WO2016052626A1 - バックライトユニット、液晶表示装置および波長変換部材 - Google Patents

バックライトユニット、液晶表示装置および波長変換部材 Download PDF

Info

Publication number
WO2016052626A1
WO2016052626A1 PCT/JP2015/077755 JP2015077755W WO2016052626A1 WO 2016052626 A1 WO2016052626 A1 WO 2016052626A1 JP 2015077755 W JP2015077755 W JP 2015077755W WO 2016052626 A1 WO2016052626 A1 WO 2016052626A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
layer
film
wavelength
Prior art date
Application number
PCT/JP2015/077755
Other languages
English (en)
French (fr)
Inventor
隆 米本
英二郎 岩瀬
佐藤 宏一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015192309A external-priority patent/JP6295237B2/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201580053006.8A priority Critical patent/CN106716236B/zh
Priority to CN202211006169.9A priority patent/CN115291434A/zh
Priority to CN202211005787.1A priority patent/CN115268141A/zh
Publication of WO2016052626A1 publication Critical patent/WO2016052626A1/ja
Priority to US15/471,577 priority patent/US10274782B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a backlight unit, a liquid crystal display device, and a wavelength conversion member.
  • the liquid crystal display device includes at least a backlight unit and a liquid crystal cell.
  • a light source including a white light source such as a white LED (Light-Emitting Diode) is widely used as a light source.
  • a white light source such as a white LED (Light-Emitting Diode)
  • a light source including, for example, a light emitted from a light source such as a blue LED and a phosphor that emits fluorescence when excited by light emitted from the light source is disposed as a separate member.
  • a new backlight unit that realizes white light by emitting light from the wavelength conversion member (see Patent Document 1).
  • Patent Document 1 particles (described as scattered particles in Patent Document 1) are provided in order to have a function of scattering light in a portion different from the layer containing the phosphor (wavelength conversion layer). Arrangement has been proposed (see, for example, paragraphs 0162 and 0163 of Patent Document 1). The inventors of the present invention have the function of scattering light in a part other than the wavelength conversion layer in this way, the amount of excitation light incident on the wavelength conversion layer and the amount of light emitted from the wavelength conversion layer and incident on the liquid crystal cell. As a result, the brightness of the liquid crystal display device can be improved.
  • an object of the present invention is to achieve further luminance improvement in a liquid crystal display device having a backlight unit including a wavelength conversion member.
  • a backlight unit including a light source that emits light having an emission center wavelength ⁇ nm, and a wavelength conversion member that is positioned on an optical path of the light emitted from the light source,
  • the wavelength conversion member includes a wavelength conversion layer including a phosphor that emits fluorescence when excited by excitation light, and a light scattering layer including particles having a particle size of 0.1 ⁇ m or more in a matrix,
  • the average refractive index n1 of the wavelength conversion layer satisfies the relationship of n1 ⁇ n2 with the average refractive index n2 of the matrix of the light scattering layer
  • the light-absorbing layer has a light absorption rate at a wavelength ⁇ nm of a backlight unit of 8.0% or less, About.
  • the particle size of the above-mentioned particles is the arithmetic average of the particle sizes of 20 particles extracted at random by observing the cross section of the light scattering layer with a scanning electron microscope (SEM). Specifically, after photographing the cross section of the light scattering layer at a magnification of 5000 times, the primary particle diameter of 20 particles randomly extracted from the obtained image is measured. For particles that are not spherical, the average value of the length of the major axis and the length of the minor axis is determined and used as the primary particle size. Thus, the arithmetic average of the primary particle diameters obtained for 20 randomly extracted particles is defined as the particle size of the above particles.
  • the particle size shown in the Example mentioned later is a value measured using Hitachi High-Tech S-3400N as a scanning electron microscope.
  • the matrix of the light scattering layer refers to a portion excluding particles having a particle size of 0.1 ⁇ m or more in the light scattering layer.
  • Light scattering in the light scattering layer is caused by optical inhomogeneities within the layer.
  • a particle having a sufficiently small particle size does not significantly reduce the optical uniformity of the layer even when the particle is contained, whereas a particle having a particle size of 0.1 ⁇ m or more does not optically impair the layer. Particles that can be made uniform and thereby cause light scattering.
  • particles having a particle size of 0.1 ⁇ m or more are referred to as light scattering particles.
  • the layer containing the light scattering particles is used as the light scattering layer in the present invention.
  • the average refractive index n2 of the matrix of the light scattering layer is a value obtained for a measurement matrix prepared by removing light scattering particles from the light scattering layer forming material.
  • the matrix composition of the light scattering layer is known in the art such as infrared spectroscopy, NMR (Nuclear Magnetic Resonance) measurement, gas chromatography measurement of a solution obtained by dissolving the light scattering layer matrix in an arbitrary solvent. It can be determined by a composition analysis method.
  • the average refractive index in the present invention refers to the refractive index nx in the slow axis direction in the plane, the refractive index ny in the fast axis direction in the plane that is orthogonal to the slow axis direction, and the slow axis direction and the fast axis direction. It shall mean the average value of the refractive index nz in the direction orthogonal to the phase axis direction.
  • the refractive indexes nx and ny can be measured by a known refractive index measuring device.
  • the refractive index measuring apparatus there is a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd.
  • the refractive index nz can be calculated from the thickness of the layer, the retardation in the in-plane direction, and the values of the refractive indexes nx and ny as described later.
  • the average refractive index is the average value of the refractive index in the in-plane direction, the refractive index in the thickness direction, and the refractive index in the direction perpendicular to the in-plane direction and the thickness direction.
  • the average refractive index in each direction can be obtained by a known refractive index measuring device, for example, the above-mentioned multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd.
  • the absorbance at the wavelength ⁇ nm of the light scattering layer is obtained by an optical system using an integrating sphere.
  • the integrating sphere By using the integrating sphere, incident light is transmitted through the sample a plurality of times, so that a slight amount of absorption can be quantified.
  • a measuring apparatus a commercially available apparatus capable of performing an absolute luminescence quantum yield measuring method using an integrating sphere can be used.
  • an absolute PL (photoluminescence) quantum yield measuring device (C9920-02) manufactured by Hamamatsu Photonics can be mentioned, and this measuring device was used in Examples described later.
  • the light scattering layer is disposed on the emission side (that is, the liquid crystal cell side in a state of being disposed on the liquid crystal display device) from the wavelength conversion layer.
  • the phosphor is a quantum dot.
  • the average refractive index n2 of the matrix of the light scattering layer is in the range of 1.45 to 2.00, where n1 ⁇ n2.
  • the average refractive index n1 of the wavelength conversion layer is in the range of 1.43 to 1.60, where n1 ⁇ n2.
  • the wavelength conversion layer and the light scattering layer are laminated via a barrier film.
  • the barrier film includes at least an inorganic layer.
  • the inorganic layer is an inorganic layer containing at least one selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, and aluminum oxide.
  • an inorganic layer, an organic layer, and a base film are adjacently arranged in this order from the wavelength conversion layer side to the light scattering layer side in the barrier film.
  • adjacent means that the layer is in direct contact with no other layer.
  • the wavelength ⁇ nm is in the wavelength band of blue light.
  • a further aspect of the present invention relates to a liquid crystal display device including the backlight unit and a liquid crystal cell.
  • a further aspect of the invention provides: A wavelength conversion layer containing a phosphor that emits fluorescence when excited by excitation light, and a light scattering layer containing particles having a particle size of 0.1 ⁇ m or more in a matrix, The average refractive index n1 of the wavelength conversion layer satisfies the relationship of n1 ⁇ n2 with the average refractive index n2 of the matrix of the light scattering layer, and The wavelength conversion member whose light absorptivity in wavelength 450nm is 8.0% or less, About.
  • a liquid crystal display device capable of displaying a high-luminance image can be provided. Furthermore, according to the present invention, it is possible to provide a wavelength conversion member and a backlight unit that can provide such a liquid crystal display device.
  • FIGS. 1A and 1B are explanatory diagrams of an example of a backlight unit including a wavelength conversion member.
  • FIG. 2 shows a specific example of the layer structure of the wavelength conversion member.
  • FIG. 3 is a schematic configuration diagram of an example of a wavelength conversion member manufacturing apparatus.
  • FIG. 4 is a partially enlarged view of the manufacturing apparatus shown in FIG.
  • FIG. 5 shows an example of a liquid crystal display device.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “half width” of a peak refers to the width of the peak at a peak height of 1/2.
  • the light having the emission center wavelength in the wavelength band of 430 to 480 nm is called blue light
  • the light having the emission center wavelength in the wavelength band of 520 to 560 nm is called green light
  • the emission center wavelength in the wavelength band of 600 to 680 nm The light having a color is called red light.
  • Ultraviolet light refers to light having an emission center wavelength in the wavelength band of 300 nm to 430 nm.
  • a light source that emits blue light as single peak light is called a blue light source, and a light source that emits ultraviolet light as single peak light is called an ultraviolet light source.
  • to emit light having a single peak means that the emission spectrum does not have two or more peaks as in the case of a white light source, but only one peak having an absorption maximum at the emission center wavelength. means.
  • the backlight unit of the present invention is a backlight unit including a light source that emits light having a light emission center wavelength ⁇ nm, and a wavelength conversion member that is positioned on the optical path of the light emitted from the light source.
  • a wavelength conversion layer containing a phosphor that emits fluorescence when excited by excitation light, and a light scattering layer containing particles having a particle size of 0.1 ⁇ m or more in a matrix The average refractive index n1 of the wavelength conversion layer satisfies the relationship of n1 ⁇ n2 with the average refractive index n2 of the matrix of the light scattering layer, and the absorbance at the wavelength ⁇ nm of the light scattering layer is 8.0% or less. It is a backlight unit.
  • the present inventors have found the backlight unit of the present invention.
  • the backlight unit has a light scattering layer.
  • the reason why the brightness can be improved by the light scattering layer is as follows: (1) Increasing the luminous efficiency of the phosphor in the wavelength conversion layer, (2) Efficiently emitting fluorescence emitted from the phosphor from the backlight unit; The present inventors speculate that one or both of the above can be achieved. Details are as follows.
  • the light scattering layer can be disposed on at least one of the emission side and the light source side of the wavelength conversion layer.
  • the light scattering layer disposed on the emission side can scatter the light emitted from the wavelength conversion layer in various directions.
  • the emitted light from the light source (hereinafter also referred to as “light derived from the light source”) is usually partially absorbed by the phosphor in the wavelength conversion layer and excites the phosphor, but part of the light is emitted from the wavelength conversion layer. It passes through and is emitted from the wavelength conversion layer. Making the light derived from the light source thus emitted enter the wavelength conversion layer again leads to an increase in the light emission efficiency of the phosphor by increasing the amount of excitation light incident on the wavelength conversion layer.
  • the light scattering layer disposed on the emission side of the wavelength conversion layer as described above scatters the light derived from the light source emitted from the wavelength conversion layer and changes the direction of the traveling direction of the light. It is thought that the part can be returned to the wavelength conversion layer side. It is presumed that the amount of light emitted by the phosphor can be increased by the light derived from the light source returned to the wavelength conversion layer thus exciting the phosphor in the wavelength conversion layer.
  • the light scattering layer disposed on the light source side of the wavelength conversion layer also converts the wavelength of light derived from the light source reflected by a reflective member such as a prism sheet that can be disposed on the emission side of the wavelength conversion layer in the backlight unit.
  • the amount of light emitted by the phosphor can be increased because the light transmitted through the layer can play the role of returning the light to the wavelength conversion layer side again.
  • the phosphor since the phosphor usually emits fluorescence isotropically, the fluorescence emitted in the wavelength conversion layer (hereinafter also referred to as “light from the wavelength conversion layer”) is partially refracted. Since total reflection occurs at the index interface, it is not taken out to the exit side and guided inside the wavelength conversion member. It is considered that the light scattering layer disposed on the emission side or the light source side of the wavelength conversion layer can play the role of taking out the wavelength conversion member by changing the traveling direction of the guided light that repeats this total reflection.
  • the present inventors consider that the light scattering layer contributes to achieving the luminance improvement by the above (1) and (2).
  • the particles are simply scattered as shown in FIGS.
  • the refractive index n2 of the matrix of the light scattering layer is lower than the refractive index n1 of the wavelength conversion layer (n1> n2), when the light scattering layer and the wavelength conversion layer are in contact, these two layers
  • a layer having a different refractive index such as a substrate
  • a plurality of layers having a different refractive index exist between the wavelength conversion layer and the light scattering layer.
  • At least one of the interfaces of the layers causes total reflection at the interface, preventing light from entering the light scattering layer. Therefore, the present inventors decided to provide a light scattering layer satisfying the relationship of n1 ⁇ n2 in order to suppress total reflection.
  • the present inventors in order to reduce the loss due to absorption of excitation light (light derived from the light source) by the light scattering layer, for the above (1) (increasing the luminous efficiency of the phosphor in the wavelength conversion layer)
  • the light scattering layer had a light absorption rate of 8.0% or less at the emission center wavelength ⁇ nm of light derived from the light source.
  • a high-luminance image can be obtained.
  • the above includes inference by the present inventors and does not limit the present invention.
  • a wavelength conversion layer suitable for a backlight unit using a blue light source as a light source A wavelength conversion layer containing a phosphor that emits fluorescence when excited by excitation light, and a light scattering layer containing particles having a particle size of 0.1 ⁇ m or more in a matrix, The average refractive index n1 of the wavelength conversion layer satisfies the relationship of n1 ⁇ n2 with the average refractive index n2 of the matrix of the light scattering layer, and The wavelength conversion member whose light absorptivity in wavelength 450nm is 8.0% or less, Are also provided by the present invention.
  • the wavelength 450 nm is shown as a representative value of the center emission wavelength of the blue light source, and is not intended to limit the center emission wavelength of the blue light source in the present invention to 450 nm.
  • the wavelength conversion member includes a light scattering layer having an extinction coefficient of 8.0% or less at the emission center wavelength ⁇ nm of the light source as a light scattering layer in order to reduce the loss of light derived from the light source.
  • the absorbance is preferably 7.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably 2.5% or less, and even more preferably 2.0% or less. is there.
  • the said light absorbency is 0.01% or more, for example, since it is so preferable that it is low, a minimum is not specifically limited.
  • the method for measuring the absorbance is as described above.
  • the wavelength ⁇ nm is in the wavelength band of blue light when the light source included in the backlight unit is a blue light source.
  • the wavelength ⁇ nm is in the wavelength band of ultraviolet light.
  • the absorptance of the matrix of the light scattering layer can be controlled by, for example, the formulation of the composition used to form the light scattering layer.
  • the average refractive index n1 of the wavelength conversion layer and the average refractive index n2 of the matrix of the light scattering layer satisfy the relationship of n1 ⁇ n2.
  • ⁇ n can be 0.001 or more, and can also be 0.010 or more.
  • ⁇ n is not limited as long as the relationship of n1 ⁇ n2 is satisfied.
  • the average refractive index n2 of the matrix of the light scattering layer only needs to satisfy the relationship n1 ⁇ n2.
  • n2 is in the range of 1.45 to 2.00, preferably in the range of 1.48 to 1.85, and more preferably in the range of 1.50 to 1.80.
  • the average refractive index n1 of the wavelength conversion layer is, for example, in the range of 1.43 to 1.60, but it is only necessary to satisfy n1 ⁇ n2, and is not limited to the above range.
  • the above n1 and n2 can be adjusted by the formulation of the composition used for forming the wavelength conversion layer and the composition used for forming the light scattering layer.
  • the average refractive index is, as described above, the in-plane refractive index nx in the slow axis direction, the in-plane fast refractive index ny in the direction perpendicular to the slow axis direction, and the slow phase. It is the average value of the refractive index nz in the direction orthogonal to the axial direction and the fast axis direction.
  • the slow axis is determined by a known phase difference measuring device.
  • a phase difference measuring device KOBRA CCD series, KOBRA 21ADH or WR series manufactured by Oji Scientific Instruments can be used.
  • nx and ny can be measured by a known refractive index measuring device.
  • the refractive index nz can be obtained from the in-plane retardation Re, the layer thickness, and nx and ny.
  • the retardation Re in the in-plane direction is a retardation measured by making light having a wavelength ⁇ nm incident in a normal direction with respect to the surface of the layer using a known phase difference measuring apparatus.
  • 589 nm is adopted as the wavelength ⁇ nm.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the refractive index also refers to the refractive index for light with a wavelength of 589 nm.
  • layer thickness d From in-plane retardation Re, layer thickness d, in-plane slow axis direction refractive index nx, and in-plane fast axis method refractive index ny, in-plane slow axis direction and phase advance.
  • the refractive index nz in the direction orthogonal to the axial direction can be calculated.
  • layer thickness can be calculated
  • angles such as orthogonal and the like include a range of errors allowed in the technical field to which the present invention belongs.
  • the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • the wavelength conversion member should just have the function to convert the wavelength of at least one part of incident light, and to radiate
  • the shape of the wavelength conversion member is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
  • the wavelength conversion member can be used as a constituent member of the backlight unit of the liquid crystal display device.
  • FIG. 1 is an explanatory diagram of an example of a backlight unit 1 including a wavelength conversion member.
  • the backlight unit 1 includes a light source 1A and a light guide plate 1B for making a surface light source.
  • the wavelength conversion member is disposed on the path of light emitted from the light guide plate.
  • the wavelength conversion member is disposed between the light guide plate and the light source.
  • emitted from the light-guide plate 1B injects into the wavelength conversion member 1C.
  • emitted from the light-guide plate 1B injects into the wavelength conversion member 1C.
  • the light 2 emitted from the light source 1A disposed at the edge portion of the light guide plate 1B is blue light, and the liquid crystal is applied from the surface on the liquid crystal cell (not shown) side of the light guide plate 1B. It is emitted toward the cell.
  • the wavelength conversion member 1C disposed on the path of the light (blue light 2) emitted from the light guide plate 1B has quantum dots (A) that are excited by the blue light 2 and emit red light 4, and the blue light 2 It includes at least quantum dots (B) that are excited to emit green light 3. In this way, the backlight unit 1 emits the excited green light 3 and red light 4 and the blue light 2 transmitted through the wavelength conversion member 1C.
  • the example shown in FIG. 1B is the same as the embodiment shown in FIG. 1A except that the arrangement of the wavelength conversion member and the light guide plate is different.
  • the excited green light 3 and red light 4 and the blue light 2 transmitted through the wavelength conversion member 1C are emitted from the wavelength conversion member 1C and enter the light guide plate, and the surface light source is Realized.
  • the light scattering layer is a layer containing light scattering particles in a matrix.
  • the particle size of the light scattering particles is 0.1 ⁇ m or more, and is preferably in the range of 0.5 to 15.0 ⁇ m, more preferably in the range of 0.7 to 12.0 ⁇ m from the viewpoint of the scattering effect. preferable. Further, in order to further improve the luminance and adjust the luminance distribution with respect to the viewing angle, two or more kinds of light scattering particles having different particle sizes may be mixed and used.
  • the large particle size imparts external scattering properties and anti-Newton ring properties.
  • the particle size is preferably in the range of 5.0 ⁇ m to 15.0 ⁇ m, and more preferably in the range of 6.0 ⁇ m to 12.0 ⁇ m.
  • the small particle size is preferably in the range of 0.5 ⁇ m to 5.0 ⁇ m, more preferably in the range of 0.7 ⁇ m to 3.0 ⁇ m, from the viewpoint of imparting internal scattering properties. .
  • the light scattering particles may be organic particles, inorganic particles, or organic-inorganic composite particles.
  • synthetic resin particles can be used as the organic particles.
  • Specific examples include silicone resin particles, acrylic resin particles (polymethyl methacrylate (PMMA)), nylon resin particles, styrene resin particles, polyethylene particles, urethane resin particles, benzoguanamine particles, and the like, and particles having a suitable refractive index. From the viewpoint of availability, silicone resin particles and acrylic resin particles are preferable. Also, particles having a hollow structure can be used.
  • the refractive index difference ⁇ n between the light scattering particles and the matrix is preferably 0.02 or more, more preferably 0.10 or more, and further preferably 0.20 or more.
  • the refractive index of the light scattering particles is, for example, in the range of 1.40 to 1.45, and preferably in the range of 1.42 to 1.45.
  • the refractive index here also refers to the above-mentioned average refractive index. The same applies to the “refractive index” described below.
  • the light scattering particles are preferably contained in the light scattering layer in a volume fraction of 10 volume% (vol%) to 70 vol%, and 20 vol. More preferably, it is contained in an amount of from 60% to 60% by volume.
  • a light-scattering layer As a viewpoint of productivity, etc., forming a light-scattering layer as a cured layer of a polymerizable composition (curable composition) containing light-scattering particles and a polymerizable compound Is preferred.
  • a polymerizable composition curable composition
  • an appropriate polymerizable compound is selected from commercially available products or those synthesized by a known method in consideration of the refractive index of the material forming the wavelength conversion layer so as to satisfy n1 ⁇ n2. That's fine.
  • Preferred polymerizable compounds include, for example, compounds having an ethylenically unsaturated bond in at least one of the terminal and side chains and / or compounds having an epoxy group or oxetane group in at least one of the terminal and side chains.
  • a compound having an ethylenically unsaturated bond in at least one of a terminal and a side chain is more preferable.
  • Specific examples of the compound having an ethylenically unsaturated bond at at least one of the terminal and the side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., and (meth) acrylate compounds. Compounds are preferred, and acrylate compounds are more preferred.
  • (meth) acrylate compound As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • styrene compound styrene, ⁇ -methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable.
  • “(meth) acrylate” is used in the meaning of one or both of acrylate and methacrylate
  • “(meth) acrylic acid” is one or both of acrylic acid and methacrylic acid. It shall be used in both meanings. The same applies to “(meth) acryloyl” and the like.
  • the compound preferably used for further reducing the light absorptivity of the light scattering layer at the emission center wavelength ⁇ nm of the light source is an ester of polyhydric alcohol and polyfunctional (meth) acrylic acid.
  • the polyfunctional (meth) acrylate more than bifunctional which is can be mentioned.
  • Bifunctional (meth) acrylates include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and tripropylene glycol di (meth).
  • ethylene glycol di (meth) acrylate triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclo Pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferable examples.
  • Examples of the tri- or more functional (meth) acrylate include ECH (epichlorohydrin) modified glycerol tri (meth) acrylate, EO (ethylene oxide) modified glycerol tri (meth) acrylate, PO (propylene oxide) modified glycerol tri (meth) acrylate , Pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO-modified phosphate triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO Modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) a Relate, dipentaerythritol pen
