyclic epoxy compound is preferably contained in an amount of 10 to 99.9% by mass, more preferably 50 to 99.9% by mass, based on the total amount of the quantum dot-containing curable composition. More preferably, it is contained in an amount of 92 to 99% by mass.
  • the quantum dot-containing curable composition is a compound capable of binding to silicon nitride and / or silicon oxynitride as a main component of the barrier layers 12 and 22, and / or silicon nitride as a main component of the barrier layers 12 and 22, And / or a compound capable of binding to silicon oxynitride and capable of binding to the organic matrix 30P as the adhesive 40.
  • the adhesive 40 contained in the curable composition when the wavelength conversion layer 30 is formed by curing the curable composition, silicon nitride and / or silicon oxynitride that is a main component of the barrier layers 12 and 22 is used.
  • the compound is not particularly limited as long as it is a compound that can combine to form the compound structure A.
  • the adhesion agent 40 is preferably a compound that is bonded to silicon nitride and / or silicon oxynitride, which are the main components of the barrier layers 12 and 22, and can be bonded to the organic matrix 30P.
  • the chemical structure A is not particularly limited as long as it is a structure formed by bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, and is shared with silicon nitride and / or silicon oxynitride.
  • a structure formed by bonding or a structure formed by hydrogen bonding is preferably exemplified.
  • the chemical structure A formed by covalent bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer includes a structure formed by siloxane bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer.
  • a structure formed by siloxane bonding with silicon nitride and / or silicon oxynitride which is the main component of the barrier layer preferable.
  • Examples of the compound capable of forming a structure formed by siloxane bonding with silicon nitride and / or silicon oxynitride include alkoxysilane compounds generally referred to as silane coupling agents.
  • the alkoxysilane compound is converted into a surface of the barrier layers 12 and 22 or a barrier by a hydrolysis reaction or a condensation reaction.
  • a siloxane bond is formed with silicon nitride and / or silicon oxynitride which is a main component of the layers 12 and 22. Therefore, a covalent bond is formed between the wavelength conversion layer 30 and the barrier layers 12 and 22, and the interlayer adhesion between these layers can be increased.
  • the alkoxysilane compound when it has a reactive functional group such as a radical polymerizable group, it is polymerized as a part of the main chain of the polymer chain of the polymer matrix by covalent bond with the organic matrix 30P constituting the wavelength conversion layer 30. Or a structure (chemical structure B) formed by bonding as a side chain or a side group of a polymer chain of the polymer matrix.
  • a structure formed by bonding as a side chain or a side group of a polymer chain of the polymer matrix.
  • the adhesion between the organic matrix 30P and the barrier layers 12 and 22 can be further improved.
  • bonded with the organic matrix 30P with a hydrogen bond is used, the said adhesive improvement effect can be acquired.
  • the chemical structure B is preferably a structure formed by bonding with the chemical structure of the organic matrix 30P derived from the alicyclic epoxy compound.
  • the chemical structure B capable of forming a covalent bond, hydrogen bond, etc. with the organic matrix P
  • a structure formed by bonding the organic matrix 30P and a hydrogen bond based on at least one of an amino group, a carboxyl group, or a hydroxy group is preferable.
  • the chemical structure B may be already formed in the curable compound itself, and in that case, the adhesive 40 is in an embodiment in which the adhesive 40 is bonded to the curable compound via the chemical structure B.
  • silane coupling agents can be used without any limitation.
  • Preferable silane coupling agents from the viewpoint of adhesion include silane coupling agents having the above functional groups, silane coupling agents represented by the general formula (1) described in JP2013-43382A, and the like. be able to.
  • silane coupling agents represented by the general formula (1) described in JP2013-43382A and the like. be able to.
  • Preferred examples of the silane coupling agent having a functional group capable of forming a covalent bond with an alicyclic epoxy compound include mercaptotrimethoxysilane, aminotrimethoxysilane, and glycidylmethoxysilane (see Examples below). ).
  • the chemical structure A formed by hydrogen bonding with silicon nitride and / or silicon oxynitride, which is the main component of the barrier layer includes silicon nitride and / or silicon oxynitride, which is the main component of the barrier layer, amino group, mercapto A structure formed by hydrogen bonding based on at least one of a group or a urethane structure is preferable.
  • the adhesive 40 that gives the chemical structure A formed by hydrogen bonding with silicon nitride and / or silicon oxynitride is also bonded to the organic matrix 30P constituting the wavelength conversion layer 30 by a covalent bond, hydrogen bond, or the like, similarly to the alkoxylane compound.
  • a compound capable of forming the chemical structure B is preferred.
  • Examples of the adhesive 40 that provides a chemical structure A formed by hydrogen bonding with silicon nitride and / or silicon oxynitride and a chemical structure B formed by covalent bonding or hydrogen bonding with the organic matrix P include phenylglycidyl ether acrylate hexa
  • the addition amount of the adhesion agent can be appropriately set, but if the addition amount is too large, the oxygen permeability in the matrix tends to be high, and the yellowing occurs depending on the type of the adhesion agent in the case of having a thiol group. May cause problems.
  • the addition amount of the adhesion agent is preferably as small as possible within a range where the effect of improving adhesion is sufficiently obtained. Specifically, it is preferably 0.1% by mass or more and 10% or less of the entire wavelength conversion layer, more preferably 0.5% or more and 8% or less, and particularly preferably 1% or more and 5% or less.
  • a quantum dot containing curable composition contains a polymerization initiator.
  • a polymerization initiator it is preferable to use a suitable polymerization initiator according to the kind of curable compound contained in a quantum dot containing curable composition, and it is preferable that it is a photoinitiator.
  • the photopolymerization initiator is a compound that can be decomposed by exposure to generate an initiation species such as a radical and an acid, and is a compound that can initiate and accelerate the polymerization reaction of the polymerizable compound by this initiation species.
  • the curable composition preferably contains one or more photocationic polymerization initiators as photopolymerization initiators.
  • photocationic polymerization initiator reference can be made to, for example, paragraphs 0019 to 0024 of Japanese Patent No. 4675719.
  • the photocationic polymerization initiator is preferably contained in an amount of 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of the polymerizable compound contained in the curable composition.
  • Use of an appropriate amount of the polymerization initiator is preferable from the viewpoint of reducing the amount of light irradiation for curing and uniformly curing the entire wavelength conversion layer.
  • Preferred examples of the cationic photopolymerization initiator include iodonium salt compounds, sulfonium salt compounds, pyridinium salt compounds, and phosphonium salt compounds.
  • an iodonium salt compound and a sulfonium salt compound are preferable from the viewpoint of excellent thermal stability, and an iodonium salt compound is more preferable from the viewpoint of suppressing absorption of light derived from the light source of the wavelength conversion layer.
  • the iodonium salt compound is a salt formed by a cation portion containing I + in the structure and an anion portion having an arbitrary structure, and has three or more electron donating groups, and at least of these electron donating groups. More preferred are diaryliodonium salts, one of which is an alkoxy group. By introducing an alkoxy group, which is an electron donating group, into the diaryliodonium salt in this way, it is possible to improve the stability by, for example, suppressing decomposition with water and nucleophiles over time and electron transfer due to heat. Can be expected. Specific examples of the iodonium salt compound having such a structure include the following photocationic polymerization initiators (iodonium salt compounds) A and B.
  • absorption of the light derived from the light source of the wavelength conversion layer 30 is not limited to the use of the iodonium salt compound, as described above, such as reduction of the content of the alicyclic epoxy compound, combined use of the (meth) acrylate compound, and the like. Since it can be reduced by means, the photocationic polymerization initiator that can be added to the curable composition is not limited to the iodonium salt compound.
  • Examples of usable photocationic polymerization initiators include one or a combination of two or more of the following commercially available products: CPI-110P (photocationic polymerization initiator C below), CPI- 101A, CPI-110P, CPI-200K, WPI-113, WPI-116, WPI-124, WPI-169, WPI-170 manufactured by Wako Pure Chemical Industries, Ltd. PI-2074, BASF manufactured by Rhodia Irgacure (registered trademark) 250, Irgacure 270, Irgacure 290 (Photocationic polymerization initiator D below) manufactured by Co., Ltd.
  • the curable composition may contain one or more radical polymerization initiators.
  • a photo radical initiator is preferable.
  • the photoradical initiator reference can be made to, for example, paragraphs 0037 and 0042 of JP2013-043382A and paragraphs 0040 to 0042 of JP2011-159924A.
  • the content of the photo radical polymerization initiator is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of the polymerizable compounds contained in the curable composition.
  • the curable composition may contain a viscosity modifier as necessary.
  • the viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm.
  • the viscosity modifier is also preferably a thixotropic agent.
  • thixotropic property refers to a property of reducing the viscosity with respect to an increase in shear rate in a liquid composition
  • a thixotropic agent is a composition obtained by including it in the liquid composition. It refers to a material having a function of imparting thixotropy to an object.
  • thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
  • sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
  • the curable composition has a viscosity of 3 to 100 mPa ⁇ s when the shear rate is 500 s ⁇ 1 , and preferably 300 mPa ⁇ s or more when the shear rate is 1 s ⁇ 1 .
  • a thixotropic agent In order to adjust the viscosity in this way, it is preferable to use a thixotropic agent.
  • the reason why the viscosity of the curable composition is preferably 3 to 100 mPa ⁇ s when the shear rate is 500 s ⁇ 1 and preferably 300 mPa ⁇ s or more when the shear rate is 1 s ⁇ 1 is as follows.
  • the barrier film 20 is mounted on the coating film of a curable composition, and is bonded together.
  • a production method including a step of curing the curable composition to form a wavelength conversion layer can be mentioned.
  • the coating film is uniformly applied so that no coating stripes are formed when the curable composition is applied to the barrier film 10, so that the coating film thickness is uniform.
  • the viscosity of the coating liquid (curable composition) is preferably low.
  • the resistance to the pressure at the time of bonding is high. preferable.
  • the shear rate 500 s ⁇ 1 is a representative value of the shear rate applied to the coating solution applied to the barrier film 10, and the shear rate 1 s ⁇ 1 is applied to the coating solution immediately before the barrier film 20 is bonded to the coating solution. It is a representative value of the applied shear rate. Note that the shear rate 1 s ⁇ 1 is merely a representative value.
  • the shear rate applied to the coating solution is approximately 0 s ⁇ 1.
  • the shear rate applied to the coating solution in the actual manufacturing process is not limited to 1 s ⁇ 1 .
  • the shear rate of 500 s ⁇ 1 is merely a representative value, and the shear rate applied to the coating solution in the actual manufacturing process is not limited to 500 s ⁇ 1 .
  • the viscosity of the curable composition is 3 to 100 mPa ⁇ s when the representative shear rate applied to the coating liquid is 500 s ⁇ 1 when the coating liquid is applied to the barrier film 10.
  • the said curable composition may contain the solvent as needed.
  • the type and amount of the solvent used are not particularly limited.
  • one or a mixture of two or more organic solvents can be used as the solvent.
  • the said curable composition may contain the other functional additive as needed.
  • leveling agents, antifoaming agents, antioxidants, radical scavengers, moisture getter agents, oxygen getter agents, UV absorbers, visible light absorbers, IR absorbers, etc. dispersion aids to assist the dispersion of phosphors
  • a plasticizer a brittleness improving agent, an antistatic agent, an antifouling agent, a filler, an oxygen transmission rate reducing agent for reducing the oxygen transmission rate as a wavelength conversion layer, a refractive index adjusting agent, a light scattering agent, and the like.
  • the barrier films 10 and 20 are films having a function of suppressing the permeation of moisture and / or oxygen.
  • the barrier films 10 and 20 have a configuration in which the barrier layers 12 and 22 are provided on the base materials 11 and 21, respectively. Yes.
  • the strength of the wavelength conversion member 1D is improved, and film formation can be easily performed.
  • the barrier films 10 and 20 in which the barrier layers 12 and 22 are supported by the base materials 11 and 21 are provided on both main surfaces of the wavelength conversion layer 30 so that the barrier layers 12 and 22 are adjacent to each other.
  • the barrier layers 12 and 22 may not be supported by the base materials 11 and 21, and if the base materials 11 and 21 have sufficient barrier properties, The barrier layer may be formed only from the materials 11 and 21.
  • barrier films 10 and 20 are preferably provided on both sides of the wavelength conversion layer 30 as in the present embodiment, but may be provided only on one side.
  • the barrier film preferably has a total light transmittance of 80% or more in the visible light region, and more preferably 90% or more.
  • the visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
  • the oxygen permeability of the barrier films 10 and 20 is preferably 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the barrier films 10 and 20 is more preferably 0.10 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and still more preferably 0.01 cm 3 / (m 2 ⁇ day ⁇ atm) or less. .
  • the barrier films 10 and 20 have a function of blocking moisture (water vapor) in addition to a gas barrier function of blocking oxygen.
  • the moisture permeability (water vapor transmission rate) of the barrier films 10 and 20 is 0.10 g / (m 2 ⁇ day ⁇ atm) or less.
  • the moisture permeability of the barrier films 10 and 20 is preferably 0.01 g / (m 2 ⁇ day ⁇ atm) or less.
  • the wavelength conversion member 1D at least one main surface of the wavelength conversion layer 30 is supported by the base material 11 or 21.
  • the “main surface” refers to the surface (front surface, back surface) of the wavelength conversion layer disposed on the viewing side or the backlight side when the wavelength conversion member is used. The same applies to the main surfaces of the other layers and members.
  • this wavelength conversion layer 30 it is preferable that the main surfaces of the front and back of the wavelength conversion layer 30 are supported by the base materials 11 and 21 like this embodiment.
  • the average film thickness of the substrates 11 and 21 is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 400 ⁇ m, and more preferably 30 ⁇ m to 300 ⁇ m from the viewpoint of impact resistance of the wavelength conversion member. It is preferable. In an aspect in which retroreflection of light is increased, such as when the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30 is reduced, or when the thickness of the wavelength conversion layer 30 is reduced, absorption of light having a wavelength of 450 nm is performed. Since the rate is preferably lower, the average film thickness of the base materials 11 and 21 is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less from the viewpoint of suppressing a decrease in luminance.
  • the retroreflective member of the backlight unit is used to maintain the display color of the LCD. It is necessary to increase the number of times the excitation light passes through the wavelength conversion layer by providing means for increasing retroreflection of light, such as providing a plurality of prism sheets in 2B. Therefore, the substrate is preferably a transparent substrate that is transparent to visible light. Here, being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate.
  • paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040 to 0055 of JP-A-2005-096108 can be referred to.
  • the base materials 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
  • Re (589) of the base material is in the above range because foreign matters and defects can be found more easily during inspection using a polarizing plate.
  • Re (589) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of 589 nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the base materials 11 and 21 are preferably base materials having a barrier property against oxygen and moisture.
  • Preferred examples of the substrate include a polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
  • the base materials 11 and 21 include barrier layers 12 and 22 formed in contact with the surface on the wavelength conversion layer 30 side, respectively.
  • the barrier layers 12 and 22 are inorganic layers mainly composed of silicon nitride and / or silicon oxynitride.
  • the barrier layers 12 and 22 are preferably composed mainly of silicon nitride.
  • the method for forming the barrier layers 12 and 22 is not particularly limited, and various film forming methods that can evaporate or scatter the film forming material and deposit it on the deposition surface can be used.
  • Examples of the method for forming the barrier layer include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum deposition method, oxidation reaction deposition method, sputtering method, ion plating method, and chemical vapor deposition method ( (Chemical Vapor Deposition method, CVD method).
  • the thickness of the barrier layers 12 and 22 may be 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably 10 nm to 150 nm.
  • the film thickness of the barrier layer adjacent to the wavelength conversion layer 30 is within the above-described range, light absorption in the barrier layer can be suppressed while realizing good barrier properties, and the light transmittance is further improved.
  • a high wavelength conversion member can be provided.
  • the barrier layers 12 and 22 are directly provided on the respective base materials. However, if the barrier layers 12 and 22 are between the respective base materials, the light transmittance of the wavelength conversion member is shown. As long as the above is not excessively reduced, one or a plurality of other inorganic layers or organic layers may be provided.
  • the inorganic layer that may be provided between the barrier layers 12 and 22 and each substrate is not particularly limited, and various inorganic compounds such as metals, inorganic oxides, nitrides, and oxynitrides can be used.
  • silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or more of these may be included.
  • Specific examples of the inorganic compound include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride.
  • a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
  • silicon nitride or silicon oxynitride the composition of the barrier layers 12 and 22 is different.
  • the barrier films 10 and 20 include an unevenness imparting layer (mat layer) 13 that imparts an uneven structure on a surface opposite to the surface on the wavelength conversion layer 30 side. It is preferable that the barrier film has a matte layer because the blocking property and slipping property of the barrier film can be improved.
  • the mat layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
  • the mat layer is preferably provided on the surface of the barrier film opposite to the wavelength conversion layer, but may be provided on both surfaces.
  • the wavelength conversion member 1D can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside.
  • the light scattering function may be provided inside the wavelength conversion layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer.
  • you may provide a light-scattering layer in the surface on the opposite side to the wavelength conversion layer of a base material.
  • the mat layer it is preferable that the mat layer is a layer that can be used both as an unevenness providing layer and a light scattering layer.
  • the wavelength conversion member of the present invention includes a step of preparing barrier films 10 and 20 having barrier layers 12 and 22 on base materials (supports) 11 and 21, and On the surface of the barrier layers 12 and 22, Quantum dots 30A and 30B; An alicyclic epoxy compound; A compound capable of binding to silicon nitride and / or silicon oxynitride which is the main component of the barrier layers 12 and 22, and / or bonded to silicon nitride and / or silicon oxynitride which is the main component of the barrier layer, and organic A compound capable of binding to the matrix;
  • the wavelength conversion member of the present invention which has a step of coating a curable composition containing quantum dots to form a coating film 30M of the curable composition and a step of photocuring or thermosetting the coating film 30M. It can be manufactured by a manufacturing method.
  • the wavelength conversion member 1D having the barrier films 10 and 20 including the barrier layers 12 and 22 on the base materials 11 and 21 on both surfaces of the wavelength conversion layer 30 is manufactured by photocuring.
  • a method for producing a wavelength conversion member of the present invention will be described with reference to FIGS.
  • the present invention is not limited to the following embodiments.
  • the wavelength conversion layer 30 can be formed by applying the prepared quantum dot-containing curable composition to the surface of the barrier films 10 and 20 and then curing it by light irradiation or heating.
  • Known coating methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, and wire bar method. The coating method is mentioned.
  • Curing conditions can be appropriately set according to the type of curable compound to be used and the composition of the polymerizable composition. Moreover, when a quantum dot containing curable composition is a composition containing a solvent, you may give a drying process for solvent removal before hardening.
  • FIG. 4 is a schematic configuration diagram of an example of a manufacturing apparatus for the wavelength conversion member 1D
  • FIG. 5 is a partially enlarged view of the manufacturing apparatus shown in FIG.
  • the manufacturing apparatus shown in FIG. 4 is configured to apply a coating liquid such as a quantum dot-containing curable composition on the barrier film 10, and the barrier film 20 on the coating film 30M formed by the coating part 120.
