WO2016159366A1 - 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット - Google Patents

量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット Download PDF

Info

Publication number
WO2016159366A1
WO2016159366A1 PCT/JP2016/060958 JP2016060958W WO2016159366A1 WO 2016159366 A1 WO2016159366 A1 WO 2016159366A1 JP 2016060958 W JP2016060958 W JP 2016060958W WO 2016159366 A1 WO2016159366 A1 WO 2016159366A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
protective film
dot protective
film
Prior art date
Application number
PCT/JP2016/060958
Other languages
English (en)
French (fr)
Inventor
光司 村田
松政 健司
岡村 賢吾
岩田 賢
真登 黒川
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57005182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016159366(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020177029101A priority Critical patent/KR20170134479A/ko
Priority to JP2017510259A priority patent/JP6760268B2/ja
Priority to CN201680013651.1A priority patent/CN107430303B/zh
Priority to EP16773246.0A priority patent/EP3279709A4/en
Publication of WO2016159366A1 publication Critical patent/WO2016159366A1/ja
Priority to US15/719,712 priority patent/US10557970B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a quantum dot protective film, a wavelength conversion sheet and a backlight unit obtained using the same.
  • a liquid crystal display is a display device in which a liquid crystal composition is used for display.
  • the liquid crystal display is used as a display device in various devices, particularly as an information display device or an image display device.
  • the liquid crystal display displays an image by transmitting or blocking light for each region on the liquid crystal panel based on application of voltage. Therefore, in order to display an image on the liquid crystal display, a backlight is required on the back surface of the liquid crystal panel.
  • a cold cathode tube is used for the backlight.
  • LEDs light-emitting diodes
  • Quantum dots are luminescent semiconductor nanoparticles with a diameter in the range of 1 to 20 nm.
  • the unique optical and electronic properties of quantum dots are being utilized in many applications such as flat panel displays or various color illumination (electrical decoration) in addition to fluorescent imaging in the fields of biology and medical diagnostics.
  • White LED technology which occupies a great importance in display, generally uses a cerium-doped YAG / Ce (yttrium / aluminum / garnet) down-conversion phosphor with a blue (450 nm) LED chip. It has been. The blue light of the LED becomes white light when mixed with yellow light having a wide wavelength range generated from the YAG phosphor. However, this white light is often somewhat bluish and is often considered “cold” or “cool” white.
  • Quantum dots exhibit a wide excitation spectrum and have high quantum efficiency, and therefore can be used as LED down-conversion phosphors. Furthermore, the wavelength of light emission can be completely adjusted over the entire visible light region simply by changing the dot size or the type of semiconductor material. For this reason, quantum dots are said to have the potential to create virtually any color, especially the warm white that is highly desired in the lighting industry. In addition, it is possible to obtain white light having different color rendering indexes by combining three types of dots whose emission wavelengths correspond to red, green, and blue. As described above, in a display using a backlight using quantum dots, the color tone is improved and 65% of colors that can be identified by humans without increasing the thickness, power consumption, cost, manufacturing process, and the like, compared to a conventional liquid crystal display. Can be expressed.
  • This backlight is an optical device in which quantum dots having a red or green emission spectrum are diffused in a film, and both main surfaces of the film are sealed (covered) with a barrier film or a laminate thereof. Is not only the main surface but also the edge portion is sealed.
  • Patent Document 1 proposes that a layer containing a phosphor is sandwiched between barrier films in order to suppress deterioration of the phosphor.
  • Patent Document 2 proposes covering the organic EL element with a gas barrier film in order to ensure the reliability of the organic EL element.
  • the quantum dot protective film is required to have an excellent appearance free from scratches, wrinkles, foreign matters and the like.
  • a dark spot may occur. Since the dark spot appears as a defect on the display, the quantum dot protective film is also required to have a high barrier property so that the dark spot does not occur.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a quantum dot protective film, a wavelength conversion sheet, and a backlight unit capable of reducing defects visible on a display.
  • the present invention relates to a quantum dot protective film for sealing a phosphor, a protective layer having foreign matters having a maximum dimension of 100 to 500 ⁇ m, and a coating layer formed on one surface of the protective layer; And a protective layer has a maximum dimension of 100 to 500 ⁇ m, a foreign matter abundance ratio of 0.01 to 5.0 pieces / m 2 , and a haze value of 20% or more.
  • ADVANTAGE OF THE INVENTION According to this invention, the defect which can be visually recognized on a display display can be reduced.
  • the protective layer has foreign matters having a maximum size of 100 to 300 ⁇ m, and the presence rate of foreign matters having a maximum size of 100 to 300 ⁇ m is 0.1 to 2.0 pieces / m 2 . It is preferable.
  • the protective layer has foreign matters having an average size of 200 to 500 ⁇ m, and the presence rate of foreign matters having an average size of 200 to 500 ⁇ m is preferably 3.0 pieces / m 2 or less.
  • the protective layer includes a barrier film obtained by laminating a base material layer and a barrier layer, and the presence of foreign matter having a maximum dimension of 100 to 500 ⁇ m in the barrier film is 0.01 to 2. It is preferably 0 / m 2 . When the foreign substance existence ratio is within these ranges, the occurrence of defects tends to be more reliably reduced.
  • the total light transmittance of the quantum dot protective film is preferably 80% or more. When the total light transmittance is 80% or more, it becomes easy to secure the brightness on the display by using a small amount of power.
  • the spectral transmittance at 450 nm of the quantum dot protective film is preferably 70% or more.
  • the spectral transmittance at 450 nm is 70% or more, it becomes easy to ensure sufficient brightness when a blue LED is used as the light source.
  • the surface roughness Ra on the surface of the coating layer opposite to the protective layer is preferably 0.2 ⁇ m or more.
  • the surface roughness Ra is 0.2 ⁇ m or more, it is easy to suppress the occurrence of interference fringes even when the quantum dot protective film is laminated with another member such as a prism sheet, and the haze value of the quantum dot protective film Can be controlled to 20% or more.
  • the present invention also provides a quantum dot protective film for encapsulating a phosphor, the protective layer having foreign matters having a maximum dimension of 100 to 300 ⁇ m, and a coating layer formed on one surface of the protective layer And a protective layer having a maximum dimension of 100 to 300 ⁇ m, a foreign matter abundance ratio of 0.1 to 2.0 pieces / m 2 , and a haze value of 20% or more.
  • a quantum dot protective film for encapsulating a phosphor
  • the protective layer having foreign matters having a maximum dimension of 100 to 300 ⁇ m, and a coating layer formed on one surface of the protective layer
  • a protective layer having a maximum dimension of 100 to 300 ⁇ m, a foreign matter abundance ratio of 0.1 to 2.0 pieces / m 2 , and a haze value of 20% or more.
  • the present invention also provides a quantum dot protective film for sealing a phosphor, a protective layer having foreign matters having an average dimension of 200 to 500 ⁇ m, and a coating layer formed on one surface of the protective layer
  • a protective film having an average size of 200 to 500 ⁇ m, a foreign matter abundance ratio of 3.0 / m 2 or less, and a haze value of 20% or more.
  • the present invention also includes a phosphor layer and first and second quantum dot protective films that seal the phosphor layer, and at least the first quantum dot protective film has the protective layer as the phosphor.
  • positioned so that a layer may be opposed is provided.
  • the present invention further includes a light source comprising a blue LED and the wavelength conversion sheet, wherein the quantum dot protective film disposed on the opposite side of the light source with the phosphor layer interposed therebetween is the first wavelength conversion sheet.
  • a backlight unit which is a quantum dot protective film.
  • the present invention it is possible to provide a quantum dot protective film, a wavelength conversion sheet, and a backlight unit capable of reducing defects visible on the display.
  • the quantum dot protective film includes a protective layer and a coating layer formed on one surface of the protective layer, and has a haze value of 20% or more.
  • the haze value is preferably 25% or more, more preferably 40% or more, and further preferably 60% or more. Further, from the viewpoint of obtaining a sufficient light transmittance, the haze value is preferably 95% or less, and more preferably 90% or less.
  • the haze value is an index representing the turbidity of the film, and is a ratio of diffuse transmitted light to total light transmitted light. Specifically, a haze value is calculated
  • required from a following formula. Td in the following formula is diffuse transmittance, and Tt is total light transmittance. The diffuse transmittance and total light transmittance can be measured with a haze meter or the like, respectively. Haze value (%) Td / Tt ⁇ 100
  • the protective layer there is used a protective layer having foreign matters having a maximum dimension of 100 to 500 ⁇ m, and having a foreign matter having a maximum dimension of 100 to 500 ⁇ m and a presence rate of 0.01 to 5.0 / m 2. be able to.
  • the quantum dot protective film of the present invention has a haze value of 20% or more as described above, even if a display device is manufactured using a protective layer having foreign matter, it is suppressed from being a display defect. be able to. Similarly, even when a dark spot is generated with the deterioration of the quantum dot, it is possible to suppress the dark spot from being a display defect. As a result, the yield of the quantum dot protective film and the wavelength conversion sheet is improved, and even if a small dark spot is generated, it cannot be visually recognized as a defect, so that the long-term reliability of the wavelength conversion sheet can be improved.
  • the protective layer may be a protective layer having no foreign matter having a maximum dimension exceeding 500 ⁇ m, or a protective layer having no foreign matter having a maximum dimension exceeding 300 ⁇ m.
  • the protective layer there may be used a protective layer having foreign matters having an average dimension of 200 to 500 ⁇ m and an abundance ratio of foreign matters having an average dimension of 200 to 500 ⁇ m of 3.0 / m 2 or less.
  • the foreign matter having an average dimension of 200 to 500 ⁇ m can include long and thin foreign matters such as a linear shape and a rod shape. Even if the maximum dimension is large, the average dimension is within the above range, so that the foreign matter is hardly visually recognized.
  • the presence of foreign matter having an average size of 200 to 500 ⁇ m is 3.0 pieces / m 2 or less, so that the foreign matter can be further suppressed from becoming a visual defect.
  • the foreign matter is a portion (lumb) that can be recognized as optically different from other portions of the protective layer when the protective layer is observed.
  • the foreign material may be made of a material different from the constituent material of the protective layer, or may be made of the same material as the constituent material of the protective layer.
  • the foreign matter is made of a material different from the constituent material of the protective layer, for example, when manufacturing the quantum dot protective film, surrounding dust and dust may be mixed into the protective layer and become a foreign matter.
  • the vapor deposition material is not vaporized from the vapor deposition source in the formation of the inorganic thin film layer, and rarely adheres to the protective layer in the form of large particles (vapor deposition powder). There is a possibility that the particles become a foreign substance.
  • the abundance of foreign matters having a maximum dimension of 100 to 500 ⁇ m may be 0.1 to 2.0 / m 2 .
  • the abundance of foreign matters having a maximum dimension of 100 to 300 ⁇ m may be 0.5 to 2.0 pieces / m 2 or 0.8 to 2.0 pieces / m 2 .
  • the presence rate of foreign matter having a maximum dimension of 100 to 500 ⁇ m exceeds 5.0 / m 2 or when the presence rate of foreign matter having a maximum size of 100 to 300 ⁇ m exceeds 2.0 / m 2
  • the maximum dimension becomes large, and it may not be possible to completely suppress display defects.
  • the presence rate of foreign matter having a maximum dimension of 100 to 500 ⁇ m exceeds 5.0 / m 2
  • the presence rate of foreign matter having a maximum size of 100 to 300 ⁇ m exceeds 2.0 / m 2. There is a possibility of damaging the barrier layer 6.
  • the maximum dimension means a distance (connecting two points) connecting two farthest points in a portion recognized as a foreign substance in the plane S when the protective layer is viewed from a direction perpendicular to the protective layer.
  • Line length The average size L AV is the length of the line A connecting the farthest two points in the portion that is recognized as the above-mentioned foreign substances and L A, are recognized as foreign matter on an axis perpendicular to the line A in the plane S when the length of the line B connecting the farthest two points in the portion was L B, it can be calculated from the following equation.
  • L AV (L A + L B) / 2
  • the maximum size, average size, and presence rate of the foreign matter can be determined by, for example, identifying the foreign matter by image processing using an optical inspection device, and measuring the foreign matter size based on the number of detected pixels.
  • the total light transmittance of the quantum dot protective film is preferably 80% or more.
  • the total light transmittance is 80% or more, it is easy to ensure the brightness of the display device with a small amount of power.
  • the total light transmittance is less than 80%, the loss of light from the light source increases, and sufficient brightness cannot be secured in the display device, or a brighter light source is used to ensure brightness. You may have to.
  • the spectral transmittance at 450 nm of the quantum dot protective film is preferably 70% or more.
  • the spectral transmittance at 450 nm is 70% or more, it becomes easy to ensure the brightness of blue in the display device with less power consumption.
  • a blue LED is used as the light source, since the wavelength of the blue LED is around 450 nm, the loss of light from the light source increases when the transmittance of light having a wavelength near 450 nm is low. For this reason, in the display device, sufficient brightness cannot be ensured particularly in blue, or a brighter light source may have to be used to ensure brightness.
  • the quantum dot protective film of the present invention can have various structures from the above viewpoint.
  • the structure of the quantum dot protective film of the present invention will be described more specifically below.
  • FIG. 1 is a schematic cross-sectional view of the quantum dot protective film according to the first embodiment of the present invention.
  • the quantum dot protective film 10 has a configuration in which an inorganic thin film layer 4, a gas barrier coating layer 5, and a coating layer 9 are laminated in this order on one surface 3b of the base material layer 3.
  • the protective layer 7 is formed by laminating the base layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 in this order, and the coating layer 9 is formed on the gas barrier coating layer 5.
  • the protective layer 7 is formed by laminating the base layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 in this order, and the coating layer 9 is formed on the gas barrier coating layer 5.
  • the thickness of the protective layer 7 as a whole is preferably 10 to 250 ⁇ m, and more preferably 16 to 150 ⁇ m.
  • the base material layer 3 is not particularly limited.
  • a polyethylene terephthalate film or a polyethylene naphthalate film is preferably used, and an acid value of 25 or less (free acid contained in 1 g of the base material layer 3 (film)). It is more preferable to use a polyethylene terephthalate film having the number of mg of potassium hydroxide required to neutralize other acidic substances.
  • the acid value of the base material layer 3 exceeds 25, the stability of the base material particularly in a high-temperature and high-humidity environment is impaired, and thus the barrier property may be lowered.
  • the acid value is 25 or less, the stability of the base material is increased, and the barrier property does not deteriorate even in a high temperature and high humidity environment and tends to be stable.
  • the thickness of the base material layer 3 is not particularly limited and is preferably 3 ⁇ m or more and 200 ⁇ m or less, and more preferably 5 ⁇ m or more and 150 ⁇ m or less.
  • the inorganic thin film layer 4 and the gas barrier coating layer 5 formed on the one surface 3 b of the base material layer 3 may be referred to as a barrier layer 6.
  • the inorganic thin film layer (inorganic oxide thin film layer) 4 is not particularly limited, and for example, aluminum oxide, silicon oxide, magnesium oxide, or a mixture thereof can be used. Among these, it is preferable to use aluminum oxide or silicon oxide from the viewpoint of barrier properties and productivity. Furthermore, it is more preferable to use silicon oxide from the viewpoint of water vapor barrier properties.
  • the thickness (film thickness) of the inorganic thin film layer 4 is preferably 5 to 500 nm, and more preferably 10 to 300 nm.
  • the thickness of the inorganic thin film layer 4 is 5 nm or more, there is a tendency that a uniform film is easily obtained and barrier properties are easily obtained.
  • the thickness of the inorganic thin film layer 4 is 500 nm or less, flexibility can be maintained in the inorganic thin film layer 4, and cracks or the like tend not to occur due to external force such as bending or pulling after film formation. is there.
  • the gas barrier coating layer 5 is provided for preventing various secondary damages in the subsequent process and for imparting higher barrier properties.
  • the thickness (film thickness) of the gas barrier coating layer 5 is preferably 0.05 to 2.0 ⁇ m, and more preferably 0.1 to 1.0 ⁇ m.
  • the gas barrier coating layer 5 is formed of a coating agent having as a component at least one selected from the group consisting of a hydroxyl group-containing polymer compound, a metal alkoxide, a metal alkoxide hydrolyzate, and a metal alkoxide polymer.
  • the thickness of the gas barrier coating layer 5 is 0.05 ⁇ m or more, uniform barrier properties can be expressed, and when it is 2.0 ⁇ m or less, flexibility can be maintained, and after film formation There is a tendency that cracks and the like are less likely to occur due to an external force such as bending or pulling.
  • hydroxyl group-containing polymer compound examples include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and starch.
  • the hydroxyl group-containing polymer compound is preferably polyvinyl alcohol from the viewpoint of barrier properties.