  • the (meth) acrylate-based compound it is preferable to use the following (1) and (2) in combination from the viewpoint of improving the hardness of the light scattering layer and the adhesion to an adjacent layer or member.
  • a bifunctional (meth) acrylate in which (meth) acrylates are linked by an alkyl group having 5 to 9 carbon atoms, and a bifunctional or trifunctional or more in which (meth) acrylates are linked by an alkylene oxide At least one (meth) acrylate selected from the group consisting of: (2) At least one trifunctional or higher functional (meth) acrylate that does not contain alkylene oxide.
  • Urethane (meth) acrylates include TDI (tolylene diisocyanate), MDI (diphenylmethane diisocyanate), HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), HMDI (dicyclohexylmethane diisocyanate), etc.
  • (urethane) methacrylate produced by condensation of a hydroxyl group-containing compound and an aliphatic isocyanate is preferable in order to further reduce the absorbance of the light scattering layer at the emission center wavelength ⁇ nm of the light source.
  • urethane (meth) acrylate, phenolic compound, phosphorous triester compound It is preferable to use in combination with at least one selected from sulfur compounds and hindered amine compounds.
  • the light absorptivity of the light scattering layer at the emission center wavelength ⁇ nm of the light source can be kept low even after the wavelength conversion member has been used for a long time, because this leads to suppression of a decrease in luminance due to long-term use (that is, improvement in durability).
  • phenolic compounds include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-ditert-butyl-4-hydroxyphenyl) -Propionate, distearyl (3,5-ditert-butyl-4-hydroxybenzyl) phosphonate, thiodiethylene glycol bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionate], 1,6-hexamethylene Bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionate], 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4, 4′-thiobis (6-tert-butyl-m-cresol), 2,2′-methylenebis (4-methyl-6-tert-butyl) Ruphenol), 2,2′-methylenebis (4-ethyl-6-tert
  • Examples of phosphorous acid triester compounds include triphenyl phosphite, trisnonylphenyl phosphite, tricresyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, tris (Tridecyl) phosphite, trioleyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphite, trilauryl trithiophosphite, tetraphenyldipropylene glycol diphos Phyto, tetraphenyl (tetratridecyl) pentaerythritol tetraphosphite, tetra (C12-
  • sulfur compounds examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl, and distearyl, and ⁇ -alkyl mercaptopropionates of polyols such as pentaerythritol tetra ( ⁇ -dodecyl mercaptopropionate).
  • dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl, and distearyl
  • ⁇ -alkyl mercaptopropionates of polyols such as pentaerythritol tetra ( ⁇ -dodecyl mercaptopropionate).
  • hindered amine compounds include 2,2,6,6-tetramethyl-4-piperidylbenzoate, N- (2,2,6,6-tetramethyl-4-piperidyl) dodecyl succinimide, -[(3,5-ditert-butyl-4-hydroxyphenyl) propionyloxyethyl] -2,2,6,6-tetramethyl-4-piperidyl- (3,5-ditert-butyl-4-hydroxy Phenyl) propionate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2 , 6,6-pentamethyl-4-piperidyl) -2-butyl-2- (3,5-ditert-butyl-4-hydroxybenzyl) malonate, N, N′-bis (2,2, , 6-Tetramethyl-4-piperidyl) hexamethylenedi
  • the content of the stabilizer in the light scattering layer is preferably 0.02 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the matrix of the light scattering layer. More preferably, it is 1 to 3 parts by mass. Two or more types of stabilizers may be used in combination, and when used in combination, the content of each stabilizer can be within the above range.
  • the content of the stabilizer in the above range means that the light scattering layer has excellent curability, adhesion to adjacent layers and members, and the light scattering layer at the emission center wavelength ⁇ nm of the light source even after long-term use of the wavelength conversion member. This is preferable in that the absorbance can be kept low.
  • a compound having a fluorene skeleton as the acrylate compound.
  • Specific examples of such compounds include compounds represented by formula (2) described in WO2013 / 047524A1.
  • the refractive index adjusting particles are less than 0.1 ⁇ m.
  • the refractive index adjusting particles include particles of diamond, titanium oxide, zirconium oxide, lead oxide, lead carbonate, zinc oxide, zinc sulfide, antimony oxide, silicon oxide, aluminum oxide, and the like.
  • zirconium oxide and silicon oxide particles are preferable from the viewpoint of little absorption of blue light and ultraviolet light, and zirconium oxide particles are preferable because the refractive index can be adjusted with a small amount.
  • the refractive index adjusting particles may be used in an amount capable of adjusting the refractive index, and the content in the light scattering layer is not particularly limited.
  • the polymerizable composition for forming the light scattering layer one or more kinds of known additives such as a polymerization initiator and a surfactant, or one or more kinds of solvents for adjusting the viscosity, etc., in an arbitrary amount. It can also be added.
  • known additives such as a polymerization initiator and a surfactant, or one or more kinds of solvents for adjusting the viscosity, etc.
  • solvents for adjusting the viscosity, etc.
  • the refractive index n2 of the matrix of the light scattering layer and the absorbance at the wavelength ⁇ nm of the light scattering layer can be controlled by adjusting the types and addition amounts of the above various components.
  • the light scattering layer may be provided on the emission side from the wavelength conversion layer, may be provided on the light source side, may be provided on either side, or may be provided on both.
  • the light scattering layer may be provided as a layer in direct contact with the wavelength conversion layer, or may be laminated with the wavelength conversion layer via one or more other layers. Examples of such other layers include an organic layer, an inorganic layer, and a base film included in a barrier film described later.
  • FIG. 2 shows a specific example of the layer configuration of the wavelength conversion layer. In FIG. 2, the upper side is the emission side, and the lower side is the light source side.
  • Reference numerals 10, 10a, and 10b are light scattering layers
  • reference numerals 11a and 11b are barrier films
  • reference numeral 12 is a wavelength conversion layer.
  • the layer configuration of the barrier film is not shown for simplification, the barrier film can have a laminated structure of two or more layers as described later, and is preferably a laminated structure.
  • FIG. 2 is shown only for illustration of the layer configuration, and the thickness and ratio of thickness of each layer do not limit the present invention, and one or more layers not shown are included in the wavelength conversion member. It may be.
  • the thickness of the light scattering layer can be set to an arbitrary thickness, and can be set to 1 to 20 ⁇ m as an example. From the viewpoint of achieving both light scattering properties and thinning of the light scattering layer, the thickness is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 1 to 5 ⁇ m.
  • the light scattering layer preferably has a high haze from the viewpoint of improving the in-plane uniformity of light emitted from the backlight unit, and preferably has a haze of 50% or more, more preferably 70% or more. Preferably it is 80% or more.
  • the light-scattering layer may be contained in the wavelength conversion member as a layer adjacent to the barrier film whose details will be described later.
  • the haze of the laminate of the light scattering layer and the barrier film is also preferably in the above range.
  • the haze of the light scattering layer and the laminate of the light scattering layer and the barrier film is a value measured according to JIS K 7136. As an example of a measuring apparatus, Nippon Denshoku Industries Co., Ltd. haze meter NDH2000 can be mentioned.
  • the total light transmittance of the light scattering layer is preferably 50% or more, and preferably 70% or more from the viewpoint of improving the in-plane uniformity of light emitted from the backlight unit and from the viewpoint of improving luminance. More preferred.
  • the total light transmittance of the light scattering layer is a value measured in accordance with JIS K 7136. As an example of a measuring apparatus, Nippon Denshoku Industries Co., Ltd. haze meter NDH2000 can be mentioned.
  • the light scattering layer is formed by, for example, applying the polymerizable composition on a suitable substrate, drying the solvent as necessary to remove the solvent, and then polymerizing and curing by light irradiation, heating, or the like. Can do.
  • a substrate on which a wavelength conversion layer has already been formed, or a substrate on which a wavelength conversion layer is formed after the light scattering layer is formed can be used as the substrate.
  • a wavelength conversion member having a wavelength conversion layer and a light scattering layer can be obtained via the substrate or on the substrate.
  • various well-known coating methods mentioned later regarding formation of a wavelength conversion layer are mentioned.
  • the curing conditions can be appropriately set according to the type of polymerizable compound used and the composition of the polymerizable composition.
  • the wavelength conversion layer includes at least a phosphor.
  • the shape of the wavelength conversion layer is not particularly limited, and may be any shape such as a sheet shape or a bar shape.
  • Known phosphors include phosphors (A) having an emission center wavelength in a wavelength range of 600 nm to 680 nm, phosphors (B) having an emission center wavelength in a wavelength range of 520 nm to 560 nm, and 400 nm to 500 nm. There is a phosphor (C) having a light emission center wavelength in the wavelength band.
  • the phosphor (A) is excited by excitation light to emit red light, the phosphor (B) emits green light, and the phosphor (C) emits blue light.
  • White light can be realized by the green light emitted by (B) and the blue light transmitted through the wavelength conversion layer.
  • the red light emitted from the phosphor (A) and the phosphor (B) by making ultraviolet light incident on the wavelength conversion layer containing the phosphors (A), (B), and (C) as excitation light.
  • White light can be realized by green light emitted by the blue light and blue light emitted by the phosphor (C).
  • the phosphor contained in the wavelength conversion layer is a quantum dot.
  • the wavelength conversion layer performs wavelength conversion with a sufficient amount of light to obtain white from the backlight unit with less phosphor (quantum dot) content. For this reason, it is preferable to design the backlight unit so that more light passes through the wavelength conversion layer. Along with this, the amount of light passing through the light scattering layer increases, so that the brightness improvement due to the reduction of the loss (absorption) in the light scattering layer tends to become more prominent.
  • Quantum dots include quantum dots (Quantum Dot, QD) that are discrete phosphors that take discrete energy levels due to the quantum confinement effect. Quantum dots have a half-value width of fluorescence emitted by other phosphors. White light obtained by using the light emission of quantum dots is a preferable phosphor because it is smaller than fluorescence, and the half width of fluorescence emitted by quantum dots is preferably 100 nm or less. More preferably, it is 80 nm or less, more preferably 50 nm or less, still more preferably 45 nm or less, and still more preferably 40 nm or less.
  • quantum dots in addition to the above description, for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but the quantum dots are not limited thereto.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles, and the composition and size.
  • a ceramic phosphor can be exemplified.
  • the ceramic phosphor include ceramic phosphors obtained by adding a metal element as an activator to inorganic crystals such as yttrium, aluminum, and garnet (YAG), metal oxides, or metal sulfides. Specific examples thereof include the following ceramic phosphors.
  • the metal species described as a cation after “:” is a metal element added as an activator.
  • Yttrium aluminum garnet (YAG: Ce 3+ ) phosphor activated by cerium, (Ca, Sr, Ba) 2 SiO 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , ⁇ -SiAlON: Eu 2+, Ca 3 Sc 2 Si 3 O 12: Ce 3+, SrGa 2 S 4: Eu 2+, (Ca, Sr, Ba) S: Eu 2+, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ and the like.
  • YAG-based phosphor a part or the whole of yttrium (Y) may be substituted with at least one element selected from the group consisting of Lu, Sc, La, Gd and Sm, and aluminum ( A part or all of Al) may be substituted with at least one or both of Ga and In.
  • the YAG phosphor can adjust the emission wavelength of the phosphor by changing the composition. For example, the emission wavelength can be shifted to the long wavelength side by replacing part or all of Y of the YAG phosphor with Gd. Further, the emission wavelength is shifted to the longer wavelength side by increasing the amount of substitution of Gd.
  • the emission wavelength can be shifted to the short wavelength side. That is, in this case, a phosphor that emits yellow (green) light with strong bluishness can be obtained.
  • the emission wavelength of other ceramic phosphors can be adjusted by adjusting the composition.
  • Phosphors such as quantum dots and ceramic phosphors may be added to the polymerizable composition for forming the wavelength conversion layer (phosphor-containing polymerizable composition) in the form of particles, or in the form of a dispersion dispersed in a solvent. May be added. The addition in the state of a dispersion is preferable from the viewpoint of suppressing aggregation of phosphor particles.
  • the solvent used here is not particularly limited.
  • the phosphor can be added, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable composition.
  • the phosphor described above is usually contained in the matrix in the wavelength conversion layer.
  • the matrix is usually a polymer (organic matrix) obtained by polymerizing the polymerizable composition by light irradiation, thermosetting or the like.
  • the shape of the wavelength conversion member is not particularly limited.
  • the wavelength conversion layer may be included in the backlight unit as it is, and is included in the backlight unit as a laminate (wavelength conversion member) with one or more other layers such as a barrier film described later. It may be.
  • the wavelength conversion layer can be obtained by applying a polymerizable composition (curable composition) containing a phosphor on a suitable substrate and then performing a curing treatment by light irradiation or the like.
  • the polymerizable compound used for preparing the polymerizable composition is not particularly limited.
  • One type of polymerizable compound may be used, or two or more types may be mixed and used.
  • the content of all polymerizable compounds in the total amount of the polymerizable composition is preferably about 10 to 99.99% by mass.
  • a preferable polymerizable compound monofunctional or polyfunctional (monofunctional or polyfunctional (meth) acrylate monomer, its polymer, prepolymer, etc.) from the viewpoint of transparency and adhesion of the cured film after curing. Mention may be made of (meth) acrylate compounds.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Reference can be made to WO2012 / 0777807A1 paragraph 0022 for specific examples thereof.
  • the details can be referred to WO2012 / 0777807A1 paragraph 0024.
  • the polyfunctional (meth) acrylate compound those described in paragraphs 0023 to 0036 of JP2013-043382A can also be used.
  • the amount of the polyfunctional (meth) acrylate monomer used is preferably 5 parts by mass or more from the viewpoint of coating strength with respect to 100 parts by mass of the total amount of polymerizable compounds contained in the polymerizable composition. From the viewpoint of suppressing the gelation of the product, it is preferably 95 parts by mass or less. From the same viewpoint, the amount of the monofunctional (meth) acrylate monomer used is 5 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the total amount of the polymerizable compounds contained in the polymerizable composition. Is preferred.
  • Preferred examples of the polymerizable compound also include compounds having a cyclic group such as an epoxy group or a ring-opening polymerizable cyclic ether group such as an oxetanyl group. More preferable examples of such a compound include compounds having an epoxy group-containing compound (epoxy compound). Regarding the epoxy compound, reference can be made to paragraphs 0029 to 0033 of JP2011-159924A.
  • the polymerizable composition can contain a known radical polymerization initiator or cationic polymerization initiator as a polymerization initiator.
  • a known radical polymerization initiator or cationic polymerization initiator as a polymerization initiator.
  • the polymerization initiator is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of the polymerizable compound contained in the polymerizable composition.
  • the wavelength conversion layer is not particularly limited as long as it is a layer containing the above-described components and known additives that can be optionally added. Polymerization such as light irradiation and heating after applying the composition described above and one or more known additives added as necessary, simultaneously or sequentially onto a suitable substrate. A wavelength conversion layer containing a phosphor in the matrix can be formed by performing treatment and polymerizing and curing.
  • the amount of additive used is not particularly limited and can be set as appropriate.
  • the type and amount of the solvent used are not particularly limited. For example, one or a mixture of two or more organic solvents can be used as the solvent.
  • the wavelength-converting layer can be obtained by applying the polymerizable composition on a suitable substrate, drying it as necessary to remove the solvent, and then polymerizing and curing it by light irradiation or the like.
  • Application methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, wire bar method, etc.
  • a well-known coating method is mentioned.
  • the curing conditions can be appropriately set according to the type of polymerizable compound used and the composition of the polymerizable composition.
  • the polymerization treatment of the polymerizable composition may be performed by any method, but as one aspect, it can be performed in a state where the polymerizable composition is sandwiched between two substrates.
  • One aspect of the manufacturing process of the wavelength conversion member including such a polymerization process will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments.
  • FIG. 3 is a schematic configuration diagram of an example of the wavelength conversion member manufacturing apparatus 100
  • FIG. 4 is a partial enlarged view of the manufacturing apparatus shown in FIG.
  • the manufacturing process of the wavelength conversion member using the manufacturing apparatus 100 shown in FIGS. Applying a polymerizable composition containing a phosphor to the surface of a first substrate (hereinafter also referred to as “first film”) that is continuously conveyed to form a coating film; A second substrate (hereinafter also referred to as “second film”) that is continuously conveyed is laminated (overlapped) on the coating film, and the first film and the second film are coated.
  • a process of sandwiching In a state where the coating film is sandwiched between the first film and the second film, either the first film or the second film is wound around a backup roller and irradiated with light while being continuously conveyed.
  • a wavelength conversion member having one surface protected by the barrier film can be obtained.
  • the wavelength conversion member by which both surfaces of the wavelength conversion layer were protected by the barrier film can be obtained by using a barrier film as a 1st base material and a 2nd base material, respectively.
  • the wavelength conversion member which has a wavelength conversion layer, a barrier film, and a light-scattering layer can be obtained by using the barrier film which laminated
  • the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 20.
  • the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed.
  • a tension of 20 to 150 N / m, preferably 30 to 100 N / m is applied to the first film 10.
  • a polymerizable composition containing a phosphor (hereinafter also referred to as “coating liquid”) is applied to the surface of the first film 10 that is continuously conveyed, and the coating film 22 (see FIG. 4). Is formed.
  • a die coater 24 and a backup roller 26 disposed to face the die coater 24 are installed.
  • the surface of the first film 10 opposite to the surface on which the coating film 22 is formed is wound around the backup roller 26, and the coating liquid is applied from the discharge port of the die coater 24 onto the surface of the first film 10 that is continuously conveyed.
  • the coating film 22 is formed.
  • the coating film 22 refers to a coating solution applied on the first film 10 before the polymerization treatment.
  • the die coater 24 to which the extrusion coating method is applied is shown as the coating apparatus, but the present invention is not limited to this.
  • a coating apparatus to which various methods such as a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method are applied can be used.
  • the first film 10 that has passed through the coating unit 20 and has the coating film 22 formed thereon is continuously conveyed to the laminating unit 30.
  • the second film 50 that is continuously conveyed is laminated on the coating film 22, and the coating film 22 is sandwiched between the first film 10 and the second film 50.
  • the laminating unit 30 is provided with a laminating roller 32 and a heating chamber 34 surrounding the laminating roller 32.
  • the heating chamber 34 is provided with an opening 36 for allowing the first film 10 to pass therethrough and an opening 38 for allowing the second film 50 to pass therethrough.
  • a backup roller 62 is disposed at a position facing the laminating roller 32.
  • the first film 10 on which the coating film 22 is formed is wound around the backup roller 62 on the surface opposite to the surface on which the coating film 22 is formed, and is continuously conveyed to the laminating position P.
  • the laminating position P means a position where the contact between the second film 50 and the coating film 22 starts.
  • the first film 10 is preferably wound around the backup roller 62 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected by the backup roller 62 before reaching the laminate position P and can be removed.
  • the position where the first film 10 is wound around the backup roller 62 (contact position) and the distance L1 to the laminating position P are preferably longer, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 62 and the pass line.
  • the second film 50 is laminated by the backup roller 62 and the laminating roller 32 used in the polymerization processing unit 60. That is, the backup roller 62 used in the polymerization processing unit 60 is also used as a roller used in the laminating unit 30.
  • the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 30 in addition to the backup roller 62 so that the backup roller 62 is not used.
  • the backup roller 62 By using the backup roller 62 used in the polymerization processing unit 60 in the laminating unit 30, the number of rollers can be reduced.
  • the backup roller 62 can also be used as a heat roller for the first film 10.
  • the second film 50 sent out from a sending machine (not shown) is wound around the laminating roller 32 and continuously conveyed between the laminating roller 32 and the backup roller 62.
  • the second film 50 is laminated on the coating film 22 formed on the first film 10 at the laminating position P. Accordingly, the coating film 22 is sandwiched between the first film 10 and the second film 50.
  • Lamination refers to laminating the second film 50 on the coating film 22.
  • the distance L2 between the laminating roller 32 and the backup roller 62 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 28 obtained by polymerizing and curing the coating film 22, and the second film 50.
  • the above is preferable.
  • L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 22, and the 2nd film 50.
  • FIG. By setting the distance L2 to be equal to or shorter than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 50 and the coating film 22.
  • the distance L ⁇ b> 2 between the laminating roller 32 and the backup roller 62 refers to the shortest distance between the outer peripheral surface of the laminating roller 32 and the outer peripheral surface of the backup roller 62.
  • Rotational accuracy of the laminating roller 32 and the backup roller 62 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 22.
  • the temperature of the backup roller 62 of the polymerization processing unit 60 and the temperature of the first film 10 are The difference and the difference between the temperature of the backup roller 62 and the temperature of the second film 50 are preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
  • the heating chamber 34 it is preferable to heat the first film 10 and the second film 50 in the heating chamber 34.
  • hot air is supplied to the heating chamber 34 by a hot air generator (not shown), and the first film 10 and the second film 50 can be heated.
  • the first film 10 may be heated by the backup roller 62 by being wound around the temperature-controlled backup roller 62.
  • the second film 50 can be heated by the laminating roller 32 by using the laminating roller 32 as a heat roller.
  • the heating chamber 34 and the heat roller are not essential and can be provided as necessary.
  • the coating film 22 is sandwiched between the first film 10 and the second film 50 and continuously conveyed to the polymerization processing unit 60.
  • the polymerization treatment in the polymerization treatment unit 60 is performed by light irradiation, but when the polymerizable compound contained in the coating liquid is polymerized by heating, by heating such as blowing hot air, A polymerization process can be performed.
  • a light irradiation device 64 is provided at a position facing the backup roller 62 and the backup roller 62.
  • the first film 10 and the second film 50 sandwiching the coating film 22 are continuously conveyed between the backup roller 62 and the light irradiation device 64. What is necessary is just to determine the light irradiated by a light irradiation apparatus according to the kind of photopolymerizable compound contained in a coating liquid, and an ultraviolet-ray is mentioned as an example.
  • a light source that generates ultraviolet rays for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the light irradiation amount may be set within a range in which the polymerization and curing of the coating film can proceed.
  • the coating film 22 can be irradiated with ultraviolet rays having an irradiation amount of 100 to 10,000 mJ / cm 2 .
  • the first film 10 and the second film 50 sandwich the coating film 22, the first film 10 is wound around the backup roller 62, and the light irradiation device 64 is continuously conveyed.
  • the wavelength conversion layer (cured layer) 28 can be formed by irradiating with light and curing the coating film 22.
  • the first film 10 side is wound around the backup roller 62 and continuously conveyed, but the second film 50 can be wound around the backup roller 62 and continuously conveyed.
  • Winding around the backup roller 62 means a state in which one of the first film 10 and the second film 50 is in contact with the surface of the backup roller 62 at a certain wrap angle. Accordingly, the first film 10 and the second film 50 move in synchronization with the rotation of the backup roller 62 while being continuously conveyed. Winding around the backup roller 62 may be at least during the irradiation of ultraviolet rays.