  • a laminating unit 130 for laminating and a curing unit 160 for curing the coating film 30M are provided.
  • the coating unit 120 is configured such that the coating film 30M is formed by an extrusion coating method using a die coater 124.
  • first film the first barrier film 10
  • second film Laminating (superimposing) the second barrier film 20 (hereinafter also referred to as “second film”) continuously conveyed on the coating film 30M, the step of forming the coating film 30M by coating In the state where the coating film 30M is sandwiched between the first film 10 and the second film 20, and the coating film 30M is sandwiched between the first film 10 and the second film 20, the first film 10, And at least a step of winding one of the second films 20 around the backup roller 126 and irradiating with light while continuously transporting the film to polymerize and cure the coating film to form a wavelength conversion layer (cured layer).
  • a barrier film having a barrier property against oxygen and moisture is used for both the first film 10 and the second film 20.
  • the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 120.
  • the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed.
  • a tension of 20 to 150 N / m, preferably 30 to 100 N / m is applied to the first film 10.
  • the quantum dot containing curable composition (henceforth "application liquid” is applied) is apply
  • a die coater 124 and a backup roller 126 disposed to face the die coater 124 are installed.
  • the surface opposite to the surface on which the coating film 30M of the first film 10 is formed is wound around the backup roller 126, and the coating liquid is applied from the discharge port of the die coater 124 onto the surface of the first film 10 that is continuously conveyed.
  • the coating film 30M is formed.
  • the coating film 30 ⁇ / b> M refers to a curable composition containing quantum dots before being applied on the first film 10.
  • the die coater 124 to which the extrusion coating method is applied is shown as the coating apparatus, but the present invention is not limited to this.
  • a coating apparatus to which various methods such as a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method are applied can be used.
  • the first film 10 that has passed through the coating unit 120 and has the coating film 30M formed thereon is continuously conveyed to the laminating unit 130.
  • the second film 20 continuously conveyed is laminated on the coating film 30 ⁇ / b> M, and the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • a laminating roller 132 and a heating chamber 134 surrounding the laminating roller 132 are installed in the laminating unit 130.
  • the heating chamber 134 is provided with an opening 136 for allowing the first film 10 to pass therethrough and an opening 138 for allowing the second film 20 to pass therethrough.
  • a backup roller 162 is disposed at a position facing the laminating roller 132.
  • the first film 10 on which the coating film 30M is formed is wound around the backup roller 162 on the surface opposite to the surface on which the coating film 30M is formed, and is continuously conveyed to the laminating position P.
  • Lamination position P means the position where the contact between the second film 20 and the coating film 30M starts.
  • the first film 10 is preferably wound around the backup roller 162 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected and removed by the backup roller 162 before reaching the laminate position P.
  • the position (contact position) where the first film 10 is wound around the backup roller 162 and the distance L1 to the laminate position P are preferably long, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 162 and the pass line.
  • the second film 20 is laminated by the backup roller 162 and the laminating roller 132 used in the curing unit 160. That is, the backup roller 162 used in the curing unit 160 is also used as a roller used in the laminating unit 130.
  • the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 130 in addition to the backup roller 162 so that the backup roller 162 is not used.
  • the backup roller 162 used in the curing unit 160 in the laminating unit 130, the number of rollers can be reduced.
  • the backup roller 162 can also be used as a heat roller for the first film 10.
  • the second film 20 sent from a sending machine (not shown) is wound around the laminating roller 132 and continuously conveyed between the laminating roller 132 and the backup roller 162.
  • the second film 20 is laminated on the coating film 30M formed on the first film 10 at the laminating position P. Thereby, the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • Lamination refers to laminating the second film 20 on the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 30 obtained by polymerizing and curing the coating film 30M, and the second film 20.
  • the above is preferable.
  • L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 30M, and the 2nd film 20.
  • FIG. By making the distance L2 equal to or less than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 20 and the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is the shortest distance between the outer circumferential surface of the laminating roller 132 and the outer circumferential surface of the backup roller 162.
  • Rotational accuracy of the laminating roller 132 and the backup roller 162 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 30M.
  • the difference between the temperature of the backup roller 162 of the curing unit 160 and the temperature of the first film 10 is preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
  • the heating chamber 134 In order to reduce the difference from the temperature of the backup roller 162, when the heating chamber 134 is provided, it is preferable to heat the first film 10 and the second film 20 in the heating chamber 134.
  • hot air is supplied to the heating chamber 134 by a hot air generator (not shown), and the first film 10 and the second film 20 can be heated.
  • the first film 10 may be heated by the backup roller 162 by being wound around the temperature-adjusted backup roller 162.
  • the second film 20 can be heated with the laminating roller 132 by using the laminating roller 132 as a heat roller.
  • the heating chamber 134 and the heat roller are not essential, and can be provided as necessary.
  • the first film 10 and the second film 20 are continuously conveyed to the curing unit 160 in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20.
  • curing in the curing unit 160 is performed by light irradiation.
  • the curable compound contained in the quantum dot-containing curable composition is polymerized by heating, spraying hot air, etc. Curing can be performed by heating.
  • silicon nitride and / or silicon oxynitride which is the main component of the barrier layers 12 and 22, and the adhesive agent are bonded to form the chemical structure A in the wavelength conversion layer 30.
  • the adhesive 40 forms the above-described chemical structure B and is bonded to the organic matrix 30P in the curing step, the chemical structure B is also formed in the curing step.
  • a light irradiation device 164 is provided at a position facing the backup roller 162 and the backup roller 162. Between the backup roller 162 and the light irradiation device 164, the first film 10 and the second film 20 sandwiching the coating film 30M are continuously conveyed. What is necessary is just to determine the light irradiated by a light irradiation apparatus according to the kind of photocurable compound contained in a quantum dot containing curable composition, and an ultraviolet-ray is mentioned as an example.
  • the ultraviolet light means light having a wavelength of 280 to 400 nm.
  • a light source that generates ultraviolet rays for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the light irradiation amount may be set within a range in which polymerization and curing of the coating film can proceed.
  • the coating film 30M can be irradiated with ultraviolet rays having an irradiation amount of 100 to 10,000 mJ / cm 2 .
  • the first film 10 is wound around the backup roller 162 in a state where the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20, and is continuously conveyed from the light irradiation device 164.
  • the wavelength conversion layer (cured layer) 30 can be formed by performing light irradiation to cure the coating film 30M.
  • the first film 10 side is wound around the backup roller 162 and continuously conveyed, but the second film 20 may be wound around the backup roller 162 and continuously conveyed.
  • Wrapping around the backup roller 162 means a state in which either the first film 10 or the second film 20 is in contact with the surface of the backup roller 162 at a certain wrap angle. Accordingly, the first film 10 and the second film 20 move in synchronization with the rotation of the backup roller 162 while being continuously conveyed. Winding around the backup roller 162 may be at least during the irradiation of ultraviolet rays.
  • the backup roller 162 includes a cylindrical main body and rotating shafts disposed at both ends of the main body.
  • the main body of the backup roller 162 has a diameter of ⁇ 200 to 1000 mm, for example. There is no restriction on the diameter ⁇ of the backup roller 162. In consideration of curl deformation of the laminated film, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm.
  • the temperature of the backup roller 162 takes into consideration the heat generation during light irradiation, the curing efficiency of the coating film 30M, and the occurrence of wrinkle deformation on the backup roller 162 of the first film 10 and the second film 20. Can be determined.
  • the backup roller 162 is preferably set to a temperature range of 10 to 95 ° C., for example, and more preferably 15 to 85 ° C.
  • the temperature related to the roller refers to the surface temperature of the roller.
  • the distance L3 between the laminate position P and the light irradiation device 164 can be set to 30 mm or more, for example.
  • the coating film 30M becomes the cured layer 30 by light irradiation, and the wavelength conversion member 1D including the first film 10, the cured layer 30, and the second film 20 is manufactured.
  • the wavelength conversion member 1D is peeled off from the backup roller 162 by the peeling roller 180.
  • the wavelength conversion member 1D is continuously conveyed to a winder (not shown), and then the wavelength conversion member 1D is wound into a roll by the winder.
  • the manufacturing method of the wavelength conversion layer of this invention is a single side
  • the wavelength conversion member of this aspect can be manufactured by using a base material not provided with a barrier layer as the above-described second film.
  • the coating film 30M is after the drying process performed as needed.
  • a wavelength conversion layer (cured layer) by curing and forming a coating layer on the wavelength conversion layer as necessary
  • a second film made of a base material not provided with a barrier layer is bonded to the adhesive. It is also possible to form the wavelength conversion member 1D by laminating on the wavelength conversion layer via (and the coating layer).
  • the coating layer is one or more other layers such as an inorganic layer, and can be formed by a known method.
  • the backlight unit 2 shown in FIG. 1 includes a light source 1A that emits primary light (blue light L B ), and a light guide plate 1B that guides and emits primary light emitted from the light source 1A.
  • a backlight unit that is a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength band of 430 nm or more and 480 nm or less, a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 500 nm or more and less than 600 nm, Emits green light having an emission intensity peak with a value width of 100 nm or less, and red light having an emission center wavelength in a wavelength band of 600 nm to 680 nm and having an emission intensity peak with a half-value width of 100 nm or less. It is preferable.
  • the wavelength band of blue light emitted from the backlight unit 2 is preferably 430 nm or more and 480 nm or less, and more preferably 440 nm or more and 460 nm or less.
  • the wavelength band of the green light emitted from the backlight unit 2 is preferably 520 nm or more and 560 nm or less, and more preferably 520 nm or more and 545 nm or less.
  • the wavelength band of red light emitted from the backlight unit is preferably 600 nm or more and 680 nm or less, and more preferably 610 nm or more and 640 nm or less.
  • the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
  • the backlight unit 2 includes at least the planar light source 1C together with the wavelength conversion member 1D.
  • the light source 1A include those that emit blue light having an emission center wavelength in a wavelength band of 430 nm to 480 nm, and those that emit ultraviolet light.
  • a light emitting diode, a laser light source, or the like can be used as the light source 1A.
  • the planar light source 1 ⁇ / b> C may be a planar light source including a light source 1 ⁇ / b> A and a light guide plate 1 ⁇ / b> B that guides and emits primary light emitted from the light source 1 ⁇ / b> A.
  • a planar light source that is arranged side by side in a plane parallel to the wavelength conversion member 1D and includes a diffusion plate 1E instead of the light guide plate 1B may be used.
  • the former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type.
  • a case where a planar light source is used as the light source has been described as an example. However, a light source other than the planar light source can be used as the light source.
  • the reflecting plate 2A is not particularly limited, and known ones can be used, and are described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, etc. Incorporated into the present invention.
  • the retroreflective member 2B may include a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M Limited), a light guide, or the like.
  • the configuration of the retroreflective member 2B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the backlight unit 2 described above can be applied to a liquid crystal display device.
  • the liquid crystal display device 4 includes the backlight unit 2 of the above embodiment and the liquid crystal cell unit 3 disposed to face the retroreflective member side of the backlight unit.
  • the liquid crystal cell unit 3 has a configuration in which a liquid crystal cell 31 is sandwiched between polarizing plates 32 and 33.
  • the polarizing plates 32 and 33 have both main surfaces of polarizers 322 and 332, respectively.
  • the polarizing plate protective films 321 and 323, 331 and 333 are protected.
  • liquid crystal cell 31 there are no particular limitations on the liquid crystal cell 31, the polarizing plates 32 and 33, and the components thereof that constitute the liquid crystal display device 4, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the driving mode of the liquid crystal cell 31 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used.
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 is given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 4 further includes an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an adhesive layer such as an adhesive to an adhesive layer.
  • a surface layer such as an undercoat layer may be disposed.
  • the backlight side polarizing plate 32 may have a retardation film as the polarizing plate protective film 323 on the liquid crystal cell 31 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the backlight unit 2 and the liquid crystal display device 4 include the wavelength conversion member having excellent light resistance according to the present invention. Therefore, the backlight unit having the same effects as the wavelength conversion member of the present invention, the separation of the interface of the wavelength conversion layer including the quantum dots hardly occurs, the light resistance, the luminance durability, and the long-term reliability of the luminance Liquid crystal display device.
  • barrier film production of first barrier film (high barrier film)
  • a barrier layer was formed on one side of a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine A4300, thickness 50 ⁇ m) by the following procedure.
  • PET film polyethylene terephthalate film
  • TMPTA trimethylolpropane triacrylate
  • a photopolymerization initiator Liberti, ESACURE KTO46
  • This coating solution was applied onto the PET film by a roll toe roll using a die coater, and passed through a drying zone at 50 ° C. for 3 minutes. Then, ultraviolet rays were irradiated in a nitrogen atmosphere (accumulated dose: about 600 mJ / cm 2 ), cured by UV curing, and wound up.
  • the thickness of the organic barrier layer formed on the PET film substrate was 1 ⁇ m.
  • the PET film with an organic barrier layer is set in a delivery part of a roll-to-roll vacuum film forming apparatus and discarded in a vacuum, and then a CVD apparatus is formed by a CVD (Chemical Vapor Deposition) method (chemical vapor deposition method).
  • An inorganic barrier layer (silicon nitride layer) was formed on the surface of the PET substrate.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • the barrier film has a moisture permeability of 0.001 g / (m 2 ⁇ day ⁇ atm) under the conditions of 40 ° C. and 90% RH, and an oxygen permeability of 0.02 cm under the conditions of the measurement temperature of 23 ° C. and 90% RH. 3 / (m 2 ⁇ day ⁇ atm).
  • Example 2 Production of wavelength conversion member (Example 1) -Preparation of curable composition containing quantum dots-
  • a quantum dot-containing curable composition was prepared at the following blending ratio, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, and dried under reduced pressure for 30 minutes to prepare a coating solution of Example 1.
  • CZ520-100 manufactured by NN-Labs Co. is used as the quantum dot dispersion liquid 1 having an emission maximum wavelength of 535 nm
  • CZ620-100 manufactured by NN-Labs Co. is used as the quantum dot dispersion liquid 2 having an emission maximum wavelength of 630 nm. It was.
  • a first barrier film was prepared, and the prepared quantum dot-containing polymerizable composition was applied on the surface of the inorganic layer with a die coater while continuously transporting at a tension of 1 m / min and 60 N / m, and a thickness of 50 ⁇ m. The coating film was formed. Next, the first barrier film on which the coating film is formed is wound around a backup roller, and another first barrier film is laminated on the coating film so that the barrier layer surface is in contact with the coating film. While continuously transporting the coating film with the barrier film, the heating zone at 100 ° C. was passed for 3 minutes.
  • ultraviolet rays were irradiated and cured, and the wavelength conversion layer containing quantum dots was cured to produce a wavelength conversion member.
  • the irradiation amount of ultraviolet rays was 2000 mJ / cm 2 .
  • Example 2 A wavelength conversion member was produced in the same manner as in Example 1 except that the adhesive was changed from 3-glycidyloxytrimethoxysilane to 3-mercaptopropyltrimethoxysilane.
  • Example 3 A wavelength conversion member was produced in the same manner as in Example 1 except that the adhesive was changed from 3-glycidyloxytrimethoxysilane to 3-aminopropyltrimethoxysilane.
  • Example 4 A wavelength conversion member was produced in the same manner as in Example 1 except that the matrix material was changed from the alicyclic epoxy compound I to the alicyclic epoxy compound II.
  • the alicyclic epoxy compound II Daicel Cytec Co., Ltd., Celoxide 8000 was used.
  • Example 5 A wavelength conversion member was produced in the same manner as in Example 1 except that the adhesion agent was trimethoxysilylpropyl methacrylate which did not form a bond with the matrix material and had low compatibility.
  • a wavelength conversion member was prepared in the same manner as in Example 1 except that no adhesive was added and the matrix material was changed to an aliphatic epoxy compound that was not an alicyclic epoxy compound. .
  • the aliphatic epoxy compound 828 US manufactured by Mitsubishi Chemical Corporation was used.
  • Example 2 A wavelength conversion member was produced in the same manner as in Example 1 except that the matrix material was changed to an aliphatic epoxy compound that was not an alicyclic epoxy compound. As an aliphatic epoxy compound, the thing similar to the comparative example 1 was used.
  • the wavelength conversion member was produced like Example 1 except not having added an adhesion agent.
  • Example 4 A wavelength conversion member was produced in the same manner as in Example 1 except that the barrier film was changed from the high barrier property first barrier film to the low barrier property second film.
  • A 10.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less
  • B More than 10.00 cm 3 / (m 2 ⁇ day ⁇ atm) 100.0 cm 3 / (m 2 ⁇ day ⁇ atm) or less
  • C 100. Over 0cm 3 / (m 2 ⁇ day ⁇ atm)
  • the wavelength conversion member produced by the Example and the comparative example was cut out to the square of 3 cm square.
  • the wavelength conversion member of each example was placed on a commercially available blue light source (OPSM-H150X142B, manufactured by OPTEX-FA Corporation), and blue light was applied to the wavelength conversion member for 100 hours. Irradiated continuously. The edge part of the wavelength conversion member after continuous irradiation was observed. The distance from the end interface of the wavelength conversion member toward the center direction to the boundary surface of the region where the light emission behavior was lost or the light emission was attenuated was defined as d, which was an evaluation value. Evaluation criteria d ⁇ less than 0.1 mm: A (Excellent) 0.1 mm ⁇ d ⁇ 0.5 mm: B (Good) 0.5mm ⁇ d: C (No Good)
  • SR3 luminance meter
  • the wavelength conversion member was irradiated with blue light continuously for 100 hours in a room maintained at 25 ° C. and 60% RH.
  • the luminance (Y1) at the four corners of the wavelength conversion member after continuous irradiation was measured by the same method as the evaluation of luminance before continuous irradiation, and the rate of change ( ⁇ Y) with the luminance before continuous irradiation described in the following formula was taken. It was used as an indicator of luminance change.
  • 180 ° peeling adhesive strength was measured by the method described in JIS Z 0237.
  • the adhesion of each example was evaluated according to the evaluation criteria described below. The obtained results are shown in Table 1.
  • 180 degree peeling adhesive strength is 2.015N / 10mm or more: A (Excellent) 0.5N / 10mm or more and less than 2.015N / 10mm: B (Good) Less than 0.5N / 10mm: C (No Good)
  • the wavelength conversion member of each example has high adhesion between the wavelength conversion layer and the adjacent barrier layer and is excellent in light resistance.
  • the liquid crystal display device incorporating the wavelength conversion member of each example was a liquid crystal display device with little deterioration in luminance at the end and excellent long-term reliability.
  • Comparative Example 3 has the same configuration as Example 1 except that the wavelength conversion layer does not contain an adhesive component, and Comparative Example 1 uses an alicyclic epoxy compound as a raw material for the matrix material of the wavelength conversion layer. It differs in the point used.
  • Comparative Example 3 compared with Comparative Example 1, the oxygen barrier property and luminance durability were improved in that the wavelength conversion layer had improved oxygen barrier property. As a result, the adhesion between the barrier layer and the barrier layer deteriorated. In Comparative Example 4, a decrease in luminance durability due to the barrier property of the barrier film was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Epoxy Resins (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