  • the metal alkoxide is a general formula, M (OR) n (M is a metal such as Si, Ti, Al and Zr, R is an alkyl group such as CH 3 and C 2 H 5 , and n is 1 to 4. Which is an integer).
  • M is a metal such as Si, Ti, Al and Zr
  • R is an alkyl group such as CH 3 and C 2 H 5
  • n is 1 to 4. Which is an integer
  • Examples of the metal alkoxide include tetraethoxysilane [Si (OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al (O-iso-C 3 H 7 ) 3 ] and the like.
  • the metal alkoxide is preferably tetraethoxysilane or triisopropoxyaluminum because it is relatively stable in an aqueous solvent after hydrolysis.
  • metal alkoxide hydrolyzate examples include silicic acid (Si (OH) 4 ), which is a hydrolyzate of tetraethoxysilane, and aluminum hydroxide (Al (OH) 3 ), which is a hydrolyzate of tripropoxyaluminum. Etc.
  • the coating layer 9 is provided on the surface of the quantum dot protective film 10, that is, on the surface of a wavelength conversion sheet to be described later, in order to exhibit a light scattering function.
  • the quantum dot protective film 10 includes the coating layer 9, an interference fringe (moire) prevention function and an antireflection function can be obtained in addition to the light scattering function.
  • the coating layer 9 is characterized by being able to impart at least a light scattering function.
  • the coating layer 9 includes a binder resin and fine particles. And it is comprised so that a part of microparticles
  • fine-particles may be embedded in binder resin so that it may be exposed from the surface of the coating layer 9.
  • FIG. When the coating layer 9 has the above configuration, fine irregularities due to the exposed fine particles are generated on the surface of the coating layer 9.
  • a light-scattering function can be expressed by providing the coating layer 9 on the surface of the quantum dot protective film 10, ie, the surface of a wavelength conversion sheet described later.
  • the surface roughness (arithmetic average roughness) Ra on the surface of the quantum dot protective film 10 on the coating layer 9 side, that is, on the surface opposite to the protective layer 7 of the coating layer 9 is 0.2 ⁇ m or more.
  • the surface roughness Ra is 0.2 ⁇ m or more, for example, when contacting with other members such as a prism sheet in the case of constituting a backlight unit, interference fringes are generated due to the close contact between smooth films. Can be suppressed.
  • binder resin for example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used.
  • thermoplastic resin examples include cellulose derivatives, vinyl resins, acetal resins, acrylic resins, polystyrene resins, polyamide resins, linear polyester resins, fluorine resins, and polycarbonate resins.
  • cellulose derivative examples include acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose.
  • vinyl resin examples include vinyl acetate polymers and copolymers, vinyl chloride polymers and copolymers, vinylidene chloride polymers and copolymers, and the like.
  • acetal resin examples include polyvinyl formal and polyvinyl butyral.
  • acrylic resin examples include acrylic polymers and copolymers, and methacrylic polymers and copolymers.
  • thermosetting resin examples include phenol resin, urea melamine resin, polyester resin, and silicone resin.
  • the ultraviolet curable resin examples include photopolymerizable prepolymers such as epoxy acrylate, urethane acrylate, and polyester acrylate.
  • a monofunctional or polyfunctional monomer can also be used as a diluent which has the said photopolymerizable prepolymer as a main component.
  • the thickness (film thickness) of the binder resin layer excluding the exposed part of the fine particles in the coating layer 9 is preferably 0.1 to 20 ⁇ m, and more preferably 0.3 to 10 ⁇ m.
  • the film thickness of the binder resin layer is 0.1 ⁇ m or more, a uniform film can be easily obtained, and the optical function tends to be sufficiently obtained.
  • the film thickness is 20 ⁇ m or less, fine particles appear on the surface of the coating layer 9 and the unevenness imparting effect tends to be easily obtained. In addition, it can maintain transparency and match the trend of thinning.
  • Organic particles or inorganic particles can be used as the fine particles. Only one of these may be used, or two or more may be used.
  • organic particles spherical acrylic resin fine powder, nylon resin fine powder, tetrafluoroethylene resin fine powder, crosslinked polystyrene resin fine powder, polyurethane resin fine powder, polyethylene resin fine powder, benzoguanamine resin fine powder, silicone resin fine powder, Examples thereof include fine epoxy resin powder, polyethylene wax particles, and polypropylene wax particles.
  • the inorganic particles include silica particles, zirconia particles, barium sulfate particles, titanium oxide particles, and barium oxide particles.
  • the average primary particle size of the fine particles (hereinafter sometimes referred to as the average particle size) is preferably 0.5 to 20 ⁇ m.
  • the average particle diameter is a volume average diameter measured by a laser diffraction method.
  • the average particle size of the fine particles is 0.5 ⁇ m or more, irregularities tend to be effectively imparted to the surface of the coating layer 9.
  • the average particle size of the fine particles is 20 ⁇ m or less, the light transmittance can be kept high without using particles that greatly exceed the thickness of the binder resin layer.
  • fine-particles is 20 micrometers or less.
  • the coating layer 9 preferably contains 0.1 to 50 parts by mass of fine particles, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the binder resin. When the coating layer 9 contains the fine particles in the above range, the adhesion of the coating film can be maintained.
  • the coating layer 9 is not limited to a single layer structure that exhibits a light scattering function, and may be a laminate of layers that exhibit a plurality of functions.
  • the quantum dot protective film according to the first embodiment can be manufactured as follows. First, the inorganic thin film layer 4 is laminated on one surface of the base material layer 3 by, for example, vapor deposition. Next, an aqueous solution or a water / alcohol mixed solution containing a water-soluble polymer (hydroxyl group-containing polymer compound) and (a) at least one of one or more metal alkoxides and hydrolysates or (b) tin chloride.
  • the gas barrier coating layer 5 is formed by applying a coating agent as a main agent on the surface of the inorganic thin film layer 4 and drying it. Thereby, the laminated body (barrier film 8) in which the barrier layer 6 was provided on the base material layer 3 is obtained.
  • the barrier film 8 serves as the protective layer 7.
  • the barrier film 8 has a foreign material having a maximum size of 100 to 500 ⁇ m, and a presence rate of the foreign material having a maximum size of 100 to 500 ⁇ m is 0.01 to 2.0 pieces / m 2. Also good.
  • the abundance of foreign matters having a maximum dimension of 100 to 500 ⁇ m may be 0.01 to 1.0 pieces / m 2 .
  • FIG. 2 is a schematic cross-sectional view of a quantum dot protective film according to the second embodiment of the present invention.
  • the quantum dot protective film 10 according to the second embodiment is different from the quantum dot protective film 10 according to the first embodiment in that the coating layer 9 is formed on the surface of the protective layer 7 on the base material layer side.
  • the quantum dot protective film 10 has a coating layer 9 laminated on one surface 3b of the base material layer 3, and an inorganic thin film layer 4 and a gas barrier coating layer 5 on the other surface 3a. Are stacked in this order.
  • the protective layer 7 is formed by laminating the base material layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 in this order, and the coating layer 9 is the other surface of the base material layer 3. It is formed on 3b.
  • the barrier film 8 becomes the protective layer 7 as in the first embodiment.
  • the quantum dot protective film 10 is obtained.
  • the quantum dot protective film 10 is arrange
  • FIG. 3 is a schematic cross-sectional view of a quantum dot protective film according to the third embodiment of the present invention.
  • a further base material layer 3B is provided on the gas barrier coating layer 5 to form the protective layer 7
  • the coating layer 9 is a protective layer. 7 differs from the quantum dot protective film 10 according to the first embodiment in that it is formed on the surface of another base material layer 3B.
  • the quantum dot protective film 10 includes an inorganic thin film layer 4, a gas barrier coating layer 5, a second base material layer 3B, and a coating on one surface 3b of the first base material layer 3A.
  • the layer 9 has a configuration in which the layers 9 are laminated in this order.
  • the protective layer 7 is formed by laminating the first base material layer 3A, the inorganic thin film layer 4, the gas barrier coating layer 5 and the second base material layer 3B in this order.
  • 9 is formed on one surface 3d of the second base material layer 3B.
  • the protective layer 7 is configured to sandwich the barrier layer 6 between the one surface 3b of the first base material layer 3A and the other surface 3c of the second base material layer 3B. it can.
  • the barrier film 8 is formed by laminating the first base material layer 3A, the inorganic thin film layer 4, and the gas barrier coating layer 5 in this order.
  • the coating layer 9 is formed on the second base material layer 3B to produce a base material layer with a coating layer, and the barrier film 8 and the base material layer with a coating layer are formed into a barrier.
  • the quantum dot protective film 10 according to this embodiment is obtained by pasting together via an adhesive or the like (not shown) so that the layer 6 and the second base material layer 3B face each other.
  • the quantum dot protective film 10 is arranged so that the other surface 3a of the first base material layer 3A and the phosphor layer face each other. Be placed.
  • the barrier layer 6 since the barrier layer 6 is sandwiched between the first and second base material layers 3A and 3B, the barrier layer 6 has defects such as minute pinholes. Even in this case, the barrier performance can be more effectively exhibited.
  • FIG. 4 is a schematic cross-sectional view of a quantum dot protective film according to the fourth embodiment of the present invention.
  • the coating layer 9 is formed on the surface of the protective layer 7 on the substrate layer side, and two barrier layers 6i on the substrate layer 3 are provided. It differs from the quantum dot protective film 10 according to the first embodiment in that 6ii is provided.
  • the quantum dot protective film 10 has the coating layer 9 laminated on one surface 3b of the base material layer 3, and the first inorganic thin film layer 4i, first layer on the other surface 3a.
  • the protective layer 7 includes the base material layer 3, the first inorganic thin film layer 4i, the first gas barrier coating layer 5i, the second inorganic thin film layer 4ii, and the second gas barrier coating.
  • the layers 5ii are laminated in this order, and the coating layer 9 is formed on the other surface 3b of the base material layer 3.
  • the barrier film 8 is the same as the protective layer 7.
  • the quantum dot protective film 10 is arrange
  • two barrier layers 6i and 6ii are laminated, that is, two layers of inorganic thin film layers and gas barrier coating layers are alternately laminated. Barrier performance can be demonstrated.
  • FIG. 5 is a schematic cross-sectional view of a quantum dot protective film according to the fifth embodiment of the present invention.
  • the protective layer 7 includes two barrier films 8A and 8B, which are laminated so that the barrier layers face each other with the adhesive layer 2 interposed therebetween.
  • the layer 9 is different from the quantum dot protective film according to the first embodiment in that the layer 9 is formed on the surface of the protective layer 7 on the base material layer side.
  • the barrier film 8A has a configuration in which the first inorganic thin film layer 4A and the first gas barrier coating layer 5A are laminated in this order on one surface 3b of the first base material layer 3A.
  • the barrier film 8B has a configuration in which a second inorganic thin film layer 4B and a second gas barrier coating layer 5B are laminated in this order on one surface 3c of the second base material layer 3B. That is, in the fifth embodiment, the protective layer 7 includes the first base material layer 3A, the first inorganic thin film layer 4A, the first gas barrier coating layer 5A, the adhesive layer 2, and the second gas barrier coating layer. 5B, the second inorganic thin film layer 4B, and the second base material layer 3B are laminated in this order, and the coating layer 9 is formed on the other surface 3d of the second base material layer 3B.
  • the inorganic thin film layer 4A and the gas barrier coating layer 5A formed on the one surface 3b of the first base material layer 3A are referred to as the first barrier layer 6A and are on the one surface 3c of the second base material layer 3B.
  • the inorganic thin film layer 4B and the gas barrier coating layer 5B formed in the above may be referred to as a second barrier layer 6B.
  • the quantum dot protective film 10 is arrange
  • the barrier films 8A and 8B have a foreign substance having a maximum dimension of 100 to 500 ⁇ m, and a presence ratio of the foreign substance having a maximum dimension of 100 to 500 ⁇ m is 0.01 to 2.0 pieces / m 2.
  • a film may be used.
  • the abundance of foreign matter having a maximum dimension of 100 to 500 ⁇ m in the barrier films 8A and 8B may be 0.1 to 5.0 pieces / m 2 or 0.5 to 5.0 pieces / m 2. Also, it may be 0.01 to 2.0 pieces / m 2 .
  • the abundance of foreign matters having a maximum dimension of 100 to 500 ⁇ m in the protective layer obtained by bonding them is controlled to 0.01 to 5.0 / m 2 .
  • the barrier films 8A and 8B have foreign matters, gas barrier properties around the foreign matters may be deteriorated.
  • the barrier films 8A and 8B are bonded to each other, and the barrier films 8A and 8B each have a foreign matter having a maximum dimension of 100 to 500 ⁇ m and an abundance of 2.0 pieces / m 2 or less.
  • the quantum dot protective film 10 is used for a wavelength conversion sheet, local deterioration such as dark spots (dark spots due to phosphor deactivation) tends to be further suppressed. is there.
  • the barrier films 8A and 8B have no foreign matter having a maximum dimension exceeding 500 ⁇ m, and even if it has, the presence rate of the foreign matter is preferably 0.1 piece / m 2 or less. If the existence rate of spherical foreign matters having a diameter of 500 ⁇ m in the barrier films 8A and 8B is 2.0 pieces / m 2 , the probability that a part of the foreign matters possessed by the respective barrier films overlap in the gas barrier laminate in which these are laminated. Is about 6 ⁇ (3.4 / 1,000,000), and tends to maintain high quality in the manufacturing process.
  • FIG. 6 is a schematic cross-sectional view of a wavelength conversion sheet according to an embodiment of the present invention.
  • the phosphor layer 14 using quantum dots and the protective layer 7 and the phosphor layer 14 face each other on one surface of the phosphor layer 14.
  • the first quantum dot protective film provided as described above and the second quantum dot protective film provided on the other surface of the phosphor layer 14 are schematically configured.
  • the quantum dot protective film 10 mentioned above is used for the first quantum dot protective film
  • the quantum dot protective film 12 different from the quantum dot protective film 10 described above is used for the second quantum dot protective film. It has been.
  • the first and second quantum dot protective films 10 and 12 are laminated on both surfaces of the phosphor layer 14 directly or via a sealing resin, respectively.
  • the wavelength conversion sheet 20 has a structure in which the phosphor layer 14 is encapsulated (that is, sealed) between the first and second quantum dot protective films 10 and 12.
  • the above-mentioned quantum dot protective film 10 is used only for the 1st quantum dot protective film, at least one of the 1st and 2nd quantum dot protective films is the above-mentioned quantum dot protective film. What is necessary is just to be both, and the above-mentioned quantum dot protective film 10 may be sufficient.
  • the wavelength conversion sheet 20 of the present embodiment includes the phosphor layer 14 and the first and second quantum dot protective films that seal the phosphor layer 14, and at least the first quantum dot protective film. Is the quantum dot protective film 10 disposed so that the protective layer 7 faces the phosphor layer 14. When manufacturing a backlight unit using the wavelength conversion sheet 20 of this embodiment, it arrange
  • the phosphor layer 14 includes a resin and a phosphor.
  • the thickness of the phosphor layer 14 is several tens to several hundreds ⁇ m.
  • As the resin for example, a photocurable resin or a thermosetting resin can be used.
  • the phosphor layer 14 preferably includes two types of phosphors composed of quantum dots.
  • the phosphor layer 14 may be a laminate in which two or more phosphor layers containing one type of phosphor and another type of phosphor are stacked. Two types of phosphors having the same excitation wavelength are selected. The excitation wavelength is selected based on the wavelength of light emitted by the light source.
  • the fluorescent colors of the two types of phosphors are different from each other. Each fluorescent color is red and green.
  • the wavelength of each fluorescence and the wavelength of light emitted from the light source are selected based on the spectral characteristics of the color filter.
  • the peak wavelength of fluorescence is, for example, 610 nm for red and 550
  • a core-shell type quantum dot having particularly good luminous efficiency is preferably used.
  • the core-shell type quantum dot is obtained by covering a semiconductor crystal core as a light emitting portion with a shell as a protective film.
  • cadmium selenide (CdSe) can be used for the core and zinc sulfide (ZnS) can be used for the shell.
  • ZnS zinc sulfide
  • the surface yield of CdSe particles is covered with ZnS having a large band gap, so that the quantum yield is improved.
  • the phosphor may be one in which a core is doubly covered with a first shell and a second shell. In this case, CdSe can be used for the core, zinc selenide (ZnSe) can be used for the first shell, and ZnS can be used for the second shell.
  • the phosphor layer 14 may have a single-layer configuration in which phosphors that convert light from a light source into red or green are dispersed in a single layer, and each phosphor is separated into a plurality of layers. It may have a multilayer structure in which these are dispersed and laminated.
  • the structure of the second quantum dot protective film 12 is not particularly limited.
  • the second quantum dot protective film 12 may be, for example, a laminate (barrier film) obtained in the manufacturing process of the quantum dot protective film 10 described above. That is, the second quantum dot protective film 12 may have a structure in which the coating layer 9 is removed from the quantum dot protective film 10 described above.
  • the method for forming the phosphor layer 14 is not particularly limited, and examples thereof include the method described in the specification of JP-T-2013-544018.
  • the phosphor is dispersed in a binder resin, and the prepared phosphor dispersion is applied on the surface 10a of the first quantum dot protective film 10 opposite to the coating layer 9 (the surface on the protective layer 7 side) 10a.
  • the wavelength conversion sheet 20 can be manufactured by laminating the second quantum dot protective film 12 and curing the phosphor layer 14.
