WO2015190237A1 - 熱可塑性樹脂組成物及びその成形品 - Google Patents

熱可塑性樹脂組成物及びその成形品 Download PDF

Info

Publication number
WO2015190237A1
WO2015190237A1 PCT/JP2015/064272 JP2015064272W WO2015190237A1 WO 2015190237 A1 WO2015190237 A1 WO 2015190237A1 JP 2015064272 W JP2015064272 W JP 2015064272W WO 2015190237 A1 WO2015190237 A1 WO 2015190237A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
monomer
copolymer
thermoplastic resin
Prior art date
Application number
PCT/JP2015/064272
Other languages
English (en)
French (fr)
Inventor
広憲 松山
Original Assignee
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54833342&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015190237(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2015552709A priority Critical patent/JP5950059B2/ja
Priority to BR112016026520-3A priority patent/BR112016026520B1/pt
Priority to KR1020167033547A priority patent/KR102256423B1/ko
Priority to EP15806765.2A priority patent/EP3156452B1/en
Priority to RU2017100916A priority patent/RU2017100916A/ru
Application filed by ユーエムジー・エービーエス株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to AU2015272757A priority patent/AU2015272757B2/en
Priority to SG11201609505XA priority patent/SG11201609505XA/en
Priority to US15/311,049 priority patent/US10208202B2/en
Priority to CN201580031582.2A priority patent/CN106459574B/zh
Publication of WO2015190237A1 publication Critical patent/WO2015190237A1/ja
Priority to IL248841A priority patent/IL248841B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/02Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention includes a polycarbonate resin and a graft copolymer using a rubbery polymer having a specific average particle size and particle size distribution as a rubber component, and balance of physical properties such as impact resistance, fluidity, and heat resistance.
  • the present invention relates to an excellent thermoplastic resin composition.
  • the present invention relates to a molded article formed by molding this thermoplastic resin composition.
  • a composition comprising a polycarbonate resin and an ABS resin (hereinafter referred to as “PC / ABS resin composition”) is excellent in impact resistance, heat resistance, and molding processability. It is used for various applications including office equipment parts. Since ABS resin uses butadiene rubber, it is inferior in weather resistance. Therefore, AES resin and acrylic rubber using ethylene-propylene-nonconjugated diene rubber that does not contain this diene in the polymer main chain. There has also been proposed a composition comprising an ASA-based resin and a polycarbonate resin (hereinafter referred to as “PC / ASA-based resin composition”).
  • Patent Document 1 proposes a thermoplastic resin composition composed of an ASA resin using a composite rubber composed of a conjugated diene rubbery polymer having a specific structure and a crosslinked acrylic ester polymer, and a polycarbonate resin. Yes.
  • Patent Document 2 is composed of a polymer unit composed of (meth) acrylic acid ester having a specific structure represented by phenyl methacrylate as a fluidity improver and a polymer unit composed of aromatic vinyl.
  • An aromatic polycarbonate resin composition containing a copolymer and a rubber-modified resin that is an impact improver has been proposed.
  • thermoplastic resin compositions are not yet satisfactory in terms of the balance of physical properties such as impact resistance, fluidity, and heat resistance, and improvements are desired.
  • An object of the present invention is to provide a thermoplastic resin composition having an excellent balance of physical properties such as impact resistance, fluidity, and heat resistance, and a molded product obtained from the thermoplastic resin composition.
  • the present inventor has obtained a graft polymer obtained by graft polymerization of a monomer such as vinyl cyanide monomer or aromatic vinyl monomer on a rubbery polymer having a specific average particle size and particle size distribution.
  • a monomer such as vinyl cyanide monomer or aromatic vinyl monomer
  • the inventors have found that the above object can be achieved by using a copolymer, and have reached the present invention.
  • the gist of the present invention is as follows.
  • a thermoplastic resin comprising 10 to 95 parts by weight of a polycarbonate resin (A) and 5 to 90 parts by weight of the following graft copolymer (B) in a total amount of 100 parts by weight.