【課題】励起光照射により蛍光を発する量子ドットを含む波長変換層を有する波長変換部材において、耐光性に優れ、液晶表示装置に組み込んだ際に高い輝度耐久性を得ることが可能な波長変換部材及びそれを備えたバックライトユニット、波長変換部材の製造方法を提供すること。耐光性に優れ、輝度の長期信頼性の高い液晶表示装置を提供すること。 【解決手段】励起光により励起されて蛍光を発光する少なくとも1種の量子ドット(30A,30B)が、有機マトリクス(30P)中に分散されて含まれてなる波長変換層(30)と、波長変換層の少なくとも一方の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層(22)とを備えてなり、有機マトリクス(30P)は、少なくとも脂環式エポキシ化合物を含む硬化性組成物が硬化されたものであり、窒化ケイ素及び/又は酸窒化ケイ素と結合してなる化学構造Aを含む。

Description

波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
 本発明は、励起光照射により蛍光を発する量子ドットを含む波長変換層を有する波長変換部材及びそれを備えたバックライトユニット、液晶表示装置に関する。本発明はまた、励起光照射により蛍光を発する量子ドットを含む波長変換層を有する波長変換部材の製造方法に関する。
 液晶表示装置(以下、LCDとも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、少なくともバックライトと液晶セルとから構成され、通常、更に、バックライト側偏光板、視認側偏光板などの部材が含まれる。
 近年、LCDの色再現性の向上を目的として、バックライトユニットの波長変換部材に、量子ドット(Quantum Dot、QD、量子点とも呼ばれる。)を発光材料として含んだ波長変換層を備えた構成が注目されている(特許文献1、特許文献2等)。波長変換部材は、面状光源から入射された光の波長を変換して白色光として出射させる部材であり、上記量子ドットを発光材料として含んだ波長変換層では、発光特性の異なる2種又は3種の量子ドットが面状光源から入射された光により励起されて発光する蛍光を利用して白色光を具現化することができる。
 量子ドットによる蛍光は高輝度であり、しかも半値幅が小さいため、量子ドットを用いたLCDは色再現性に優れる。このような量子ドットを用いた3波長光源化技術の進行により、色再現域は、現行のTV規格(FHD、NTSC(National Television System Committee))比72%から100%へと拡大している。
 量子ドットを用いた波長変換部材を備えたLCDは、上記優れた色再現性を有するが、量子ドットが酸素との接触により光酸化されると発光強度が低下する(耐光性が低い)という問題がある。従って、輝度耐久性が高い、すなわち、長期信頼性の高いLCDの実現には、量子ドットと酸素との接触を抑制することが重要である。
 特許文献1、特許文献2に記載されているように、量子ドットを発光材料として含む波長変換層は、有機マトリクス(ポリマーマトリクス)中に量子ドットが略一様に分散されてなる態様が一般的である。従って、波長変換部材において、量子ドットと酸素との接触を抑制するためには、波長変換層に到達する酸素量の低減、及び、波長変換層に到達した酸素の量子ドットとの接触の抑制が重要である。
 波長変換層に到達する酸素量の低減の観点において、特許文献1には、量子ドットを酸素等から保護するために、量子ドットを含む層に、酸素が侵入することを抑制するバリア性基材(バリアフィルム)を積層することが記載されている。
 バリアフィルムは、フィルム状の基材表面にバリア性を有する無機層や有機層から構成されるバリア層を積層してなる態様、及び、表面にバリア層を設けずに、基材そのものをバリア性の優れた材料により構成した態様等が知られている。バリア性を有する無機層としては、無機酸化物、無機窒化物、無機酸化窒化物、金属等の無機層が好適に使用されている。
 波長変換層に到達した酸素の量子ドットとの接触の抑制の観点では、波長変換層の有機マトリクスとして酸素透過性の低い材料を用いることが考えられる。特許文献2には、量子ドットが、湿気及び酸素に不透過性の疎水性材料のドメイン内で保護されるようにする態様として、マトリクス材にエポキシを含む態様が記載されている。
米国特許出願公開第2012/0113672号明細書 特表2013-544018号公報
 上記した、酸素透過性の低い有機マトリクスを備えた波長変換層と、バリア性基材とを組み合わせることにより、波長変換層内の量子ドットの光酸化を効果的に抑制することができる。しかしながら、波長変換層の有機マトリクスとバリア性基材との層間に空隙を生じるなど、積層に起因して波長変換部材に欠陥を生じると、有機マトリクス、及び基材それぞれの性能を充分に活かすことができない虞がある。
 本発明は上記事情に鑑みてなされたものであり、耐光性に優れ、且つ、液晶表示装置に組み込んだ際に高い輝度耐久性を得ることが可能な波長変換部材、及びそれを備えたバックライトユニットを提供することを目的とするものである。
 本発明はまた、耐光性に優れ、輝度の長期信頼性の高い液晶表示装置を提供することを目的とするものである。
 本発明はまた、耐光性に優れ、且つ、液晶表示装置に組み込んだ際に高い輝度耐久性を得ることが可能な波長変換部材の製造方法を提供することを目的とするものである。
 本発明者らは、脂環式エポキシ化合物含む硬化性組成物を硬化させて得られるポリマーが、酸素透過性の低い波長変換層のマトリクス材料として、好適であることを見出した。また、酸素透過性が低く、量子ドットの光酸化反応を抑制するために好適なバリア層としては、窒化ケイ素や酸窒化ケイ素を主成分とする無機層が好ましい。
 しかしながら、脂環式エポキシ化合物を含む硬化性組成物を硬化させて得られるポリマーと、窒化ケイ素や酸窒化ケイ素を主成分とする無機層とは密着性が充分でない場合があることを見出した。
 そこで、本発明者らは、脂環式エポキシ化合物を含む硬化性組成物を硬化させて得られる有機マトリクス中に量子ドットを含む波長変換層と、窒化ケイ素及び/または酸窒化ケイ素を主成分とするバリア層とを密着性良く積層する構成について鋭意検討を行い、本発明を完成させた。
 すなわち、本発明の波長変換部材は、
 励起光により励起されて蛍光を発光する少なくとも1種の量子ドットが、有機マトリクス中に分散されて含まれてなる波長変換層と、
 波長変換層の少なくとも一方の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層とを備えてなり、
 有機マトリクスは、少なくとも脂環式エポキシ化合物を含む硬化性組成物が硬化されたものであり、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる化学構造Aを含む。
 本明細書において、「窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層」とは、窒化ケイ素、酸窒化ケイ素、または、窒化ケイ素及び酸窒化ケイ素の混合物を、90質量%以上の割合で含有するバリア層を意味することとする。
 また、本明細書において、「隣接している」とは、直接接している態様を意味する。
 バリア層は、窒化ケイ素を主成分とすることが好ましい。
 化学構造Aは、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる構造、または、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる構造であることが好ましい。
 バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素とシロキサン結合してなる構造が好ましい。
 バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と、アミノ基,メルカプト基,又はウレタン構造のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。
 本発明の波長変換部材において、化学構造Aは、有機マトリクスに化学構造Bを介して結合されて含まれてなる態様であることが好ましい。
 化学構造Bは、有機マトリクスと共有結合してなる構造、または、有機マトリクスと水素結合してなる構造であることが好ましい。
 有機マトリクスと共有結合してなる化学構造Bとしては、有機マトリクスと、アミノ基,メルカプト基,又はエポキシ基のうち少なくとも1つに基づく共有結合により結合してなる構造が好ましい。
 有機マトリクスと水素結合してなる化学構造Bとしては、有機マトリクスと、アミノ基,カルボキシル基,又はヒドロキシ基のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。
 硬化されて有機マトリクスを構成する脂環式エポキシ化合物としては、下記脂環式エポキシ化合物Iを好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
 本発明の波長変換部材において、波長変換層は、量子ドットと、脂環式エポキシ化合物と、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合して化学構造Aを形成する化合物とを含む量子ドット含有硬化性組成物を硬化させて形成されたものであることが好ましい。化学構造Aを形成する化合物は、更に、有機マトリクスと化学構造Bを形成するものであることがより好ましい。
 本発明のバックライトユニットは、一次光を出射する面状光源と、
 面状光源上に備えられてなる上記本発明の波長変換部材と、
 波長変換部材を挟んで面状光源と対向配置される再帰反射性部材と、
 面状光源を挟んで波長変換部材と対向配置される反射板とを備えたバックライトユニットであって、
 波長変換部材は、面状光源から出射された一次光の少なくとも一部を励起光として、蛍光を発光し、蛍光からなる二次光を含む光を少なくとも出射するものである。
 本発明の液晶表示装置は、上記本発明のバックライトユニットと、
バックライトユニットの再帰反射性部材側に対向配置された液晶ユニットとを備えてなる。
 本発明の波長変換部材の製造方法は、励起光により励起されて蛍光を発光する少なくとも1種の量子ドットが、有機マトリクス中に分散されて含まれてなる波長変換層と、
 波長変換層の少なくとも一方の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層とを備えてなる波長変換部材の製造方法であって、
 基材上にバリア層を備えたバリアフィルムを用意する工程と、
 バリア層の表面に、
    量子ドットと、
    脂環式エポキシ化合物と、
   バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合しうる化合物、及び/または、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合し、且つ、有機マトリクスと結合しうる化合物と、
を含む量子ドット含有硬化性組成物を塗布して硬化性組成物の塗膜を形成する工程と、
 塗膜を光硬化または熱硬化させる工程と、を順次有する。
 本明細書において、「無機層」とは、無機材料を主成分とする層であり、好ましくは無機材料のみから形成される層である。これに対し、「有機層」とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、更には80質量%以上、特に90質量%以上を占める層を言うものとする。
 また、本明細書中、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。また、430nm以上480nm以下の波長帯域に発光中心波長を有する光を青色光と呼び、500nm以上600nm未満の波長帯域に発光中心波長を有する光を緑色光と呼び、600nm以上680nm以下の波長帯域に発光中心波長を有する光を赤色光と呼ぶ。
 本明細書において、バリア層の透湿度は、測定温度40℃、相対湿度90%RHの条件下で、G.NISATO、P.C.P.BOUTEN、P.J.SLIKKERVEERらSID Conference Record of the International Display Research Conference 1435-1438頁に記載の方法(カルシウム法)を用いて測定した値である。本明細書において、透湿度の単位は、[g/(m・day・atm)]を使用している。透湿度0.1g/(m・day・atm)は、SI単位系では透湿度1.14×10-11g/(m・s・Pa)に相当する。
 本明細書において、酸素透過率は、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した値である。本明細書において、酸素透過率の単位は、[cm/(m・day・atm)]を使用している。酸素透過率1.0cm/(m・day・atm)は、SI単位系では酸素透過率1.14×10-1fm/(s・Pa)に相当する。
 本発明の波長変換部材は、励起光により励起されて蛍光を発光する少なくとも1種の量子ドットが、バリア性の高い有機マトリクス中に分散されて含まれてなる波長変換層と、波長変換層の少なくとも一方の主面に、バリア性の高いバリア層を隣接して備え、且つ、波長変換層の有機マトリクスにバリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる化学構造Aを含んでいる。かかる構成によれば、波長変換層内への酸素の侵入を効果的に防いで、波長変換層中の量子ドットの光酸化による発光強度の低下を抑制することができ、更に、波長変換層とバリア層との間の密着性が高いため、波長変換層-バリア層間の非密着部分から酸素が侵入する可能性が低い。従って、本発明によれば、耐光性に優れ、且つ、液晶表示装置に組み込んだ際に高い輝度耐久性を得ることが可能な波長変換部材、及びそれを備えたバックライトユニットを提供することができる。
本発明にかかる一実施形態の波長変換部材を備えたバックライトユニットの概略構成断面図である。 本発明にかかる一実施形態の波長変換部材の概略構成断面図、及び、波長変換層-バリア層界面付近の部分拡大図(化学構造Aの第一態様を示す模式図)である。 図2の波長変換部材の波長変換層-バリア層界面付近における化学構造Aの第二態様を示す模式図である。 本発明にかかる一実施形態の波長変換部材製造装置の一例を示す概略構成図である。 図4に示す製造装置の部分拡大図である。 本発明にかかる一実施形態のバックライトユニットを備えた液晶表示装置の概略構成断面図である。
 図面を参照して、本発明にかかる一実施形態の波長変換部材及びそれを備えたバックライトユニットについて説明する。図1は、本実施形態の波長変換部材を備えたバックライトユニットの概略構成断面図であり、図2は、本実施形態の波長変換部材概略構成断面図、及び、波長変換層-バリア層界面付近の部分拡大図(化学構造Aの第一態様を示す模式図)である。本明細書の図面において、視認しやすくするために各部の縮尺を適宜変更して示してある。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 図1に示されるように、バックライトユニット2は、一次光(青色光L)を出射する光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源1Cと、面状光源1C上に備えられてなる波長変換部材1Dと、波長変換部材1Dを挟んで面状光源1Cと対向配置される再帰反射性部材2Bと、
 面状光源1Cを挟んで波長変換部材1Dと対向配置される反射板2Aとを備えており、波長変換部材1Dは、面状光源1Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(L,L)及び波長変換部材1Dを透過した一次光Lを出射するものである。
 波長変換部材1Dの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
 図1において、波長変換部材1Dから出射されたL,L,Lは、再帰反射性部材2Bに入射し、入射した各光は、再帰反射性部材2Bと反射板2Aとの間で反射を繰り返し、何度も波長変換部材1Dを通過する。その結果、波長変換部材1Dでは充分な量の励起光(青色光L)が量子ドット30A、30Bによって吸収され、必要な量の蛍光(L,L)が発光し、再帰反射性部材2Bから白色光Lが具現化されて出射される。
 励起光として紫外光を用いた場合は、量子ドット30A,30B,30C(図示せず)を含む波長変換層30に励起光として紫外光を入射させることにより、量子ドット30Aにより発光される赤色光、量子ドット30Bにより発光される緑色光、及び量子ドット30Cにより発光される青色光により、白色光Lを具現化することができる。
「波長変換部材」
 波長変換部材1Dは、励起光(L)により励起されて蛍光(L,L)を発光する量子ドット30A,30Bが、有機マトリクス30P中に分散されて含まれてなる波長変換層30と、波長変換層30の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層12,22を備えてなり、有機マトリクス30Pは、少なくとも脂環式エポキシ化合物を含む硬化性組成物が硬化されたものであり、バリア層12,22の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる化学構造Aを含んでいる(図2)。
 本実施形態において、波長変換層30は、その両主面(表面)に、バリアフィルム10と20とを備えてなり、バリアフィルム10,20は、それぞれ、基材11,21と、その表面に支持されてなるバリア層12,22とから構成されている。
 図2において、波長変換部材1Dは、上側(バリアフィルム20側)が、バックライトユニット2における再帰反射性部材2B側であり、下側(バリアフィルム10側)が面状光源1C側である。波長変換部材1Dに侵入した酸素及び水分は、再帰反射性部材2B側及び面状光源1C側においても、バリアフィルム10及び20により波長変換層30への侵入が抑制される構成を有している。
 本実施形態では、バリア層12,22は、基材11,21上に形成されてなる態様について示してあるが、かかる態様に制限されるものではなく、基材に形成されていないバリア層からなる態様であってもよい。
 波長変換部材1Dにおいて、バリアフィルム10は、波長変換層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層(マット層)13を備えている。本実施形態において、凹凸付与層13は、光拡散層としての機能も有している。
 図2には、波長変換層30-バリア層12界面付近の部分拡大図(化学構造Aの第一態様を示す模式図)を併せて示してある。部分拡大図は、波長変換層30-バリア層12界面付近のもののみ示してあるが、波長変換層30-バリア層22界面も同様の構成を有していてもよい。
 図2の部分拡大図に示されるように、波長変換層30に含まれる化学構造Aは、密着剤40内に含まれてなる。本明細書において、密着剤40とは、波長変換層30の原料液である量子ドット含有硬化性組成物に含有されてなる化合物、並びに、波長変換層30中に化学構造A及び/または化学構造Bを形成して含まれる部分構造の双方の意味で用いるものとする。
 図2の部分拡大図に示される第一態様では、密着剤40は、バリア層12の主成分である窒化ケイ素及び/または酸窒化ケイ素と結合して化学構造Aを形成してなり、且つ、有機マトリクス30Pと結合して化学構造Bを形成してなるものを含んでいる。また、図3に示されるような、第二態様では、密着剤40は、バリア層12の主成分である窒化ケイ素及び/または酸窒化ケイ素と結合して化学構造Aを形成してなり、有機マトリクス30Pとは結合せずに有機マトリクス30Pに含まれているものを含んでいる。
 また、波長変換層30内においては、化学構造Aや化合構造Bを形成せずに波長変換層30内に含まれてなる密着剤40を含んでもよい。なお、密着剤40において、化学構造Aを形成可能であるが化学構造Aを形成していない構造をAとして示してある。
 化学構造Aは、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる構造であれば特に限定されず、窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる構造、または、水素結合してなる構造が好ましく例示される。
 バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素とシロキサン結合してなる構造が好ましい。
 また、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と、アミノ基,メルカプト基,又はウレタン構造のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。
 化学構造Bは、有機マトリクス30Pと結合してなる構造であれば特に制限されず、有機マトリクス30Pと共有結合してなる構造、または、有機マトリクス30Pと水素結合してなる構造であることが好ましい。化学構造Bは、特に、脂環式エポキシ化合物由来の有機マトリクスの化学構造と結合してなることが好ましい。
 有機マトリクス30Pと共有結合してなる化学構造Bとしては、有機マトリクス30Pと、アミノ基,メルカプト基,又はエポキシ基のうち少なくとも1つに基づく共有結合により結合してなる構造が好ましい。
 有機マトリクス30Pと水素結合してなる化学構造Bとしては、有機マトリクス30Pと、アミノ基,カルボキシル基,又はヒドロキシ基のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。
 化学構造A、及び/または、化学構造Bを形成しうる密着剤40(化合物)の具体例については、後記する硬化性組成物の説明において詳述する。