  • the phosphor dispersion liquid is applied on one surface 12 a of the second quantum dot protective film 12, and the first quantum dot protective film 10 is coated on the coated surface, and the coating layer 9 is opposite to the phosphor layer 14.
  • the wavelength conversion sheet 20 can also be manufactured by pasting together so that the protective layer 7 and the phosphor layer 14 face each other and curing the phosphor layer 14.
  • FIG. 6 shows a configuration in which the phosphor layer 14 is directly sealed with the first and second quantum dot protective films 10 and 12, but is not limited thereto.
  • a sealing resin layer that covers and seals the phosphor layer 14 may be provided.
  • one quantum dot protective film (first quantum dot protective film 10) laminated on the phosphor layer 14 has an optical function. 9, and the coating layer 9 is provided on the surface of the first quantum dot protective film 10, it is possible to make foreign matter invisible and minute dark spots (dark spots) invisible.
  • the first and second quantum dot protective films 10 and 12 excellent in barrier properties or transparency are used, so that the performance of the quantum dots is maximized.
  • a backlight unit for a display that can be provided can be provided.
  • the wavelength conversion sheet 20 of the present embodiment by using the first and second quantum dot protective films 10 and 12 that are excellent in barrier properties and transparency, a more vivid color closer to nature, and A display with excellent color tone can be provided.
  • FIG. 7 is a schematic cross-sectional view of a backlight unit according to an embodiment of the present invention.
  • the backlight unit 30 includes a light source 22 and the wavelength conversion sheet 20, and the quantum dot protective film disposed on the opposite side of the light source 22 with the phosphor layer 14 interposed therebetween is the first quantum dot. It is a protective film.
  • the light guide plate 24 and the reflection plate 26 are arranged in this order on the surface 20 a on the second quantum dot protective film 12 side of the wavelength conversion sheet 20, and the light source 22 is the light guide plate 24. Of the light guide plate 24 (surface direction of the light guide plate 24).
  • the light guide plate 24 and the reflection plate 26 efficiently reflect and guide the light emitted from the light source 22, and known materials are used.
  • the light guide plate 24 for example, acrylic, polycarbonate, cycloolefin film, or the like is used.
  • the light source 22 is provided with a plurality of light emitting diode elements whose emission color is blue.
  • the light emitted from the light source 22 enters the light guide plate 24 (D1 direction), and then enters the phosphor layer 14 (D2 direction) with reflection and refraction.
  • the light that has passed through the phosphor layer 14 includes blue light before passing through the phosphor layer 14 and longer-colored light (yellow light, red light, and green light) that is generated when the phosphor is excited by a part thereof. Etc.) becomes white light.
  • Example 1 On one side of a biaxially stretched polyethylene terephthalate film (base material layer 3, product name: T60, thickness: 25 ⁇ m, manufactured by Toray Industries, Inc.), a silicon oxide layer (inorganic thin film layer 4, thickness: 250 mm) is formed by vacuum deposition. Formed. Furthermore, a gas barrier coating layer 5 having a thickness of 0.3 ⁇ m is formed by applying and drying a composition comprising alkoxysilane and polyvinyl alcohol on the silicon oxide layer, and the base material layer 3 and the inorganic thin film layer 4. And the laminated body (barrier film 8) which consists of a gas-barrier coating layer 5 was obtained.
  • base material layer 3 product name: T60, thickness: 25 ⁇ m, manufactured by Toray Industries, Inc.
  • a silicon oxide layer inorganic thin film layer 4 thickness: 250 mm
  • a gas barrier coating layer 5 having a thickness of 0.3 ⁇ m is formed by applying and drying a composition comprising alkoxysilane and polyvinyl alcohol
  • the quantum dot protective film 10 of Example 1 has the configuration shown in FIG. 1, and the portion composed of the base material layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 in the quantum dot protective film 10 is the protective layer 7. It corresponds to.
  • Example 2 A quantum dot protective film 10 of Example 2 was obtained in the same manner as in Example 1 except that the addition amount of silica particles in the composition forming the coating layer 9 was 15 parts by mass.
  • Example 3 The quantum dot protective film 10 of Example 3 was obtained in the same manner as in Example 1 except that the addition amount of silica particles in the composition forming the coating layer 9 was 10 parts by mass.
  • Example 4 In the same manner as in Example 1, a laminate (barrier film 8) composed of the base material layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 was obtained. Next, on the surface of the base material layer 3 of the laminate, 100 parts by mass of acrylic resin (trade name: Acaridic, manufactured by DIC) and silica particles (trade name: Tospearl 120, average particle size: 2.0 ⁇ m, The composition which consists of 20 mass parts (Momentive Performance Material company make) was apply
  • the quantum dot protective film 10 of Example 4 has the configuration shown in FIG. 2, and the portion composed of the base material layer 3, the inorganic thin film layer 4, and the gas barrier coating layer 5 in the quantum dot protective film 10 is a protective layer. It corresponds to 7.
  • Example 5 In the same manner as in Example 1, a laminate (barrier film 8) composed of the first base material layer 3A, the inorganic thin film layer 4, and the gas barrier coating layer 5 was obtained. In addition, the same material as the base material layer 3 in Example 1 was used for the first base material layer 3A. Next, on one side of a biaxially stretched polyethylene terephthalate film (second base material layer 3B, trade name: T60, thickness: 25 ⁇ m, manufactured by Toray Industries, Inc.), an acrylic resin (trade name: Acaridic, manufactured by DIC) A composition comprising 100 parts by mass and 20 parts by mass of silica particles (trade name: Tospearl 120, average particle size: 2.0 ⁇ m, manufactured by Momentive Performance Materials) was applied.
  • second base material layer 3B trade name: T60, thickness: 25 ⁇ m, manufactured by Toray Industries, Inc.
  • an acrylic resin trade name: Acaridic, manufactured by DIC
  • a composition comprising 100 parts by mass and 20 parts by mass of silica particles (trade
  • a coating layer 9 having a thickness of 5 ⁇ m was formed on the second base material layer 3B to obtain a coated base material layer.
  • the base material layer with the coating and the laminate are stacked so that the surface 3c opposite to the surface on which the coating layer 9 of the second base material layer 3B is formed and the gas barrier coating layer 5 face each other.
  • the quantum dot protective film 10 of Example 5 was obtained by arrange
  • the quantum dot protective film 10 of Example 5 has the configuration shown in FIG. 3. Among the quantum dot protective films 10, the first base material layer 3 ⁇ / b> A, the inorganic thin film layer 4, the gas barrier coating layer 5, and the second The portion made of the base material layer 3 ⁇ / b> B corresponds to the protective layer 7.
  • Example 6 In the same manner as in Example 1, a laminate including the base material layer 3, the first inorganic thin film layer 4i, and the first gas barrier coating layer 5i was obtained. In addition, the same material as the inorganic thin film layer 4 and the gas barrier coating layer 5 in Example 1 was used for the first inorganic thin film layer 4i and the first gas barrier coating layer 5i, respectively. A silicon oxide layer (second inorganic thin film layer 4ii, thickness: 250 mm) was formed on the first gas barrier coating layer 5i by a vacuum deposition method.
  • the 2nd gas-barrier coating layer 5ii which has thickness of 0.3 micrometer was formed by apply
  • a laminate comprising the substrate layer 3, the first inorganic thin film layer 4i, the first gas barrier coating layer 5i, the second inorganic thin film layer 4ii, and the second gas barrier coating layer 5ii. 8) was obtained.
  • an acrylic resin (trade name: ACALIDIC, manufactured by DIC) 100 A composition comprising 20 parts by mass of silica and silica particles (trade name: Tospearl 120, average particle size: 2.0 ⁇ m, manufactured by Momentive Performance Materials) was applied.
  • the coating layer 9 having a thickness of 5 ⁇ m was formed on the base material layer 3, and the quantum dot protective film 10 of Example 6 was obtained.
  • the quantum dot protective film 10 of Example 6 has the configuration shown in FIG. 4.
  • the base material layer 3 the first inorganic thin film layer 4 i, the first gas barrier coating layer 5 i, The portion composed of the second inorganic thin film layer 4ii and the second gas barrier coating layer 5ii corresponds to the protective layer 7.
  • Example 7 Using a composition comprising 100 parts by mass of an acrylic resin (trade name: Acaridic, manufactured by DIC) and 15 parts by mass of acrylic particles (trade name: Art Pearl, average particle size: 32 ⁇ m, manufactured by Negami Kogyo Co., Ltd.), gas barrier properties A quantum dot protective film of Example 7 was obtained in the same manner as in Example 1 except that the coating layer 9 having a thickness of 10 ⁇ m was formed on the coating layer 5.
  • an acrylic resin trade name: Acaridic, manufactured by DIC
  • acrylic particles trade name: Art Pearl, average particle size: 32 ⁇ m, manufactured by Negami Kogyo Co., Ltd.
  • Comparative Example 1 A quantum dot protective film of Comparative Example 1 was obtained in the same manner as in Example 1 except that the coating layer was not provided.
  • Method 1 for evaluating quantum dot protective film About the quantum dot protective film obtained by the Example and the comparative example, the abundance rate of a foreign material, a haze value, a total light transmittance, a light transmittance (spectral transmittance) at a wavelength of 450 nm, and a surface roughness were measured according to the following methods. .
  • haze value The haze values (%) of the quantum dot protective films obtained in Examples and Comparative Examples were measured using a haze meter (trade name: NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.). The measurement conditions were based on JIS K7361-1. Table 1 shows the measurement results of the haze value.
  • Total light transmittance The total light transmittance (%) of the quantum dot protective films obtained in Examples and Comparative Examples was measured using a haze meter (trade name: NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.). Measurement conditions were based on JIS K7136. Table 1 shows the measurement results of the total light transmittance.
  • Light transmittance at a wavelength of 450 nm The light transmittance (%) at a wavelength of 450 nm of the quantum dot protective films obtained in Examples and Comparative Examples was measured using a spectrophotometer (trade name: UV-2450, manufactured by Shimadzu Corporation). Table 1 shows the measurement results of light transmittance at a wavelength of 450 nm.
  • the arithmetic average roughness Ra ( ⁇ m) of the surface of the coating layer of the quantum dot protective film obtained in the examples and comparative examples (in the comparative example 1, the gas barrier coating layer) is measured with a surface roughness measuring device (trade name: Surf). Measured according to JIS B0601 using a test, manufactured by Mitutoyo Corporation. Table 1 shows the measurement results of the surface roughness Ra.
  • a phosphor having a core-shell structure in which cadmium selenide (CdSe) particles are coated with zinc sulfide (ZnS) (trade name: CdSe / ZnS 530, manufactured by SIGMA-ALDRICH) is dispersed in a solvent to obtain a concentration.
  • the phosphor dispersion liquid was prepared by adjusting.
  • the phosphor dispersion was mixed with an epoxy photosensitive resin to obtain a phosphor composition.
  • the phosphor composition was applied on the gas barrier coating layer of the second quantum dot protective film to form a phosphor layer having a thickness of 100 ⁇ m.
  • the wavelength conversion sheet using the quantum dot protective film of Example 1 was obtained by curing the phosphor layer (photosensitive resin) by UV irradiation.
  • quantum dot protective films of Examples 2 to 5 and 7 were used in the same manner as in Example 1 except that the quantum dot protective films obtained in Examples 2 to 5 and 7 were used as the first quantum dot protective film. A wavelength conversion sheet using a dot protective film was obtained.
  • Example 6 As a 1st quantum dot protective film, the quantum dot protective film obtained in Example 6 was used, and the base material layer and 1st inorganic obtained in Example 6 were used as a 2nd quantum dot protective film.
  • the quantum dot of Example 6 in the same manner as in Example 1 except that a laminate comprising a thin film layer, a first gas barrier coating layer, a second inorganic thin film layer, and a second gas barrier coating layer was used. A wavelength conversion sheet using a protective film was obtained.
  • the quantum dot protective film obtained in Comparative Example 1 is used, and the first quantum dot protective film is disposed on the phosphor layer so that the gas barrier coating layer is opposite to the phosphor layer.
  • a wavelength conversion sheet using the quantum dot protective film of Comparative Example 1 was obtained in the same manner as in Example 1 except that the layers were arranged so as to face each other.
  • the obtained wavelength conversion sheet was exposed to an environment at a temperature of 85 ° C. for 1000 hours.
  • the wavelength conversion sheet after exposure is irradiated with blue light from the second quantum dot protective film side, and the transmitted light is visually confirmed from the first quantum dot film side, and foreign matter, scratches, wrinkles and The presence or absence of display defects associated with dark spots or the like was evaluated.
  • the evaluation results are shown in Table 1.
  • B Although slight fluctuation of the transmitted light was recognized visually, it was not judged as a defect.
  • C The defect recognized visually is present.
  • the first barrier layer 6A having a thickness of 0.6 ⁇ m including the first inorganic thin film layer 4A and the first gas barrier coating layer 5A is provided on one surface of the first base material layer 3A.
  • Barrier film 8A was obtained.
  • a 0.6 ⁇ m second barrier layer 6B composed of the second inorganic thin film layer 4B and the second gas barrier coating layer 5B is formed on one surface of the second base material layer 3B.
  • a provided second barrier film 8B was obtained.
  • the first barrier film 8A and the second barrier film 8B were wound up in a roll shape.
  • the quantum dot protective film 10 of Example 8 was obtained by bonding together.
  • the quantum dot protective film 10 of Example 8 has the configuration shown in FIG. 5, and among the quantum dot protective film 10, the first base layer 3 ⁇ / b> A, the first inorganic thin film layer 4 ⁇ / b> A, and the first gas barrier coating.
  • a portion (including the adhesive layer) composed of the layer 5A, the second inorganic thin film layer 4B, the second gas barrier coating layer 5B, and the second base material layer 3B corresponds to the protective layer 7.
  • Two quantum dot protective films 10 of Example 8 were prepared by the same operation.
  • the haze value of the obtained quantum dot protective film 10 was 40%.
  • Example 9 Two quantum dot protective films 10 of Example 8 were obtained by the operation of Example 8 except that an acrylic pressure-sensitive adhesive was used for the adhesive layer for bonding the first barrier film 8A and the second barrier film 8B. Got ready. In addition, the haze value of the obtained quantum dot protective film 10 was 40%.
  • Example 2 In the production of the first barrier film 8A, the gas barrier coating layer 5A is formed on the inorganic thin film layer 4A without washing the base material layer 3A on which the inorganic thin film layer 4A is provided, and the second barrier film 8B In production, the base layer 3B provided with the inorganic thin film layer 4B was not washed, and the gas barrier coating layer 5B was formed on the inorganic thin film layer 4B.
  • Two quantum dot protective films of Example 2 were prepared. The haze value of the obtained quantum dot protective film was 40%.
  • CdSe / ZnS530 (trade name, manufactured by SIGMA-ALDRICH) as a quantum dot was mixed with an epoxy photosensitive resin to obtain a phosphor composition.
  • the phosphor composition was applied on the surface of the first quantum dot protective film 10 obtained in Example 8 on which the coating layer 9 is not formed (first base material layer 3A), and on the coated surface A wavelength using the quantum dot protective film 10 of Example 8 by laminating the second quantum dot protective film 10 so that the coated surface and the first base material layer 3A face each other, and UV curing lamination.
  • a conversion sheet was obtained.
  • Method 2 for evaluating quantum dot protective film Using a visual inspection machine equipped with an inline camera having two systems of reflection and transmission, a protective layer of about 1000 m 2 before forming the coating layer used in the manufacture of the quantum dot protective films of Examples 8 and 9 and Comparative Example 2 On the other hand, foreign matters having a maximum dimension and an average dimension of 100 to 700 ⁇ m in the protective layer were detected, and the existence ratio per unit area was calculated for each maximum dimension and average dimension.
  • the barrier layer-forming surface side of the barrier film used in the production of the quantum dot protective film in Example 8 was detected using the above-described appearance inspection machine for foreign matters having a maximum dimension and an average dimension of 100 to 700 ⁇ m. The abundance ratio per unit area by average dimension was calculated. Table 2 shows the evaluation results of the foreign substance presence rate.
  • the obtained wavelength conversion sheet was exposed to an environment at a temperature of 85 ° C. for 1000 hours.
  • the wavelength conversion sheet after exposure is irradiated with blue light from the first quantum dot protective film side, the transmitted light is visually confirmed from the second quantum dot film side, and foreign matter, scratches, The presence or absence of defects on the display due to wrinkles and dark spots was evaluated.
  • the evaluation results are shown in Table 2.
  • B Although slight fluctuation of the transmitted light was recognized visually, it was not judged as a defect.
  • C The defect recognized visually is present.
  • the wavelength conversion sheet using the quantum dot protective film of Example 8 no defects on display were confirmed even though the protective layer had foreign matters.
  • the foreign matter in the protective layer was slightly more, and display defects were confirmed.
  • the protective layer had a larger amount of foreign matter than in Examples 8 and 9, and the water vapor transmission rate was slightly reduced.
  • the barrier film used in the image display apparatus is more strictly controlled in terms of the presence of foreign matters than a normal barrier film that requires only gas barrier properties.
  • a certain number of protective layers are provided. Even if it has a foreign material, a defect on display can be reduced, and a quantum dot protective film that can be suitably used for an image display device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、蛍光体を封止するための量子ドット保護フィルムであって、最大寸法が100~500μmである異物を有する保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、保護層における最大寸法が100~500μmである異物の存在率が0.01~5.0個/mであり、ヘイズ値が20%以上である、量子ドット保護フィルムを提供する。