  • the backup roller 62 includes a cylindrical main body and rotating shafts arranged at both ends of the main body.
  • the main body of the backup roller 62 has a diameter of ⁇ 200 to 1000 mm, for example. There is no restriction on the diameter ⁇ of the backup roller 62. In consideration of curl deformation, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm.
  • the temperature of the backup roller 62 can be adjusted by attaching a temperature controller to the main body of the backup roller 62.
  • the temperature of the backup roller 62 takes into consideration the heat generation during light irradiation, the curing efficiency of the coating film 22, and the occurrence of wrinkle deformation on the backup roller 62 of the first film 10 and the second film 50. Can be determined.
  • the backup roller 62 is preferably set to a temperature range of 10 to 95 ° C., for example, and more preferably 15 to 85 ° C.
  • the temperature related to the roller refers to the surface temperature of the roller.
  • the distance L3 between the laminate position P and the light irradiation device 64 can be set to 30 mm or more, for example.
  • the coating film 22 becomes the cured layer 28 by light irradiation, and the wavelength conversion member 70 including the first film 10, the cured layer 28, and the second film 50 is manufactured.
  • the wavelength conversion member 70 is peeled from the backup roller 62 by the peeling roller 80.
  • the wavelength conversion member 70 is continuously conveyed to a winder (not shown), and then the wavelength conversion member 70 is wound into a roll by the winder.
  • a wavelength conversion is performed by applying a polymerizable composition containing a phosphor on a base material, and performing a polymerization process after a drying process as needed without laminating a further base material on the base material.
  • a layer (cured layer) may be produced.
  • One or more other layers may be laminated on the prepared wavelength conversion layer by a known method.
  • the thickness of the wavelength conversion layer is preferably in the range of 1 to 500 ⁇ m, more preferably in the range of 10 to 250 ⁇ m, and still more preferably in the range of 30 to 150 ⁇ m.
  • a thickness of 1 ⁇ m or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 500 ⁇ m or less because the backlight unit can be thinned when incorporated in the backlight unit.
  • the wavelength conversion member may have a support for improving strength, easiness of film formation, and the like.
  • the support may be included as a layer adjacent to the wavelength conversion layer, or may be included as a base film of a barrier film described later.
  • the support may be included so that the inorganic layer described below and the support are in this order, and the wavelength conversion layer, the inorganic layer described below, the organic layer described below, and the support include They may be included in order.
  • a support may be disposed between the organic layer and the inorganic layer, between the two organic layers, or between the two inorganic layers.
  • One or more supports may be included in the wavelength conversion member, and the wavelength conversion member has a structure in which the support, the wavelength conversion layer, and the support are laminated in this order. May be.
  • the support is preferably a transparent support that is transparent to visible light.
  • being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere light transmittance measuring device. It can be calculated by subtracting the rate.
  • the thickness of the support is preferably in the range of 10 ⁇ m to 500 ⁇ m, more preferably in the range of 15 to 400 ⁇ m, especially in the range of 20 to 300 ⁇ m from the viewpoint of gas barrier properties, impact resistance, and the like.
  • a support body can also be used as a base material of the below-mentioned barrier film.
  • a support body can also be used for either the above-mentioned 1st film and 2nd film, or both. When using a support for both the first film and the second film, the support used may be the same or different.
  • the wavelength conversion member preferably includes a barrier film.
  • the barrier film is a film having a gas barrier function of blocking oxygen. It is also preferable that the barrier film has a function of blocking water vapor.
  • the barrier film is preferably contained in the wavelength conversion member as a layer that is in direct contact with the wavelength conversion layer.
  • One or more barrier films may be included in the wavelength conversion member.
  • the wavelength conversion member preferably has a structure in which a barrier film, a wavelength conversion layer, and a barrier film are laminated in this order.
  • the wavelength conversion layer may be formed using a barrier film as a base material.
  • a barrier film can also be used as either the above-mentioned 1st 1st film and 2nd film, or both. When both the first film and the second film are barrier films, the barrier films used as the first film and the second film may be the same or different.
  • the barrier film may be any known barrier film, for example, a barrier film described below.
  • the barrier film usually only needs to include at least an inorganic layer, and may be a film including a base film and an inorganic layer.
  • the barrier film may include a barrier laminate including at least one inorganic layer and at least one organic layer on the base film. It is preferable to stack a plurality of layers in this way because the barrier property can be further improved.
  • the number of layers to be stacked increases, the light transmittance of the wavelength conversion member tends to decrease. Therefore, it is desirable to increase the number of layers within a range in which good light transmittance can be maintained.
  • the barrier film preferably has a total light transmittance of 80% or more in the visible light region and an oxygen permeability of 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability is a value measured using an oxygen gas permeability measuring device (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. It is.
  • the visible light region is a wavelength region of 380 to 780 nm, and the total light transmittance is an average value of light transmittance over the visible light region.
  • the oxygen permeability of the barrier film is more preferably 0.10 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and still more preferably 0.01 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the total light transmittance in the visible light region is more preferably 90% or more. The lower the oxygen permeability, the better, and the higher the total light transmittance in the visible light region, the better.
  • the “inorganic layer” is a layer mainly composed of an inorganic material, and is preferably a layer formed only from an inorganic material.
  • the organic layer is a layer mainly composed of an organic material, and preferably refers to a layer in which the organic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more. To do.
  • the inorganic material constituting the inorganic layer is not particularly limited, and for example, various inorganic compounds such as metals or inorganic oxides, nitrides, oxynitrides, and the like can be used.
  • silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or two or more of these may be included.
  • Specific examples of inorganic compounds include silicon oxide, silicon carbide, silicon oxynitride, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, aluminum oxide, silicon nitride, aluminum nitride, and titanium nitride. You can list things.
  • a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
  • silicon oxide, silicon nitride, silicon carbide, and aluminum oxide are particularly preferable. This is because the inorganic layer made of these materials has a good adhesion to the organic layer, and thus the barrier property can be further enhanced.
  • a method for forming the inorganic layer is not particularly limited, and various film forming methods that can evaporate or scatter the film forming material and deposit it on the deposition surface can be used.
  • Examples of the method for forming the inorganic layer include a vacuum evaporation method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and evaporated; an inorganic material is used as a raw material, and oxygen gas is introduced.
  • an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and evaporated; an inorganic material is used as a raw material, and oxygen gas is introduced.
  • Oxidation reaction vapor deposition method for oxidizing and vapor deposition sputtering method using inorganic material as target raw material, introducing argon gas and oxygen gas and performing sputtering; plasma generated on inorganic material with plasma gun Physical vapor deposition method (Physical Vapor Deposition method) such as ion plating method, which is heated by beam, and plasma chemical vapor deposition method using organosilicon compound as raw material when depositing silicon oxide vapor deposition film (Chemical Vapor Deposition method) and the like. Vapor deposition may be performed on the surface of a substrate, a base film, a wavelength conversion layer, an organic layer, or the like as a substrate.
  • the thickness of the inorganic layer may be 1 nm to 500 nm, preferably 5 nm to 300 nm, particularly preferably 10 nm to 150 nm.
  • the wavelength conversion member it is preferable that at least one main surface of the wavelength conversion layer is in direct contact with the inorganic layer. It is also preferred that the inorganic layer is in direct contact with both main surfaces of the wavelength conversion layer.
  • the “main surface” refers to the surface (front surface, back surface) of the wavelength conversion layer disposed on the viewing side or the backlight side when the wavelength conversion member is used. The same applies to the main surfaces of the other layers and members.
  • a known adhesive layer may be used to bond between the inorganic layer and the organic layer, between the two inorganic layers, or between the two organic layers. From the viewpoint of improving light transmittance, it is preferable that the number of adhesive layers is small, and it is more preferable that no adhesive layer is present.
  • the inorganic layer and the organic layer are preferably in direct contact.
  • the organic layer preferably contains a cardo polymer.
  • the thickness of the organic layer is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, and more preferably in the range of 0.5 to 10 ⁇ m.
  • the thickness of the organic layer is preferably in the range of 0.5 to 10 ⁇ m, and more preferably in the range of 1 to 5 ⁇ m. Further, when formed by a dry coating method, it is preferably in the range of 0.05 ⁇ m to 5 ⁇ m, and more preferably in the range of 0.05 ⁇ m to 1 ⁇ m. This is because when the film thickness of the organic layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
  • the refractive index of the inorganic layer is 1.60 to 1.82
  • the refractive index of the organic layer is 1.42 to 1.62
  • the refractive index of the film is in the range of 1.45 to 1.65, but is not particularly limited.
  • the magnitude relationship of these refractive indexes with the refractive index n1 of a wavelength conversion layer and the refractive index n2 of a light-scattering layer is not ask
  • the refractive index difference with the adjacent layer is preferably small.
  • the refractive index difference with the adjacent layer is preferably less than 5.00. More preferably, it is less than 0.00. This is the same when other layers other than the barrier film are included.
  • the wavelength conversion member can be used as a constituent member of the backlight unit.
  • the backlight unit includes at least a wavelength conversion member and a light source.
  • emission wavelength of backlight unit From the viewpoint of realizing high luminance and high color reproducibility, it is preferable to use a backlight unit that has been converted to a multi-wavelength light source. For example, blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 520 to 560 nm, and a half width of It is preferable to emit green light having an emission intensity peak that is 100 nm or less and red light having an emission center wavelength in the wavelength band of 600 to 680 nm and having an emission intensity peak that is 100 nm or less. .
  • the wavelength band of blue light emitted from the backlight unit is more preferably 440 to 475 nm.
  • the wavelength band of the green light emitted from the backlight unit is more preferably 520 to 545 nm.
  • the wavelength band of red light emitted from the backlight unit is more preferably 610 to 640 nm.
  • the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of the emission intensity of blue light is 25 nm or less.
  • the backlight unit includes a light source together with at least the wavelength conversion member.
  • a light source that emits blue light having a light emission center wavelength in a wavelength band of 430 nm to 480 nm blue light source
  • the wavelength conversion layer preferably includes at least a phosphor that is excited by excitation light and emits red light and a phosphor that emits green light.
  • white light can be embodied by blue light emitted from the light source and transmitted through the wavelength conversion member, and red light and green light emitted from the wavelength conversion member.
  • a light source that emits ultraviolet light having an emission center wavelength in a wavelength band of 300 nm to 430 nm (ultraviolet light source), for example, an ultraviolet light emitting diode
  • the wavelength conversion layer preferably includes a phosphor that emits blue light when excited by excitation light, together with a phosphor that emits red light and a phosphor that emits green light.
  • white light can be embodied by red light, green light, and blue light emitted from the wavelength conversion member.
  • a laser light source can be used instead of the light emitting diode.
  • the backlight unit can be, for example, an edge light type backlight unit including a light guide plate, a reflection plate, or the like as a constituent member.
  • FIG. 1 shows an example of an edge light type backlight unit. Any known light guide plate can be used without any limitation.
  • the backlight unit may be a direct type.
  • the backlight unit can include a reflective member at the rear of the light source.
  • a reflective member at the rear of the light source.
  • a well-known thing can be used, and it is described in patent 3416302, patent 3363565, patent 4091978, patent 3448626, etc., The content of these gazettes is Incorporated into the present invention.
  • the backlight unit preferably further includes a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M Limited), and a light guide.
  • a known diffusion plate for example, BEF series manufactured by Sumitomo 3M Limited
  • prism sheet for example, BEF series manufactured by Sumitomo 3M Limited
  • a light guide for example, BEF series manufactured by Sumitomo 3M Limited
  • Other members are also described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the above backlight unit can be applied to a liquid crystal display device.
  • the liquid crystal display device may include at least the backlight unit and the liquid crystal cell.
  • the driving mode of the liquid crystal cell is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), and optically compensated bend cell (OCB).
  • TN twisted nematic
  • STN super twisted nematic
  • VA vertical alignment
  • IPS in-plane switching
  • OCB optically compensated bend cell
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. 3 of Japanese Patent Laid-Open No. 2008-262161 can be given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • a liquid crystal cell having a liquid crystal layer sandwiched between substrates provided with electrodes on at least one of the opposite sides is provided, and the liquid crystal cell is arranged between two polarizing plates.
  • the liquid crystal display device includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates, and displays an image by changing the alignment state of the liquid crystal by applying a voltage. Furthermore, it has an accompanying functional layer such as a polarizing plate protective film, an optical compensation member that performs optical compensation, and an adhesive layer as necessary.
  • a surface layer such as an undercoat layer may be disposed.
  • FIG. 5 illustrates an example of a liquid crystal display device according to one embodiment of the present invention.
  • the liquid crystal display device 51 illustrated in FIG. 5 includes the backlight side polarizing plate 14 on the surface of the liquid crystal cell 21 on the backlight side.
  • the backlight-side polarizing plate 14 may or may not include the polarizing plate protective film 11 on the backlight-side surface of the backlight-side polarizer 12, but it is preferably included.
  • the backlight side polarizing plate 14 preferably has a configuration in which the polarizer 12 is sandwiched between two polarizing plate protective films 11 and 13.
  • the polarizing plate protective film on the side closer to the liquid crystal cell with respect to the polarizer is referred to as the inner side polarizing plate protective film
  • the polarizing plate protective film on the side farther from the liquid crystal cell with respect to the polarizer is referred to as the outer side polarizing plate. It is called a protective film.
  • the polarizing plate protective film 13 is an inner side polarizing plate protective film
  • the polarizing plate protective film 11 is an outer side polarizing plate protective film.
  • the backlight side polarizing plate may have a retardation film as an inner side polarizing plate protective film on the liquid crystal cell side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the liquid crystal display device 51 has a display-side polarizing plate 44 on the surface of the liquid crystal cell 21 opposite to the surface on the backlight side.
  • the display-side polarizing plate 44 has a configuration in which a polarizer 42 is sandwiched between two polarizing plate protective films 41 and 43.
  • the polarizing plate protective film 43 is an inner side polarizing plate protective film
  • the polarizing plate protective film 41 is an outer side polarizing plate protective film.
  • the backlight unit 1 included in the liquid crystal display device 51 is as described above.
  • the liquid crystal cell, polarizing plate, polarizing plate protective film and the like constituting the liquid crystal display device are not particularly limited, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • Trimethylolpropane triacrylate manufactured by Daicel Cytec Co., Ltd., TMPTA
  • a photopolymerization initiator Liberti Co., Ltd., ESACURE KTO46
  • the sample was irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ) in a nitrogen atmosphere, cured by ultraviolet curing, and wound up.
  • the thickness of the first organic layer formed on the support was 1 ⁇ m.
  • an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer by using a roll-to-roll CVD (Chemical Vapor Deposition) apparatus.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • a high frequency power supply having a frequency of 13.56 MHz was used as the power supply.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • the barrier film 11 in which the inorganic layer was laminated on the surface of the first organic layer formed on the support was produced.
  • a protective film (PAC2-30-T manufactured by Sanei Kaken) was attached to the surface of the inorganic layer of the barrier film 11 for protection, and then a light scattering layer was formed on the back surface of the PET film by the following method.
  • an acrylate compound (Viscat 700HV manufactured by Osaka Organic Synthesis Co., Ltd.) and 40 g of an acrylate compound (8BR500 (urethane (meth) acrylate) manufactured by Taisei Fine Chemical Co., Ltd.) were added and further stirred.
  • a photopolymerization initiator Irgacure (registered trademark) 819 manufactured by BASF
  • a fluorosurfactant FC4430 manufactured by 3M
  • the feeding was set so that the PET film surface of the barrier film 11 was the coating surface, and the coating was carried to the die coater for coating.
  • the wet coating amount was adjusted with a liquid feed pump, and coating was performed at a coating amount of 25 cm 3 / m 2 (the thickness was adjusted so as to be about 12 ⁇ m with a dry film).
  • a laminated film 13 of the barrier film 11 and the light scattering layer was obtained. It was 90% as a result of measuring the haze of the obtained laminated
  • Quantum dot-containing polymerizable composition A (Preparation of wavelength conversion member of Example 1) The following quantum dot-containing polymerizable composition A was prepared, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, dried under reduced pressure for 30 minutes, and used as a coating solution. The quantum dot concentration in the following toluene dispersion was 1% by mass. ⁇ Quantum dot-containing polymerizable composition A ⁇ 17.
  • Toluene dispersion of quantum dot 1 (emission maximum: 535 nm) 10.0 parts by mass
  • Toluene dispersion of quantum dot 2 (emission maximum: 620 nm) 1.0 part by weight lauryl methacrylate 80.8 parts by weight trimethylolpropane triacrylate 2 parts by mass photopolymerization initiator 1.0 part by mass (Irgacure 819 (manufactured by BASF)) ⁇
  • toluene dispersion of quantum dots 1 used in Example 1 a dispersion of quantum dots having an emission maximum wavelength of 535 nm (CZ520-100 manufactured by NN-Labs) was used. Further, as the toluene dispersion of quantum dots 2, a dispersion of quantum dots having a maximum emission wavelength of 630 nm (CZ620-100 manufactured by NN-Labs) was used.
  • the quantum dots contained in these dispersions were all quantum dots containing CdSe as a core, ZnS as a shell, and octadecylamine as a ligand, and were dispersed in toluene at a concentration of 3% by mass.
  • the laminated film 13 produced by the above-described procedure as the first film and the barrier film 11 as the second film, a wavelength conversion member was obtained by the production process described with reference to FIGS. 3 and 4. Specifically, the laminated film 13 is prepared as the first film, and the quantum dot-containing polymerizable composition A prepared above is applied to the inorganic layer surface while being continuously conveyed at a tension of 1 m / min and 60 N / m. A 50 ⁇ m thick coating film was formed. Next, the first film (laminated film 13) on which the coating film is formed is wound around a backup roller, and the second film (barrier film 11) is laminated on the coating film so that the inorganic layer surface is in contact with the coating film.
  • the film was passed through a heating zone at 100 ° C. for 3 minutes while being continuously conveyed with the coating film sandwiched between the first film and the second film. Thereafter, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), it was cured by irradiating with ultraviolet rays to form a wavelength conversion layer containing quantum dots.
  • the irradiation amount of ultraviolet rays was 2000 mJ / cm 2 .
  • L1 was 50 mm
  • L2 was 1 mm
  • L3 was 50 mm.
  • the coating film was cured by irradiation with the ultraviolet rays to form a cured layer (wavelength conversion layer), and a wavelength conversion member was produced.
  • the thickness of the cured layer of the wavelength conversion member was about 50 ⁇ m.
  • the laminated film 13 and the barrier film 11 are provided on both surfaces of the wavelength conversion layer, respectively, both main surfaces of the wavelength conversion layer are in direct contact with the inorganic layers of both films, and the light scattering layer is formed on one surface.
  • the wavelength conversion member of Example 1 in which was formed was obtained.
  • the thickness of the polymerizable composition for forming the light scattering layer is such that 20 g of TiO 2 (HTD 760 manufactured by Teica) is added as the refractive index adjusting particles and the polymerizable composition for forming the light scattering layer is about 6 ⁇ m in dry film.
  • a wavelength conversion member was prepared in the same manner as in Example 1 except that the above was adjusted and applied. As a result of measuring the haze of the laminated film (laminated film of the barrier film 11 and the light scattering layer) included in the wavelength conversion member of Comparative Example 1 in the same manner as in Example 1, it was 98%.
  • a member was prepared. As a result of measuring the haze of the laminated film (laminated film of the barrier film 11 and the light scattering layer) included in the wavelength conversion member of Comparative Example 2 as in Example 1, it was 95%.
  • a sample for measuring the refractive index of the wavelength conversion layer was produced by the following method.
  • a wavelength conversion member was prepared in the same manner as described above except that the first film and the second film were changed to PET films (Toyobo Co., Ltd .: A4300).
  • the thickness of the cured layer of the obtained wavelength conversion member was 150 ⁇ m.
  • a sample for measuring the refractive index of the matrix of the light scattering layer was prepared by the following method.
  • a polymerizable composition was prepared in the same manner as above except that no light scattering particles were added.
  • the prepared polymerizable composition is applied to the surface of a PET film (Toyobo Co., Ltd .: A4100) in the same manner as the formation of the light scattering layer in each Example and Comparative Example and cured in the same manner, and then the PET film is peeled off.
  • a cured single layer having a thickness of 12 ⁇ m was obtained, and this was used as a light scattering layer matrix for refractive index measurement, and the average refractive index n2 was measured.
  • a refractive index in the in-plane slow axis direction and fast axis direction is measured using a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. nx and ny were determined. Further, the refractive index nz is calculated as described above from these values, the in-plane retardation Re and the layer thickness measured by the above method, and the average refractive index is obtained as the average value of nx, ny and nz. Rates n1 and n2 were determined. The layer thickness was measured using a scanning electron microscope (SEM; S-3400N manufactured by Hitachi High-Tech) after cutting the cross section of the film.
  • SEM scanning electron microscope
  • the laminated film (barrier film with light scattering layer) 13 produced in each example and comparative example was cut into 2 cm square, and then placed in the integrating sphere of an absolute PL quantum yield measuring apparatus (C9920-02) manufactured by Hamamatsu Photonics. Then, a blue light having an emission center wavelength is incident on a wavelength 450 nm which is an emission center wavelength of a blue light source provided in a commercially available tablet terminal (manufactured by Amazon, Kindle Fire HDX 7 ′′) used for luminance measurement described later.
  • the detected light intensity I at a wavelength of 450 nm was measured in the same manner, and the transmitted light intensity I 0 at a wavelength of 450 nm was measured for a blank in which no film was placed in the integrating sphere. Calculated by the formula.
  • A1 (I 0 -I) / I 0
  • the blue light absorption rate A was calculated.
  • A A2-A1
  • Example 6 (Production of wavelength conversion member of Example 6) Example except that 0.45 g of tetrakis (3- (3,5-jetterybutyl-4-hydroxyphenyl) propionate) methane (IRGANOX 1010 manufactured by BASF) was added to the polymerizable composition for forming a light scattering layer.
  • the wavelength conversion member was produced similarly to 1.
  • the wavelength conversion members of Examples 5 to 7 were evaluated in the same manner as in Example 1. About the blue light absorptance and the brightness
  • the present invention is useful in the field of manufacturing liquid crystal display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明の一態様は、発光中心波長λnmの光を出射する光源と、光源から出射される光の光路上に位置する波長変換部材とを含むバックライトユニットであって、波長変換部材は、励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層とを含み、波長変換層の平均屈折率n1は、光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、光散乱層の波長λnmにおける吸光率は8.0%以下であるバックライトユニット、液晶表示装置、波長変換部材に関する。