 「課題を解決するための手段」の項目において述べたように、波長変換部材において、波長変換層30中に含まれる量子ドット30A,30Bの光酸化を効果的に抑制可能な構成として、波長変換層30の有機マトリクス30Pとして、脂環式エポキシ化合物を含む硬化性組成物を硬化させて得られる有機マトリクスを、またバリア層として、窒化ケイ素や酸窒化ケイ素を主成分とする無機層を用いた構成を見出した。しかしながら、かかる構成において、耐光性と液晶表示装置に組み込んだ際の高い正面輝度とを両立するためには、波長変換層30とバリア層12,22との密着性を向上させることが必要である。
 上記したように、波長変換部材1Dでは、脂環式エポキシ化合物を含む硬化性組成物を硬化させて得られる有機マトリクス30Pに量子ドット30A、30Bが分散されてなる波長変換層30が、バリア層12,22の主成分である窒化ケイ素及び/または酸窒化ケイ素と結合してなる化学構造Aを有した構成としている。かかる構成によれば、波長変換層30内への酸素の侵入を効果的に防いで、波長変換層30中の量子ドット30A,30Bの光酸化による発光強度の低下を抑制することができ、更に、波長変換層30とバリア層12,22との間の密着性が高いため、波長変換層-バリア層間の非密着部分から酸素が侵入する可能性が低い。従って、波長変換部材1D及びそれを備えたバックライトユニット2は、耐光性に優れ、且つ、液晶表示装置に組み込んだ際に高い輝度耐久性を得ることが可能である。
 以下に、波長変換部材1Dの各構成要素について説明し、次いで、波長変換部材の製造方法について説明する。
「波長変換層」
 波長変換層30は、有機マトリックス30P中に青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bが分散されてなる。なお、図2、図3において量子ドット30A,30Bは、視認しやすくするために大きく記載してあるが、実際は、例えば、波長変換層30の厚み50~100μmに対し、量子ドットの直径は2~7nm程度である。
 波長変換層30の厚みは、好ましくは1~500μmの範囲であり、より好ましくは10~250μmの範囲であり、さらに好ましくは30~150μmの範囲である。厚みが1μm以上であると、高い波長変換効果が得られるため、好ましい。また、厚みが500μm以下であると、バックライトユニットに組み込んだ場合に、バックライトユニットを薄くすることができるため、好ましい。
 また、波長変換層30は、有機マトリックス30P中に紫外光LUVにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、紫外光LUVにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bと、紫外光LUVにより励起されて蛍光(青色光)Lを発光する量子ドット30Cとが分散されてなることもできる。波長変換層の形状は特に限定されるものではなく、任意の形状とすることができる。
 波長変換層30は、量子ドット30A,30B、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合して化学構造Aを形成する化合物(密着剤)40、及び、硬化して有機マトリックス30Pを構成する硬化性化合物を含む量子ドット含有硬化性組成物(以下、基本的に、量子ドット含有硬化性組成物と称する)を硬化させて形成することができ、硬化して有機マトリックス30Pを構成する硬化性化合物には脂環式エポキシ化合物が含まれている。すなわち、波長変換層30は、量子ドット含有硬化性組成物の硬化により得られた硬化層である。また、密着剤40は、量子ドットを含む重合性組成物の硬化反応に悪影響を与えるものではない。
 [量子ドット含有硬化性組成物]
 量子ドット含有硬化性組成物は、量子ドット30A,30B、密着剤40、及び、硬化して有機マトリックス30Pとなる、脂環式エポキシ化合物を含む硬化性化合物を含んでいる。量子ドット含有硬化性組成物は、上記以外に、重合開始剤等の他の成分を含むことができる。
 量子ドット含有硬化性組成物の調製方法は特に制限されず、一般的な重合性組成物の調製手順により実施すればよいが、密着剤40は組成物調製の最後のタイミングで添加することが、密着剤40とバリア層12,22の主成分である窒化ケイ素及び/または酸窒化ケイ素との結合を阻害する要因が少なく好ましい。
 <量子ドット>
 量子ドットは発光特性の異なる二種以上の量子ドットを含むことができ、本実施形態において、量子ドットは、青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bである。また、紫外光LUVにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、紫外光LUVにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bと、紫外光LUVにより励起されて蛍光(青色光)Lを発光する量子ドット30Cを含むこともできる。
 公知の量子ドットには、600nm~680nmの範囲の波長帯域に発光中心波長を有する量子ドット30A、520nm以上560nm以下の範囲の波長帯域に発光中心波長を有する量子ドット30B、400nm以上500nm以下の波長帯域に発光中心波長を有する量子ドット30C(青色光を発光)が知られている。
 量子ドットについては、上記の記載に加えて、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができるが、コアーシェル型の半導体ナノ粒子が、耐久性を向上する観点から好ましい。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、及び、多元系半導体ナノ粒子等を用いる事ができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP、CuInS等が挙げられるが、これらに限定されない。中でも、CdSe、CdTe、InP、InGaP、CuInSが、高効率で可視光を発光する観点から、好ましい。シェルとしては、CdS、ZnS、ZnO、GaAs、及びこれらの複合体を用いることができるが、これらに限定されない。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。
 量子ドットは、上記重合性組成物に粒子の状態で添加してもよく、溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが量子ドットの粒子の凝集を抑制する観点から好ましい。ここで使用される溶媒は、特に限定されるものではない。量子ドットは、量子ドット含有硬化性組成物の全量100質量部に対して、例えば0.01~10質量部程度添加することができる。
 量子ドット含有硬化性組成物において、量子ドットの含有量は、重合性組成物に含まれる硬化性化合物の全質量に対し0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
 <硬化性化合物>
 量子ドット含有硬化性組成物に含まれ、硬化して有機マトリクス30Pとなる硬化性化合物は、脂環式エポキシ化合物を30質量%以上含んでいれば特に制限されない。酸素バリア性の観点から、硬化性化合物は、脂環式エポキシ化合物を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、不純物を除き100質量%含むことが更に好ましい。
 (脂環式エポキシ化合物)
 上記硬化性化合物は、重合性化合物として、脂環式エポキシ化合物を少なくとも含む。脂環式エポキシ化合物は、一種のみであってもよく、構造の異なる二種以上であってもよい。なお以下において、脂環式エポキシ化合物に関する含有量とは、構造の異なる二種以上の脂環式エポキシ化合物を用いる場合には、これらの合計含有量をいうものとする。この点は、他の成分についても、構造の異なる二種以上を用いる場合には同様とする。
 脂環式エポキシ化合物は、脂肪族エポキシ化合物と比べて光照射による硬化性が良好である。光硬化性に優れる重合性化合物を用いることは、生産性を向上させることに加え、光照射側と非照射側とで均一な物性を有する層を形成できる点でも有利である。これにより、波長変換層のカールの抑制や均一な品質の波長変換部材の提供も可能となる。なおエポキシ化合物は、一般に、光硬化時の硬化収縮が少ない傾向もある。この点は、変形が少なく平滑な波長変換層を形成する上で有利である。
 脂環式エポキシ化合物は、少なくとも1つの脂環式エポキシ基を有する。ここで脂環式エポキシ基とは、エポキシ環と飽和炭化水素環との縮環を有する1価の置換基をいい、好ましくはエポキシ環とシクロアルカン環との縮環を有する1価の置換基である。より好ましい脂環式エポキシ化合物としては、エポキシ環とシクロヘキサン環が縮環した下記構造:
Figure JPOXMLDOC01-appb-C000002
を1分子中に1つ以上有するものを挙げることができる。上記構造は、1分子中に2つ以上含まれていてもよく、好ましくは1分子中に1つまたは2つ含まれる。
 また、上記構造は、1つ以上の置換基を有していてもよい。置換基としては、アルキル基(例えば炭素数1~6のアルキル基)、水酸基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシル基等を挙げることができる。上記構造は、かかる置換基を有していてもよいが無置換であることが好ましい。
 また、脂環式エポキシ化合物は、脂環式エポキシ基以外の重合性官能基を有していてもよい。重合性官能基とは、ラジカル重合、またはカチオン重合によって重合反応を起こすことができる官能基を指し、例えば(メタ)アクリロイル基を挙げることができる。
 脂環式エポキシ化合物として好適に使用できる市販品としては、ダイセル化学工業(株)のセロキサイド2000、セロキサイド2021P、セロキサイド3000、セロキサイド8000、サイクロマーM100、エポリードGT301、エポリードGT401、シグマアルドリッチ社製の4-ビニルシクロヘキセンジオキシド、日本テルペン化学(株)のD-リモネンオキサイド、新日本理化(株)のサンソサイザーE-PS等を挙げることができる。これらは、一種単独で、または二種以上組み合わせて用いることができる。
 波長変換層と隣接する層との密着性向上の観点からは、下記の脂環式エポキシ化合物IまたはIIが特に好ましい。脂環式エポキシ化合物Iは、市販品としてはダイセル化学工業(株)セロキサイド2021Pとして入手することができる。脂環式エポキシ化合物IIは、市販品としてはダイセル化学工業(株)サイクロマーM100として入手することができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 また、脂環式エポキシ化合物は、公知の合成方法により製造することもできる。その合成方法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~,平成4年、Ed.by Alfred Hasfner, The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York,1985、吉村, 接着, 29巻12号, 32, 1985、吉村, 接着, 30巻5号, 42, 1986、吉村, 接着, 30巻7号, 42, 1986、特開平11-100378号公報、特許第2926262号公報などの文献を参考にして合成できる。
 ((脂環式エポキシ化合物と併用可能な硬化性化合物))
 硬化性化合物は、脂環式エポキシ化合物の一種以上に加えて、他の重合性化合物(硬化性化合物)の一種以上を含んでもよい。他の重合性化合物としては、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物等の(メタ)アクリレート化合物、オキシラン化合物、オキセタン化合物が好ましい。ここで、本発明および本明細書において、(メタ)アクリレート化合物または(メタ)アクリレートとは、(メタ)アクリロイル基を1分子中に1つ以上含む化合物をいうものとし、(メタ)アクリロイル基とは、アクリロイル基とメタリロイル基の一方または両方を示すために用いるものとする。
 オキシラン化合物はエチレンオキシドとも呼ばれ、代表的なものとしてグリシジル基と呼ばれる官能基として表現される。また、オキセタン化合物は4員環の環状エーテルである。これらの重合性化合物を併用することにより、例えば、(メタ)アクリレート化合物を併用すると上述の脂環式エポキシ化合物の重合体と相互貫入型ポリマーネットワーク(Interpenetrating Polymer Network:IPN)を形成し、好適な力学物性や光学物性を示すよう設計することが可能である。また、オキシラン化合物、オキセタン化合物は上述の脂環式エポキシ化合物と共重合することができ、重合体の力学物性や光学物性を好適に設計することが可能である。また、これらの化合物を併用することで、硬化前の組成物の粘度や、量子ドットの分散性、後述する光重合開始剤やその他添加剤の溶解性を調整することもできる。
 また、脂環式エポキシ化合物を含む硬化性化合物は、量子ドット含有硬化性組成物の全量に対して、10~99.9質量%含まれていることが好ましく、50~99.9質量%含まれていることがより好ましく、92~99質量%含まれていることが特に好ましい。
 (密着剤)
 量子ドット含有硬化性組成物は、バリア層12,22の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合しうる化合物、及び/または、バリア層12,22の主成分である窒化ケイ素、及び/または酸窒化ケイ素と結合し、且つ、有機マトリクス30Pと結合しうる化合物を密着剤40として含む。
 硬化性組成物に含まれる密着剤40としては、硬化性組成物を硬化して波長変換層30を形成した際に、バリア層12,22の主成分である窒化ケイ素及び/または酸窒化ケイ素と結合して化合構造Aを形成しうる化合物であれば特に制限されない。
 密着剤40は、バリア層12,22の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合し、且つ、有機マトリクス30Pと結合しうる化合物であることが好ましい。
 既に述べたように、化学構造Aは、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる構造であれば特に限定されず、窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる構造、または、水素結合してなる構造が好ましく例示される。
 バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素とシロキサン結合してなる構造が好ましい。窒化ケイ素及び/または酸窒化ケイ素とシロキサン結合してなる構造を形成しうる化合物としては、シランカップリング剤と一般に称されるアルコキシシラン化合物が挙げられる。
 硬化して波長変換層30を構成する硬化性組成物中に、密着剤40としてアルコキシシラン化合物を含む場合、アルコキシシラン化合物が、加水分解反応や縮合反応により、バリア層12,22の表面またはバリア層12,22の主成分である窒化ケイ素及び/又は酸窒化ケイ素とシロキサン結合を形成する。従って、波長変換層30とバリア層12,22とに共有結合が形成され、これらの層の層間密着性を高くすることができる。
 更に、アルコキシシラン化合物として、ラジカル重合性基等の反応性官能基を有する場合、波長変換層30を構成する有機マトリクス30Pと、共有結合によりポリマーマトリクスのポリマー鎖の主鎖の一部として重合されてなる構造、または、ポリマーマトリクスのポリマー鎖の側鎖または側基として結合されてなる構造(化学構造B)を形成させることができる。かかる構成とすることにより、有機マトリクス30Pとバリア層12,22との密着性をより向上させることも可能である。また、有機マトリクス30Pと水素結合により結合してなる化学構造Bを形成させうるアルコキシシラン化合物を用いた場合も、上記密着性の向上効果を得ることができる。化学構造Bは、脂環式エポキシ化合物由来の有機マトリクス30Pの化学構造と結合してなる構造であることが好ましい。
 有機マトリクスPと共有結合や水素結合等を形成可能な化学構造Bとしては、有機マトリクス30Pと、アミノ基,メルカプト基,又はエポキシ基のうち少なくとも1つに基づく共有結合により結合してなる構造、有機マトリクス30Pと、アミノ基,カルボキシル基,又はヒドロキシ基のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。なお、化学構造Bは、硬化性化合物自体に既に形成されていてもよく、その場合は、密着剤40は、化学構造Bを介して硬化性化合物に結合されてなる態様のものとなる。
 上記アルコキシシラン化合物としては、公知のシランカップリング剤を、何ら制限なく使用することができる。密着性の観点から好ましいシランカップリング剤としては、上記官能基を有するシランカップリング剤や、特開2013-43382号公報に記載の一般式(1)で表されるシランカップリング剤等を挙げることができる。詳細については、特開2013-43382号公報段落0011~0016の記載を参照できる。
 脂環式エポキシ化合物と共有結合を形成可能な官能基を有するシランカップリング剤としては、メルカプトトリメトキシシラン,アミノトリメトキシシラン,グリシジルメトキシシラン等を好ましく例示することができる(後記実施例を参照)。
 また、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる化学構造Aとしては、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と、アミノ基,メルカプト基,又はウレタン構造のうち少なくとも1つに基づく水素結合により結合してなる構造が好ましい。
 上記窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる化学構造Aを与える密着剤40も、アルコキシラン化合物と同様に、波長変換層30を構成する有機マトリクス30Pと共有結合や水素結合等により化学構造Bを形成させうる化合物であることが好ましい。
 窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる化学構造Aを与え、且つ、有機マトリクスPと共有結合又は水素結合してなる化学構造Bを与える密着剤40としては、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタンアクリレート類、リン酸2-(メタクリロイルオキシ)エチル等のリン酸アクリレート類、ジメチルアミノアクリレート等のアミノアクリレート類、ブタンジチオール等のジチオール類等が挙げられる。
 密着剤の添加量は適宜設定可能であるが、添加量が多すぎると、マトリクス中の酸素透過性が高くなりやすく、また、チオール基を有する場合等の密着剤の種類によっては、黄変するなどの問題を生じることがある。密着剤の添加量は、密着性改良効果が充分得られる範囲内で少ない方が好ましい。具体的には、波長変換層全体の0.1質量%以上10%以下が好ましく、0.5%以上8%以下が更に好ましく、1%以上5%以下が特に好ましい。
 (重合開始剤) 
 量子ドット含有硬化性組成物は、重合開始剤を含むことが好ましい。重合開始剤としては、量子ドット含有硬化性組成物に含まれる硬化性化合物の種類に応じて好適な重合開始剤を用いることが好ましく、光重合開始剤であることが好ましい。光重合開始剤は、露光により分解してラジカル、酸などの開始種を発生させることができる化合物であり、この開始種により重合性化合物の重合反応を開始、促進させることができる化合物である。
 脂環式エポキシ化合物はカチオン重合可能な化合物であるため、上記硬化性組成物は、光重合開始剤として光カチオン重合開始剤を一種または二種以上含むことが好ましい。光カチオン重合開始剤については、例えば、特許4675719号公報段落0019~0024を参照できる。光カチオン重合開始剤は、硬化性組成物に含まれる重合性化合物の全量の0.1モル%以上含まれることが好ましく、0.5~5モル%含まれることがより好ましい。適量の重合開始剤の使用は、硬化のための光照射量を低減すること、および波長変換層全体を均一に硬化することを可能にする観点から好ましい。
 好ましい光カチオン重合開始剤としては、ヨードニウム塩化合物、スルホニウム塩化合物、ピリジニウム塩化合物、ホスホニウム塩化合物を挙げることができる。中でも、熱安定性に優れる観点から、ヨードニウム塩化合物、スルホニウム塩化合物が好ましく、波長変換層の光源由来の光の吸収を抑制する観点から、ヨードニウム塩化合物がより好ましい。
 ヨードニウム塩化合物とは、構造中にI+を含むカチオン部と任意の構造のアニオン部とにより形成される塩であって、電子供与性基を3つ以上有し、これら電子供与性基の少なくとも1つがアルコキシ基であるジアリールヨードニウム塩が更に好ましい。このようにジアリールヨードニウム塩に電子供与性基であるアルコキシ基を導入することで、経時での水や求核剤による分解や、熱による電子移動が抑制することができること等により、安定性の向上が期待できる。このような構造を有するヨードニウム塩化合物の具体例としては、下記光カチオン重合開始剤(ヨードニウム塩化合物)A、Bを挙げることができる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 なお波長変換層30の光源由来の光の吸収は、ヨードニウム塩化合物の使用によらずに先に記載したように、脂環式エポキシ化合物の含有量の低減、(メタ)アクリレート化合物の併用等の手段によって低減することも可能であるため、硬化性組成物に添加可能な光カチオン重合開始剤は、ヨードニウム塩化合物に限定されるものではない。使用可能な光カチオン重合開始剤として、例えば以下の市販品の一種または二種以上の組み合わせを挙げることもできる:サンアプロ(株)製のCPI-110P(下記光カチオン重合開始剤C)、CPI-101A、CPI-110P、CPI-200K、和光純薬工業(株)製のWPI-113、WPI-116、WPI-124、WPI-169、WPI-170、ローディア(株)製のPI-2074、BASF(株)製のイルガキュア(登録商標)250、イルガキュア270、イルガキュア290(下記光カチオン重合開始剤D)。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 また、硬化性組成物がラジカル重合性化合物を含む場合には、硬化性組成物はラジカル重合開始剤を一種または二種以上含んでもよい。ラジカル開始剤としても、光ラジカル開始剤が好ましい。光ラジカル開始剤については、例えば、特開2013-043382号公報段落0037、特開2011-159924号公報段落0040~0042を参照できる。光ラジカル重合開始剤の含有量は、硬化性組成物に含まれる重合性化合物の全量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。