Description

量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
 本発明は、量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニットに関する。
 液晶ディスプレイは、表示のために液晶組成物が使用された表示装置である。液晶ディスプレイは、多様な機器における表示装置、特に、情報表示装置又は画像表示装置として利用されている。
 液晶ディスプレイは、電圧の印加に基づき、液晶パネルにて領域ごとに光を透過又は遮断することで映像を表示する。したがって、液晶ディスプレイに映像を表示するためには、液晶パネルの背面にバックライトが必要となる。バックライトには従来冷陰極管が使用されている。最近では長寿命及び発色の良さ等の理由から、冷陰極管に代わって、LED(発光ダイオード)が使用されることもある。
 ところで、近年国外のベンチャー企業を中心として、量子ドットを用いたナノサイズの蛍光体が製品化されている。量子ドットとは、発光性の半導体ナノ粒子で、直径の範囲は1~20nmである。量子ドットのユニークな光学特性及び電子特性は、生物学及び医学診断の分野における蛍光イメージングに加え、フラットパネルディスプレイ又は多彩な色の照明(電飾)等、数多くの用途に活用されつつある。
 ディプレイにおいて非常に大きな重要度を占める白色LED技術では、セリウムをドープしたYAG・Ce(イットリウム・アルミニウム・ガーネット)下方変換用蛍光体を青色(450nm)LEDチップで励起する方法が一般的に用いられている。LEDの青色光は、YAG蛍光体から発生した波長範囲の広い黄色光と混ざることで白色光となる。しかし、この白色光は幾分青味がかっていることが多く、しばしば「冷たい」又は「涼しげな」白色とみなされてしまう。
 量子ドットは幅広い励起スペクトルを示し、高い量子効率を有するため、LED下方変換用蛍光体として使用することができる。さらに、ドットサイズ又は半導体材料の種類を変更するだけで、発光の波長を可視光領域全体にわたって完全に調整することができる。そのため、量子ドットは事実上あらゆる色、特に照明業界で強く望まれている暖かい白色を作り出せる可能性を秘めていると言われている。加えて、発光波長が、赤、緑及び青に対応する3種類のドットを組み合わせて、演色評価数の異なる白色光を得ることが可能となる。このように、量子ドットによるバックライトを用いたディスプレイでは、従来の液晶ディスプレイより、厚み、消費電力、コスト及び製造プロセス等を増やすことなく、色調を向上させ、人が識別できる色の65%までを表現することが可能である。
 このバックライトは、赤又は緑の発光スペクトルを有する量子ドットをフィルム内に拡散させ、当該フィルムの両主面をバリアフィルム又はその積層体にて封止した(覆った)光学機器で、場合によっては主面だけでなくエッジ部をも封止したものである。
 また、特許文献1には、蛍光体の劣化を抑制するため、蛍光体を含む層をバリアフィルムで挟むことが提案されている。さらに、特許文献2には、有機EL素子の信頼性を確保するため、有機EL素子をガスバリアフィルムで被覆することが提案されている。
特開2011-013567号公報 特開2009-018568号公報
 ところで、量子ドット保護フィルムに、キズ、シワ及び異物等が存在すると、ディスプレイ表示上の欠陥として見えることがある。このため、一般に量子ドット保護フィルムには、キズ、シワ及び異物等のない優れた外観が要求される。それだけでなく、量子ドットが劣化するとダークスポットと呼ばれる非発光領域が発生することがある。ダークスポットはディスプレイ表示上の欠陥として見えてしまうため、量子ドット保護フィルムにはダークスポットが発生しないよう高いバリア性も要求される。
 しかしながら、従来のバリアフィルムの多くは、食品若しくは医療品等の包装材料又は電子デバイス等のパッケージ材料として用いられてきたものであり、量子ドット保護フィルムとして満足できる性能を得ることが極めて困難であった。また、特許文献1又は2に記載のバリアフィルムで量子ドットを封止したディスプレイを作製したとしても、バリア性がいまだ十分ではなく、ダークスポットを発生することがあった。また、構成するフィルムを例えクリーンルーム環境で作製したとしても、キズ、シワ及び異物等の低減には限界があった。このため、特許文献1又は2に記載のバリアフィルムは、ディスプレイ表示上に視認できる欠陥が十分低減されたバリアフィルムであるとは言えなかった。
 本発明はかかる事情を鑑みてなされたものであり、ディスプレイ表示上に視認できる欠陥を低減することが可能な、量子ドット保護フィルム、波長変換シート及びバックライトユニットを提供することを目的とする。
 本発明は、蛍光体を封止するための量子ドット保護フィルムであって、最大寸法が100~500μmである異物を有する保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、保護層における最大寸法が100~500μmである異物の存在率が0.01~5.0個/mであり、ヘイズ値が20%以上である、量子ドット保護フィルムを提供する。本発明によれば、ディスプレイ表示上に視認できる欠陥を低減することができる。
 上記量子ドット保護フィルムにおいて、上記保護層は最大寸法が100~300μmである異物を有し、最大寸法が100~300μmである異物の存在率が0.1~2.0個/mであることが好ましい。上記量子ドット保護フィルムにおいて、上記保護層は平均寸法が200~500μmである異物を有し、平均寸法が200~500μmである異物の存在率が3.0個/m以下であることが好ましい。上記量子ドット保護フィルムにおいて、上記保護層が、基材層とバリア層とを積層したバリアフィルムを含み、上記バリアフィルムにおける最大寸法が100~500μmである異物の存在率が0.01~2.0個/mであることが好ましい。異物の存在率がこれらの範囲にあることにより、欠陥の発生をより確実に低減できる傾向がある。
 上記量子ドット保護フィルムの全光線透過率は80%以上であることが好ましい。全光線透過率が80%以上であることにより、少ない電力使用でディスプレイ上の明るさを確保しやすくなる。
 また、上記量子ドット保護フィルムの450nmでの分光透過率は70%以上であることが好ましい。450nmでの分光透過率が70%以上であることにより、光源として特に青色LEDを使用した場合に、十分な明るさを確保しやすくなる。
 上記コーティング層の保護層と反対側の面における表面粗さRaは0.2μm以上であることが好ましい。上記表面粗さRaが0.2μm以上であることにより、量子ドット保護フィルムをプリズムシート等の他の部材と積層しても干渉縞の発生を抑制しやすくなるとともに、量子ドット保護フィルムのヘイズ値を20%以上に制御しやすくなる。
 本発明はまた、蛍光体を封止するための量子ドット保護フィルムであって、最大寸法が100~300μmである異物を有する保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、保護層における最大寸法が100~300μmである異物の存在率が0.1~2.0個/mであり、ヘイズ値が20%以上である、量子ドット保護フィルムを提供する。本発明によれば、ディスプレイ表示上に視認できる欠陥を低減することができる。
 本発明はまた、蛍光体を封止するための量子ドット保護フィルムであって、平均寸法が200~500μmである異物を有する保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、保護層における平均寸法が200~500μmである異物の存在率が3.0個/m以下であり、ヘイズ値が20%以上である、量子ドット保護フィルムを提供する。本発明によれば、ディスプレイ表示上に視認できる欠陥を低減することができる。
 本発明はまた、蛍光体層と、該蛍光体層を封止する第1及び第2の量子ドット保護フィルムとを備え、少なくとも上記第1の量子ドット保護フィルムは、上記保護層が上記蛍光体層と対向するように配置された上記量子ドット保護フィルムである、波長変換シートを提供する。
 本発明はさらに、青色LEDからなる光源と上記波長変換シートとを備え、上記波長変換シートにおいて、上記蛍光体層を挟んで上記光源と反対側に配置された量子ドット保護フィルムが上記第1の量子ドット保護フィルムである、バックライトユニットを提供する。
 本発明によれば、ディスプレイ表示上に視認できる欠陥を低減することが可能な、量子ドット保護フィルム、波長変換シート及びバックライトユニットを提供することができる。
本発明の第一の実施形態に係る量子ドット保護フィルムの概略断面図である。 本発明の第二の実施形態に係る量子ドット保護フィルムの概略断面図である。 本発明の第三の実施形態に係る量子ドット保護フィルムの概略断面図である。 本発明の第四の実施形態に係る量子ドット保護フィルムの概略断面図である。 本発明の第五の実施形態に係る量子ドット保護フィルムの概略断面図である。 本発明の一実施形態に係る波長変換シートの概略断面図である。 本発明の一実施形態に係るバックライトユニットの概略断面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一又は同等の要素には同じ符号を付し、重複する説明を省略する。
[量子ドット保護フィルム]
 本発明において、量子ドット保護フィルムは、保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、20%以上のヘイズ値を有する。ヘイズ値は25%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましい。また、十分な光線透過率が得られる観点から、ヘイズ値は95%以下であることが好ましく、90%以下であることがより好ましい。ヘイズ値とは、フィルムの濁度を表す指標であり、全光線透過光に対する拡散透過光の割合である。ヘイズ値は、具体的には下記式から求められる。下記式中のTdは拡散透過率、Ttは全光線透過率であり、拡散透過率及び全光線透過率はそれぞれヘイズメーター等で測定することができる。
  ヘイズ値(%)=Td/Tt×100
 上記保護層には、最大寸法が100~500μmである異物を有し、上記最大寸法が100~500μmである異物の存在率が0.01~5.0個/mである保護層を用いることができる。上記保護層には、最大寸法が100~300μmである異物を有し、上記最大寸法が100~300μmである異物の存在率が0.1~2.0個/mである保護層を用いてもよい。量子ドット保護フィルム中に100μm程度の大きさを有する物質が存在すれば、人間の目で視認することができる。このような物質を有するフィルムを用いて表示装置を製造した場合、通常、表示上の欠陥となりやすい。しかし、本発明の量子ドット保護フィルムは上述のとおり20%以上のヘイズ値を有することから、異物を有する保護層を用いて表示装置を製造したとしても、表示上の欠陥となることを抑制することができる。同様に、量子ドットの劣化に伴ってダークスポットが発生した場合にも、当該ダークスポットが表示上の欠陥となることを抑制することができる。その結果、量子ドット保護フィルム及び波長変換シートの歩留まりが向上し、さらには小さなダークスポットが発生しても欠陥として視認できないことから、波長変換シートの長期信頼性をも向上することができる。一方、異物の最大寸法が500μmを超えると、表示上の欠陥となることを抑制しきれなくなることがある。異物の最大寸法が300μmを超える場合も、保護層のヘイズ値次第で、表示上の欠陥となり得る。したがって、上記保護層には最大寸法が500μmを超える異物を有しない保護層を用いてもよく、最大寸法が300μmを超える異物を有しない保護層を用いてもよい。
 上記保護層には、平均寸法が200~500μmである異物を有し、平均寸法が200~500μmである異物の存在率が3.0個/m以下である保護層を用いてもよい。平均寸法が200~500μmである異物は、例えば線状及び棒状のような長くて且つ細い異物を含み得る。最大寸法が大きくても平均寸法が上記範囲内にあることにより、異物は視認されにくくなる。特に、平均寸法が200~500μmである異物の存在率が3.0個/m以下であることで、異物が視認上の欠陥となることを一層抑制することができる。
 ここで、本明細書において、異物とは、保護層を観察したときに、保護層の他の部分とは光学的に異なると認識できる部分(塊)である。異物は保護層の構成材料と異なる材料からなる場合もあり、保護層の構成材料と同じ材料からなる場合もある。異物が保護層の構成材料と異なる材料からなる場合、例えば、量子ドット保護フィルム製造の際に周囲の塵及び埃等が保護層内に混入し、異物となる可能性がある。また、異物が保護層の構成材料と同じ材料からなる場合、例えば、無機薄膜層形成において蒸着源から蒸着材料が気化されず、まれに大きな粒子(蒸着粉)の形で保護層に付着することがあり、上記粒子が異物となる可能性がある。
 異物の存在率が小さければ、表示装置を製造した際の表示上の欠陥も少なくなるが、本発明の特徴は仮に保護層が上記最大寸法を有する異物を上記存在率で有していたとしても、表示上の欠陥となることを抑制できる点にある。上記観点から、最大寸法が100~500μmである異物の存在率は0.1~2.0個/mであってもよい。最大寸法が100~300μmである異物の存在率は0.5~2.0個/mであってもよく、0.8~2.0個/mであってもよい。最大寸法が100~500μmである異物の存在率が5.0個/mを超える、又は、最大寸法が100~300μmである異物の存在率が2.0個/mを超えると、異物が重なり合って視認された結果、最大寸法が大きくなり、表示上の欠陥となることを抑制しきれなくなることがある。また、最大寸法が100~500μmである異物の存在率が5.0個/mを超える、又は、最大寸法が100~300μmである異物の存在率が2.0個/mを超えると、バリア層6を損傷する可能性がある。
 また、本明細書において、最大寸法とは保護層を保護層と垂直な方向から見たときの平面Sにおいて、異物と認められる部分の中の最も遠い2点を結んだ距離(2点を結ぶ線の長さ)を示す。また、平均寸法LAVは、上述の異物と認められる部分の中の最も遠い2点を結ぶ線Aの長さをLとし、平面S上の線Aと直交する軸上において異物と認められる部分の中で最も遠い2点を結ぶ線Bの長さをLとしたとき、下記式から計算できる。
 LAV=(L+L)/2
 異物の最大寸法、平均寸法及び存在率は、例えば、光学式検査装置を用いて、画像処理により異物を識別し、検出したピクセル数により異物サイズを測定することができる。
 量子ドット保護フィルムの全光線透過率は80%以上であることが好ましい。全光線透過率が80%以上であることにより、少ない電力使用で表示装置における明るさを確保しやすくなる。また、全光線透過率が80%未満であると、光源からの光のロスが大きくなり、表示装置において十分な明るさが確保できないか、又は、明るさを確保するためにより明るい光源を使用せざるを得なくなることがある。