Description

バックライトユニット、液晶表示装置および波長変換部材
 本発明は、バックライトユニット、液晶表示装置および波長変換部材に関する。
 液晶表示装置(以下、LCD(Liquid Crystal Display)とも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、少なくともバックライトユニットと液晶セルとから構成されている。
 バックライトユニットとしては、光源として、白色LED(Light-Emitting Diode)等の白色光源を含むものが広く用いられている。これに対し近年、白色光源に代えて、例えば青色LEDのような光源から発光された光と、光源から出射された光により励起され蛍光を発光する蛍光体を含む、光源とは別部材として配置された波長変換部材からの発光とにより、白色光を具現化する新たなバックライトユニットが提案されている(特許文献1参照)。
特表2013-544018号公報
 ところで特許文献1には、蛍光体を含む層(波長変換層)とは別の部分に、光を散乱する機能を持たせるために粒子(特許文献1に散乱粒子と記載されている。)を配置することが提案されている(例えば特許文献1の段落0162、0163参照)。本発明者らは、このように波長変換層とは別の部分に光を散乱する機能を持たせることは、波長変換層へ入射する励起光量や波長変換層から出射され液晶セルに入射する光量を増加させることにつながり、これにより液晶表示装置の輝度を向上することができると予想し検討した。検討の結果、上記の部分を設けることにより、この部分がない場合と比べて輝度の向上が可能となることは判明したが、更なる輝度の向上を達成することができれば、液晶表示装置により高輝度の鮮明な画像を表示することや、一定輝度を達成するための蛍光体の使用量の低減による低コスト化の達成、波長変換層の薄層化によるバックライトユニットの薄型化が期待できる。
 そこで本発明の目的は、波長変換部材を含むバックライトユニットを備えた液晶表示装置における更なる輝度向上を達成することにある。
 本発明の一態様は、
 発光中心波長λnmの光を出射する光源と、光源から出射される光の光路上に位置する波長変換部材と、を含むバックライトユニットであって、
 波長変換部材は、励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
 波長変換層の平均屈折率n1は、光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、
 光散乱層の波長λnmにおける吸光率は、8.0%以下であるバックライトユニット、
 に関する。
 上記の粒子の粒子サイズとは、光散乱層の断面を走査型電子顕微鏡(Scanning Electron Microscope;SEM)により観察し、無作為に抽出した20個の粒子の粒子サイズの算術平均とする。具体的には、光散乱層の断面を倍率5000倍で撮影したのちに、得られた画像において無作為に抽出した20個の粒子の一次粒子径を測定する。球形状ではない粒子については、長軸の長さと短軸の長さの平均値を求め、これを一次粒子径として採用する。こうして、無作為に抽出した20個の粒子について求められる一次粒子径の算術平均を、上記の粒子の粒子サイズとする。なお後述の実施例で示す粒子サイズは、走査型電子顕微鏡として日立ハイテク社製S-3400Nを用いて測定された値である。
 また、光散乱層のマトリックスとは、光散乱層の粒子サイズ0.1μm以上の粒子を除く部分をいうものとする。光散乱層における光の散乱は、層内の光学的不均一性によりもたらされる。粒子サイズが十分に小さな粒子は、この粒子が含まれていても層の光学的均一性が大きく低下することはないのに対し、粒子サイズ0.1μm以上の粒子は、層を光学的に不均一にし、これにより光の散乱をもたらすことができる粒子である。以下において、粒子サイズ0.1μm以上の粒子を光散乱粒子と呼ぶ。そして光散乱粒子を含む層を、本発明における光散乱層とする。光散乱層のマトリックスの平均屈折率n2は、光散乱層形成用材料から、光散乱粒子を除いて作製した測定用マトリックスについて求められる値とする。なお光散乱層のマトリックス組成は、赤外分光、NMR(Nuclear Magnetic Resonance)測定、光散乱層のマトリックスを溶解可能な任意の溶媒に溶解して得られた溶液のガスクロマトグラフィー測定等の公知の組成解析法によって求めることができる。
 本発明における平均屈折率とは、面内の遅相軸方向の屈折率nx、遅相軸方向と直交する方向である面内の進相軸方向の屈折率ny、ならびに遅相軸方向および進相軸方向と直交する方向の屈折率nzの平均値をいうものとする。
 屈折率nxおよびnyは、公知の屈折率測定装置によって測定することができる。屈折率測定装置の一例としては、アタゴ社製多波長アッベ屈折計DR-M2を挙げることができる。一方、屈折率nzは、層の厚み、面内方向のレターデーション、ならびに屈折率nxおよびnyの値から、後述するように算出することができる。
 一方、遅相軸がないものについては、面内方向の屈折率、厚み方向の屈折率、ならびに面内方向および厚み方向と直交する方向の屈折率の平均値を、平均屈折率とする。この場合の各方向の平均屈折率は、公知の屈折率測定装置、例えば上記のアタゴ社製多波長アッベ屈折計DR-M2により求めることができる。
 また、光散乱層の波長λnmにおける吸光率は、積分球を用いた光学系にて求めることとする。積分球を使用することで入射光が試料中を複数回透過するため、僅かな吸収量の定量も可能となる。例えば測定装置としては、積分球を用いた絶対発光量子収率測定法を実施可能な市販の装置を用いることができる。一例として、浜松ホトニクス社製絶対PL(フォトルミネッセンス)量子収率測定装置(C9920-02)を挙げることができ、後述の実施例では、この測定装置を用いた。
 一態様では、光散乱層は、波長変換層より出射側(即ち、液晶表示装置に配置された状態で液晶セル側)に配置されている。
 一態様では、蛍光体は、量子ドットである。
 一態様では、光散乱層のマトリックスの平均屈折率n2は、1.45~2.00の範囲であり、ただしn1<n2を満たす。
 一態様では、波長変換層の平均屈折率n1は、1.43~1.60の範囲であり、ただしn1<n2を満たす。
 一態様では、波長変換層と光散乱層とは、バリアフィルムを介して積層されている。
 一態様では、バリアフィルムは、少なくとも無機層を含む。
 一態様では、無機層は、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物およびアルミニウム酸化物からなる群から選ばれる少なくとも一種を含む無機層である。
 一態様では、バリアフィルムには、波長変換層側から光散乱層側に向かって、無機層、有機層および基材フィルムがこの順に隣接配置されている。ここで「隣接」とは、他の層を介さずに直接接していることをいうものとする。
 一態様では、上記波長λnmは、青色光の波長帯域にある。
 本発明の更なる態様は、上記バックライトユニットと、液晶セルと、を含む液晶表示装置に関する。
 本発明の更なる態様は、
 励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
 波長変換層の平均屈折率n1は、光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、
 光散乱層の波長450nmにおける吸光率は、8.0%以下である波長変換部材、
 に関する。
 本発明によれば、高輝度の画像を表示可能な液晶表示装置を提供することができる。更に本発明によれば、かかる液晶表示装置の提供を可能とする波長変換部材およびバックライトユニットを提供することができる。
図1(a)、(b)は、波長変換部材を含むバックライトユニットの一例の説明図である。 図2は、波長変換部材の層構成の具体例を示す。 図3は、波長変換部材の製造装置の一例の概略構成図である。 図4は、図3に示す製造装置の部分拡大図である。 図5は、液晶表示装置の一例を示す。
 以下の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本発明および本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明および本明細書中、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。また、430~480nmの波長帯域に発光中心波長を有する光を青色光と呼び、520~560nmの波長帯域に発光中心波長を有する光を緑色光と呼び、600~680nmの波長帯域に発光中心波長を有する光を赤色光と呼ぶ。紫外光とは、300nm~430nmの波長帯域に発光中心波長を有する光をいう。そして単一ピークの光として青色光を出射する光源を青色光源と呼び、単一ピークの光として紫外光を出射する光源を紫外光源と呼ぶ。ここで単一ピークの光を発光するとは、発光スペクトルに、白色光源のように2つ以上のピークが出現するのではなく、発光中心波長を吸収極大とするピークが1つのみ存在することを意味する。
[バックライトユニット、波長変換部材]
 本発明のバックライトユニットは、発光中心波長λnmの光を出射する光源と、光源から出射される光の光路上に位置する波長変換部材と、を含むバックライトユニットであって、波長変換部材は、励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
 波長変換層の平均屈折率n1は、光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、光散乱層の波長λnmにおける吸光率が8.0%以下であるバックライトユニットである。
 本発明者らは、先に記載した目的を達成するために鋭意検討を重ねた結果、本発明のバックライトユニットを見出した。以下、この点について更に説明する。
 本発明者らは、先に記載したように、波長変換層とは別の部分に光を散乱する機能を持たせることは、輝度向上のための有効な手段と考えている。そのために上記バックライトユニットは、光散乱層を有する。光散乱層によって輝度を向上することができる理由は、
 (1)波長変換層における蛍光体の発光効率を高めること、
 (2)蛍光体が発光した蛍光を効率的にバックライトユニットから出射させること、
 の一方または両方を達成することができることにあると、本発明者らは推察している。詳しくは、次の通りである。
 光散乱層は、波長変換層の出射側、光源側の少なくとも一方に配置することができる。出射側に配置された光散乱層は、波長変換層から出射された光を様々な方向に散乱させることができる。光源からの出射光(以下、「光源由来の光」」とも記載する。)は、通常、一部は波長変換層において蛍光体に吸収され蛍光体を励起させるが、一部は波長変換層を通過し波長変換層から出射される。このように出射された光源由来の光を再び波長変換層へ入射させることは、波長変換層に入射する励起光の光量を増やすことによって蛍光体の発光効率を高めることにつながる。この点に関し、上記のように波長変換層の出射側に配置された光散乱層は、波長変換層から出射された光源由来の光を散乱させ光の進行方向の向きを変えることで、その一部を波長変換層側に戻す役割を果たすことができると考えられる。こうして波長変換層に戻された光源由来の光が波長変換層において蛍光体を励起させることによって、蛍光体によって発光される光量を増やすことができると推察される。また、波長変換層の光源側に配置された光散乱層も、バックライトユニットにおいて波長変換層の出射側に配置され得るプリズムシート等の反射性部材で反射された光源由来の光のうち波長変換層を透過した光を、再び波長変換層側に戻す役割を果たすことができるため、蛍光体による発光光量を増やすことができると推察される。
 また、蛍光体は通常、等方的に蛍光を発光するため、波長変換層の層内で発光された蛍光(以下、「波長変換層由来の光」とも記載する。)は、一部が屈折率界面にて全反射が生じるため、出射側へ取り出されず、波長変換部材の内部を導波してしまう。波長変換層の出射側、または光源側に配置された光散乱層は、この全反射を繰り返す導波光の進行方向を変えて波長変換部材の外部へ取り出す役割を果たすことができると考えられる。そしてこれにより、バックライトユニットから出射される波長変換層由来の光の光量を増やすことができると推察される。
 このように光散乱層は、上記(1)、(2)により輝度向上を達成することに寄与すると、本発明者らは考えている。
 ところで、波長変換層とは別の部分に光散乱粒子を配置する手段としては、特許文献1の図29~31に示されているように単に粒子を散在させることも考えられるが、波長変換層の出射側表面の全面から出射される光により均等に散乱効果をもたらすためには、光散乱粒子をマトリックスに含む部材(光散乱層)として配置することが好ましい。ただしここで、光散乱層のマトリックスの屈折率n2が、波長変換層の屈折率n1よりも低い場合(n1>n2)には、光散乱層と波長変換層が接する場合にはこれら二層の界面にて、また光散乱層と波長変換層の間に基材など異なる屈折率を有する層が存在する場合には波長変換層と光散乱層との間に複数存在する、屈折率が異なる二層の界面のうちの少なくとも1つの界面にて、界面にて全反射が生じてしまい、光散乱層への光の入射は妨げられてしまう。そこで本発明者らは、全反射を抑制すべく、n1<n2の関係を満たす光散乱層を設けることとした。
 加えて本発明者らは、上記(1)(波長変換層における蛍光体の発光効率を高めること)のために、光散乱層による励起光(光源由来の光)の吸収による損失を低減すべく、光散乱層を、光源由来の光の発光中心波長λnmにおける吸光率が8.0%以下のものとした。
 以上の本発明者らによる鋭意検討の結果見出された上記バックライトユニット組み込んだ液晶表示装置によれば、高輝度の画像を得ることができる。
 ただし以上は本発明者らによる推察を含むものであって、本発明を何ら限定するものではない。
 更に、光源として青色光源を用いるバックライトユニットに好適な波長変換部材として、
 励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
 波長変換層の平均屈折率n1は、光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、
光散乱層の波長450nmにおける吸光率は、8.0%以下である波長変換部材、
 も本発明により提供される。なお波長450nmとは、青色光源の中心発光波長の代表値として示したものであり、本発明における青色光源の中心発光波長を450nmに限定することを意図するものではない。
 以下、上記バックライトユニットおよび波長変換部材について、更に詳細に説明する。
<光散乱層の波長λnmにおける吸光率>
 上記波長変換部材は、先に記載したように光源由来の光の損失を低減すべく、光散乱層として、光源の発光中心波長λnmにおける吸光率が8.0%以下の光散乱層を備える。上記吸光率は、好ましくは7.0%以下、より好ましくは5.0%以下、更に好ましくは3.0%以下、一層好ましくは2.5%以下、より一層好ましくは2.0%以下である。上記吸光率は、例えば0.01%以上であるが、低いほど好ましいため下限は特に限定されるものではない。なお上記吸光率の測定方法は、先に記載した通りである。
 波長λnmは、バックライトユニットに含まれる光源が青色光源である場合には青色光の波長帯域にある。また、光源が紫外光源である場合には、波長λnmは紫外光の波長帯域にある。光散乱層のマトリックスの上記吸光率は、例えば、光散乱層を形成するために用いる組成物の処方により制御することができる。
<平均屈折率n1、n2>
 また、先に記載した理由から、上記波長変換部材において、波長変換層の平均屈折率n1と光散乱層のマトリックスの平均屈折率n2は、n1<n2の関係を満たすものとする。一例として、例えばn1とn2との差分をΔn=n2-n1とすると、Δnは、0.001以上であることができ、0.010以上であることもできる。ただし、n1<n2であれば、先に記載した全反射を効果的に抑制することができるため、n1<n2の関係を満たす限り、Δnは限定されるものではない。
 光散乱層のマトリックスの平均屈折率n2は、n1<n2の関係を満たすものであればよい。例えばn2は1.45~2.00の範囲であり、好ましくは1.48~1.85の範囲であり、より好ましくは1.50~1.80の範囲である。
 一方、波長変換層の平均屈折率n1は、例えば1.43~1.60の範囲であるが、n1<n2を満たせばよく、上記範囲に限定されるものではない。
 以上のn1、n2は、波長変換層を形成するために用いる組成物および光散乱層を形成するために用いる組成物の処方によって調整することができる。
 なお平均屈折率とは、先に記載した通り、面内の遅相軸方向の屈折率nx、遅相軸方向と直交する方向である面内の進相軸方向の屈折率ny、ならびに遅相軸方向および進相軸方向と直交する方向の屈折率nzの平均値である。遅相軸とは、公知の位相差測定装置により判断される。位相差測定装置としては、例えば、王子計測機器社製位相差測定装置KOBRA CCDシリーズ、KOBRA 21ADHまたはWRシリーズを用いることができる。nx、nyは、先に記載したように、公知の屈折率測定装置により測定することができる。
 一方、屈折率nzは、面内方向のレターデーションRe、層厚、ならびにnxおよびnyから求めることができる。面内方向のレターデーションReとは、公知の位相差測定装置を用いて、波長λnmの光を層の表面に対する法線方向に入射させて測定されるレターデーションである。本発明においては、波長λnmとしては、589nmを採用することとする。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。なお、屈折率についても、波長589nmの光に対する屈折率をいうものとする。
 面内方向のレターデーションRe、層厚d、ならびに面内の遅相軸方向の屈折率nxおよび面内の進相軸方法の屈折率nyの値から、面内の遅相軸方向および進相軸方向と直交する方向における屈折率nzを算出することができる。なお、層厚は、光学顕微鏡、走査型電子顕微鏡(SEM)等の顕微鏡による断面観察により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 上記のRe(θ)は測定対象の層の法線方向から角度θ°傾斜した方向におけるレターデーション値を表す。したがって、面内方向のレターデーションについては、θ=0°である。
 また、本発明および本明細書において、直交、等の角度に関する記載については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
<波長変換部材の構成、配置例>
 波長変換部材は、入射光の少なくとも一部の波長を変換して、入射光の波長と異なる波長の光を出射する機能を有していればよい。波長変換部材の形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。波長変換部材は、液晶表示装置のバックライトユニットの構成部材として使用することができる。
 図1は、波長変換部材を含むバックライトユニット1の一例の説明図である。図1中、バックライトユニット1は、光源1Aと、面光源とするための導光板1Bを備える。図1(a)に示す例では、波長変換部材は、導光板から出射される光の経路上に配置されている。一方、図1(b)に示す例では、波長変換部材は、導光板と光源との間に配置されている。そして図1(a)に示す例では、導光板1Bから出射される光が、波長変換部材1Cに入射する。
 図1(a)に示す例では、導光板1Bのエッジ部に配置された光源1Aから出射される光2は青色光であり、導光板1Bの液晶セル(図示せず)側の面から液晶セルに向けて出射される。導光板1Bから出射された光(青色光2)の経路上に配置された波長変換部材1Cには、青色光2により励起され赤色光4を発光する量子ドット(A)と、青色光2により励起され緑色光3を発光する量子ドット(B)を、少なくとも含む。このようにしてバックライトユニット1からは、励起された緑色光3および赤色光4、ならびに波長変換部材1Cを透過した青色光2が出射される。こうして赤色光、緑色光および青色光を発光させることで、白色光を具現化することができる。
 図1(b)に示す例は、波長変換部材と導光板の配置が異なる点以外は、図1(a)に示す態様と同様である。図1(b)に示す例では、波長変換部材1Cから、励起された緑色光3および赤色光4、ならびに波長変換部材1Cを透過した青色光2が出射され導光板に入射し、面光源が実現される。
<光散乱層>
(光散乱粒子)
 光散乱層は、光散乱粒子をマトリックス中に含む層である。光散乱粒子の粒子サイズは、0.1μm以上であり、散乱効果の観点から、0.5~15.0μmの範囲であることが好ましく、0.7~12.0μmの範囲であることがより好ましい。
 また、輝度の更なる向上や、視野角に対する輝度の分布を調整するために、粒子サイズの異なる二種以上の光散乱粒子を混合して用いてもよい。粒子サイズの大きな粒子を大粒径の粒子、大粒径の粒子より粒子サイズの小さな粒子を小粒径の粒子と呼ぶと、大粒径の粒子は、外部散乱性の付与およびアンチニュートンリング性付与の点から、粒子サイズが5.0μm~15.0μmの範囲であることが好ましく、6.0μm~12.0μmの範囲であることがより好ましい。また、小粒径の粒子は、内部散乱性付与の点から、粒子サイズが0.5μm~5.0μmの範囲であることが好ましく、0.7μm~3.0μmの範囲であることがより好ましい。
 光散乱粒子としては、有機粒子であってもよく、無機粒子であってもよく、有機無機複合粒子であってもよい。例えば有機粒子としては、合成樹脂粒子を使用することができる。具体例としては、シリコーン樹脂粒子、アクリル樹脂粒子(ポリメチルメタクリレート(PMMA))、ナイロン樹脂粒子、スチレン樹脂粒子、ポリエチレン粒子、ウレタン樹脂粒子、ベンゾグアナミン粒子等が挙げられ、好適な屈折率を有する粒子の入手容易性の観点からはシリコーン樹脂粒子、アクリル樹脂粒子が好ましい。また中空構造を有する粒子も使用できる。
 光散乱粒子と光散乱層のマトリックスとの屈折率差が大きいことは、散乱効果の観点から好ましい。この点から、光散乱粒子とマトリックスとの屈折率差Δnは、0.02以上であることが好ましく、0.10以上であることがより好ましく、0.20以上であることがさらに好ましい。光散乱粒子の屈折率は、例えば1.40~1.45の範囲であり、1.42~1.45の範囲であることが好ましい。ここでの屈折率も、前述の平均屈折率をいうものとする。なお以下に記載の「屈折率」も、同様である。
 光散乱粒子は、光散乱層の光散乱性の観点および光散乱層の脆性の観点から、光散乱層中に体積分率で10体積%(vol%)~70vol%含まれることが好ましく、20vol%~60vol%含まれることがより好ましい。
(光散乱層のマトリックス)