 (粘度調整剤)
 硬化性組成物は、必要に応じて粘度調整剤を含んでいてもよい。粘度調整剤は、粒径が5nm~300nmであるフィラーであることが好ましい。また、粘度調整剤はチキソトロピー剤であることも好ましい。なお本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト等が挙げられる。
 一態様では、硬化性組成物は、粘度がせん断速度500s-1の時に3~100mPa・sであり、せん断速度1s-1の時に300mPa・s以上であることが好ましい。このように粘度調整するために、チキソトロピー剤を用いることが好ましい。また、硬化性組成物の粘度がせん断速度500s-1の時に3~100mPa・sであり、せん断速度1s-1の時に300mPa・s以上であることが好ましい理由は、以下の通りである。
 波長変換部材の製造方法の一例としては、後述するように、バリアフィルム10に硬化性組成物を塗布したのちに、硬化性組成物の塗膜上にバリアフィルム20を載置して貼り合わせてから、硬化性組成物を硬化して波長変換層を形成する工程を含む製造方法を挙げることができる。かかる製造方法では、バリアフィルム10に硬化性組成物を塗布する際に塗布スジが生じないように均一に塗布して塗膜の膜厚を均一にすることが望ましく、そのためには塗布性とレベリング性の観点から塗布液(硬化性組成物)の粘度は低いことが好ましい。一方、バリアフィルム10に塗布された塗膜の上にバリアフィルム20を均一に貼り合わせるためには、貼り合わせ時の圧力への抵抗力が高いことが好ましく、この点から高粘度の塗布液が好ましい。
 上記のせん断速度500s-1とは、バリアフィルム10に塗布される塗布液に加わるせん断速度の代表値であり、せん断速度1s-1とは塗布液にバリアフィルム20を貼り合わせる直前に塗布液に加わるせん断速度の代表値である。なお、せん断速度1s-1とはあくまでも代表値に過ぎない。バリアフィルム10に塗布された塗布液の上にバリアフィルム20を貼り合わせる際、バリアフィルム10とバリアフィルム20を同速度で搬送しつつ貼り合わせるのであれば塗布液に加わるせん断速度はほぼ0s-1であり、実製造工程において塗布液に加わるせん断速度が1s-1に限定されるものではない。せん断速度500s-1も同様に代表値に過ぎず、実製造工程において塗布液に加わるせん断速度が500s-1に限定されるものではない。そして均一な塗布および貼り合わせの観点から、硬化性組成物の粘度を、バリアフィルム10に塗布液を塗布する際に塗布液に加わるせん断速度の代表値500s-1の時に3~100mPa・sであり、バリアフィルム10に塗布された塗布液上にバリアフィルム20を貼り合わせる直前に塗布液に加わるせん断速度の代表値1s-1の時に300mPa・s以上であるように調整することが好ましい。
(溶媒)
 上記硬化性組成物は、必要に応じて溶媒を含んでいてもよい。この場合に使用される溶媒の種類および添加量は、特に限定されない。例えば溶媒として、有機溶媒を一種または二種以上混合して用いることができる。
(その他の添加剤)
 上記硬化性組成物は、必要に応じてその他の機能性添加剤を含んでいてもよい。例えば、レベリング剤、消泡剤、酸化防止剤、ラジカルスカベンジャー、水分ゲッター剤、酸素ゲッター剤、UV吸収剤、可視光吸収剤、IR吸収剤等、蛍光体の分散を補助するための分散助剤、可塑剤、脆性改良剤、帯電防止剤、防汚剤、フィラー、波長変換層としての酸素透過率を低減させる酸素透過率低減剤、屈折率調整剤、光散乱剤等などである。
 [バリアフィルム]
 バリアフィルム10,20は、水分及び/又は酸素の透過を抑制する機能を有するフィルムであり、本実施形態では、基材11,21上にバリア層12,22をそれぞれ備えた構成を有している。かかる態様では、基材の存在により、波長変換部材1Dの強度が向上され、且つ、容易に製膜を実施することができる。
 なお、本実施形態ではバリア層12,22が基材11,21により支持されてなるバリアフィルム10,20が、波長変換層30の両主面にバリア層12,22が隣接して備えられている波長変換部材について示してあるが、バリア層12,22は基材11,21に支持されていなくてもよく、また、基材11,21がバリア性を充分有している場合は、基材11,21のみでバリア層を形成してもよい。
 また、バリアフィルム10,20は、本実施形態のように、波長変換層30の両面に備えられた態様が好ましいが、片面にだけ備えられた態様であってもよい。
 バリアフィルムは、可視光領域における全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。
 バリアフィルム10,20の酸素透過率は1.00cm/(m・day・atm)以下であることが好ましい。バリアフィルム10,20の酸素透過率は、より好ましくは、0.10cm/(m・day・atm)以下、さらに好ましくは、0.01cm/(m・day・atm)以下である。
 バリアフィルム10,20は、酸素を遮断するガスバリア機能に加え、水分(水蒸気)を遮断する機能を有している。波長変換部材1Dにおいて、バリアフィルム10,20の透湿度(水蒸気透過率)は0.10g/(m・day・atm)以下である。バリアフィルム10,20の透湿度は、好ましくは、0.01g/(m・day・atm)以下である。
<基材>
 波長変換部材1Dにおいて、波長変換層30は、少なくとも一方の主表面が基材11又は21によって支持されている。ここで「主表面」とは、波長変換部材使用時に視認側又はバックライト側に配置される波長変換層の表面(おもて面、裏面)をいう。他の層や部材についての主表面も、同様である。
 波長変換層30は、本実施形態のように、波長変換層30の表裏の主表面を基材11及び21によって支持されていることが好ましい。
 基材11,21の平均膜厚は、波長変換部材の耐衝撃性等の観点から、10μm以上500μm以下であることが好ましく、20μm以上400μm以下であることがより好ましく、30μm以上300μm以下であることが好ましい。波長変換層30に含まれる量子ドット30A,30Bの濃度を低減した場合や、波長変換層30の厚みを低減した場合のように、光の再帰反射を増加させる態様では、波長450nmの光の吸収率がより低いことが好ましいため、輝度低下を抑制する観点から、基材11,21の平均膜厚は、40μm以下であることが好ましく、25μm以下であることがさらに好ましい。
 波長変換層30に含まれる量子ドット30A,30Bの濃度をより低減させる、あるいは波長変換層30の厚みをより低減させるには、LCDの表示色を維持するためにバックライトユニットの再帰反射性部材2Bに、プリズムシートを複数枚設ける等、光の再帰反射を増加させる手段を設けて更に励起光が波長変換層を通過する回数を増加させる必要がある。従って、基材は可視光に対して透明である透明基材であることが好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。基材については、特開2007-290369号公報段落0046~0052、特開2005-096108号公報段落0040~0055を参照できる。
 また、基材11,21は、波長589nmにおける面内リターデーションRe(589)が1000nm以下であることが好ましい。500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
 波長変換部材1Dを作製した後、異物や欠陥の有無を検査する際、2枚の偏光板を消光位に配置し、その間に波長変換部材を差し込んで観察することで、異物や欠陥を見つけやすい。基材のRe(589)が上記範囲であると、偏光板を用いた検査の際に、異物や欠陥をより見つけやすくなるため、好ましい。
 ここで、Re(589)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長589nmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。
 基材11,21としては、酸素及び水分に対するバリア性を有する基材が好ましい。かかる基材としては、ポリエチレンテレフタレートフィルム、環状オレフィン構造を有するポリマーからなるフィルム、及びポリスチレンフィルム等が、好ましい例として挙げられる。
<バリア層>
 基材11,21は、波長変換層30側の面に接して形成されてなるバリア層12,22をそれぞれ備えてなる。既に述べたように、バリア層12,22は、窒化ケイ素及び/または酸窒化ケイ素を主成分とする無機層である。バリア層12,22は、窒化ケイ素を主成分とすることが好ましい。
 バリア層12,22の形成方法としては、特に限定されず、例えば成膜材料を蒸発ないし飛散させ被蒸着面に堆積させることができる各種成膜方法を用いることができる。
 バリア層の形成方法の例としては、真空蒸着法,酸化反応蒸着法,スパッタリング法,イオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)や、化学気相成長法(Chemical Vapor Deposition法、CVD法)等が挙げられる。
 バリア層12,22の厚さは、1nm~500nmであればよく、5nm~300nmであることが好ましく、特に10nm~150nmであることがより好ましい。波長変換層30に隣接するバリア層の膜厚が、上述した範囲内であることにより、良好なバリア性を実現しつつ、バリア層における光の吸収を抑制することができ、光透過率がより高い波長変換部材を提供することができる。
 図2では、バリア層12,22は、各基材上に直接設けられた態様を示してあるが、バリア層12,22と各基材との間であれば、波長変換部材の光透過率を低下させすぎない範囲において、一層または複数層のその他の無機層または有機層を備えた態様としてもよい。
 バリア層12,22と各基材との間に備えてもよい無機層としては、特に限定されず、金属、無機酸化物、窒化物、酸化窒化物等の各種無機化合物を用いることができる。無機材料を構成する元素としては、ケイ素、アルミニウム、マグネシウム、チタン、スズ、インジウム及びセリウムが好ましく、これらを一種又は二種以上含んでいてもよい。無機化合物の具体例としては、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム合金、窒化ケイ素、窒化アルミニウム、窒化チタンを挙げることができる。また、無機バリア層として、金属膜、例えば、アルミニウム膜、銀膜、錫膜、クロム膜、ニッケル膜、チタン膜を設けてもよい。窒化ケイ素または酸窒化ケイ素の場合は、上記バリア層12,22の組成と異なる組成のものとする。
 バリア層については、上述の特開2007-290369号公報、特開2005-096108号公報、更にUS2012/0113672A1の記載を参照できる。
 [凹凸付与層(マット層)]
 バリアフィルム10,20は、波長変換層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層(マット層)13を備えていることが好ましい。バリアフィルムがマット層を有していると、バリアフィルムのブロッキング性、滑り性を改良することができるため、好ましい。マット層は粒子を含有する層であることが好ましい。粒子としては、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等が挙げられる。また、マット層は、バリアフィルムの波長変換層とは反対側の表面に設けられることが好ましいが、両面に設けられていてもよい。
 [光散乱層]
 波長変換部材1Dは、量子ドットの蛍光を効率よく外部に取り出すために光散乱機能を有することができる。光散乱機能は、波長変換層30内部に設けてもよいし、光散乱層として光散乱機能を有する層を別途設けてもよい。
 また、基材の波長変換層とは反対側の面に光散乱層を設けてもよい。上記マット層を設ける場合は、マット層を、凹凸付与層と光散乱層とを兼用できる層とすることが好ましい。
「波長変換部材の製造方法」
 上記本発明の波長変換部材は、基材(支持体)11,21上にバリア層12,22を備えたバリアフィルム10,20を用意する工程と、
 バリア層12,22の表面に、
    量子ドット30A,30Bと、
    脂環式エポキシ化合物と、
   バリア層12,22の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合しうる化合物、及び/または、バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合し、且つ、有機マトリクスと結合しうる化合物と、
を含む量子ドット含有硬化性組成物を塗布して硬化性組成物の塗膜30Mを形成する工程と、塗膜30Mを光硬化または熱硬化させる工程と、を順次有する本発明の波長変換部材の製造方法により製造することができる。
 以下に、波長変換層30の両面に、基材11,21上にバリア層12,22を備えてなるバリアフィルム10,20を備えた態様の上記波長変換部材1Dを、光硬化により製造する場合を例に、本発明の波長変換部材の製造方法について、図4,図5を参照して説明する。ただし、本発明は、下記態様に限定されるものではない。
 本実施形態において、波長変換層30は、調製した量子ドット含有硬化性組成物をバリアフィルム10,20の表面に塗布した後に光照射、又は加熱により硬化させ、形成することができる。塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。
 硬化条件は、使用する硬化性化合物の種類や重合性組成物の組成に応じて、適宜設定することができる。また、量子ドット含有硬化性組成物が溶媒を含む組成物である場合には、硬化を行う前に、溶媒除去のために乾燥処理を施してもよい。
 図4は、波長変換部材1Dの製造装置の一例の概略構成図であり、図5は、図4に示す製造装置の部分拡大図である。図4に示される製造装置は、量子ドット含有硬化性組成物等の塗布液をバリアフィルム10上に塗布する塗布部120と、塗布部120にて形成された塗膜30M上にバリアフィルム20をラミネートするラミネート部130と、塗膜30Mを硬化させる硬化部160とを有しており、塗布部120では、ダイコーター124によるエクストル-ジョンコーティング法により塗膜30Mが形成される構成としている。
 図4、5に示す製造装置を用いる波長変換部材の製造工程は、連続搬送される第一のバリアフィルム10(以下、「第一のフィルム」という。)の表面に量子ドット含有硬化性組成物を塗布し塗膜30Mを形成する工程と、塗膜30Mの上に、連続搬送される第二のバリアフィルム20(以下、「第二のフィルム」ともいう。)をラミネートし(重ねあわせ)、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持する工程と、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持した状態で、第一のフィルム10、及び第二のフィルム20の何れかをバックアップローラ126に巻きかけて、連続搬送しながら光照射し、塗膜を重合硬化させて波長変換層(硬化層)を形成する工程とを少なくとも含む。本実施形態では、第一のフィルム10、第二のフィルム20の双方に、酸素や水分に対するバリア性を有するバリアフィルムを用いている。かかる態様とすることにより、波長変換層の両面がバリアフィルムにより保護された波長変換部材1Dを得ることができる。
 より詳しくは、まず、図示しない送出機から第一のフィルム10が塗布部120へと連続搬送される。送出機から、例えば、第一のフィルム10が1~50m/分の搬送速度で送出される。但し、この搬送速度に限定されない。送出される際、例えば、第一のフィルム10には、20~150N/mの張力、好ましくは30~100N/mの張力が加えられる。
 塗布部120では、連続搬送される第一のフィルム10の表面に量子ドット含有硬化性組成物(以下、「塗布液」とも記載する。)が塗布され、塗膜30M(図4参照)が形成される。塗布部120では、例えば、ダイコーター124と、ダイコーター124に対向配置されたバックアップローラ126とが設置されている。第一のフィルム10の塗膜30Mの形成される表面と反対の表面をバックアップローラ126に巻きかけて、連続搬送される第一のフィルム10の表面にダイコーター124の吐出口から塗布液が塗布され、塗膜30Mが形成される。ここで塗膜30Mとは、第一のフィルム10上に塗布された硬化前の量子ドット含有硬化性組成物をいう。
 本実施形態では、塗布装置としてエクストルージョンコーティング法を適用したダイコーター124を示したが、これに限定されない。例えば、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法等、種々の方法を適用した塗布装置を用いることができる。
 塗布部120を通過し、その上に塗膜30Mが形成された第一のフィルム10は、ラミネート部130に連続搬送される。ラミネート部130では、塗膜30Mの上に、連続搬送される第二のフィルム20がラミネートされ、第一のフィルム10と第二のフィルム20とで塗膜30Mが挟持される。
 ラミネート部130には、ラミネートローラ132と、ラミネートローラ132を囲う加熱チャンバー134とが設置されている。加熱チャンバー134には第一のフィルム10を通過させるための開口部136、及び第二のフィルム20を通過させるための開口部138が設けられている。
 ラミネートローラ132に対向する位置には、バックアップローラ162が配置されている。塗膜30Mの形成された第一のフィルム10は、塗膜30Mの形成面と反対の表面がバックアップローラ162に巻きかけられ、ラミネート位置Pへと連続搬送される。ラミネート位置Pは第二のフィルム20と塗膜30Mとの接触が開始する位置を意味する。第一のフィルム10はラミネート位置Pに到達する前にバックアップローラ162に巻きかけられることが好ましい。仮に第一のフィルム10にシワが発生した場合でも、バックアップローラ162によりシワがラミネート位置Pに達するまでに矯正され、除去できるからである。したがって、第一のフィルム10がバックアップローラ162に巻きかけられた位置(接触位置)と、ラミネート位置Pまでの距離L1は長いことが好ましく、例えば、30mm以上が好ましく、その上限値は、通常、バックアップローラ162の直径とパスラインとにより決定される。
 本実施の形態では硬化部160で使用されるバックアップローラ162とラミネートローラ132とにより第二のフィルム20のラミネートが行われる。即ち、硬化部160で使用されるバックアップローラ162が、ラミネート部130で使用するローラとして兼用される。ただし、上記形態に限定されるものではなく、ラミネート部130に、バックアップローラ162と別に、ラミネート用のローラを設置し、バックアップローラ162を兼用しないようにすることもできる。
 硬化部160で使用されるバックアップローラ162をラミネート部130で使用することで、ローラの数を減らすことができる。また、バックアップローラ162は、第一のフィルム10に対するヒートローラとしても使用できる。
 図示しない送出機から送出された第二のフィルム20は、ラミネートローラ132に巻きかけられ、ラミネートローラ132とバックアップローラ162との間に連続搬送される。第二のフィルム20は、ラミネート位置Pで、第一のフィルム10に形成された塗膜30Mの上にラミネートされる。これにより、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持される。ラミネートとは、第二のフィルム20を塗膜30Mの上に重ねあわせ、積層することをいう。
 ラミネートローラ132とバックアップローラ162との距離L2は、第一のフィルム10と、塗膜30Mを重合硬化させた波長変換層(硬化層)30と、第二のフィルム20と、の合計厚みの値以上であることが好ましい。また、L2は第一のフィルム10と塗膜30Mと第二のフィルム20との合計厚みに5mmを加えた長さ以下であることが好ましい。距離L2を合計厚みに5mmを加えた長さ以下にすることより、第二のフィルム20と塗膜30Mとの間に泡が侵入することを防止することができる。ここでラミネートローラ132とバックアップローラ162との距離L2とは、ラミネートローラ132の外周面とバックアップローラ162の外周面との最短距離をいう。
 ラミネートローラ132とバックアップローラ162の回転精度は、ラジアル振れで0.05mm以下、好ましくは0.01mm以下である。ラジアル振れが小さいほど、塗膜30Mの厚み分布を小さくすることができる。
 また、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持した後の熱変形を抑制するため、硬化部160のバックアップローラ162の温度と第一のフィルム10の温度との差、及びバックアップローラ162の温度と第二のフィルム20の温度との差は30℃以下であることが好ましく、より好ましくは15℃以下、最も好ましくは同じである。
 バックアップローラ162の温度との差を小さくするため、加熱チャンバー134が設けられている場合には、第一のフィルム10、及び第二のフィルム20を加熱チャンバー134内で加熱することが好ましい。例えば、加熱チャンバー134には、図示しない熱風発生装置により熱風が供給され、第一のフィルム10、及び第二のフィルム20を加熱することができる。