  • Composition. Graft copolymer (B): The weight average particle size is 150 to 450 nm, the particle size cumulative weight fraction is 10% by weight, 50% to 250 nm, and 90% by weight is 450 to 450 nm. 20 to 90 parts by weight of one or more monomers including at least an aromatic vinyl monomer and / or a vinyl cyanide monomer are added to 10 to 80 parts by weight of a rubbery polymer having a wavelength of 650 nm. Graft copolymer obtained by graft polymerization (100 parts by weight of rubber polymer and monomer in total)
  • Graft copolymer (B) The weight average particle size is 150 to 450 nm, the particle size cumulative weight fraction is 10% by weight, 50% to 250 nm, and 90% by weight is 450 to 450 nm. 20 to 90 parts by weight of one or more monomers including at least an aromatic vinyl monomer and / or a vinyl cyanide monomer are added to 10 to 80 parts by weight of a rubbery polymer having a wavelength of 650 nm.
  • Graft copolymer obtained by graft polymerization 100 parts by weight of rubber polymer and monomer in total
  • Copolymer (C) Two or more monomers selected from aromatic vinyl monomers, vinyl cyanide monomers, and other vinyl monomers copolymerizable therewith are copolymerized Copolymer obtained by
  • thermoplastic resin composition having an excellent balance of physical properties such as impact resistance, fluidity and heat resistance, and a molded product formed by molding the thermoplastic resin.
  • (meth) acrylic acid means one or both of “acrylic acid” and “methacrylic acid”.
  • the “(meth) acrylic acid alkyl ester” means one or both of “acrylic acid alkyl ester” and “methacrylic acid alkyl ester”.
  • the polycarbonate resin (A) may be referred to as “component (A)”, the graft copolymer (B) as “component (B)”, and the copolymer (C) as “component (C)”.
  • thermoplastic resin composition comprises 10 to 95 parts by weight of a polycarbonate resin (A), 5 to 90 parts by weight of the following graft copolymer (B), and 0 to 50 parts by weight of the following copolymer (C). And 100 parts by weight in total.
  • the thermoplastic resin composition of the present invention comprises 10 to 95 parts by weight of the polycarbonate resin (A), 5 to 90 parts by weight of the graft copolymer (B), and 0 to 50 parts by weight of the copolymer (C).
  • a thermoplastic resin composition having an excellent balance of physical properties such as impact resistance, fluidity, and heat resistance is obtained. If any one of these components is outside the above range, the balance of physical properties such as impact resistance, fluidity, and heat resistance is poor.
  • the content of the polycarbonate resin (A) is preferably 20 to 90 parts by weight, and more preferably 30 to 70 parts by weight.
  • the content of the graft copolymer (B) is preferably 10 to 80 parts by weight, and more preferably 10 to 60 parts by weight.
  • the content of the copolymer (C) is preferably 0 to 45 parts by weight, more preferably 0 to 40 parts by weight (polycarbonate resin (A), graft copolymer (B) and copolymer). (C) 100 parts by weight in total).
  • the polycarbonate resin (A) is a polymer obtained by a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method in which a dihydroxydiaryl compound and a carbonate such as diphenyl carbonate are reacted.
  • a typical example is an aromatic polycarbonate resin produced from 2,2-bis (4-hydroxyphenyl) propane (bisphenol A).
  • dihydroxydiaryl compound examples include bisphenol 4-, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2, 2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3- 3-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4- Bis (hydroxyaryl) alkanes such as hydroxy-3,5-dichlorophenyl) propane, 1,1-bis ( -Hydroxyphenyl) cyclopentane, bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′
  • Trihydric or higher phenols include phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene, 2,4,6-trimethyl-2,4,6-tri- ( 4-hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis- (4 , 4-di (4-hydroxyphenyl) cyclohexyl) -propane and the like.