 光散乱層の形成方法は特に限定されないが、生産性等の観点からは、光散乱粒子および重合性化合物を含む重合性組成物(硬化性組成物)の硬化層として光散乱層を形成することが好ましい。上記重合性化合物としては、n1<n2を満たすように波長変換層を形成する材料の屈折率を考慮して市販品または公知の方法で合成したものの中から適切な重合性化合物を選択して用いればよい。好ましい重合性化合物としては、例えば、エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物、ならびに/または、エポキシ基もしくはオキセタン基を末端および側鎖の少なくとも一方に有する化合物を挙げることができ、エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物がより好ましい。エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物の具体例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、スチレン系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物が好ましく、アクリレート系化合物がより好ましい。(メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。スチレン系化合物としては、スチレン、α-メチルスチレン、4-メチルスチレン、ジビニルベンゼン、4-ヒドロキシスチレン、4-カルボキシスチレン等が好ましい。
 なお本発明および本明細書において、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方または両方の意味で用いるものとし、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方または両方の意味で用いるものとする。「(メタ)アクリロイル」等も同様である。
 (メタ)アクリレート系化合物の中でも、光源の発光中心波長λnmにおける光散乱層の吸光率をいっそう低くするために好ましく用いられる化合物としては、多価アルコールと多官能の(メタ)アクリル酸とのエステルである2官能以上の多官能(メタ)アクリレートを挙げることができる。
 2官能の(メタ)アクリレートとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好ましい例として挙げられる。
 3官能以上の(メタ)アクリレートとしては、ECH(エピクロロヒドリン)変性グリセロールトリ(メタ)アクリレート、EO(エチレンオキシド)変性グリセロールトリ(メタ)アクリレート、PO(プロピレンオキシド)変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。
 (メタ)アクリレート系化合物としては、光散乱層の硬度および隣接する層や部材との密着性を向上する観点から、下記(1)と(2)とを併用することが好ましい。
(1)(メタ)アクリレート間が炭素原子数5以上9以下のアルキル基で連結された2官能の(メタ)アクリレート、および(メタ)アクリレート間がアルキレンオキサイドで連結された2官能または3官能以上の(メタ)アクリレートからなる群から選ばれる少なくとも1種の(メタ)アクリレート;
(2)アルキレンオキサイドを含まない3官能以上の(メタ)アクリレートの少なくとも一種。
 ウレタン(メタ)アクリレートとしては、TDI(トリレンジイソシアナート)、MDI(ジフェニルメタンジイソシアナート)、HDI(ヘキサメチレンジイソシアナート)、IPDI(イソホロンジイソシアナート)、HMDI(ジシクロヘキシルメタンジイソシアナート)等のジイソシアナートとポリ(プロピレンオキサイド)ジオール、ポリ(テトラメチレンオキサイド)ジオール、エトキシ化ビスフェノールA、エトキシ化ビスフェノールSスピログリコール、カプロラクトン変性ジオール、カーボネートジオール等のポリオール、および2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシドールジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシアクリレートを反応させて得られる(ウレタン)メタアクリレートを挙げることができる。具体例としては、特開2002-265650公報や、特開2002-355936号公報、特開2002-067238号公報等に記載の多官能ウレタン(メタ)アクリレートを挙げることができる。また、他の具体例としては、TDIとヒドロキシエチルアクリレートとの付加物、IPDIとヒドロキシエチルアクリレートとの付加物、HDIとペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等を挙げることができる。なかでも、光源の発光中心波長λnmにおける光散乱層の吸光率をより低くするためには、水酸基を有する化合物と脂肪族イソシアネートとの縮合により生成される(ウレタン)メタアクリレートが好ましい。
 また、波長変換部材の長期の使用の後でも、光源の発光中心波長λnmにおける光散乱層の吸光率を低く保つためには、ウレタン(メタ)アクリレートと、フェノール系化合物、亜リン酸トリエステル化合物、硫黄系化合物、ヒンダードアミン系化合物から選ばれる少なくとも1種とを、併用することが好ましい。波長変換部材を長期使用した後にも光源の発光中心波長λnmにおける光散乱層の吸光率を低く保つことができれば、長期使用による輝度の低下を抑制すること(即ち耐久性の向上)につながるため好ましい。
 フェノール系化合物としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)-プロピオネート、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドルキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3’,5’-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、テトラキス(3-(3,5-ジーターシャリーブチルー4-ヒドロキシフェニル)プロピオネート)メタン 、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、2-[1-(2-ヒドロキシ-3, 5-ジ第三ペンチルフェニル)エチル]-4, 6-ジ第三ペンチルフェニルアクリレート等が挙げられる。
 亜リン酸トリエステル化合物としては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリス(2-エチルへキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、ジフェニルモノ(2-エチルへキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラフェニル(テトラトリデシル)ペンタエリスリトールテトラホスファイト、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイトとビス(ノニルフェニル)ペンタエリスリトールジホスファイトの混合物、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、水添ビスフェノールA・フェニルホスファイトポリマー、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)-2-エチルへキシルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、6-tert-ブチル-4-[3-(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-o-クレゾールなどが挙げられる。
 硫黄系化合物としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル、ジステアリル等のジアルキルチオジプロピオネート類およびペンタエリスリトールテトラ(β-ドデシルメルカプトプロピオネート)等のポリオールのβ-アルキルメルカプトプロピオン酸エステル類が挙げられる。
 また、ヒンダードアミン系化合物としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、N-(2,2,6,6-テトラメチル-4-ピペリジル)ドデシルコハク酸イミド、1-〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕-2,2,6,6-テトラメチル-4-ピペリジル-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン、テトラ(2,2,6,6-テトラメチル-4-ピペリジル)ブタンテトラカルボキシレート、テトラ(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)ブタンテトラカルボキシレート、3,9-ビス〔1,1-ジメチル-2-{トリス(2,2,6,6-テトラメチル-4-ピペリジルオキシカルボニルオキシ)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(1,2,2,6,6-ペンタメチル-4-ピペリジルオキシカルボニルオキシ)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、1,5,8,12-テトラキス〔4,6-ビス{N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミノ}-1,3,5-トリアジン-2-イル〕-1,5,8,12-テトラアザドデカン、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジメチル縮合物、2-第三オクチルアミノ-4,6-ジクロロ-s-トリアジン/N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン縮合物、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン/ジブロモエタン縮合物等が挙げられる。
 上記安定剤のなかでも、フェノール系化合物またはヒンダードアミン系化合物が好ましく、フェノール系化合物がより好ましい。光散乱層における安定剤の含有量は、光散乱層のマトリックス100質量部中に0.02~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.1~3質量部であることが更に好ましい。二種以上の複数種の安定剤を併用してもよく、併用する場合には、それぞれの安定剤の含有量を上記範囲とすることができる。安定剤の含有量が上記範囲であることは、光散乱層の硬化性、隣接する層や部材との密着性、波長変換部材を長期使用した後にも光源の発光中心波長λnmにおける光散乱層の吸光率を低く保つことができる点で、好ましい。
 また、アクリレート系化合物としてフルオレン骨格を有する化合物を用いることも好ましい。そのような化合物の具体例としては、WO2013/047524A1に記載の式(2)で表される化合物が挙げられる。
 更にマトリックスの屈折率を調整するためには、光散乱粒子より粒子サイズが小さい粒子を、屈折率調整粒子として用いることができる。屈折率調整粒子の粒子サイズは、0.1μm未満である。
 屈折率調整粒子としては、例えば、ダイヤモンド、酸化チタン、酸化ジルコニウム、酸化鉛、炭酸鉛、酸化亜鉛、硫化亜鉛、酸化アンチモン、酸化ケイ素、酸化アルミニウム等の粒子が挙げられる。中でも青色光や紫外光の吸収の少ない点で、酸化ジルコニウムや酸化ケイ素の粒子が好ましく、少量で屈折率を調整できることから、酸化ジルコニウムの粒子が好ましい。屈折率調整粒子は、屈折率の調整が可能な量を用いればよく、光散乱層における含有量は特に限定されるものではない。
 更に光散乱層を形成するための重合性組成物には、重合開始剤、界面活性剤等の公知の添加剤の一種以上、または粘度調整等のために溶媒の一種以上を、任意の量で添加することもできる。添加剤、溶媒としては、公知のものを何ら制限なく用いることができる。
 以上の各種成分の種類や添加量を調整することによって、光散乱層のマトリックスの屈折率n2および光散乱層の波長λnmにおける吸光率を制御することができる。
(光散乱層の配置位置、厚さ、形成方法)
 光散乱層は、波長変換部材において、波長変換層より出射側に設けてもよく、光源側に設けてもよく、いずれか一方に設けてもよく、両方に設けてもよい。また、光散乱層は、波長変換層に直接接する層として設けてもよく、他の層の一層以上を介して波長変換層と積層されていてもよい。そのような他の層としては、例えば後述のバリアフィルムに含まれる有機層、無機層および基材フィルムを挙げることができる。図2に、波長変換層の層構成の具体例を示す。図2中、上方が出射側、下方が光源側であり、符号10、10a、10bは光散乱層、符号11a、11bはバリアフィルム、符号12は波長変換層を示す。なお簡略化のためバリアフィルムの層構成は示していないが、後述のようにバリアフィルムは二層以上の積層構造であることができ、積層構造であることが好ましい。なお図2は層構成の例示のみのために示すものであり、各層の厚みや厚みの比率は本発明を何ら限定するものではなく、また図示していない層の一層以上が波長変換部材に含まれていてもよい。波長変換部材には、輝度の一層の向上の観点からは、少なくとも波長変換層より出射側に光散乱層を配置することが好ましい。
 光散乱層の厚さは、任意の厚みで設定することができ、一例として1~20μmとすることができる。光散乱層の光散乱性と薄型化の両立の観点からは、好ましくは1~10μmの範囲であり、より好ましくは1~5μmの範囲である。
 光散乱層は、バックライトユニットから発光される光の面内均一性向上の観点からは、ヘイズが高いことが望ましく、ヘイズが50%以上であることが好ましく、より好ましくは70%以上、更に好ましくは80%以上である。
 また、光散乱層は、詳細を後述するバリアフィルムと隣接する層として、波長変換部材に含まれていてもよい。この場合、光散乱層とバリアフィルムとの積層体のヘイズも、上記範囲であることが好ましい。
 光散乱層および光散乱層とバリアフィルムとの積層体のヘイズは、JIS K 7136に準拠して測定される値とする。測定装置の一例としては、日本電色工業株式会社製ヘイズメーターNDH2000を挙げることができる。
 光散乱層の全光線透過率は、バックライトユニットから発光される光の面内均一性向上の観点、および輝度向上の観点から、50%以上であることが好ましく、70%以上であることがより好ましい。光散乱層の全光線透過率は、JIS K 7136に準拠して測定される値とする。測定装置の一例としては、日本電色工業株式会社製ヘイズメーターNDH2000を挙げることができる。
 光散乱層は、例えば、上記重合性組成物を、適当な基材上に塗布し、必要に応じて乾燥させ溶媒を除去するとともに、その後、光照射、加熱等により重合硬化させて形成することができる。例えば基材としては、既に波長変換層が形成された基材や、光散乱層形成後に波長変換層が形成される基材を用いることができる。こうして基材を介して、または基材上に、波長変換層と光散乱層を有する波長変換部材を得ることができる。塗布方法としては、波長変換層の形成に関して後述する各種の公知の塗布方法が挙げられる。また、硬化条件は、使用する重合性化合物の種類や重合性組成物の組成に応じて、適宜設定することができる。
<波長変換層>
(蛍光体)
 波長変換層は、少なくとも蛍光体を含む。波長変換層の形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
 公知の蛍光体には、600nm~680nmの範囲の波長帯域に発光中心波長を有する蛍光体(A)、520nm~560nmの範囲の波長帯域に発光中心波長を有する蛍光体(B)、400nm~500nmの波長帯域に発光中心波長を有する蛍光体(C)がある。蛍光体(A)は、励起光により励起され赤色光を発光し、蛍光体(B)は緑色光を、蛍光体(C)は青色光を発光する。例えば、蛍光体(A)と蛍光体(B)を含む波長変換層へ励起光として青色光を入射させると、図1に示すように、蛍光体(A)により発光される赤色光、蛍光体(B)により発光される緑色光と、波長変換層を透過した青色光により、白色光を具現化することができる。または、蛍光体(A)、(B)、および(C)を含む波長変換層に励起光として紫外光を入射させることにより、蛍光体(A)により発光される赤色光、蛍光体(B)により発光される緑色光、および蛍光体(C)により発光される青色光により、白色光を具現化することができる。
 蛍光体の一態様は、量子ドットである。特に、波長変換層に含まれる蛍光体が量子ドットである場合、より少ない蛍光体(量子ドット)含有量でバックライトユニットから白色を得るために十分な光量の波長変換を波長変換層で行うためには、より多くの光が波長変換層を通過するように、バックライトユニットを設計することが好ましい。これに伴い光散乱層を通過する光量が増加するため、光散乱層での損失(吸光)を低減することによる輝度向上がより顕著になる傾向がある。
 量子ドットとは、量子閉じ込め効果により離散的なエネルギー準位を取る蛍光体である量子ドット(Quantum Dot、QDを挙げることができる。量子ドットは、発光する蛍光の半値幅が他の蛍光体による蛍光と比べ小さいため、量子ドットの発光を利用して得られる白色光は色再現性に優れる点で、好ましい蛍光体である。量子ドットの発光する蛍光の半値幅は、好ましくは100nm以下であり、より好ましくは80nm以下であり、50nm以下であることが更に好ましく、45nm以下であることが一層好ましく、40nm以下であることが更に一層好ましい。
 量子ドットについては、上記の記載に加えて、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズ、ならびに組成およびサイズにより調整することができる。
 また蛍光体としては、セラミック蛍光体を挙げることもできる。セラミック蛍光体としては、例えば、イットリウム・アルミニウム・ガーネット(YAG)等の無機結晶、金属酸化物または金属硫化物に金属元素を賦活剤として添加したセラミック蛍光体が挙げられる。具体例としては、以下のセラミック蛍光体を挙げることができる。以下において、「:」の後にカチオンとして表記されている金属種が、賦活剤として添加された金属元素である。セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG:Ce3+)系蛍光体(YAG系蛍光体)、(Ca,Sr,Ba)SiO:Eu2+、SrGa:Eu2+、α-SiAlON:Eu2+、CaScSi12:Ce3+、SrGa:Eu2+、(Ca,Sr,Ba)S:Eu2+、(Ca,Sr,Ba)Si:Eu2+、CaAlSiN:Eu2+等。また、例えばYAG系蛍光体は、イットリウム(Y)の一部または全体が、Lu、Sc、La、GdおよびSmからなる群から選ばれる少なくとも1つの元素で置換されていてもよく、またアルミニウム(Al)の一部または全体が、GaおよびInの少なくとも一方または両方で置換されていてもよい。更に、YAG系蛍光体は、組成を変化させることにより、蛍光体の発光波長を調整することができる。例えば、YAG系蛍光体のYの一部または全体をGdで置換することにより、発光波長を長波長側にシフトすることができる。また、Gdの置換量を増加することにより、発光波長が長波長側にシフトする。また例えば、YAG系蛍光体のAlの一部をGaで置換することにより、発光波長を短波長側にシフトすることができる。すなわち、この場合には、青みの強い黄色(緑色)の光を発光する蛍光体とすることができる。他のセラミック蛍光体についても、組成調整により発光波長を調整することができる。
 量子ドット、セラミック蛍光体等の蛍光体は、波長変換層形成用の重合性組成物(蛍光体含有重合性組成物)に粒子の状態で添加してもよく、溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが蛍光体の粒子の凝集を抑制する観点から好ましい。ここで使用される溶媒は、特に限定されるものではない。蛍光体は、重合性組成物の全量100質量部に対して、例えば0.01~10質量部程度添加することができる。
(波長変換層の作製方法)
 以上記載した蛍光体は、波長変換層において、通常、マトリックス中に含まれる。マトリックスは、通常、重合性組成物を光照射、熱硬化等により重合させた重合体(有機マトリックス)である。波長変換部材の形状は特に限定されるものではない。例えば、波長変換層は、そのままでバックライトユニットに含まれていてもよく、後述するバリアフィルム等の一層以上の他の層との積層体(波長変換部材)として、上記バックライトユニットに含まれていてもよい。具体的には、蛍光体を含む重合性組成物(硬化性組成物)を適当な基材上に塗布し、次いで光照射等により硬化処理を施すことにより、波長変換層を得ることができる。
 重合性組成物の調製に用いる重合性化合物は特に限定されるものではない。重合性化合物は、一種用いてもよく、二種以上を混合して用いてもよい。重合性組成物全量に占める全重合性化合物の含有量は、10~99.99質量%程度とすることが好ましい。好ましい重合性化合物の一例としては、硬化後の硬化被膜の透明性、密着性等の観点からは、単官能または多官能(メタ)アクリレートモノマー、そのポリマー、プレポリマー等の単官能または多官能(メタ)アクリレート系化合物を挙げることができる。
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例については、WO2012/077807A1段落0022を参照できる。
 上記(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を1分子内に1個有するモノマーと共に、(メタ)アクリロイル基を分子内に2個以上有する多官能(メタ)アクリレートモノマーを併用することもできる。その詳細については、WO2012/077807A1段落0024を参照できる。また、多官能(メタ)アクリレート系化合物として、特開2013-043382号公報段落0023~0036に記載のものを用いることもできる。更に、特許第5129458号明細書段落0014~0017に記載の一般式(4)~(6)で表されるアルキル鎖含有(メタ)アクリレートモノマーを使用することも可能である。
 多官能(メタ)アクリレートモノマーの使用量は、重合性組成物に含まれる重合性化合物の全量100質量部に対して、塗膜強度の観点からは、5質量部以上とすることが好ましく、組成物のゲル化抑制の観点からは、95質量部以下とすることが好ましい。また、同様の観点から、単官能(メタ)アクリレートモノマーの使用量は、重合性組成物に含まれる重合性化合物の全量100質量部に対して、5質量部以上、95質量部以下とすることが好ましい。
 好ましい重合性化合物としては、エポキシ基、オキセタニル基等の開環重合可能な環状エーテル基等の環状基を有する化合物も挙げることができる。そのような化合物としてより好ましくは、エポキシ基を有する化合物(エポキシ化合物)を有する化合物を挙げることができる。エポキシ化合物については、特開2011-159924号公報段落0029~0033を参照できる。