 第一のフィルム10が、温度調整されたバックアップローラ162に巻きかけられることにより、バックアップローラ162によって第一のフィルム10を加熱してもよい。
 一方、第二のフィルム20については、ラミネートローラ132をヒートローラとすることにより、第二のフィルム20をラミネートローラ132で加熱することができる。ただし、加熱チャンバー134、及びヒートローラは必須ではなく、必要に応じで設けることができる。
 次に、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持された状態で、硬化部160に連続搬送される。図面に示す態様では、硬化部160における硬化は光照射により行われるが、量子ドット含有硬化性組成物に含まれる硬化性化合物が加熱により重合するものである場合には、温風の吹き付け等の加熱により、硬化を行うことができる。この硬化時に、バリア層12,22の主成分である窒化ケイ素及び/または酸窒化ケイ素と密着剤とが結合し、波長変換層30に化学構造Aを形成することができる。更に密着剤40が、上記した化学構造Bを形成するものであり、硬化工程において、有機マトリクス30Pと結合するものである場合は、化学構造Bもこの硬化工程において形成される。
 バックアップローラ162と、バックアップローラ162に対向する位置には、光照射装置164が設けられている。バックアップローラ162と光照射装置164との間を、塗膜30Mを挟持した第一のフィルム10と第二のフィルム20とが連続搬送される。光照射装置により照射される光は、量子ドット含有硬化性組成物に含まれる光硬化性化合物の種類に応じて決定すればよく、一例としては、紫外線が挙げられる。ここで紫外線とは、波長280~400nmの光をいうものとする。紫外線を発生する光源として、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。光照射量は塗膜の重合硬化を進行させ得る範囲に設定すればよく、例えば、一例として100~10000mJ/cmの照射量の紫外線を塗膜30Mに向けて照射することができる。
 硬化部160では、第一のフィルム10と第二のフィルム20とにより塗膜30Mを挟持した状態で、第一のフィルム10をバックアップローラ162に巻きかけて、連続搬送しながら光照射装置164から光照射を行い、塗膜30Mを硬化させて波長変換層(硬化層)30を形成することができる。
 本実施の形態では、第一のフィルム10側をバックアップローラ162に巻きかけて、連続搬送したが、第二のフィルム20をバックアップローラ162に巻きかけて、連続搬送させることもできる。
 バックアップローラ162に巻きかけるとは、第一のフィルム10及び第二のフィルム20の何れかが、あるラップ角でバックアップローラ162の表面に接触している状態をいう。したがって、連続搬送される間、第一のフィルム10及び第二のフィルム20はバックアップローラ162の回転と同期して移動する。バックアップローラ162へ巻きかけは、少なくとも紫外線が照射されている間であればよい。
 バックアップローラ162は、円柱状の形状の本体と、本体の両端部に配置された回転軸とを備えている。バックアップローラ162の本体は、例えば、φ200~1000mmの直径を有している。バックアップローラ162の直径φについて制限はない。積層フィルムのカール変形と、設備コストと、回転精度とを考慮すると直径φ300~500mmであることが好ましい。バックアップローラ162の本体に温度調節器を取り付けることにより、バックアップローラ162の温度を調整することができる。
 バックアップローラ162の温度は、光照射時の発熱と、塗膜30Mの硬化効率と、第一のフィルム10と第二のフィルム20のバックアップローラ162上でのシワ変形の発生と、を考慮して、決定することができる。バックアップローラ162は、例えば、10~95℃の温度範囲に設定することが好ましく、15~85℃であることがより好ましい。ここでローラに関する温度とは、ローラの表面温度をいうものとする。
 ラミネート位置Pと光照射装置164との距離L3は、例えば30mm以上とすることができる。
 光照射により塗膜30Mは硬化層30となり、第一のフィルム10と硬化層30と第二のフィルム20とを含む波長変換部材1Dが製造される。波長変換部材1Dは、剥離ローラ180によりバックアップローラ162から剥離される。波長変換部材1Dは、図示しない巻き取り機に連続搬送され、次いで巻き取り機により波長変換部材1Dはロール状に巻き取られる。
 以上、本発明の波長変換部材の製造方法について、バリア層を波長変換層の両面に備えた態様について説明したが、本発明の波長変換層の製造方法は、バリア層を波長変換層30の片面にのみ備えた態様にも適用することができる。かかる態様の波長変換部材は、上記した第二のフィルムとして、バリア層を備えていない基材を用いることにより、製造することができる。
 また、上記波長変換部材の製造方法では、第一のフィルム10上に塗膜30Mを形成した後、塗膜30Mを硬化させる前に第二のフィルム20をラミネートし、塗膜30Mを第一のフィルム10と第二のフィルム20とで挟持した状態で塗膜30Mを硬化した。これに対し、バリア層を波長変換層30の片面にのみ備えた態様では、第一のフィルム10上に塗膜30Mを形成した後、塗膜30Mを、必要に応じて行われる乾燥処理の後、硬化を施すことにより波長変換層(硬化層)形成し、必要に応じて波長変換層上に被覆層を形成した後に、バリア層を備えていない基材からなる第二のフィルムを、接着材(及び被覆層)を介して波長変換層上に積層して波長変換部材1Dを形成することもできる。被覆層は、無機層等の一層以上の他の層であり、公知の方法により形成することができる。
「バックライトユニット」
 既に述べたように、図1に示されるバックライトユニット2は、一次光(青色光L)を出射する光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源1Cと、面状光源1C上に備えられてなる波長変換部材1Dと、波長変換部材1Dを挟んで面状光源1Cと対向配置される再帰反射性部材2Bと、面状光源1Cを挟んで波長変換部材1Dと対向配置される反射板2Aとを備えており、波長変換部材1Dは、面状光源1Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(L,L)及び励起光とならなかった一次光Lを出射するものである。
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いることが好ましい。例えば、430nm以上480nm以下の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、500nm以上600nm未満の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600nm以上680nm以下の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光とを発光することが好ましい。
 より一層の輝度及び色再現性の向上の観点から、バックライトユニット2が発光する青色光の波長帯域は、430nm以上480nm以下であることが好ましく、440nm以上460nm以下であることがより好ましい。
 同様の観点から、バックライトユニット2が発光する緑色光の波長帯域は、520nm以上560nm以下であることが好ましく、520nm以上545nm以下であることがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、600nm以上680nm以下であることが好ましく、610nm以上640nm以下であることがより好ましい。
 また同様の観点から、バックライトユニットが発光する青色光、緑色光及び赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが一層好ましい。これらの中でも、青色光の各発光強度の半値幅が25nm以下であることが、特に好ましい。
 バックライトユニット2は、少なくとも、上記波長変換部材1Dとともに、面状光源1Cを含む。光源1Aとしては、430nm以上480nm以下の波長帯域に発光中心波長を有する青色光を発光するもの、又は、紫外光を発光するものが挙げられる。光源1Aとしては、発光ダイオードやレーザー光源等を使用することができる。
 面状光源1Cは、図1に示すように、光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源であっても良いし、光源1Aが波長変換部材1Dと平行な平面状に並べて配置され、導光板1Bに替えて拡散板1Eを備えた面状光源であっても良い。前者の面状光源は一般にエッジライト方式、後者の面状光源は一般に直下型方式と呼ばれている。
 なお、本実施形態では、光源として面状光源を用いた場合を例に説明したが、光源としては面状光源以外の光源も使用することができる。
(バックライトユニットの構成)
 バックライトユニットの構成としては、図1では、導光板や反射板などを構成部材とするエッジライト方式について説明したが、直下型方式であっても構わない。導光板としては、公知のものを何ら制限なく使用することができる。
 また、反射板2Aとしては、特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
 再帰反射性部材2Bは、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器等から構成されていてもよい。再帰反射性部材2Bの構成については、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
「液晶表示装置」
 上述のバックライトユニット2は液晶表示装置に応用することができる。図6に示されるように、液晶表示装置4は上記実施形態のバックライトユニット2とバックライトユニットの再帰反射性部材側に対向配置された液晶セルユニット3とを備えてなる。
 液晶セルユニット3は、図6に示されるように、液晶セル31を偏光板32と33とで挟持した構成としており、偏光板32,33は、それぞれ、偏光子322、332の両主面を偏光板保護フィルム321と323、331と333で保護された構成としている。
 液晶表示装置4を構成する液晶セル31、偏光板32、33及びその構成要素については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 液晶セル31の駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 液晶表示装置4には、さらに必要に応じて光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(又はそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 バックライト側偏光板32は、液晶セル31側の偏光板保護フィルム323として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。
 バックライトユニット2及び液晶表示装置4は、上記本発明の耐光性の優れる波長変換部材波長変換部材を備えてなる。従って、上記本発明の波長変換部材と同様の効果を奏し、量子ドットを含む波長変換層界面の剥離が生じにくく、耐光性に優れ、輝度耐久性の高いバックライトユニット、及び輝度の長期信頼性の高い液晶表示装置となる。
 以下に実施例に基づき本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 1.バリアフィルムの作製
(第1のバリアフィルム(高バリア性フィルム)の作製)
 ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡社製、商品名:コスモシャインA4300、厚さ50μm)基材の片面側に以下の手順でバリア層を形成した。
 まず、トリメチロールプロパントリアクリレート(TMPTA、ダイセル・サイテック社製)及び光重合開始剤(ランベルティ社製、ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールで上記PETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)し、UV硬化で硬化させ、巻き取った。上記PETフィルム基材上に形成された有機バリア層の厚さは、1μmであった。
 次に、上記有機バリア層付きPETフィルムをロールトウロールの真空製膜装置の送り出し部にセットして真空廃棄した後、CVD(Chemical Vapor Deposition)法(化学気相成長法)により、CVD装置を用いて、上記PET基材の表面に無機バリア層(窒化ケイ素層)を形成した。
 原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、及び窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。このようにして基材の上に有機バリア層及び無機バリア層がこの順に形成された第一のバリアフィルムを作製した。このバリアフィルムの透湿度は40℃90%RHの条件下において0.001g/(m・day・atm)、酸素透過率は、測定温度23℃、90%RHの条件下で、0.02cm/(m・day・atm)であった。
 (第2のフィルム(低バリア性フィルム))
 ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡社製、商品名:コスモシャインA4300、厚さ50μm)を用意し、第2のフィルムとした。バリア層等の形成処理は行わなかった。このフィルムの酸素透過率は、測定温度23℃、90%RHの条件下で、20cm/(m・day・atm)であった。
 2.波長変換部材の作製
 (実施例1)
 -量子ドット含有硬化性組成物の調製-
 下記の配合比にて、量子ドット含有硬化性組成物を調製し、孔径0.2μmのポリプロピレン製フィルタでろ過した後30分間減圧乾燥して、実施例1の塗布液を調製した。下記において、発光極大波長535nmの量子ドット分散液1として、NN-ラボズ社製CZ520-100を用い、また、発光極大波長630nmの量子ドット分散液2として、NN-ラボズ社製CZ620-100を用いた。これらはいずれもコアとしてCdSe、シェルとしてZnS、及び配位子としてオクタデシルアミンを用いた量子ドットであり、トルエンに3重量%の濃度で分散されている。脂環式エポキシ化合物Iとしては、ダイセル・サイテック(株)製,セロキサイド2021Pを使用した。
Figure JPOXMLDOC01-appb-I000001
 -波長変換部材の作製-
 第1のバリアフィルムを用意し、1m/分、60N/mの張力で連続搬送しながら、無機層面上に、調製した量子ドット含有重合性組成物をダイコーターにて塗布し、50μmの厚さの塗膜を形成した。次いで、塗膜の形成された第1のバリアフィルムをバックアップローラに巻きかけ、塗膜の上に、別の、第1のバリアフィルムをバリア層面が塗膜に接する向きでラミネートし、第1のバリアフィルムで塗膜を挟持した状態で連続搬送しながら、100℃の加熱ゾーンを3分間通過させた。その後、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、紫外線を照射して硬化させ、量子ドットを含有する波長変換層を硬化させて波長変換部材を作製した。紫外線の照射量は2000mJ/cmであった。
 (実施例2)
 密着剤を3-グリシジルオキシトリメトキシシランから、3-メルカプトプロピルトリメトキシシランに変更した以外は実施例1と同様にして波長変換部材を作製した。
 (実施例3)
 密着剤を3-グリシジルオキシトリメトキシシランから、3-アミノプロピルトリメトキシシランに変更した以外は実施例1と同様にして波長変換部材を作製した。
 (実施例4)
 マトリクス材を、脂環式エポキシ化合物Iから脂環式エポキシ化合物IIに変更した以外は実施例1と同様にして波長変換部材を作製した。脂環式エポキシ化合物IIとしては、ダイセル・サイテック(株)製,セロキサイド8000を使用した。
 (実施例5)
 密着剤を、マトリクス材と結合を形成せず、相溶性が低いトリメトキシシリルプロピルメタクリレートとした以外は実施例1と同様にして波長変換部材を作製した。
 (比較例1)
 量子ドット含有硬化性組成物において、密着剤を添加せず、更に、マトリクス材を脂環式エポキシ化合物ではない脂肪族エポキシ化合物に変更した以外は実施例1と同様にして波長変換部材を作製した。脂肪族エポキシ化合物としては、三菱化学(株)製,828USを使用した。
 (比較例2)
 マトリクス材を脂環式エポキシ化合物ではない脂肪族エポキシ化合物に変更した以外は実施例1と同様にして波長変換部材を作製した。脂肪族エポキシ化合物としては、比較例1と同様のものを使用した。
 (比較例3)
 量子ドット含有硬化性組成物において、密着剤を添加しなかった以外は実施例1と同様にして波長変換部材を作製した。
 (比較例4)
 バリアフィルムを、高バリア性の第1のバリアフィルムから、低バリア性の第2のフィルムに変更した以外は実施例1と同様にして波長変換部材を作製した。
 4.波長変換部材の評価
 以下に示す評価項目について、各例の波長変換部材の評価を行った。評価結果は表1に示してある。
 (マトリクス酸素バリア性の評価)
 実施例、比較例で用いた波長変換層のマトリクス材のみを基材上に膜厚100μmの厚さで塗工し、基材を剥離して単膜を得た。得られた単膜の酸素透過率を、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した。その結果を元に以下の基準で、波長変換部材の酸素バリア性を評価した。
A:10.00cm3/(m2・day・atm)以下
B:10.00cm3/(m2・day・atm)超100.0cm3/(m2・day・atm)以下
C:100.0cm3/(m2・day・atm)超
(耐光性評価)
 実施例、比較例で作製した波長変換部材を、3cm四方の正方形に切り出した。25℃60%RHに保たれた部屋で、市販の青色光源(OPTEX-FA株式会社製、OPSM-H150X142B)上に各例の波長変換部材を置き、波長変換部材に対して青色光を100時間連続で照射した。
 連続照射後の波長変換部材の端部を観察した。波長変換部材の端部界面から中心方向に向かって、発光挙動の失われた、あるいは発光が減衰した領域の境界面までの距離をdとし、評価値とした。
 評価基準
  d≦0.1mm未満:A (Excellent)
  0.1mm<d≦0.5mm:B (Good)
  0.5mm<d:C (No Good)
 (輝度耐久性(輝度劣化)評価)
 市販のタブレット端末(Amazon社製、Kindle Fire HDX 7”)を分解し、バックライトユニットを取り出した。取り出したバックライトユニットの導光板上に矩形に切り出した各例の波長変換部材を置き、その上に表面凹凸パターンの向きが直交した2枚のプリズムシートを重ね置いた。青色光源から発し、波長変換部材及び2枚のプリズムシートを透過した光の輝度を、導光板の面に対して垂直方向740mmの位置に設置した輝度計(SR3、TOPCON社製)で測定した。なお測定は、波長変換部材の隅から内側5mmの位置を測定し、4隅での測定の平均値(Y0)を評価値とした。
 耐光性評価と同様にして、25℃60%RHに保たれた部屋で、波長変換部材に対して青色光を100時間連続で照射した。連続照射後の波長変換部材の4隅の輝度(Y1)を、連続照射前の輝度の評価と同様の方法で測定し、下式記載の連続照射前の輝度との変化率(ΔY)を取って輝度変化の指標とした。結果を表1に示す。
ΔY=(Y0-Y1)÷Y0×100
 評価基準
    ΔY<20 :A (Excellent)
 20≦ΔY≦30 :B (Good)
 30<ΔY    :C (No Good)
 (密着性の評価)
 各例の波長変換部材に対して、JIS Z 0237に記載の方法により、180°引き剥がし粘着力を測定した。測定結果に対し、以下に記載の評価基準で、各例の密着性を評価した。得られた結果を表1に示す。
 180°引き剥がし粘着力が
 2.015N/10mm以上 :A (Excellent)
 0.5N/10mm以上、2.015N/10mm未満 :B (Good)
 0.5N/10mm未満    :C (No Good)
 表1に示されるように、各実施例の波長変換部材は、波長変換層と隣接するバリア層との密着性が高く、耐光性に優れるものであることが確認される。また、各実施例の波長変換部材を組み込んだ液晶表示装置は、端部の輝度劣化が少なく、長期信頼性に優れた液晶表示装置であることが確認された。
 比較例1、比較例2では、波長変換層のマトリクス材の原料として、脂環式エポキシ化合物ではなく、脂肪族エポキシ化合物を用いたことにより、充分な酸素バリア性が得られないことが確認された。
 また、比較例3は、波長変換層に密着剤成分を含まない以外は実施例1と同様の構成であり、比較例1とは、脂環式エポキシ化合物を波長変換層のマトリクス材の原料として用いた点で異なっている。比較例1に比して比較例3では、波長変換層の酸素バリア性が良くなった点で酸素バリア性、輝度耐久性は良好となったが、密着剤を含まないことにより、波長変換層とバリア層との間の密着性が悪化する結果となった。比較例4では、バリアフィルムのバリア性による輝度耐久性の低下が確認された。
Figure JPOXMLDOC01-appb-T000001
1C 面状光源
1D 波長変換部材
2 バックライトユニット
2A 反射板
2B 再帰反射性部材
3 液晶セルユニット
4 液晶表示装置
10,20 バリアフィルム
11,21 基材
12,22 バリア層
13 凹凸付与層(マット層、光拡散層)
30 波長変換層
30A,30B 量子ドット
30P 有機マトリックス
40 化学構造Aを有する化合物、密着剤
 励起光(一次光、青色光)
 赤色光(二次光、蛍光)
 緑色光(二次光、蛍光)