 量子ドット保護フィルムの450nmでの分光透過率は70%以上であることが好ましい。450nmでの分光透過率が70%以上であることにより、少ない電力使用で表示装置における特に青色の明るさを確保しやすくなる。光源として青色LEDを用いた場合、青色LEDの波長が450nm付近であるため、450nm付近の波長の光の透過率が低いと、光源からの光のロスが大きくなる。このため、表示装置において、特に青色で十分な明るさが確保できないか、又は、明るさを確保するためにより明るい光源を使用せざるを得なくなることがある。
 本発明の量子ドット保護フィルムは上述の観点から様々な構造を有することができる。以下に本発明の量子ドット保護フィルムの構造についてより具体的に説明する。
(第一の実施形態)
 図1は、本発明の第一の実施形態に係る量子ドット保護フィルムの概略断面図である。図1において、量子ドット保護フィルム10は、具体的には、基材層3の一方の面3b上に無機薄膜層4、ガスバリア性被覆層5、及びコーティング層9がこの順に積層された構成を有する。すなわち、第一の実施形態において、保護層7は、基材層3、無機薄膜層4、及びガスバリア性被覆層5がこの順に積層されてなり、コーティング層9はガスバリア性被覆層5上に形成されている。本実施形態の量子ドット保護フィルム10を用いて波長変換シートを製造する際には、基材層3の他方の面3aと蛍光体層とが対向するように配置される。本実施形態において、保護層7の厚さは、全体として、10~250μmであることが好ましく、16~150μmであることがより好ましい。
 基材層3としては、特に限定されず、例えば、ポリエチレンテレフタレート系フィルム又はポリエチレンナフタレート系フィルムを用いることが好ましく、25以下の酸価(基材層3(フィルム)1g中に含まれる遊離酸及びその他の酸性物質を中和するのに要する水酸化カリウムのmg数)を有するポリエチレンテレフタレート系フィルムを用いることがより好ましい。ここで、基材層3の酸価が25を超えると、特に高温高湿環境下での基材安定性が損なわれるため、バリア性が低下することがある。一方、酸価が25以下であると、基材安定性が増し、高温高湿環境下でもバリア性が低下せず安定する傾向がある。
 基材層3の厚さは、特に制限されず、3μm以上200μm以下であることが好ましく、5μm以上150μm以下であることがより好ましい。
 基材層3の一方の面3b上に形成される無機薄膜層4及びガスバリア性被覆層5はバリア層6と言うこともある。無機薄膜層(無機酸化物薄膜層)4としては、特に限定されず、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウム又はそれらの混合物を用いることができる。これらの中でも、バリア性及び生産性の観点から、酸化アルミニウム又は酸化珪素を用いることが好ましい。さらに、水蒸気バリア性の観点から、酸化珪素を用いることがより好ましい。
 無機薄膜層4の厚さ(膜厚)は、5~500nmであることが好ましく、10~300nmであることがより好ましい。無機薄膜層4の厚さが5nm以上であることにより、均一な膜が得られやすく、バリア性が得られやすくなる傾向がある。一方、無機薄膜層4の厚さが500nm以下であることにより、無機薄膜層4にフレキシビリティを保持させることができ、成膜後に折り曲げ又は引っ張り等の外力により、亀裂等が生じにくくなる傾向がある。
 ガスバリア性被覆層5は、後工程での二次的な各種損傷を防止するとともに、より高いバリア性を付与するために設けられるものである。ガスバリア性被覆層5の厚さ(膜厚)は、0.05~2.0μmであることが好ましく、0.1~1.0μmであることがより好ましい。ガスバリア性被覆層5は、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種類を成分として有するコーティング剤から形成される。ガスバリア性被覆層5の厚さが0.05μm以上であることにより、均一なバリア性を発現することができ、2.0μm以下であることにより、フレキシビリティを保持させることができ、成膜後に折り曲げ又は引っ張り等の外力により、亀裂等が生じにくくなる傾向がある。
 水酸基含有高分子化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン及びデンプン等の水溶性高分子が挙げられる。水酸基含有高分子化合物はバリア性の観点からポリビニルアルコールであることが好ましい。
 金属アルコキシドは、一般式、M(OR)(MはSi,Ti,Al及びZr等の金属であり、RはCH及びC等のアルキル基であり、nは1~4の整数である)で表される化合物である。金属アルコキシドとしては、例えば、テトラエトキシシラン[Si(OC]、トリイソプロポキシアルミニウム[Al(O-iso-C]等が挙げられる。金属アルコキシドは、加水分解後、水系の溶媒中において比較的安定であることから、テトラエトキシシラン又はトリイソプロポキシアルミニウムであることが好ましい。金属アルコキシド加水分解物としては、例えば、テトラエトキシシランの加水分解物であるケイ酸(Si(OH))、及び、トリプロポキシアルミニウムの加水分解物である水酸化アルミニウム(Al(OH))等が挙げられる。
 コーティング層9は、光散乱機能を発揮させるために、量子ドット保護フィルム10の表面、すなわち、後述の波長変換シートの表面に設けられている。量子ドット保護フィルム10がコーティング層9を備えることにより、光散乱機能以外にも、干渉縞(モアレ)防止機能及び反射防止機能等を得ることができる。本実施形態の量子ドット保護フィルム10においては、コーティング層9は、少なくとも光散乱機能を付与できることを特徴としている。
 コーティング層9はバインダー樹脂と微粒子とを含んで構成されている。そして、微粒子の一部がコーティング層9の表面から露出するようにバインダー樹脂中に埋め込まれるように構成されている。コーティング層9が上記構成を備えることにより、コーティング層9の表面には露出した微粒子による微細な凹凸が生じることとなる。このようにコーティング層9を量子ドット保護フィルム10の表面、すなわち、後述の波長変換シートの表面に設けることにより、光散乱機能を発現することができる。
 量子ドット保護フィルム10のコーティング層9側の表面における、すなわち、コーティング層9の保護層7と反対側の面における、表面粗さ(算術平均粗さ)Raが0.2μm以上であることが好ましい。上記表面粗さRaが0.2μm以上であることにより、例えば、バックライトユニットを構成する場合のプリズムシート等の他の部材と接触した場合、平滑なフィルム同士が密着することによる干渉縞が発生することを抑制することができる。
 バインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、及び紫外線硬化性樹脂等を使用することができる。
 熱可塑性樹脂としては、例えば、セルロース誘導体、ビニル系樹脂、アセタール樹脂、アクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、フッ素樹脂及びポリカーボネート樹脂等が挙げられる。上記セルロース誘導体としては、例えば、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース及びメチルセルロース等が挙げられる。上記ビニル系樹脂としては、例えば、酢酸ビニル重合体及び共重合体、塩化ビニル重合体及び共重合体、並びに、塩化ビニリデン重合体及び共重合体等が挙げられる。上記アセタール樹脂としては、例えば、ポリビニルホルマール及びポリビニルブチラール等が挙げられる。上記アクリル系樹脂としては、例えば、アクリル系重合体及び共重合体、並びに、メタアクリル系重合体及び共重合体等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、尿素メラミン樹脂、ポリエステル樹脂及びシリコーン樹脂等が挙げられる。
 紫外線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート及びポリエステルアクリレート等の光重合性プレポリマーが挙げられる。また、上記光重合性プレポリマーを主成分とし、希釈剤として単官能又は多官能のモノマーを使用することもできる。
 コーティング層9において微粒子の露出部分を除いたバインダー樹脂層の厚さ(膜厚)は、0.1~20μmであることが好ましく、0.3~10μmであることがより好ましい。バインダー樹脂層の膜厚が0.1μm以上であることにより、均一な膜が得られやすく、光学的機能を十分に得られる傾向がある。一方、膜厚が20μm以下であることにより、コーティング層9の表面へ微粒子が表出して、凹凸付与効果が得られやすくなる傾向がある。また、透明性を維持し、薄膜化のトレンドにも合わせることができる。
 微粒子としては、有機粒子又は無機粒子を使用することができる。これらのうち、いずれか一種類のみを用いてもよいし、二種以上を用いてもよい。
 有機粒子としては、球状アクリル樹脂微粉末、ナイロン樹脂微粉末、四フッ化エチレン樹脂微粉末、架橋ポリスチレン樹脂微粉末、ポリウレタン樹脂微粉末、ポリエチレン樹脂微粉末、ベンゾグアナミン樹脂微粉末、シリコーン樹脂微粉末、エポキシ樹脂微粉末、ポリエチレンワックス粒子、及びポリプロピレンワックス粒子等が挙げられる。無機粒子としては、シリカ粒子、ジルコニア粒子、硫酸バリウム粒子、酸化チタン粒子、及び酸化バリウム粒子等が挙げられる。
 また、微粒子の平均一次粒径(以下、平均粒径と言うことがある)は、0.5~20μmであることが好ましい。ここでは、上記平均粒径は、レーザー回折法により測定した、体積平均径である。微粒子の平均粒径が0.5μm以上であることにより、コーティング層9の表面へ凹凸を効果的に付与することができる傾向がある。一方、微粒子の平均粒径が20μm以下であることにより、バインダー樹脂層の厚さを大きく超える粒子を使用することなく、光線透過率を高く維持することができる。また、微粒子の平均粒径が20μm以下であることにより、LEDバックライトユニットに使用される導光板を傷つけることを抑制できる傾向がある。コーティング層9は、バインダー樹脂100質量部に対して、微粒子を0.1~50質量部含むことが好ましく、2~20質量部含むことがより好ましい。コーティング層9が微粒子を上記範囲で含むことにより、塗膜の密着性を維持することができる。
 また、コーティング層9は、光散乱機能を発揮する一層構造に限定されるものではなく、複数の機能を発揮する層の積層体であってもよい。
 第一の実施形態に係る量子ドット保護フィルムは以下のようにして製造することができる。まず、基材層3の一方の面に無機薄膜層4を例えば蒸着法等によって積層する。次に、水溶性高分子(水酸基含有高分子化合物)と、(a)1種以上の金属アルコキシド及び加水分解物又は(b)塩化錫の少なくとも一方と、を含む水溶液或いは水/アルコール混合溶液を主剤とするコーティング剤を無機薄膜層4の表面上に塗布して、乾燥することにより、ガスバリア性被覆層5を形成する。これにより、基材層3上にバリア層6が設けられた積層体(バリアフィルム8)が得られる。次に、上記積層体のバリア層6上に、バインダー樹脂と微粒子とを混合したコーティング液を塗布し、乾燥することにより、コーティング層9を形成する。これにより、基材層3上にバリア層6及びコーティング層9が積層された量子ドット保護フィルム10が得られる。なお、本実施形態においては、バリアフィルム8が保護層7となる。
 バリアフィルム8には、最大寸法が100~500μmである異物を有し、最大寸法が100~500μmである異物の存在率は0.01~2.0個/mであるバリアフィルムを用いてもよい。バリアフィルム8における、最大寸法が100~500μmである異物の存在率は0.01~1.0個/mであってもよい。
(第二の実施形態)
 図2は、本発明の第二の実施形態に係る量子ドット保護フィルムの概略断面図である。第二の実施形態に係る量子ドット保護フィルム10は、コーティング層9が保護層7の基材層側の表面上に形成されている点で第一の実施形態に係る量子ドット保護フィルム10と異なる。図2において、量子ドット保護フィルム10は、具体的には、基材層3の一方の面3b上にコーティング層9が積層され、他方の面3a上に無機薄膜層4及びガスバリア性被覆層5がこの順に積層された構成を有する。すなわち、第二の実施形態において、保護層7は、基材層3、無機薄膜層4、及びガスバリア性被覆層5がこの順に積層されてなり、コーティング層9は基材層3の他方の面3b上に形成されている。なお、本実施形態においても第一の実施形態と同様に、バリアフィルム8が保護層7となる。バリアフィルム8を作製し、バリアフィルム8の基材層3上にコーティング層9を形成することにより、本実施形態に係る量子ドット保護フィルム10が得られる。本実施形態の量子ドット保護フィルム10を用いて波長変換シートを製造する際には、量子ドット保護フィルム10はガスバリア性被覆層5と蛍光体層とが対向するように配置される。本実施形態の量子ドット保護フィルム10を波長変換シートに用いることにより、バリア層6が蛍光体層とより近い位置に設けられているため、より効果的にバリア性能を発揮することができる。
(第三の実施形態)
 図3は、本発明の第三の実施形態に係る量子ドット保護フィルムの概略断面図である。第三の実施形態に係る量子ドット保護フィルム10は、ガスバリア性被覆層5上にさらに別の基材層3Bが設けられて保護層7を構成している点、及び、コーティング層9が保護層7の別の基材層3Bの表面上に形成されている点で第一の実施形態に係る量子ドット保護フィルム10と異なる。図3において、量子ドット保護フィルム10は、具体的には、第1の基材層3Aの一方の面3b上に無機薄膜層4、ガスバリア性被覆層5、第2の基材層3B及びコーティング層9がこの順に積層された構成を有する。すなわち、第三の実施形態において、保護層7は、第1の基材層3A、無機薄膜層4、ガスバリア性被覆層5及び第2の基材層3Bがこの順に積層されてなり、コーティング層9は第2の基材層3Bの一方の面3d上に形成されている。保護層7は、第1の基材層3Aの一方の面3bと、第2の基材層3Bの他方の面3cとの間にバリア層6を挟み込むように構成されていると言うこともできる。なお、本実施形態において、バリアフィルム8は、第1の基材層3A、無機薄膜層4、及びガスバリア性被覆層5がこの順に積層されてなる。バリアフィルム8を作製する一方で、第2の基材層3B上にコーティング層9を形成してコーティング層付き基材層を作製して、バリアフィルム8とコーティング層付き基材層とを、バリア層6と第2の基材層3Bとが対向するように、接着剤等(図示しない)を介して貼り合せることにより、本実施形態に係る量子ドット保護フィルム10が得られる。本実施形態の量子ドット保護フィルム10を用いて波長変換シートを製造する際には、量子ドット保護フィルム10は第1の基材層3Aの他方の面3aと蛍光体層とが対向するように配置される。本実施形態の量子ドット保護フィルム10によれば、バリア層6を第1及び第2の基材層3A,3Bによって挟み込んでいるため、バリア層6に微小なピンホール等の欠陥が生じている場合であっても、より効果的にバリア性能を発揮することができる。
(第四の実施形態)