 上記重合性組成物は、重合開始剤として、公知のラジカル重合開始剤やカチオン重合開始剤を含むことができる。重合開始剤については、例えば、特開2013-043382号公報段落0037、特開2011-159924号公報段落0040~0042を参照できる。重合開始剤は、重合性組成物に含まれる重合性化合物の全量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。
 波長変換層は、以上記載した成分、および任意に添加可能な公知の添加剤を含む層であれば、形成方法は特に限定されるものではない。以上説明した成分、および必要に応じて添加される一種以上の公知の添加剤を、同時または順次混合して調製した組成物を、適当な基材上に塗布した後に光照射、加熱等の重合処理を施し重合硬化させることにより、マトリックス中に蛍光体を含む波長変換層を形成することができる。添加剤の使用量は特に限定されるものではなく、適宜設定可能である。また、組成物の粘度等のために、必要に応じて溶媒を添加してもよい。この場合に使用される溶媒の種類および添加量は、特に限定されるものではない。例えば溶媒として、有機溶媒を一種または二種以上混合して用いることができる。
 上記重合性組成物を、適当な基材上に塗布し、必要に応じて乾燥させ溶媒を除去するとともに、その後、光照射等により重合硬化させて、波長変換層を得ることができる。塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーテティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。また、硬化条件は、使用する重合性化合物の種類や重合性組成物の組成に応じて、適宜設定することができる。
 上記重合性組成物の重合処理は、どのような方法により行ってもよいが、一態様として、重合性組成物を2枚の基材間に挟持した状態で行うことができる。かかる重合処理を含む波長変換部材の製造工程の一態様を、図面を参照し以下に説明する。ただし、本発明は、下記態様に限定されるものではない。
 図3は、波長変換部材の製造装置100の一例の概略構成図であり、図4は、図3に示す製造装置の部分拡大図である。図3、4に示す製造装置100を用いる波長変換部材の製造工程は、
 連続搬送される第一の基材(以下、「第一のフィルム」とも記載する。)の表面に、蛍光体を含有する重合性組成物を塗布し塗膜を形成する工程と、
 塗膜の上に、連続搬送される第二の基材(以下、「第二のフィルム」とも記載する。)をラミネートし(重ねあわせ)、第一のフィルムと第二のフィルムとで塗膜を挟持する工程と、
 第一のフィルムと第二のフィルムとで塗膜を挟持した状態で、第一のフィルム、および第二のフィルムの何れかをバックアップローラに巻きかけて、連続搬送しながら光照射し、塗膜を重合硬化させて波長変換層(硬化層)を形成する工程と、
 を少なくとも含む。第一の基材、第二の基材のいずれか一方として酸素や水分に対するバリア性を有するバリアフィルムを用いることにより、片面がバリアフィルムにより保護された波長変換部材を得ることができる。また、第一の基材および第二の基材として、それぞれバリアフィルムを用いることにより、波長変換層の両面がバリアフィルムにより保護された波長変換部材を得ることができる。また、光散乱層を積層したバリアフィルムを用いることにより、波長変換層、バリアフィルムおよび光散乱層を有する波長変換部材を得ることができる。バリアフィルムの一方の面に光散乱層を設け、他方の面に波長変換層を設けることが、バリアフィルムにより波長変換層を保護する観点から好ましい。または、波長変換層を積層した後のバリアフィルムに対して、光散乱層形成用重合性組成物を塗布し重合処理を施すことにより、光散乱層を形成してもよい。
 より詳しくは、まず、図示しない送出機から第一のフィルム10が塗布部20へと連続搬送される。送出機から、例えば、第一のフィルム10が1~50m/分の搬送速度で送り出される。但し、この搬送速度に限定されない。送出される際、例えば、第一のフィルム10には、20~150N/mの張力、好ましくは30~100N/mの張力が加えられる。
 塗布部20では、連続搬送される第一のフィルム10の表面に蛍光体を含有する重合性組成物(以下、「塗布液」とも記載する。)が塗布され、塗膜22(図4参照)が形成される。塗布部20では、例えば、ダイコーター24と、ダイコーター24に対向配置されたバックアップローラ26とが設置されている。第一のフィルム10の塗膜22の形成される表面と反対の表面をバックアップローラ26に巻きかけて、連続搬送される第一のフィルム10の表面にダイコーター24の吐出口から塗布液が塗布され、塗膜22が形成される。ここで塗膜22とは、第一のフィルム10上に塗布された重合処理前の塗布液をいう。
 本実施の形態では、塗布装置としてエクストルージョンコーティング法を適用したダイコーター24を示したが、これに限定されない。例えば、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法またはロールコーティング法等、種々の方法を適用した塗布装置を用いることができる。
 塗布部20を通過し、その上に塗膜22が形成された第一のフィルム10は、ラミネート部30に連続搬送される。ラミネート部30では、塗膜22の上に、連続搬送される第二のフィルム50がラミネートされ、第一のフィルム10と第二のフィルム50とで塗膜22が挟持される。
 ラミネート部30には、ラミネートローラ32と、ラミネートローラ32を囲う加熱チャンバー34とが設置されている。加熱チャンバー34には第一のフィルム10を通過させるための開口部36、および第二のフィルム50を通過させるための開口部38が設けられている。
 ラミネートローラ32に対向する位置には、バックアップローラ62が配置されている。塗膜22の形成された第一のフィルム10は、塗膜22の形成面と反対の表面がバックアップローラ62に巻きかけられ、ラミネート位置Pへと連続搬送される。ラミネート位置Pは第二のフィルム50と塗膜22との接触が開始する位置を意味する。第一のフィルム10はラミネート位置Pに到達する前にバックアップローラ62に巻きかけられることが好ましい。仮に第一のフィルム10にシワが発生した場合でも、バックアップローラ62によりシワがラミネート位置Pに達するまでに矯正され、除去できるからである。したがって、第一のフィルム10がバックアップローラ62に巻きかけられた位置(接触位置)と、ラミネート位置Pまでの距離L1は長い方が好ましく、例えば、30mm以上が好ましく、その上限値は、通常、バックアップローラ62の直径とパスラインとにより決定される。
 本実施の形態では重合処理部60で使用されるバックアップローラ62とラミネートローラ32とにより第二のフィルム50のラミネートが行われる。即ち、重合処理部60で使用されるバックアップローラ62が、ラミネート部30で使用するローラとして兼用される。ただし、上記形態に限定されるものではなく、ラミネート部30に、バックアップローラ62と別に、ラミネート用のローラを設置し、バックアップローラ62を兼用しないようにすることもできる。
 重合処理部60で使用されるバックアップローラ62をラミネート部30で使用することで、ローラの数を減らすことができる。また、バックアップローラ62は、第一のフィルム10に対するヒートローラとしても使用できる。
 図示しない送出機から送出された第二のフィルム50は、ラミネートローラ32に巻きかけられ、ラミネートローラ32とバックアップローラ62との間に連続搬送される。第二のフィルム50は、ラミネート位置Pで、第一のフィルム10に形成された塗膜22の上にラミネートされる。これにより、第一のフィルム10と第二のフィルム50とにより塗膜22が挟持される。ラミネートとは、第二のフィルム50を塗膜22の上に重ねあわせ、積層することをいう。
 ラミネートローラ32とバックアップローラ62との距離L2は、第一のフィルム10と、塗膜22を重合硬化させた波長変換層(硬化層)28と、第二のフィルム50と、の合計厚みの値以上であることが好ましい。また、L2は第一のフィルム10と塗膜22と第二のフィルム50との合計厚みに5mmを加えた長さ以下であることが好ましい。距離L2を合計厚みに5mmを加えた長さ以下にすることより、第二のフィルム50と塗膜22との間に泡が侵入することを防止することができる。ここでラミネートローラ32とバックアップローラ62との距離L2とは、ラミネートローラ32の外周面とバックアップローラ62の外周面との最短距離をいう。
 ラミネートローラ32とバックアップローラ62の回転精度は、ラジアル振れで0.05mm以下、好ましくは0.01mm以下である。ラジアル振れが小さいほど、塗膜22の厚み分布を小さくすることができる。
 また、第一のフィルム10と第二のフィルム50とで塗膜22を挟持した後の熱変形を抑制するため、重合処理部60のバックアップローラ62の温度と第一のフィルム10の温度との差、およびバックアップローラ62の温度と第二のフィルム50の温度との差は30℃以下であることが好ましく、より好ましくは15℃以下、最も好ましくは同じである。
 バックアップローラ62の温度との差を小さくするため、加熱チャンバー34が設けられている場合には、第一のフィルム10、および第二のフィルム50を加熱チャンバー34内で加熱することが好ましい。例えば、加熱チャンバー34には、図示しない熱風発生装置により熱風が供給され、第一のフィルム10、および第二のフィルム50を加熱することができる。
 第一のフィルム10が、温度調整されたバックアップローラ62に巻きかけられることにより、バックアップローラ62によって第一のフィルム10を加熱してもよい。
 一方、第二のフィルム50については、ラミネートローラ32をヒートローラとすることにより、第二のフィルム50をラミネートローラ32で加熱することができる。
 ただし、加熱チャンバー34、およびヒートローラは必須ではなく、必要に応じで設けることができる。
 次に、第一のフィルム10と第二のフィルム50とにより塗膜22が挟持された状態で、重合処理部60に連続搬送される。図面に示す態様では、重合処理部60における重合処理は光照射により行われるが、塗布液に含まれる重合性化合物が加熱により重合するものである場合には、温風の吹き付け等の加熱により、重合処理を行うことができる。
 バックアップローラ62と、バックアップローラ62に対向する位置には、光照射装置64が設けられている。バックアップローラ62と光照射装置64と間を、塗膜22を挟持した第一のフィルム10と第二のフィルム50とが連続搬送される。光照射装置により照射される光は、塗布液に含まれる光重合性化合物の種類に応じて決定すればよく、一例としては、紫外線が挙げられる。紫外線を発生する光源として、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。光照射量は塗膜の重合硬化を進行させ得る範囲に設定すればよく、例えば、一例として100~10000mJ/cmの照射量の紫外線を塗膜22に向けて照射することができる。
 重合処理部60では、第一のフィルム10と第二のフィルム50とにより塗膜22を挟持した状態で、第一のフィルム10をバックアップローラ62に巻きかけて、連続搬送しながら光照射装置64から光照射を行い、塗膜22を硬化させて波長変換層(硬化層)28を形成することができる。
 本実施の形態では、第一のフィルム10側をバックアップローラ62に巻きかけて、連続搬送したが、第二のフィルム50をバックアップローラ62に巻きかけて、連続搬送させることもできる。
 バックアップローラ62に巻きかけるとは、第一のフィルム10および第二のフィルム50の何れかが、あるラップ角でバックアップローラ62の表面に接触している状態をいう。したがって、連続搬送される間、第一のフィルム10および第二のフィルム50はバックアップローラ62の回転と同期して移動する。バックアップローラ62へ巻きかけは、少なくとも紫外線が照射されている間であればよい。
 バックアップローラ62は、円柱状の形状の本体と、本体の両端部に配置された回転軸とを備えている。バックアップローラ62の本体は、例えば、φ200~1000mmの直径を有している。バックアップローラ62の直径φについて制限はない。カール変形と、設備コストと、回転精度とを考慮すると直径φ300~500mmであることが好ましい。バックアップローラ62の本体に温度調節器を取り付けることにより、バックアップローラ62の温度を調整することができる。
 バックアップローラ62の温度は、光照射時の発熱と、塗膜22の硬化効率と、第一のフィルム10と第二のフィルム50のバックアップローラ62上でのシワ変形の発生と、を考慮して、決定することができる。バックアップローラ62は、例えば、10~95℃の温度範囲に設定することが好ましく、15~85℃であることがより好ましい。ここでローラに関する温度とは、ローラの表面温度をいうものとする。
 ラミネート位置Pと光照射装置64との距離L3は、例えば30mm以上とすることができる。
 光照射により塗膜22は硬化層28となり、第一のフィルム10と硬化層28と第二のフィルム50とを含む波長変換部材70が製造される。波長変換部材70は、剥離ローラ80によりバックアップローラ62から剥離される。波長変換部材70は、図示しない巻取機に連続搬送され、次いで巻取機により波長変換部材70はロール状に巻き取られる。
 以上、波長変換部材の製造工程の一態様について説明したが、本発明は上記態様に限定されるものではない。例えば、蛍光体を含む重合性組成物を基材上に塗布し、その上に更なる基材をラミネートすることなく、必要に応じて行われる乾燥処理の後、重合処理を施すことにより波長変換層(硬化層)を作製してもよい。作製された波長変換層には、一層以上の他の層を、公知の方法により積層することもできる。
 波長変換層の厚みは、好ましくは1~500μmの範囲であり、より好ましくは10~250μmの範囲であり、さらに好ましくは30~150μmの範囲である。厚みが1μm以上であると、高い波長変換効果が得られるため、好ましい。また、厚みが500μm以下であると、バックライトユニットに組み込んだ場合に、バックライトユニットを薄くすることができるため、好ましい。
<支持体>
 波長変換部材は、強度向上、成膜の容易性等のため、支持体を有していてもよい。支持体は、波長変換層に隣接する層として含まれていてもよく、後述のバリアフィルムの基材フィルムとして含まれていてもよい。波長変換部材において、支持体は、後述の無機層、および支持体がこの順となるように含まれていてもよく、波長変換層、後述の無機層、後述の有機層、および支持体がこの順となるように含まれていてもよい。有機層と無機層との間、二層の有機層の間、または二層の無機層の間に、支持体を配してもよい。また、支持体は、波長変換部材中に1つまたは2つ以上含まれていてもよく、波長変換部材は、支持体、波長変換層、支持体がこの順で積層された構造を有していてもよい。支持体としては、可視光に対して透明である透明支持体であることが好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。支持体については、特開2007-290369号公報段落0046~0052、特開2005-096108号公報段落0040~0055を参照できる。支持体の厚さは、ガスバリア性、耐衝撃性等の観点から、10μm~500μmの範囲内、中でも15~400μmの範囲内、特に20~300μmの範囲内であることが好ましい。
 支持体は後述のバリアフィルムの基材として用いることもできる。また、支持体は上述の第1のフィルムおよび第2のフィルムのいずれか、または双方に用いることもできる。第1のフィルムおよび第2のフィルムの双方に支持体を用いるとき、用いる支持体は同一であっても異なっていてもよい。
<バリアフィルム>
 波長変換部材は、バリアフィルムを含むことが好ましい。バリアフィルムは酸素を遮断するガスバリア機能を有するフィルムである。バリアフィルムが、水蒸気を遮断する機能を有していることも好ましい。
 バリアフィルムは、波長変換層に直接接する層として波長変換部材に含まれていることが好ましい。また、バリアフィルムは、波長変換部材中に1つまたは2つ以上含まれていてもよい。波長変換部材は、バリアフィルム、波長変換層、バリアフィルムがこの順で積層された構造を有していることが好ましい。
 波長変換部材において、波長変換層はバリアフィルムを基材として形成されていてもよい。また、バリアフィルムは上述の第1の第1のフィルムおよび第2のフィルムのいずれか、または双方として用いることもできる。第1のフィルムおよび第2のフィルムの双方がバリアフィルムであるとき、第1のフィルムおよび第2のフィルムとして用いるバリアフィルムは、同一であっても異なっていてもよい。
 バリアフィルムとしては、公知のいずれのバリアフィルムであってもよく、例えば以下に説明するバリアフィルムであってもよい。
 バリアフィルムは、通常、少なくとも無機層を含んでいればよく、基材フィルムおよび無機層を含むフィルムであってもよい。基材フィルムについては、上記の支持体の記載を参照できる。バリアフィルムは、基材フィルム上に少なくとも上記の無機層1層と少なくとも1層の有機層を含むバリア積層体を含むものであってもよい。このように複数の層を積層することは、より一層バリア性を高めることができるため好ましい。他方、積層する層の数が増えるほど、波長変換部材の光透過率は低下する傾向があるため、良好な光透過率を維持し得る範囲で、積層数を増やすことが望ましい。具体的には、バリアフィルムは、可視光領域における全光線透過率が80%以上であり、かつ酸素透過度が1.00cm/(m・day・atm)以下であることが好ましい。ここで、上記酸素透過度は、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した値である。また、可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。
 バリアフィルムの酸素透過度は、より好ましくは、0.10cm/(m・day・atm)以下、さらに好ましくは、0.01cm/(m・day・atm)以下である。可視光領域における全光線透過率は、より好ましくは90%以上である。酸素透過度は低いほど好ましく、可視光領域における全光線透過率は高いほど好ましい。
(無機層)
 「無機層」とは、無機材料を主成分とする層であり、好ましくは無機材料のみから形成される層である。これに対し、有機層とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、更には80質量%以上、特に90質量%以上を占める層を言うものとする。
 無機層を構成する無機材料としては、特に限定されるものではなく、例えば、金属、または無機酸化物、窒化物、酸化窒化物等の各種無機化合物を用いることができる。無機材料を構成する元素としては、ケイ素、アルミニウム、マグネシウム、チタン、スズ、インジウムおよびセリウムが好ましく、これらを一種または二種以上含んでいてもよい。無機化合物の具体例としては、ケイ素酸化物、ケイ素炭化物、ケイ素酸化窒化物、マグネシウム酸化物、チタン酸化物、スズ酸化物、酸化インジウム合金、アルミニウム酸化物、ケイ素窒化物、アルミニウム窒化物、チタン窒化物を挙げることができる。また、無機層として、金属膜、例えば、アルミニウム膜、銀膜、錫膜、クロム膜、ニッケル膜、チタン膜を設けてもよい。
 上記の材料の中でも、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物およびアルミニウム酸化物が特に好ましい。これらの材料からなる無機層は、有機層との密着性が良好であることから、バリア性をより一層高くすることができるからである。
 無機層の形成方法としては、特に限定されず、例えば成膜材料を蒸発ないし飛散させ被蒸着面に堆積させることができる各種成膜方法を用いることができる。
 無機層の形成方法の例としては、無機酸化物、無機窒化物、無機酸化窒化物、金属等の無機材料を、加熱して蒸着させる真空蒸着法;無機材料を原料として用い、酸素ガスを導入することにより酸化させて蒸着させる酸化反応蒸着法;無機材料をターゲット原料として用い、アルゴンガス、酸素ガスを導入して、スパッタリングすることにより蒸着させるスパッタリング法;無機材料にプラズマガンで発生させたプラズマビームにより加熱させて蒸着させるイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法)、酸化ケイ素の蒸着膜を成膜させる場合は、有機ケイ素化合物を原料とするプラズマ化学気相成長法(Chemical Vapor Deposition法)等が挙げられる。蒸着は、支持体、基材フィルム、波長変換層、有機層などを基板としてその表面に行えばよい。
 無機層の厚さは、1nm~500nmであればよく、5nm~300nmであることが好ましく、特に10nm~150nmのであることが好ましい。隣接無機層の膜厚が、上述した範囲内であることにより、良好なバリア性を実現しつつ、無機層における反射を抑制することができ、光透過率がより高い波長変換部材を提供することができるからである。
 波長変換部材では、波長変換層の少なくとも一方の主表面が無機層と直接接していることが好ましい。波長変換層の両主表面に無機層が直接接していることも好ましい。ここで「主表面」とは、波長変換部材使用時に視認側またはバックライト側に配置される波長変換層の表面(おもて面、裏面)をいう。他の層や部材についての主表面も、同様である。また、無機層と有機層との間、二層の無機層の間、または二層の有機層の間を、公知の接着層により貼り合わせてもよい。光透過率向上の観点からは、接着層は少ないほど好ましく、接着層が存在しないことがより好ましい。一態様では、無機層と有機層とが直接接していることが好ましい。
(有機層)
 有機層については、特開2007-290369号公報段落0020~0042、特開2005-096108号公報段落0074~0105を参照できる。なお有機層は、カルドポリマーを含むことが好ましい。これにより、有機層と隣接する層との密着性、特に、無機層とも密着性が良好になり、より一層優れたガスバリア性を実現することができるからである。カルドポリマーの詳細については、上述の特開2005-096108号公報段落0085~0095を参照できる。有機層の膜厚は、0.05μm~10μmの範囲内であることが好ましく、中でも0.5~10μmの範囲内であることが好ましい。有機層がウェットコーティング法により形成される場合には、有機層の膜厚は、0.5~10μmの範囲内、中でも1μm~5μmの範囲内であることが好ましい。また、ドライコーティング法により形成される場合には、0.05μm~5μmの範囲内、中でも0.05μm~1μmの範囲内であることが好ましい。ウェットコーティング法またはドライコーティング法により形成される有機層の膜厚が上述した範囲内であることにより、無機層との密着性をより良好なものとすることができるからである。
 無機層、有機層のその他詳細については、上述の特開2007-290369号公報、特開2005-096108号公報、更にUS2012/0113672A1の記載を参照できる。