Claims (17)

  1.  励起光により励起されて蛍光を発光する少なくとも1種の量子ドットが、有機マトリクス中に分散されて含まれてなる波長変換層と、
     該波長変換層の少なくとも一方の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層とを備えてなり、
     前記有機マトリクスは、少なくとも脂環式エポキシ化合物を含む硬化性組成物が硬化されたものであり、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合してなる化学構造Aを含む波長変換部材。
  2.  前記化学構造Aが、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と共有結合してなる構造である請求項1記載の波長変換部材。
  3.  前記化学構造Aが、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と水素結合してなる構造である請求項1記載の波長変換部材。
  4.  前記化合構造Aが、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素とシロキサン結合してなる構造である請求項2記載の波長変換部材。
  5.  前記化学構造Aが、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と、アミノ基,メルカプト基,又はウレタン構造のうち少なくとも1つに基づく水素結合により結合してなる構造である請求項3記載の波長変換部材。
  6.  前記化学構造Aが、前記有機マトリクスに化学構造Bを介して結合されて含まれてなる請求項1~5いずれか1項記載の波長変換部材。
  7.  前記化学構造Bが、前記有機マトリクスと共有結合してなる構造である請求項6記載の波長変換部材。
  8.  前記化学構造Bが、前記有機マトリクスと水素結合してなる構造である請求項6記載の波長変換部材。
  9.  前記化学構造Bが、前記有機マトリクスと、アミノ基,メルカプト基,又はエポキシ基のうち少なくとも1つに基づく共有結合により結合してなる構造である請求項7記載の波長変換部材。
  10.  前記化学構造Bが、前記有機マトリクスと、アミノ基,カルボキシル基,又はヒドロキシ基のうち少なくとも1つに基づく水素結合により結合してなる構造である請求項8記載の波長変換部材。
  11.  前記バリア層が、窒化ケイ素を主成分とする請求項1~10いずれか1項記載の波長変換部材。
  12.  前記脂環式エポキシ化合物が、下記式で表される脂環式エポキシ化合物Iである請求項1~11いずれか1項記載の波長変換部材。
    Figure JPOXMLDOC01-appb-C000009
  13.  前記波長変換層が、前記量子ドットと、前記脂環式エポキシ化合物と、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合して前記化学構造Aを形成する化合物とを含む量子ドット含有硬化性組成物を硬化させて形成されたものである請求項1~12いずれか1項記載の波長変換部材。
  14.  前記化学構造Aを形成する化合物が、更に、前記有機マトリクスと前記化学構造Bを形成する請求項13記載の波長変換部材。
  15.  一次光を出射する面状光源と、
     該面状光源上に備えられてなる請求項1~14いずれか1項記載の波長変換部材と、
     該波長変換部材を挟んで前記面状光源と対向配置される再帰反射性部材と、
     前記面状光源を挟んで前記波長変換部材と対向配置される反射板とを備えたバックライトユニットであって、
     前記波長変換部材は、前記面状光源から出射された前記一次光の少なくとも一部を前記励起光として、前記蛍光を発光し、該蛍光からなる二次光を含む光を少なくとも出射するものであるバックライトユニット。
  16.  請求項15に記載のバックライトユニットと、
     該バックライトユニットの前記再帰反射性部材側に対向配置された液晶ユニットとを備えてなる液晶表示装置。
  17.  励起光により励起されて蛍光を発光する少なくとも1種の量子ドットが、有機マトリクス中に分散されて含まれてなる波長変換層と、
     該波長変換層の少なくとも一方の主面に隣接して備えられてなる、窒化ケイ素及び/又は酸窒化ケイ素を主成分とするバリア層とを備えてなる波長変換部材の製造方法であって、
     基材上に前記バリア層を備えたバリアフィルムを用意する工程と、
     前記バリア層の表面に、
        前記量子ドットと、
        脂環式エポキシ化合物と、
        前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合しうる化合物、及び/または、前記バリア層の主成分である窒化ケイ素及び/又は酸窒化ケイ素と結合し、且つ、前記有機マトリクスと結合しうる化合物と、
    を含む量子ドット含有硬化性組成物を塗布して該硬化性組成物の塗膜を形成する工程と、
     該塗膜を光硬化または熱硬化させる工程と、を順次有する波長変換部材の製造方法。
PCT/JP2016/000500 2015-02-02 2016-02-01 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法 WO2016125480A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680007989.6A CN107209298B (zh) 2015-02-02 2016-02-01 波长转换部件及具备该波长转换部件的背光单元、液晶显示装置、波长转换部件的制造方法
US15/660,333 US10513655B2 (en) 2015-02-02 2017-07-26 Wavelength conversion member, backlight unit including wavelength conversion member, liquid crystal display device, and method of manufacturing wavelength conversion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-018861 2015-02-02
JP2015018861A JP6333749B2 (ja) 2015-02-02 2015-02-02 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/660,333 Continuation US10513655B2 (en) 2015-02-02 2017-07-26 Wavelength conversion member, backlight unit including wavelength conversion member, liquid crystal display device, and method of manufacturing wavelength conversion member