 図4は、本発明の第四の実施形態に係る量子ドット保護フィルムの概略断面図である。第四の実施形態に係る量子ドット保護フィルム10は、コーティング層9が保護層7の基材層側の表面上に形成されている点、及び、基材層3上に2つのバリア層6i,6iiが設けられている点で第一の実施形態に係る量子ドット保護フィルム10と異なる。図4において、量子ドット保護フィルム10は、具体的には、基材層3の一方の面3b上にコーティング層9が積層され、他方の面3a上に第1の無機薄膜層4i、第1のガスバリア性被覆層5i、第2の無機薄膜層4ii及び第2のガスバリア性被覆層5iiがこの順に積層された構成を有する。すなわち、第四の実施形態において、保護層7は、基材層3、第1の無機薄膜層4i、第1のガスバリア性被覆層5i、第2の無機薄膜層4ii及び第2のガスバリア性被覆層5iiがこの順に積層されてなり、コーティング層9は基材層3の他方の面3b上に形成されている。なお、本実施形態において、バリアフィルム8は保護層7と同じである。バリアフィルム8を作製し、バリアフィルム8の基材層3上にコーティング層9を形成することにより、本実施形態に係る量子ドット保護フィルム10が得られる。本実施形態の量子ドット保護フィルム10を用いて波長変換シートを製造する際には、量子ドット保護フィルム10は第2のガスバリア性被覆層5iiと蛍光体層とが対向するように配置される。本実施形態の量子ドット保護フィルム10によれば、2つのバリア層6i,6iiが積層される、すなわち、無機薄膜層とガスバリア性被覆層とが交互に2層ずつ積層されているため、より優れたバリア性能を発揮することができる。
(第五の実施形態)
 図5は、本発明の第五の実施形態に係る量子ドット保護フィルムの概略断面図である。第五の実施形態に係る量子ドット保護フィルム10は、保護層7が2つのバリアフィルム8A,8Bを備え、これらが接着層2を介してバリア層同士が対向するように積層されており、コーティング層9が保護層7の基材層側の表面上に形成されている点で、第一の実施形態に係る量子ドット保護フィルムと異なる。本実施形態において、バリアフィルム8Aは第1の基材層3Aの一方の面3b上に第1の無機薄膜層4A及び第1のガスバリア性被覆層5Aがこの順に積層された構成を有し、バリアフィルム8Bは第2の基材層3Bの一方の面3c上に第2の無機薄膜層4B及び第2のガスバリア性被覆層5Bがこの順に積層された構成を有する。すなわち、第五の実施形態において、保護層7は、第1の基材層3A、第1の無機薄膜層4A、第1のガスバリア性被覆層5A、接着層2、第2のガスバリア性被覆層5B、第2の無機薄膜層4B、及び第2の基材層3Bがこの順に積層されてなり、コーティング層9は第2の基材層3Bの他方の面3d上に形成されている。第1の基材層3Aの一方の面3b上に形成される無機薄膜層4A及びガスバリア性被覆層5Aは第1のバリア層6Aと言い、第2の基材層3Bの一方の面3c上に形成される無機薄膜層4B及びガスバリア性被覆層5Bは第2のバリア層6Bと言うことがある。本実施形態の量子ドット保護フィルム10を用いて波長変換シートを製造する際には、量子ドット保護フィルム10が第1の基材層3Aと蛍光体層とが対向するように配置される。本実施形態の量子ドット保護フィルム10によれば、バリアフィルム8A,8Bが積層されているため、より優れたバリア性能を発揮することができる。
 さらに、バリアフィルム8A,8Bには、最大寸法が100~500μmである異物を有し、最大寸法が100~500μmである異物の存在率が0.01~2.0個/mであるバリアフィルムを用いてもよい。バリアフィルム8A,8Bにおける最大寸法が100~500μmである異物の存在率は0.1~5.0個/mであってもよく、0.5~5.0個/mであってもよく、また、0.01~2.0個/mであってもよい。このようなバリアフィルム8A,8Bを貼り合せることで、これらを貼り合せて得られる保護層における最大寸法が100~500μmである異物の存在率を0.01~5.0個/mに制御しやすくなり、ディスプレイ上に視認できる欠陥を低減しやすくなる。また、バリアフィルム8A,8Bが異物を有すると、異物周辺のガスバリア性が低下することがある。しかし、バリアフィルム8A,8Bを貼り合わせ、バリアフィルム8A,8Bそれぞれにおける、最大寸法が100~500μmである異物の存在率が2.0個/m以下であることにより、各バリアフィルムがそれぞれのガスバリア性を補完するように働き、例えば量子ドット保護フィルム10を波長変換シートに用いた場合に、ダークスポット(蛍光体の失活による暗点)などの局所的な劣化が一層抑制できる傾向がある。
 バリアフィルム8A,8Bは最大寸法が500μmを超える異物を有していないことが好ましく、有していたとしても当該異物の存在率は0.1個/m以下であることが好ましい。仮にバリアフィルム8A,8Bにおける直径が500μmの球形の異物の存在率が2.0個/mである場合、これらを張り合わせたガスバリア積層体においてそれぞれのバリアフィルムが有する異物の一部が重なり合う確率は、約6σ(3.4/1,000,000)であり、製造工程上高い品質を保つことができる傾向がある。
[波長変換シート]
 図6は本発明の一実施形態に係る波長変換シートの概略断面図である。図6に示すように、本実施形態の波長変換シート20は、量子ドットを用いた蛍光体層14と、蛍光体層14の一方の面上に保護層7と蛍光体層14とが対向するように設けられた第1の量子ドット保護フィルムと、蛍光体層14の他方の面上に設けられた第2の量子ドット保護フィルムと、を備えて概略構成されている。図6において、第1の量子ドット保護フィルムには上述した量子ドット保護フィルム10が用いられ、第2の量子ドット保護フィルムには上述した量子ドット保護フィルム10とは異なる量子ドット保護フィルム12が用いられている。より具体的には、蛍光体層14の両面上に直接又は封止樹脂を介して第1及び第2の量子ドット保護フィルム10,12がそれぞれ積層されている。これによって、波長変換シート20は、第1及び第2の量子ドット保護フィルム10,12の間に、蛍光体層14が包み込まれた(すなわち、封止された)構造を有する。なお、図6では、第1の量子ドット保護フィルムのみに上述の量子ドット保護フィルム10を用いているが、第1及び第2の量子ドット保護フィルムのうちの少なくとも一方が上述の量子ドット保護フィルムであればよく、両方が上述の量子ドット保護フィルム10であってもよい。すなわち、本実施形態の波長変換シート20は、蛍光体層14と、該蛍光体層14を封止する第1及び第2の量子ドット保護フィルムとを備え、少なくとも上記第1の量子ドット保護フィルムは、上記保護層7が上記蛍光体層14と対向するように配置された上記量子ドット保護フィルム10である。本実施形態の波長変換シート20を用いてバックライトユニットを製造する際には、量子ドット保護フィルム10が光源に対して反対側を向くように配置される。
 蛍光体層14は樹脂及び蛍光体を含む。蛍光体層14の厚さは数十~数百μmである。上記樹脂としては、例えば、光硬化性樹脂又は熱硬化性樹脂を使用することができる。蛍光体層14は、量子ドットからなる2種類の蛍光体を含むことが好ましい。また、蛍光体層14は、1種類の蛍光体を含む蛍光体層と別の種類の蛍光体を含む蛍光体層が2層以上積層されたものであってもよい。2種類の蛍光体には、励起波長が同一のものが選択される。励起波長は、光源が照射する光の波長に基づいて選択される。2種類の蛍光体の蛍光色は相互に異なる。各蛍光色は、赤色及び緑色である。各蛍光の波長、及び光源が照射する光の波長は、カラーフィルタの分光特性に基づき選択される。蛍光のピーク波長は、例えば、赤色で610nmであり、緑色で550nmである。
 次に、蛍光体の粒子構造を説明する。蛍光体としては、特に発光効率の良いコア・シェル型量子ドットが好適に用いられる。コア・シェル型量子ドットは、発光部としての半導体結晶コアが保護膜としてのシェルにより被覆されたものである。例えば、コアにはセレン化カドミウム(CdSe)、シェルには硫化亜鉛(ZnS)が使用可能である。CdSeの粒子の表面欠陥がバンドギャップの大きいZnSにより被覆されることで量子収率が向上する。また、蛍光体は、コアが第1シェル及び第2シェルにより二重に被覆されたものであってもよい。この場合、コアにはCdSe、第1シェルにはセレン化亜鉛(ZnSe)、第2シェルにはZnSが使用可能である。
 蛍光体層14は、光源からの光を赤色又は緑色等に変換する蛍光体をすべて単一の層に分散させた単層構成を有していてもよく、各蛍光体を複数の層に別々に分散させ、これらを積層する多層構成を有していてもよい。
 第2の量子ドット保護フィルム12の構造は特に制限されない。第2の量子ドット保護フィルム12は、例えば、上述の量子ドット保護フィルム10の製造工程で得られる積層体(バリアフィルム)であってもよい。すなわち、第2の量子ドット保護フィルム12は、上述の量子ドット保護フィルム10からコーティング層9を除いた構造を有していてもよい。
 次に、本実施形態の波長変換シート20の製造方法について図6を参照しながら説明する。蛍光体層14の形成方法としては、特に限定されず、例えば、特表2013-544018号明細書に記載される方法が挙げられる。バインダー樹脂に蛍光体を分散させ、調製した蛍光体分散液を第1の量子ドット保護フィルム10のコーティング層9と反対側の面(保護層7側の面)10a上に塗布した後、塗布面に第2の量子ドット保護フィルム12を貼り合わせ、蛍光体層14を硬化することにより、波長変換シート20を製造することができる。また反対に、第2の量子ドット保護フィルム12の一方の面12a上に上記蛍光体分散液を塗布し、塗布面に第1の量子ドット保護フィルム10をコーティング層9が蛍光体層14と反対側を向くように(保護層7と蛍光体層14が対向するように)貼り合わせ、蛍光体層14を硬化することにより、波長変換シート20を製造することもできる。
 また、図6では、蛍光体層14を第1及び第2の量子ドット保護フィルム10,12で直接封止する構成を示したが、これに限定されるものではない。例えば、蛍光体層14とは別に、当該蛍光体層14を覆い、封止する封止樹脂層を設ける構成としてもよい。第1及び第2の量子ドット保護フィルム10,12の間に封止樹脂層を設けて蛍光体層14を封止する構成とすることにより、より高いバリア性を有する波長変換シートを提供することができる。
 以上説明したように、本実施形態の波長変換シート20によれば、蛍光体層14に積層された一方の量子ドット保護フィルム(第1の量子ドット保護フィルム10)が光学的機能を有するコーティング層9を有しており、上記コーティング層9が第1の量子ドット保護フィルム10の表面に設けられているため、異物の不可視化及び微小ダークスポット(暗点)を不可視化することができる。
 また、本実施形態の波長変換シート20によれば、バリア性又は透明性に優れた第1及び第2の量子ドット保護フィルム10,12を用いているため、量子ドットの性能を最大限に発揮することのできるディスプレイ用のバックライトユニットを提供することができる。
 さらに、本実施形態の波長変換シート20によれば、バリア性及び透明性に優れた第1及び第2の量子ドット保護フィルム10,12を用いることで、より自然に近い鮮やかな色彩に、かつ色調の優れたディスプレイを提供することができる。
[バックライトユニット]
 図7は本発明の一実施形態に係るバックライトユニットの概略断面図である。図7において、バックライトユニット30は光源22と上記波長変換シート20とを備え、上記蛍光体層14を挟んで上記光源22と反対側に配置された量子ドット保護フィルムが上記第1の量子ドット保護フィルムである。詳細には、バックライトユニット30は、波長変換シート20の第2の量子ドット保護フィルム12側の表面20a上に導光板24及び反射板26がこの順で配置され、光源22は上記導光板24の側方(導光板24の面方向)に配置される。
 導光板24及び反射板26は、光源22から照射された光を効率的に反射し、導くものであり、公知の材料が使用される。導光板24としては、例えば、アクリル、ポリカーボネート、及びシクロオレフィンフィルム等が使用される。
 光源22には発光色が青色の発光ダイオード素子が複数個設けられている。光源22から照射された光は、導光板24(D1方向)に入射した後、反射及び屈折等を伴って蛍光体層14(D2方向)に入射する。蛍光体層14を通過した光は、蛍光体層14を通過する前の青色光と、その一部により蛍光体が励起されて発生するより長波長の発色光(黄色光、赤色光及び緑色光等)とが混ざることで、白色光となる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[量子ドット保護フィルムの作製1]
(実施例1)
 二軸延伸ポリエチレンテレフタレートフィルム(基材層3、商品名:T60、厚さ:25μm、東レ社製)の片面上に、酸化珪素層(無機薄膜層4、厚さ:250Å)を真空蒸着法により形成した。さらに、酸化珪素層上にアルコキシシランとポリビニルアルコールからなる組成物を塗布、乾燥することにより、0.3μmの厚さを有するガスバリア性被覆層5を形成し、基材層3、無機薄膜層4、及びガスバリア性被覆層5からなる積層体(バリアフィルム8)を得た。
 次に、作製した上記積層体のガスバリア性被覆層5の表面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)20質量部からなる組成物を塗布した。塗膜を加熱してアクリル樹脂を硬化することにより、ガスバリア性被覆層5上に厚さ5μmのコーティング層9を形成し、実施例1の量子ドット保護フィルム10を得た。実施例1の量子ドット保護フィルム10は図1に示す構成を有し、量子ドット保護フィルム10のうち、基材層3、無機薄膜層4、及びガスバリア性被覆層5からなる部分は保護層7に相当する。
(実施例2)
 コーティング層9を形成する組成物中のシリカ粒子の添加量を15質量部としたこと以外は、実施例1と同様の操作にて実施例2の量子ドット保護フィルム10を得た。
(実施例3)
 コーティング層9を形成する組成物中のシリカ粒子の添加量を10質量部としたこと以外は、実施例1と同様の操作にて実施例3の量子ドット保護フィルム10を得た。
(実施例4)
 実施例1と同様の操作にて、基材層3、無機薄膜層4、及びガスバリア性被覆層5からなる積層体(バリアフィルム8)を得た。次に、上記積層体の基材層3の表面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)20質量部からなる組成物を塗布した。塗膜を加熱して、アクリル樹脂を硬化することにより、基材層3上に厚さ5μmのコーティング層9を形成し、実施例4の量子ドット保護フィルム10を得た。実施例4の量子ドット保護フィルム10は図2に示す構成を有し、上記量子ドット保護フィルム10のうち、基材層3、無機薄膜層4、及びガスバリア性被覆層5からなる部分は保護層7に相当する。
(実施例5)