 バリアフフィルムに含まれ得る上記の各層および基材フィルムの屈折率に関しては、例えば無機層の屈折率は1.60~1.82、有機層の屈折率は1.42~1.62、基材フィルムの屈折率は1.45~1.65の範囲であるが、特に限定されるものではない。また、これらの屈折率は、波長変換層の屈折率n1、光散乱層の屈折率n2との大小関係は問わない。n1、n2と同じであってもよく、異なっていてもよく、大きくてもよく小さくてもよい。隣接する層との界面における反射を抑制する観点からは、隣接する層との屈折率差が小さいことが好ましく、例えば隣接する層との屈折率差が5.00未満であることが好ましく、3.00未満であることがより好ましい。この点は、バリアフィルム以外の他の層が含まれる場合にも同様である。
[バックライトユニット]
 波長変換部材はバックライトユニットの構成部材として使用することができる。バックライトユニットは、波長変換部材と光源とを少なくとも含む。
(バックライトユニットの発光波長)
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いることが好ましい。例えば、430~480nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、520~560nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600~680nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光とを発光することが好ましい。
 より一層の輝度および色再現性の向上の観点から、バックライトユニットが発光する青色光の波長帯域は、440~475nmであることがより好ましい。
 同様の観点から、バックライトユニットが発光する緑色光の波長帯域は、520~545nmであることがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、610~640nmであることがより好ましい。
 また同様の観点から、バックライトユニットが発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが一層好ましい。これらの中でも、青色光の発光強度の半値幅が25nm以下であることが、特に好ましい。
 バックライトユニットは、少なくとも、上記波長変換部材とともに、光源を含む。一態様では、光源として、430nm~480nmの波長帯域に発光中心波長を有する青色光を発光するもの(青色光源)、例えば、青色光を発光する青色発光ダイオードを用いることができる。青色光を発光する光源を用いる場合、波長変換層には、少なくとも、励起光により励起され赤色光を発光する蛍光体と、緑色光を発光する蛍光体が含まれることが好ましい。これにより、光源から発光され波長変換部材を透過した青色光と、波長変換部材から発光される赤色光および緑色光により、白色光を具現化することができる。
 または他の態様では、光源として、300nm~430nmの波長帯域に発光中心波長を有する紫外光を発光するもの(紫外光源)、例えば、紫外線発光ダイオードを用いることができる。この場合、波長変換層には、赤色光を発光する蛍光体および緑色光を発光する蛍光体とともに、励起光により励起され青色光を発光する蛍光体が含まれることが好ましい。これにより、波長変換部材から発光される赤色光、緑色光および青色光により、白色光を具現化することができる。
 また他の態様では、発光ダイオードに替えてレーザー光源を使用することもできる。
(バックライトユニットの構成)
 バックライトユニットは、例えば、導光板や反射板などを構成部材とするエッジライト方式のバックライトユニットであることができる。図1には、エッジライト方式のバックライトユニットの例を示した。導光板としては、公知のものを何ら制限なく使用することができる。ただし、バックライトユニットは、直下型方式であっても構わない。
 また、バックライトユニットは、光源の後部に、反射性部材を備えることもできる。このような反射性部材としては特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
 バックライトユニットは、その他、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器を備えていることも好ましい。その他の部材についても、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。
[液晶表示装置]
 上述のバックライトユニットは液晶表示装置に応用することができる。液晶表示装置は上述のバックライトユニットと液晶セルとを少なくとも含む構成とすればよい。
(液晶表示装置の構成)
 液晶セルの駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、またはTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図3に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 液晶表示装置の一実施形態では、対向する少なくとも一方に電極を設けた基板間に液晶層を挟持した液晶セルを有し、この液晶セルは2枚の偏光板の間に配置して構成される。液晶表示装置は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う。さらに必要に応じて偏光板保護フィルムや光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(またはそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 図5に、本発明の一態様にかかる液晶表示装置の一例を示す。図5に示す液晶表示装置51は、液晶セル21のバックライト側の面にバックライト側偏光板14を有する。バックライト側偏光板14は、バックライト側偏光子12のバックライト側の表面に、偏光板保護フィルム11を含んでいても、含んでいなくてもよいが、含んでいることが好ましい。
 バックライト側偏光板14は、偏光子12が、2枚の偏光板保護フィルム11および13で挟まれた構成であることが好ましい。
 本明細書中、偏光子に対して液晶セルに近い側の偏光板保護フィルムをインナー側偏光板保護フィルムと言い、偏光子に対して液晶セルから遠い側の偏光板保護フィルムをアウター側偏光板保護フィルムと言う。図5に示す例では、偏光板保護フィルム13がインナー側偏光板保護フィルムであり、偏光板保護フィルム11がアウター側偏光板保護フィルムである。
 バックライト側偏光板は、液晶セル側のインナー側偏光板保護フィルムとして、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。
 液晶表示装置51は、液晶セル21のバックライト側の面とは反対側の面に、表示側偏光板44を有する。表示側偏光板44は、偏光子42が、2枚の偏光板保護フィルム41および43で挟まれた構成である。偏光板保護フィルム43がインナー側偏光板保護フィルムであり、偏光板保護フィルム41がアウター側偏光板保護フィルムである。
 液晶表示装置51が有するバックライトユニット1については、先に記載した通りである。
 液晶表示装置を構成する液晶セル、偏光板、偏光板保護フィルム等については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 以下に実施例に基づき本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<波長変換部材の作製>
(バリアフィルム11の作製)
 支持体としてポリエチレンテレフタレートフィルム(PETフィルム、東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ50μm)を用いて、支持体の片面側に以下の手順で有機層および無機層を順次形成した。
 トリメチロールプロパントリアクリレート(ダイセルサイテック社製TMPTA)および光重合開始剤(ランベルティ社製、ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールにて上記PETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)し、紫外線硬化にて硬化させ、巻き取った。支持体上に形成された第一有機層の厚さは、1μmであった。
 次に、ロールトウロールのCVD(Chemical Vapor Deposition)装置を用いて、上記有機層の表面に無機層(窒化ケイ素層)を形成した。原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。
 このようにして支持体上に形成された第一有機層の表面に無機層が積層されたバリアフィルム11を作製した。
(光散乱層付バリアフィルム(積層フィルム13)の作製)
 バリアフィルム11の無機層表面に保護フィルム(サンエー科研製PAC2-30-T)を貼り合せて保護した後、裏面のPETフィルム表面に、以下の方法で光散乱層を形成した。
-光散乱層形成用重合性組成物の調製-
 光散乱粒子として、シリコーン樹脂粒子(モメンティブ社製トスパール120、粒子サイズ2.0μm)150gおよびポリメチルメタクリレート(PMMA)粒子 (積水化学社製テクポリマー、粒子サイズ8μm)40gをメチルイソブチルケトン(MIBK)550gでまず1時間ほど攪拌し、分散させて分散液を得た。
 得られた分散液に、アクリレート系化合物(大阪有機合成社製Viscoat700HV)50g、アクリレート系化合物(大成ファインケミカル社製8BR500(ウレタン(メタ)アクリレート))40gを加え、更に攪拌した。光重合開始剤(BASF社製イルガキュア(登録商標)819)1.5gおよびフッ素系界面活性剤(3M社製FC4430)0.5gを更に添加して塗布液(光散乱層形成用重合性組成物)を作製した。
-光散乱層形成用重合性組成物の塗布および硬化-
 上記のバリアフィルム11のPETフィルム表面が塗布面になるように、送り出しをセットし、ダイコーターまで搬送し、塗布を行った。湿潤(Wet)塗布量を送液ポンプで調整し、塗布量25cm/mで塗布を行った(乾燥膜で12μm程度になるように厚みを調整した)。60℃の乾燥ゾーンを3分間で通過させた後に30℃に調整したバックアップロールに巻き付け600mJ/cmの紫外線で硬化した後に巻き取った。こうしてバリアフィルム11と光散乱層との積層フィルム13を得た。
 得られた積層フィルム13のヘイズを、日本電色工業株式会社製ヘイズメーターNDH2000を用いて、JIS K 7136に準拠して測定した結果、90%であった。
(実施例1の波長変換部材の作製)
 下記の量子ドット含有重合性組成物Aを調製し、孔径0.2μmのポリプロピレン製フィルタでろ過した後、30分間減圧乾燥して塗布液として用いた。以下のトルエン分散液中の量子ドット濃度は、1質量%であった。
─────────────────────────────────
量子ドット含有重合性組成物A
─────────────────────────────────
量子ドット1のトルエン分散液(発光極大:535nm) 10.0質量部
量子ドット2のトルエン分散液(発光極大:620nm)  1.0質量部
ラウリルメタクリレート                 80.8質量部
トリメチロールプロパントリアクリレート         18.2質量部
光重合開始剤                      1.0質量部
(イルガキュア819(BASF社製))
─────────────────────────────────
 実施例1に使用する量子ドット1のトルエン分散液としては、発光極大波長が535nmの量子ドットの分散液(NN-ラボズ社製CZ520-100)を用いた。また、量子ドット2のトルエン分散液としては、発光極大波長が630nmの量子ドットの分散液(NN-ラボズ社製CZ620-100)を用いた。これら分散液に含まれる量子ドットはいずれもコアとしてCdSe、シェルとしてZnS、および配位子としてオクタデシルアミンを含む量子ドットであり、トルエンに3質量%の濃度で分散されていた。
 上述した手順で作製した積層フィルム13を第一のフィルム、バリアフィルム11を第二のフィルムとして使用し、図3および図4を参照し説明した製造工程により、波長変換部材を得た。具体的には、第一のフィルムとして積層フィルム13を用意し、1m/分、60N/mの張力で連続搬送しながら、無機層面上に上記で調製した量子ドット含有重合性組成物Aをダイコーターにて塗布し、50μmの厚さの塗膜を形成した。次いで、塗膜の形成された第一のフィルム(積層フィルム13)をバックアップローラに巻きかけ、塗膜の上に第二のフィルム(バリアフィルム11)を無機層面が塗膜に接する向きでラミネートし、第一のフィルムおよび第二のフィルムで塗膜を挟持した状態で連続搬送しながら、100℃の加熱ゾーンを3分間通過させた。その後、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、紫外線を照射して硬化させ、量子ドットを含有する波長変換層を形成した。紫外線の照射量は2000mJ/cmであった。また、L1は50mm、L2は1mm、L3は50mmであった。
 上記紫外線の照射により塗膜を硬化させて硬化層(波長変換層)を形成し、波長変換部材製造した。波長変換部材の硬化層の厚みは約50μmであった。こうして、波長変換層の両表面上にそれぞれ積層フィルム13、バリアフィルム11を有し、かつ波長変換層の両主表面が両フィルムの無機層と直接接しており、かつ一方の表面に光散乱層が形成された実施例1の波長変換部材を得た。
(実施例2の波長変換部材の作製)
 光散乱層形成用重合性組成物に、屈折率調整粒子を含む分散液としてジルコニア分散液(日本触媒社製AX-ZP)を50g添加した点および光散乱層形成用重合性組成物を乾燥膜で6μm程度になるように厚みを調整し塗布した点以外、実施例1と同様に波長変換部材を作製した。
 実施例2の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、95%であった。
(実施例3の波長変換部材の作製)
 光散乱層形成用重合性組成物に添加する重合性化合物として、アクリレート系化合物(大阪有機合成社製Viscoat700HV)50g、アクリレート系化合物(大成ファインケミカル社製8BR500)40gに代えてフルオレン骨格含有アクリレート系化合物(大阪ガス社製オグゾールEA200)70gを用いた点および光散乱層形成用重合性組成物を乾燥膜で8μm程度になるように厚みを調整し塗布した点以外、実施例1と同様に波長変換部材を作製した。
 実施例3の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、95%であった。
(実施例4の波長変換部材の作製)
 シリコーン樹脂粒子(モメンティブ社製トスパール120、粒子サイズ2.0μm)150gに代えてポリテトラフルオロエチレン(PTFE)粒子(ポリサイエンス社製Microdispers-3000、粒子サイズ3.0μm)150gを用いた点および光散乱層形成用重合性組成物を乾燥膜で8μm程度になるように厚みを調整し塗布した点以外、実施例1と同様に波長変換部材を作製した。
 実施例4の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、95%であった。
(比較例1の波長変換部材の作製)
 光散乱層形成用重合性組成物に、屈折率調整粒子としてTiO(テイカ社製HTD760)を20g添加した点および光散乱層形成用重合性組成物を乾燥膜で6μm程度になるように厚みを調整し塗布した点以外、実施例1と同様に波長変換部材を作製した。
 比較例1の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、98%であった。
(比較例2の波長変換部材の作製)
 シリコーン樹脂粒子(モメンティブ社製トスパール120、粒子サイズ2.0μm)150gに代えてスチレン樹脂粒子(総研化学社製SX-130、粒子サイズ1.3μm)150gを用いた点、光散乱層形成用重合性組成物に添加する重合性化合物として、アクリレート系化合物(大阪有機合成社製Viscoat700HV)50g、アクリレート系化合物(大成ファインケミカル社製8BR500)40gに代えて、DPHA(ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製A-DPH)90gを用いた点、および光散乱層形成用重合性組成物を乾燥膜で8μm程度になるように厚みを調整し塗布した点以外、実施例1と同様に波長変換部材を作製した。
 比較例2の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、95%であった。
<評価方法>
(平均屈折率n1、n2の測定)
 波長変換層の屈折率測定用サンプルを、以下の方法により作製した。
 第一のフィルムおよび第二のフィルムをPETフィルム(東洋紡社製:A4300)に変えた以外は上記と同様にして波長変換部材を作製した。得られた波長変換部材の硬化層の厚みは150μmであった。得られた波長変換部材から両面のPETフィルムを剥離することで、波長変換層の単膜を得て、これを屈折率測定用波長変換層として用いて平均屈折率n1を測定した。
 光散乱層のマトリックスの屈折率測定用サンプルは、以下の方法により作製した。
 光散乱粒子を加えないこと以外は上記と同様にして、重合性組成物を作製した。作製した重合性組成物を、PETフィルム(東洋紡社製:A4100)表面に、各実施例、比較例における光散乱層の形成と同様に塗布し同様に硬化させた後、PETフィルムを剥離することで、厚み12μmの単膜の硬化層を得て、これを屈折率測定用光散乱層マトリックスとして平均屈折率n2を測定した。
 作製した屈折率測定用波長変換層および屈折率測定用光散乱層マトリックスについて、アタゴ社製多波長アッベ屈折計DR-M2を用いて、面内の遅相軸方向および進相軸方向の屈折率nxおよびnyを求めた。更に、これらの値と、前述の方法で測定した面内方向のレターデーションReおよび層厚から、先に記載したように屈折率nzを算出し、nx、nyおよびnzの平均値として、平均屈折率n1、n2を求めた。
 なお、上記の層厚は、フィルム断面を切削し、走査型電子顕微鏡(SEM;日立ハイテク社製S-3400N)を用いて測定した。
(光散乱層の青色光吸光率測定)
 各実施例、比較例で作製した積層フィルム(光散乱層付バリアフィルム)13を2cm角に裁断したのち、浜松ホトニクス社製絶対PL量子収率測定装置(C9920-02)の積分球内に配置し、後述の輝度測定に用いた市販のタブレット端末(Amazon社製、Kindle Fire HDX 7”)に備えられている青色光源の発光中心波長である波長450nmに発光中心波長を有する青色光を入射させ、波長450nmにおける検出光強度Iを測定した。同様にして、フィルムを積分球内に配置しないブランクについても波長450nmにおける透過光強度Iを測定し、積層フィルム13の青色光吸光率A1を次式で算出した。
 (式) A1=(I-I)/I
 同様に、光散乱層を形成していないバリアフィルム11の青色光吸収率A2を測定し、次式で積層フィルム13の青色光吸収率A1との差分をとることで、光散乱層単層の青色光吸収率Aを算出した。
 (式) A=A2-A1
(輝度の測定)
 バックライトユニットに青色光源を備える市販のタブレット端末(Amazon社製、Kindle Fire HDX 7”)を分解してバックライトユニットを取り出し、導光板上に矩形に切り出した各実施例、比較例の波長変換部材を置き、その上にKindle Fire HDX 7”から取り出した2枚のプリズムシートを、表面凹凸パターンの向きが直交するように重ね置いた。バックライトユニットを点灯し、バックライトユニットの表面から垂直方向740mmの距離に設置した輝度計(TOPCON社製SR3)で輝度を測定した。測定される輝度が15300cd/m以上であれば、このバックライトユニットを組み込んだ液晶表示装置が高輝度の画像を表示可能と判定することができる。
 以上の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、実施例1~4において、輝度の向上が達成されたことが確認できる。
(実施例5の波長変換部材の作製)
 光散乱層形成用重合性組成物に、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン (住友化学社製スミライザーGA-80)を0.45g添加した点以外、実施例1と同様に波長変換部材を作製した。
 実施例5の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、91%であった。
(実施例6の波長変換部材の作製)
 光散乱層形成用重合性組成物に、 テトラキス(3-(3,5-ジーターシャリーブチルー4-ヒドロキシフェニル)プロピオネート)メタン (BASF社製IRGANOX 1010)を0.45g添加した点以外、実施例1と同様に波長変換部材を作製した。
 実施例6の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、86%であった。
(実施例7の波長変換部材の作製)
 光散乱層形成用重合性組成物に添加する重合性化合物として、アクリレート系化合物(大阪有機合成社製Viscoat700HV)50g、アクリレート系化合物(大成ファインケミカル社製8BR500)40gに代えて、トリメチロールプロパントリ(メタ)アクリレート(共栄社化学社製ライトアクリレートTMP-A)50g、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート(新中村化学工業製ATM-35E)30g、1,9-ノナンジオールジ(メタ)アクリレート(共栄社化学社製ライトアクリレート1,9ND-A)10gを用いた点以外、実施例1と同様に波長変換部材を作製した。
 実施例7の波長変換部材に含まれる積層フィルム(バリアフィルム11と光散乱層との積層フィルム)のヘイズを、実施例1と同様に測定した結果、84%であった。
 実施例5~7の波長変換部材について、実施例1と同様に各種評価を行った。青色光吸光率および輝度については、実施例1と同様の方法での測定(以下、「耐久試験前測定」と記載する。)、および、下記の耐久試験後測定を行った。実施例1の波長変換部材についても、耐久試験後測定を行った。
(耐久試験後測定)
 波長変換部材を85℃環境に150時間静置し、その後の青色光吸光率および輝度を、耐久試験前測定と同様の方法で測定した。
 以上の結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示す結果から、実施例5~7は実施例1と同等の輝度の向上を達成し、更に、実施例1と比べて耐久性の向上を実現したことが確認された。
 本発明は、液晶表示装置の製造分野において有用である。