Publications (1)

Publication Number Publication Date
WO2016125480A1 true WO2016125480A1 (ja) 2016-08-11

Family

ID=56563834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000500 WO2016125480A1 (ja) 2015-02-02 2016-02-01 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法

Country Status (4)

Country Link
US (1) US10513655B2 (ja)
JP (1) JP6333749B2 (ja)
CN (1) CN107209298B (ja)
WO (1) WO2016125480A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104891A1 (en) * 2016-12-09 2018-06-14 Sabic Global Technologies B.V. Quantum dot film and applications thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461355B2 (en) * 2013-03-29 2016-10-04 Intel Corporation Method apparatus and material for radio frequency passives and antennas
US10519366B2 (en) 2015-04-16 2019-12-31 3M Innovative Properties Company Quantum dot article with thiol-epoxy matrix
JP6469887B2 (ja) * 2015-04-16 2019-02-13 スリーエム イノベイティブ プロパティズ カンパニー チオール−アルケン−エポキシマトリックスを有する量子ドット物品
CN104950518A (zh) * 2015-07-21 2015-09-30 京东方科技集团股份有限公司 量子点膜、量子点膜的制备方法及背光模组
JP6866577B2 (ja) * 2016-05-31 2021-04-28 大日本印刷株式会社 光波長変換組成物、光波長変換粒子、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
US10745569B2 (en) * 2016-10-23 2020-08-18 Sepideh Pourhashem Anti-corrosion nanocomposite coating
JP6769307B2 (ja) * 2017-01-05 2020-10-14 凸版印刷株式会社 光学積層体及び波長変換シート
US10401553B2 (en) * 2017-03-21 2019-09-03 Keiwa Inc. Liquid crystal display device and turning film for liquid crystal display device
US20190064595A1 (en) * 2017-08-28 2019-02-28 Radiant Choice Limited Display system
JP2019066532A (ja) * 2017-09-28 2019-04-25 シャープ株式会社 カメラモジュール用光学シャッター及びその製造方法
JP6811699B2 (ja) * 2017-11-22 2021-01-13 三菱電機株式会社 絶縁劣化診断方法および絶縁劣化診断装置
CN111512454B (zh) * 2017-12-21 2023-02-28 富士胶片株式会社 波长转换部件、背光单元及液晶显示装置
CN110346859B (zh) * 2018-04-08 2023-05-16 京东方科技集团股份有限公司 光学谐振腔、显示面板
KR102543576B1 (ko) * 2018-08-31 2023-06-14 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
KR102602160B1 (ko) 2018-11-07 2023-11-14 삼성디스플레이 주식회사 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법
CN113217873B (zh) * 2021-05-18 2023-01-10 深圳市必拓电子股份有限公司 一种激光照明的光路结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241586A (ja) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd 波長変換ペースト材料、複合発光素子、半導体発光装置及びそれらの製造方法
JP2013033833A (ja) * 2011-08-01 2013-02-14 Panasonic Corp 波長変換膜及びそれを用いた発光装置並びに照明装置
JP2013069726A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 波長変換部材およびそれを用いた太陽光発電モジュール
WO2015152396A1 (ja) * 2014-04-04 2015-10-08 凸版印刷株式会社 波長変換シート、バックライトユニット及び蛍光体用保護フィルム
WO2016010116A1 (ja) * 2014-07-18 2016-01-21 凸版印刷株式会社 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2016052625A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288940B2 (ja) * 2002-12-06 2009-07-01 日亜化学工業株式会社 エポキシ樹脂組成物
TW200831583A (en) * 2006-09-29 2008-08-01 Nippon Catalytic Chem Ind Curable resin composition, optical material, and method of regulating optical material
JP5405075B2 (ja) * 2008-09-24 2014-02-05 富士フイルム株式会社 ガスバリア膜の形成方法およびガスバリア膜
JP2013516337A (ja) * 2010-01-07 2013-05-13 東レ・ダウコーニング株式会社 ガスバリアー性硬化オルガノポリシロキサン樹脂フィルム及びその製造方法
JP5766411B2 (ja) * 2010-06-29 2015-08-19 日東電工株式会社 蛍光体層および発光装置
CN103052699A (zh) * 2010-08-04 2013-04-17 积水化学工业株式会社 表面处理荧光体及表面处理荧光体的制造方法
CN103228983A (zh) 2010-11-10 2013-07-31 纳米系统公司 量子点薄膜、照明器件及照明方法
WO2012137888A1 (ja) * 2011-04-05 2012-10-11 富士フイルム株式会社 着色組成物、着色硬化膜、カラーフィルタ、カラーフィルタの製造方法、液晶表示装置、固体撮像素子、並びに、新規なジピロメテン系金属錯体化合物又はその互変異性体
US9139770B2 (en) * 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241586A (ja) * 2001-02-19 2002-08-28 Matsushita Electric Ind Co Ltd 波長変換ペースト材料、複合発光素子、半導体発光装置及びそれらの製造方法
JP2013033833A (ja) * 2011-08-01 2013-02-14 Panasonic Corp 波長変換膜及びそれを用いた発光装置並びに照明装置
JP2013069726A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 波長変換部材およびそれを用いた太陽光発電モジュール
WO2015152396A1 (ja) * 2014-04-04 2015-10-08 凸版印刷株式会社 波長変換シート、バックライトユニット及び蛍光体用保護フィルム
WO2016010116A1 (ja) * 2014-07-18 2016-01-21 凸版印刷株式会社 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2016052625A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104891A1 (en) * 2016-12-09 2018-06-14 Sabic Global Technologies B.V. Quantum dot film and applications thereof

Also Published As

Publication number Publication date
US10513655B2 (en) 2019-12-24
JP2016141743A (ja) 2016-08-08
US20170321116A1 (en) 2017-11-09
CN107209298B (zh) 2020-09-25
JP6333749B2 (ja) 2018-05-30
CN107209298A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6333749B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP6363526B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP6243872B2 (ja) 量子ドット含有積層体の製造方法、量子ドット含有積層体、バックライトユニット、液晶表示装置および量子ドット含有組成物
JP6448782B2 (ja) 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
WO2016092805A1 (ja) 波長変換部材、バックライトユニット、液晶表示装置、および波長変換部材の製造方法
JP6159351B2 (ja) 波長変換部材、バックライトユニット、および液晶表示装置、ならびに波長変換部材の製造方法
JP6309472B2 (ja) 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置
JP6308975B2 (ja) バックライトユニットおよび液晶表示装置
WO2016052625A1 (ja) バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物
US20150330602A1 (en) Wave length conversion member, back light unit, liquid crystal display device, and quantum dot-containing polymerizable composition
WO2016194344A1 (ja) 組成物とポリマー成形用組成物、及びそれを用いて得られた波長変換体、波長変換部材、バックライトユニット、液晶表示装置
JP6526190B2 (ja) 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置
JP6117758B2 (ja) 積層フィルム、バックライトユニット、液晶表示装置、および、積層フィルムの製造方法
WO2015194630A1 (ja) 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法
JP6117283B2 (ja) 積層フィルム、バックライトユニット、液晶表示装置、および、積層フィルムの製造方法
KR20150133138A (ko) 양자 도트 함유 중합성 조성물, 파장 변환 부재, 백라이트 유닛, 액정 표시 장치, 및 파장 변환 부재의 제조 방법
JP6560914B2 (ja) バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物
JP6224016B2 (ja) 波長変換層用組成物、波長変換部材、バックライトユニット、および液晶表示装置
US9651826B2 (en) Wavelength conversion member, backlight unit, and liquid crystal display device
JP2016103461A (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2016075950A1 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2016075949A1 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746312

Country of ref document: EP

Kind code of ref document: A1