 実施例1と同様の操作にて、第1の基材層3A、無機薄膜層4、及びガスバリア性被覆層5からなる積層体(バリアフィルム8)を得た。なお、第1の基材層3Aには実施例1における基材層3と同じ材料を用いた。次に、二軸延伸ポリエチレンテレフタレートフィルム(第2の基材層3B、商品名:T60、厚さ:25μm、東レ社製)の片面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)20質量部からなる組成物を塗布した。塗膜を加熱して、アクリル樹脂を硬化することにより、第2の基材層3B上に厚さ5μmのコーティング層9を形成し、コーティング付き基材層を得た。第2の基材層3Bのコーティング層9が形成された面と反対側の面3cと、ガスバリア性被覆層5とが対向するように、上記コーティング付き基材層と上記積層体とを重ねて配置し、これらをアクリル系粘着剤で貼り合わせることにより、実施例5の量子ドット保護フィルム10を得た。実施例5の量子ドット保護フィルム10は図3に示す構成を有し、上記量子ドット保護フィルム10のうち、第1の基材層3A、無機薄膜層4、ガスバリア性被覆層5、及び第2の基材層3Bからなる部分は保護層7に相当する。
(実施例6)
 実施例1と同様の操作にて、基材層3、第1の無機薄膜層4i、及び第1のガスバリア性被覆層5iからなる積層体を得た。なお、第1の無機薄膜層4i及び第1のガスバリア性被覆層5iにはそれぞれ、実施例1における無機薄膜層4及びガスバリア性被覆層5と同じ材料を用いた。上記第1のガスバリア性被覆層5i上に、酸化珪素層(第2の無機薄膜層4ii、厚さ:250Å)を真空蒸着法により形成した。さらに、第2の無機薄膜層4ii上にアルコキシシランとポリビニルアルコールからなる組成物を塗布、乾燥することにより、0.3μmの厚さを有する第2のガスバリア性被覆層5iiを形成した。このようにして、基材層3、第1の無機薄膜層4i、第1のガスバリア性被覆層5i、第2の無機薄膜層4ii及び第2のガスバリア性被覆層5iiからなる積層体(バリアフィルム8)を得た。次に、第2の無機薄膜層4ii及び第2のガスバリア性被覆層5iiを形成後の上記積層体の基材層3の表面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)20質量部からなる組成物を塗布した。塗膜を加熱してアクリル樹脂を硬化することにより、基材層3上に厚さ5μmのコーティング層9を形成し、実施例6の量子ドット保護フィルム10を得た。実施例6の量子ドット保護フィルム10は図4に示す構成を有し、上記量子ドット保護フィルム10のうち、基材層3、第1の無機薄膜層4i、第1のガスバリア性被覆層5i、第2の無機薄膜層4ii、及び第2のガスバリア性被覆層5iiからなる部分は保護層7に相当する。
(実施例7)
 アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とアクリル粒子(商品名:アートパール、平均粒子径:32μm、根上工業社製)15質量部からなる組成物を用いて、ガスバリア性被覆層5上に厚さ10μmのコーティング層9を形成したこと以外は、実施例1と同様の操作にて実施例7の量子ドット保護フィルムを得た。
(比較例1)
 コーティング層を設けないこと以外は、実施例1と同様の操作にて比較例1の量子ドット保護フィルムを得た。
[量子ドット保護フィルムの評価方法1]
 実施例及び比較例で得られた量子ドット保護フィルムについて、異物の存在率、ヘイズ値、全光線透過率、波長450nmの光線透過率(分光透過率)、及び表面粗さを下記方法に従って測定した。
(異物の存在率)
 実施例及び比較例で得られた量子ドット保護フィルムのコーティング層側の面をトルエンで洗浄し、コーティング層を除くことにより、量子ドット保護フィルム中の保護層を得た。次に、ラインセンサカメラを用いて、保護層中の最大寸法が100~500μmの異物を検出し、単位面積当たりの存在率を算出した。同様にして、保護層中の最大寸法が100~300μmの異物を検出し、単位面積当たりの存在率を算出した。さらに、保護層中の平均寸法が200~500μmの異物を検出し、単位面積当たりの存在率を算出した。
(ヘイズ値)
 実施例及び比較例で得られた量子ドット保護フィルムのヘイズ値(%)をヘイズメーター(商品名:NDH-2000、日本電色工業株式会社製)を用いて測定した。測定条件は、JIS K7361-1に準拠するものとした。ヘイズ値の測定結果を表1に示す。
(全光線透過率)
 実施例及び比較例で得られた量子ドット保護フィルムの全光線透過率(%)をヘイズメーター(商品名:NDH-2000、日本電色工業株式会社製)を用いて測定した。測定条件は、JIS K7136に準拠するものとした。全光線透過率の測定結果を表1に示す。
(波長450nmの光線透過率)
 実施例及び比較例で得られた量子ドット保護フィルムの、波長450nmの光線透過率(%)を、分光光度計(商品名:UV-2450、島津製作所社製)を用いて測定した。波長450nmの光線透過率の測定結果を表1に示す。
(表面粗さ)
 実施例及び比較例で得られた量子ドット保護フィルムのコーティング層(比較例1においては、ガスバリア性被覆層)表面の算術平均粗さRa(μm)を、表面粗さ測定装置(商品名:サーフテスト、ミツトヨ社製)を用いて、JIS B0601に準拠して測定した。表面粗さRaの測定結果を表1に示す。
[波長変換シートの作製1]
 実施例1で得られた量子ドット保護フィルム(第1の量子ドット保護フィルム)と、実施例1で得られた、基材層、無機薄膜層、及びガスバリア性被覆層からなる積層体(第2の量子ドット保護フィルム)とを準備した。次に、セレン化カドミウム(CdSe)の粒子に硫化亜鉛(ZnS)を被覆したコア・シェル構造を有する蛍光体(商品名:CdSe/ZnS 530、SIGMA-ALDRICH社製)を溶媒に分散して濃度調整することで、蛍光体分散液を調製した。上記蛍光体分散液をエポキシ系感光性樹脂と混合して、蛍光体組成物を得た。第2の量子ドット保護フィルムのガスバリア性被覆層上に蛍光体組成物を塗布し、100μmの厚さを有する蛍光体層を形成した。
 蛍光体層上に、第1の量子ドット保護フィルムを、コーティング層(比較例1においては、ガスバリア性被覆層)と反対側の面が蛍光体層に対向するように配置して積層した後、UV照射により蛍光体層(感光性樹脂)を硬化することで、実施例1の量子ドット保護フィルムを用いた波長変換シートを得た。
 また、第1の量子ドット保護フィルムとして、実施例2~5及び7で得られた量子ドット保護フィルムを用いたこと以外は、実施例1と同様にして、実施例2~5及び7の量子ドット保護フィルムを用いた波長変換シートを得た。
 また、第1の量子ドット保護フィルムとして、実施例6で得られた量子ドット保護フィルムを用い、第2の量子ドット保護フィルムとして、実施例6で得られた、基材層、第1の無機薄膜層、第1のガスバリア性被覆層、第2の無機薄膜層及び第2のガスバリア性被覆層からなる積層体を用いたこと以外は、実施例1と同様にして、実施例6の量子ドット保護フィルムを用いた波長変換シートを得た。
 また、第1の量子ドット保護フィルムとして、比較例1で得られた量子ドット保護フィルムを用い、蛍光体層上に第1の量子ドット保護フィルムをガスバリア性被覆層が蛍光体層と反対側を向くように配置して積層したこと以外は、実施例1と同様にして、比較例1の量子ドット保護フィルムを用いた波長変換シートを得た。
[波長変換シートの評価方法1]
 得られた波長変換シートについて、異物等に伴う表示上の欠陥の有無を下記方法に従って測定した。
(異物等に伴う表示上の欠陥の有無)
 得られた波長変換シートを、温度85℃の環境下に、1000時間曝露した。曝露後の波長変換シートに対し、第2の量子ドット保護フィルム側から青色光を照射し、第1の量子ドットフィルム側から透過光を目視にて確認し、下記基準に従って異物、キズ、シワ及びダークスポット等に伴う表示上の欠陥の有無を評価した。評価結果を表1に示す。
A:目視にて認められる欠陥が存在しなかった。
B:目視にて透過光の僅かな揺らぎが認められたが欠陥とは判断しなかった。
C:目視にて認められる欠陥が存在していた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~7の量子ドット保護フィルムを用いた波長変換シートでは、保護層が異物を有していたにもかかわらず、表示上の欠陥が確認されなかった。ただし、実施例7では、コーティング層表面におけるアクリル粒子の露出部分が大きく、導光板を傷つけてしまうおそれがある。一方、比較例1の量子ドット保護フィルムを用いて得られた波長変換シートでは、表示上の欠陥が確認された。
[量子ドット保護フィルムの作製2]
(実施例8)
 第1の基材層3Aとしての厚み25μmのポリエチレンテレフタレートフィルムの片面に、第1の無機薄膜層4Aとして酸化珪素を電子ビーム加熱式の真空蒸着法により0.03μmの厚みに設け、第1の無機薄膜層4Aが設けられた第1の基材層3Aを純水にて洗浄し、さらに、テトラエトキシシランとポリビニルアルコールとを含む塗液をウエットコーティング法により洗浄後の第1の無機薄膜層4A上に塗工し、0.6μmの厚みの第1のガスバリア性被覆層5Aを形成した。これにより、第1の基材層3Aの一方の面上に第1の無機薄膜層4A及び第1のガスバリア性被覆層5Aからなる0.6μmの第1のバリア層6Aが設けられた第1のバリアフィルム8Aを得た。一方、同様の操作にて、第2の基材層3Bの一方の面上に第2の無機薄膜層4B及び第2のガスバリア性被覆層5Bからなる0.6μmの第2のバリア層6Bが設けられた第2のバリアフィルム8Bを得た。第1のバリアフィルム8A及び第2のバリアフィルム8Bをロール状に巻き取った。
 次に、ロールから巻き出した第2のバリアフィルム8Bの第2の基材層3Bの表面上に、アクリル樹脂(商品名:アカリディック、DIC社製)100質量部とシリカ粒子(商品名:トスパール120、平均粒子径:2.0μm、モメンティブ・パフォーマンス・マテリアル社製)15質量部からなる組成物を塗布した。塗膜を加熱してアクリル樹脂を硬化することにより、第2の基材層3B上に厚さ5μmのコーティング層9を形成し、コーティング層付きバリアフィルムを得た。
 次に、コーティング層付きバリアフィルムと第1のバリアフィルム8Aとを、第2のガスバリア性被覆層5Bと第1のガスバリア性被覆層5Aとが対向するように、2液硬化型エポキシ樹脂接着剤を介して貼り合せることにより、実施例8の量子ドット保護フィルム10を得た。実施例8の量子ドット保護フィルム10は図5に示す構成を有し、上記量子ドット保護フィルム10のうち、第1の基材層3A、第1の無機薄膜層4A、第1のガスバリア性被覆層5A、第2の無機薄膜層4B、第2のガスバリア性被覆層5B及び第2の基材層3Bからなる部分(接着層含む)は保護層7に相当する。同様の操作にて、実施例8の量子ドット保護フィルム10を2枚準備した。なお得られた量子ドット保護フィルム10のヘイズ値は40%であった。
(実施例9)
 第1のバリアフィルム8Aと第2のバリアフィルム8Bを貼り合せる接着層にアクリル系粘着剤を用いたこと以外は、実施例8の操作にて、実施例8の量子ドット保護フィルム10を2枚準備した。なお得られた量子ドット保護フィルム10のヘイズ値は40%であった。
(比較例2)
 第1のバリアフィルム8Aの製造において、無機薄膜層4Aが設けられた基材層3Aを洗浄せずに、無機薄膜層4A上にガスバリア性被覆層5Aを形成し、第2のバリアフィルム8Bの製造において、無機薄膜層4Bが設けられた基材層3Bを洗浄せずに、無機薄膜層4B上にガスバリア性被覆層5Bを形成したこと以外は、実施例8と同様の操作にて、比較例2の量子ドット保護フィルムを2枚準備した。なお得られた量子ドット保護フィルムのヘイズ値は40%であった。
[波長変換シートの作製2]
 量子ドットとしてのCdSe/ZnS530(商品名、SIGMA-ALDRICH社製)をエポキシ系感光性樹脂と混合して蛍光体組成物を得た。蛍光体組成物を実施例8で得られた1枚目の量子ドット保護フィルム10のコーティング層9が形成されていない側の面(第1の基材層3A)上に塗布し、塗布面上に上記塗布面と第1の基材層3Aが対向するように2枚目の量子ドット保護フィルム10を積層し、UV硬化ラミネートすることにより、実施例8の量子ドット保護フィルム10を用いた波長変換シートを得た。
[量子ドット保護フィルムの評価方法2]
 反射と透過の2系統を有するインラインカメラを備えた外観検査機を使用し、実施例8及び9並びに比較例2の量子ドット保護フィルムの製造に用いたコーティング層形成前の保護層約1000mに対して、保護層中の最大寸法及び平均寸法が100~700μmの異物を検出し、最大寸法及び平均寸法別の単位面積当たりの存在率を算出した。
 実施例8で量子ドット保護フィルムの製造に用いたバリアフィルムのバリア層形成面側を、上述の外観検査機を用いて、最大寸法及び平均寸法が100~700μmの異物を検出し、最大寸法及び平均寸法別の単位面積当たりの存在率を算出した。異物の存在率の評価結果を表2に示す。
[波長変換シートの評価方法2]
(水蒸気透過度)
 実施例及び比較例で得られた量子ドット保護フィルムを85℃の空気中に1000時間曝露し、曝露前後の量子ドット保護フィルムをそれぞれ準備した。水蒸気透過度をJIS K 7129の赤外線センサ法に準ずる方法で、実施例及び比較例で得られた高温環境曝露前後での量子ドット保護フィルムの水蒸気透過度を測定した。高温環境曝露前後での水蒸気透過度の測定結果を表1に示す。水蒸気透過度の測定には水蒸気透過率測定装置(商品名:Permatran、MOCON社製)を用いた。透過セルの温度は40℃とし、高湿度チャンバの相対湿度は90%RHとし、低湿度チャンバの相対湿度を0%RHとした。
(異物等に伴う表示上の欠陥の有無)
 得られた波長変換シートを、温度85℃の環境下に、1000時間曝露した。曝露後の波長変換シートに対し、1枚目の量子ドット保護フィルム側から青色光を照射し、2枚目の量子ドットフィルム側から透過光を目視にて確認し、下記基準に従って異物、キズ、シワ及びダークスポット等に伴う表示上の欠陥の有無を評価した。評価結果を表2に示す。
A:目視にて認められる欠陥が存在しなかった。
B:目視にて透過光の僅かな揺らぎが認められたが欠陥とは判断しなかった。
C:目視にて認められる欠陥が存在していた。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例8の量子ドット保護フィルムを用いた波長変換シートでは、保護層が異物を有していたにもかかわらず、表示上の欠陥が確認されなかった。一方、比較例2の量子ドット保護フィルムを用いて得られた波長変換シートでは、保護層中の異物が僅かに多く、表示上の欠陥が確認された。なお、比較例2では、実施例8及び9と比べて保護層中に異物を多く有していたため、水蒸気透過度も僅かに低下していたが、実用上問題ない程度の低下であった。このように、画像表示装置において用いられるバリアフィルムはガスバリア性のみを必要とする通常のバリアフィルムと比べてより異物の存在が厳格に管理されるが、本発明によれば保護層が一定の数の異物を有していたとしても、表示上の欠陥を低減することができ、画像表示装置に好適に用いることが可能な量子ドット保護フィルムを提供することができる。
 3,3A,3B…基材層、4,4i,4ii,4A,4B…無機薄膜層、5,5i,5ii,5A,5B…ガスバリア性被覆層、6,6i,6ii,6A,6B…バリア層、7…保護層、8,8A,8B…バリアフィルム、9…コーティング層、10…(第1の)量子ドット保護フィルム、12…第2の量子ドット保護フィルム、14…蛍光体層、20…波長変換シート、30…バックライトユニット。