Claims (19)

  1. 発光中心波長λnmの光を出射する光源と、該光源から出射される光の光路上に位置する波長変換部材と、を含むバックライトユニットであって、
    前記波長変換部材は、励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
    前記波長変換層の平均屈折率n1は、前記光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、
    前記光散乱層の波長λnmにおける吸光率は、8.0%以下であるバックライトユニット。
  2. 前記光散乱層は、前記波長変換層より出射側に配置されている請求項1に記載のバックライトユニット。
  3. 前記蛍光体は、量子ドットである請求項1または2に記載のバックライトユニット。
  4. 前記光散乱層のマトリックスの平均屈折率n2は、1.45~2.00の範囲であり、ただしn1<n2を満たす請求項1~3のいずれか1項に記載のバックライトユニット。
  5. 前記波長変換層の平均屈折率n1は、1.43~1.60の範囲であり、ただしn1<n2を満たす請求項1~4のいずれか1項に記載のバックライトユニット。
  6. 前記波長変換層と光散乱層とが、バリアフィルムを介して積層されている請求項1~5のいずれか1項に記載のバックライトユニット。
  7. 前記バリアフィルムは、少なくとも無機層を含む請求項6に記載のバックライトユニット。
  8. 前記無機層は、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物およびアルミニウム酸化物からなる群から選ばれる少なくとも一種を含む無機層である請求項7に記載のバックライトユニット。
  9. 前記バリアフィルムには、波長変換層側から光散乱層側に向かって、無機層、有機層および基材フィルムがこの順に隣接配置されている請求項7または8に記載のバックライトユニット。
  10. 波長λnmは、青色光の波長帯域にある請求項1~9のいずれか1項に記載のバックライトユニット。
  11. 請求項1~10のいずれか1項に記載のバックライトユニットと、液晶セルと、を含む液晶表示装置。
  12. 励起光により励起され蛍光を発光する蛍光体を含む波長変換層と、粒子サイズ0.1μm以上の粒子をマトリックス中に含む光散乱層と、を含み、
    前記波長変換層の平均屈折率n1は、前記光散乱層のマトリックスの平均屈折率n2との間で、n1<n2の関係を満たし、かつ、
    前記光散乱層の波長450nmにおける吸光率は、8.0%以下である波長変換部材。
  13. 前記蛍光体は、量子ドットである請求項12に記載の波長変換部材。
  14. 前記光散乱層のマトリックスの平均屈折率n2は、1.45~2.00の範囲であり、ただしn1<n2を満たす請求項12または13に記載の波長変換部材。
  15. 前記波長変換層の平均屈折率n1は、1.43~1.60の範囲であり、ただしn1<n2を満たす請求項12~14のいずれか1項に記載の波長変換部材。
  16. 前記波長変換層と光散乱層とが、バリアフィルムを介して積層されている請求項12~15のいずれか1項に記載の波長変換部材。
  17. 前記バリアフィルムは、少なくとも無機層を含む請求項16に記載の波長変換部材。
  18. 前記無機層は、ケイ素酸化物、ケイ素窒化物、ケイ素炭化物およびアルミニウム酸化物からなる群から選ばれる少なくとも一種を含む無機層である請求項17に記載の波長変換部材。
  19. 前記バリアフィルムには、波長変換層側から光散乱層側に向かって、無機層、有機層および基材フィルムがこの順に隣接配置されている請求項17または18に記載の波長変換部材。
PCT/JP2015/077755 2014-09-30 2015-09-30 バックライトユニット、液晶表示装置および波長変換部材 WO2016052626A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580053006.8A CN106716236B (zh) 2014-09-30 2015-09-30 背光单元、液晶显示装置及波长转换部件
CN202211006169.9A CN115291434A (zh) 2014-09-30 2015-09-30 背光单元、液晶显示装置及波长转换部件
CN202211005787.1A CN115268141A (zh) 2014-09-30 2015-09-30 背光单元、液晶显示装置及波长转换部件
US15/471,577 US10274782B2 (en) 2014-09-30 2017-03-28 Backlight unit, liquid crystal display device, and wavelength conversion member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014202426 2014-09-30
JP2014-202426 2014-09-30
JP2015192309A JP6295237B2 (ja) 2014-09-30 2015-09-29 バックライトユニット、液晶表示装置および波長変換部材
JP2015-192309 2015-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/471,577 Continuation US10274782B2 (en) 2014-09-30 2017-03-28 Backlight unit, liquid crystal display device, and wavelength conversion member

Publications (1)

Publication Number Publication Date
WO2016052626A1 true WO2016052626A1 (ja) 2016-04-07

Family

ID=55630651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077755 WO2016052626A1 (ja) 2014-09-30 2015-09-30 バックライトユニット、液晶表示装置および波長変換部材

Country Status (2)

Country Link
CN (2) CN115291434A (ja)
WO (1) WO2016052626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159366A1 (ja) * 2015-04-02 2016-10-06 凸版印刷株式会社 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544018A (ja) * 2010-11-10 2013-12-09 ナノシス・インク. 量子ドットフィルム、照明装置、および照明方法
WO2015025950A1 (ja) * 2013-08-23 2015-02-26 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207136A (ja) * 2002-12-26 2004-07-22 Nitto Denko Corp 面光源及びこれを用いた表示装置
CN100459186C (zh) * 2003-01-27 2009-02-04 3M创新有限公司 具有反射式偏振器的基于荧光粉的光源
JP2005056767A (ja) * 2003-08-06 2005-03-03 Idemitsu Kosan Co Ltd 発光素子及び表示装置
US7220036B2 (en) * 2005-05-20 2007-05-22 3M Innovative Properties Company Thin direct-lit backlight for LCD display
KR100885608B1 (ko) * 2006-05-30 2009-02-24 주식회사 엘지화학 다층구조 광확산판 및 그를 포함하는 액정 디스플레이 장치
JP2009063998A (ja) * 2007-08-09 2009-03-26 Sumitomo Chemical Co Ltd 光拡散板
JP4613947B2 (ja) * 2007-12-07 2011-01-19 ソニー株式会社 照明装置、色変換素子及び表示装置
CN101459163B (zh) * 2007-12-12 2011-07-06 富士迈半导体精密工业(上海)有限公司 发光二极管
US9634203B2 (en) * 2008-05-30 2017-04-25 Sharp Kabushiki Kaisha Light emitting device, surface light source, liquid crystal display device, and method for manufacturing light emitting device
KR20120085755A (ko) * 2009-09-04 2012-08-01 스미또모 가가꾸 가부시키가이샤 광확산 필름과 그 제조 방법, 광확산성 편광판, 및 액정 표시 장치
CN102576098A (zh) * 2009-09-04 2012-07-11 住友化学株式会社 光扩散膜及其制造方法、光扩散性偏振板以及液晶显示装置
JP5468985B2 (ja) * 2010-05-17 2014-04-09 株式会社小糸製作所 照明装置
KR101210163B1 (ko) * 2011-04-05 2012-12-07 엘지이노텍 주식회사 광학 시트 및 이를 포함하는 표시장치
JP2014224836A (ja) * 2011-09-16 2014-12-04 シャープ株式会社 発光デバイス、表示装置、照明装置および発電装置
KR101251815B1 (ko) * 2011-11-07 2013-04-09 엘지이노텍 주식회사 광학 시트 및 이를 포함하는 표시장치
CN104995551A (zh) * 2013-02-08 2015-10-21 3M创新有限公司 高色域量子点显示器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544018A (ja) * 2010-11-10 2013-12-09 ナノシス・インク. 量子ドットフィルム、照明装置、および照明方法
WO2015025950A1 (ja) * 2013-08-23 2015-02-26 富士フイルム株式会社 光変換部材、ならびにこれを含むバックライトユニットおよび液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159366A1 (ja) * 2015-04-02 2016-10-06 凸版印刷株式会社 量子ドット保護フィルム並びにこれを用いて得られる波長変換シート及びバックライトユニット
US10557970B2 (en) 2015-04-02 2020-02-11 Toppan Printing Co., Ltd. Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained by using the same

Also Published As

Publication number Publication date
CN115291434A (zh) 2022-11-04
CN115268141A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6295237B2 (ja) バックライトユニット、液晶表示装置および波長変換部材
JP6653622B2 (ja) 波長変換部材、バックライトユニット、液晶表示装置、および量子ドット含有重合性組成物
JP6506392B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2017068781A1 (ja) 重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置
JP6230974B2 (ja) 光変換部材、バックライトユニット、および液晶表示装置、ならびに光変換部材の製造方法
JP6334747B2 (ja) 光変換部材、バックライトユニット、および液晶表示装置、ならびに光変換部材の製造方法
JP6326003B2 (ja) 波長変換部材、バックライトユニット、および液晶表示装置、ならびに量子ドット含有重合性組成物
JP6419960B2 (ja) 組成物とポリマー成形用組成物、及びそれを用いて得られた波長変換体、波長変換部材、バックライトユニット、液晶表示装置
JP6333749B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP6363526B2 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
JP6308975B2 (ja) バックライトユニットおよび液晶表示装置
JP6117758B2 (ja) 積層フィルム、バックライトユニット、液晶表示装置、および、積層フィルムの製造方法
JP6326006B2 (ja) 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法
WO2016051745A1 (ja) バックライトおよび液晶表示装置
WO2016075950A1 (ja) 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
WO2016052626A1 (ja) バックライトユニット、液晶表示装置および波長変換部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847810

Country of ref document: EP

Kind code of ref document: A1