Claims (9)

  1.  蛍光体を封止するための量子ドット保護フィルムであって、
     最大寸法が100~500μmである異物を有する保護層と、該保護層の一方の面上に形成されたコーティング層とを備え、
     前記保護層における前記最大寸法が100~500μmである異物の存在率が0.01~5.0個/mであり、
     ヘイズ値が20%以上である、量子ドット保護フィルム。
  2.  前記保護層は最大寸法が100~300μmである異物を有し、前記最大寸法が100~300μmである異物の存在率が0.1~2.0個/mである、請求項1に記載の量子ドット保護フィルム。
  3.  前記保護層は平均寸法が200~500μmである異物を有し、前記平均寸法が200~500μmである異物の存在率が3.0個/m以下である、請求項1又は2に記載の量子ドット保護フィルム。
  4.  前記保護層が、基材層とバリア層とを積層したバリアフィルムを含み、
     前記バリアフィルムにおける前記最大寸法が100~500μmである異物の存在率が0.01~2.0個/mである、請求項1~3のいずれか一項に記載の量子ドット保護フィルム。
  5.  全光線透過率が80%以上である、請求項1~4のいずれか一項に記載の量子ドット保護フィルム。
  6.  450nmでの分光透過率が70%以上である、請求項1~5のいずれか一項に記載の量子ドット保護フィルム。
  7.  前記コーティング層の前記保護層と反対側の面における表面粗さRaが0.2μm以上である、請求項1~6のいずれか一項に記載の量子ドット保護フィルム。
  8.  蛍光体層と、該蛍光体層を封止する第1及び第2の量子ドット保護フィルムとを備え、
     少なくとも前記第1の量子ドット保護フィルムは、前記保護層が前記蛍光体層と対向するように配置された請求項1~7のいずれか一項に記載の量子ドット保護フィルムである、波長変換シート。
  9.  青色LEDからなる光源と請求項8に記載の波長変換シートとを備え、
     前記波長変換シートにおいて、前記蛍光体層を挟んで前記光源と反対側に配置された量子ドット保護フィルムが前記第1の量子ドット保護フィルムである、バックライトユニット。
PCT/JP2016/060958 2015-04-02 2016-04-01 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット WO2016159366A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177029101A KR20170134479A (ko) 2015-04-02 2016-04-01 양자 도트 보호 필름 그리고 이것을 사용하여 얻어지는 파장 변환 시트 및 백라이트 유닛
JP2017510259A JP6760268B2 (ja) 2015-04-02 2016-04-01 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
CN201680013651.1A CN107430303B (zh) 2015-04-02 2016-04-01 量子点保护膜以及使用其而得到的波长变换片及背光单元
EP16773246.0A EP3279709A4 (en) 2015-04-02 2016-04-01 Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained using same
US15/719,712 US10557970B2 (en) 2015-04-02 2017-09-29 Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015075753 2015-04-02
JP2015-075753 2015-04-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/719,712 Continuation US10557970B2 (en) 2015-04-02 2017-09-29 Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained by using the same

Publications (1)

Publication Number Publication Date
WO2016159366A1 true WO2016159366A1 (ja) 2016-10-06

Family

ID=57005182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060958 WO2016159366A1 (ja) 2015-04-02 2016-04-01 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット

Country Status (6)

Country Link
US (1) US10557970B2 (ja)
EP (1) EP3279709A4 (ja)
JP (1) JP6760268B2 (ja)
KR (1) KR20170134479A (ja)
CN (1) CN107430303B (ja)
WO (1) WO2016159366A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077752A1 (ja) * 2017-10-20 2019-04-25 日立化成株式会社 バックライトユニット、画像表示装置及び波長変換部材
JP2019084676A (ja) * 2017-11-01 2019-06-06 三菱ケミカル株式会社 ガスバリアフィルム
JP2020506442A (ja) * 2017-02-14 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. カラーフィルタ、及び画像表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059843A1 (ja) * 2014-10-16 2016-04-21 凸版印刷株式会社 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
WO2019186726A1 (ja) * 2018-03-27 2019-10-03 日立化成株式会社 波長変換部材、バックライトユニット、及び画像表示装置
WO2019218337A1 (en) * 2018-05-18 2019-11-21 Rohm And Haas Electronic Materials Llc Two-layer phosphor film for led
JP2020106831A (ja) * 2018-12-27 2020-07-09 日本電気硝子株式会社 波長変換部材及び発光装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034582A1 (ja) * 2003-10-01 2005-04-14 Idemitsu Kosan Co., Ltd. 色変換層及び発光素子
JP2009217107A (ja) * 2008-03-12 2009-09-24 Toray Ind Inc ディスプレイ用フィルター及びその製造方法
WO2010084923A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 電子デバイス用基板およびこれを用いた電子デバイス
JP2012129195A (ja) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology 色変換発光シート及びその製造方法
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
JP2015045768A (ja) * 2013-08-28 2015-03-12 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置
WO2016010116A1 (ja) * 2014-07-18 2016-01-21 凸版印刷株式会社 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2016052626A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
WO2016059843A1 (ja) * 2014-10-16 2016-04-21 凸版印刷株式会社 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132961A (ja) * 1993-11-04 1995-05-23 Nitto Denko Corp セパレータもしくは包装用材料
US5773126A (en) * 1994-12-22 1998-06-30 Dai Nippon Printing Co., Ltd. Composite film having a surface slip property
JP4323243B2 (ja) * 2002-08-14 2009-09-02 富士フイルム株式会社 放射線像変換パネル
JP5174517B2 (ja) 2007-06-11 2013-04-03 富士フイルム株式会社 ガスバリアフィルムおよびこれを用いた有機デバイス
JP5717949B2 (ja) * 2009-01-26 2015-05-13 デクセリアルズ株式会社 光学部材および表示装置
JP5255527B2 (ja) 2009-07-03 2013-08-07 デクセリアルズ株式会社 色変換部材および表示装置
CN102656486B (zh) * 2009-12-18 2014-11-12 凸版印刷株式会社 抗反射膜
CN103228983A (zh) * 2010-11-10 2013-07-31 纳米系统公司 量子点薄膜、照明器件及照明方法
WO2013056009A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Photoluminescence wavelength conversion components for solid-state light emitting devices and lamps
KR101970552B1 (ko) * 2012-05-03 2019-04-22 엘지디스플레이 주식회사 퀀텀 도트를 갖는 확산시트 및 이를 포함하는 백라이트 유닛
CN109976025A (zh) * 2013-09-13 2019-07-05 凸版印刷株式会社 波长转换片和背光单元
US9215761B2 (en) * 2014-05-15 2015-12-15 Cree, Inc. Solid state lighting devices with color point non-coincident with blackbody locus
KR20160038325A (ko) * 2014-09-30 2016-04-07 코닝정밀소재 주식회사 색변환용 기판, 그 제조방법 및 이를 포함하는 디스플레이 장치
JP6295237B2 (ja) * 2014-09-30 2018-03-14 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
KR102042983B1 (ko) * 2014-12-24 2019-11-11 주식회사 쿠라레 전자 디바이스 및 이의 제조 방법
KR20160115849A (ko) * 2015-03-27 2016-10-06 히다치 막셀 가부시키가이샤 투명 스크린 기능을 구비한 투명 차열 부재
JP2016224182A (ja) * 2015-05-28 2016-12-28 日東電工株式会社 偏光板および液晶表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034582A1 (ja) * 2003-10-01 2005-04-14 Idemitsu Kosan Co., Ltd. 色変換層及び発光素子
JP2009217107A (ja) * 2008-03-12 2009-09-24 Toray Ind Inc ディスプレイ用フィルター及びその製造方法
WO2010084923A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 電子デバイス用基板およびこれを用いた電子デバイス
JP2012129195A (ja) * 2010-12-15 2012-07-05 Korea Institute Of Science And Technology 色変換発光シート及びその製造方法
JP2015045768A (ja) * 2013-08-28 2015-03-12 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
WO2016010116A1 (ja) * 2014-07-18 2016-01-21 凸版印刷株式会社 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2016052626A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
WO2016059843A1 (ja) * 2014-10-16 2016-04-21 凸版印刷株式会社 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279709A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506442A (ja) * 2017-02-14 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. カラーフィルタ、及び画像表示装置
WO2019077752A1 (ja) * 2017-10-20 2019-04-25 日立化成株式会社 バックライトユニット、画像表示装置及び波長変換部材
JPWO2019077752A1 (ja) * 2017-10-20 2020-12-24 昭和電工マテリアルズ株式会社 バックライトユニット、画像表示装置及び波長変換部材
JP2019084676A (ja) * 2017-11-01 2019-06-06 三菱ケミカル株式会社 ガスバリアフィルム

Also Published As

Publication number Publication date
KR20170134479A (ko) 2017-12-06
CN107430303B (zh) 2021-03-09
US20180024277A1 (en) 2018-01-25
CN107430303A (zh) 2017-12-01
JP6760268B2 (ja) 2020-09-23
EP3279709A4 (en) 2018-10-03
US10557970B2 (en) 2020-02-11
EP3279709A1 (en) 2018-02-07
JPWO2016159366A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6460275B2 (ja) 波長変換シート及びバックライトユニット
JP5900719B1 (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
WO2016059843A1 (ja) 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
JP6760268B2 (ja) 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
KR102558338B1 (ko) 파장 변환 시트 및 백라이트 유닛
JP5900720B1 (ja) 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
WO2017179513A1 (ja) バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2016213369A (ja) 波長変換シート用保護フィルム、波長変換シート及びバックライトユニット
KR102648944B1 (ko) 형광체 보호 필름, 파장 변환 시트 및 발광 유닛
WO2019069827A1 (ja) 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP6710908B2 (ja) ガスバリア積層体、波長変換シート及びバックライトユニット
JP7119541B2 (ja) 蛍光体保護フィルム及び波長変換シート並びに発光ユニット
JP6705156B2 (ja) バリアフィルム積層体、波長変換シート及びバックライトユニット
JP6776591B2 (ja) 波長変換シート及びバックライトユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773246

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016773246

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017510259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029101

Country of ref document: KR

Kind code of ref document: A