  • polycarbonate resin (A) those having a viscosity average molecular weight (Mv) of 10,000 to 80,000, particularly 15,000 to 60,000 are preferably used.
  • the polycarbonate resin (A) it is preferable to produce a product having such a viscosity average molecular weight by using the above-mentioned dihydroxydiaryl compound and the like, and a molecular weight adjusting agent, a catalyst or the like as necessary.
  • polycarbonate resin (A) examples include commercially available products such as “Iupilon Series”, “Novalex Series” manufactured by Mitsubishi Engineering Plastics, and “Taflon Series” manufactured by Idemitsu Kosan Co., Ltd.
  • polycarbonate resin (A) two or more kinds may be mixed and used as the polycarbonate resin (A).
  • polycarbonate resin (A) two or more kinds of polycarbonate resins having different viscosity average molecular weights may be mixed and used by adjusting to the above suitable viscosity average molecular weight.
  • the graft copolymer (B) is aromatic in the presence of a rubbery polymer having a specific average particle size and particle size distribution (hereinafter sometimes referred to as “rubbery polymer (e)”). Graft-polymerize at least one monomer selected from vinyl monomers and / or vinyl cyanide monomers and other vinyl monomers copolymerizable therewith if necessary. The graft copolymer obtained in this way.
  • the rubber type of the rubbery polymer (e) used in the present invention is not particularly limited, and examples thereof include diene rubbers such as polybutadiene, alkyl (meth) acrylate rubbers such as butyl acrylic rubber, and ethylene-propylene rubbers. And ethylene-propylene copolymer rubber, polyorganosiloxysan rubber, diene / alkyl (meth) acrylate composite rubber, polyorganosiloxysan / alkyl (meth) acrylate composite rubber, and the like.
  • Preferred are alkyl (meth) acrylate rubbers, diene / alkyl (meth) acrylate composite rubbers, and polyorganosiloxysan / alkyl (meth) acrylate composite rubbers.
  • Rubbery polymers can be used singly or in combination of two or more.
  • the weight average particle diameter of the rubber polymer (e) is 150 to 450 nm, preferably 200 to 400 nm, from the viewpoint of impact resistance.
  • a known method can be used to adjust the weight average particle diameter of the rubber polymer (e).
  • the rubber polymer (e) has a particle size of 10% by weight of 50 to 250 nm and a particle size of 90% by weight of 450 to 650 nm from the viewpoint of impact resistance.
  • the particle size of 10% by weight is 100 to 200 nm
  • the particle size of 90% by weight is 500 to 600 nm.
  • the particle size cumulative weight fraction of the rubbery polymer (e) can be adjusted by using a known particle size distribution adjusting method, for example, the following method.
  • the rubber polymer having the desired particle size distribution is obtained by introducing an emulsifier and the rubber monomer of the rubber polymer raw material over a long period of time.
  • a rubbery polymer having a desired particle size distribution is obtained.
  • a rubber polymer having a relatively small particle diameter is produced in advance, and this is agglomerated and enlarged to obtain an agglomerated and enlarged rubbery polymer having a desired particle size distribution.
  • the weight average particle size and particle size distribution can be adjusted by appropriately selecting the type or amount of the emulsifier.
  • the pH of the latex is lowered as the rubbery monomer is dropped, and stability may not be maintained and agglomerates may be generated.
  • the rubber polymer latex with a relatively small particle diameter is mixed with an acid group-containing copolymer latex to enlarge the rubber polymer. It is preferable to add a condensed acid salt before mixing the acid group-containing copolymer latex. By enlarging in this way, a rubbery polymer (e) having a desired average particle size and particle size distribution can be obtained. By adding a condensed acid salt, the production of a rubber polymer having a small particle diameter can be adjusted.
  • a salt of a condensed acid such as phosphoric acid or silicic acid and an alkali metal and / or alkaline earth metal is used.
  • a salt of pyrophosphoric acid and an alkali metal which is a condensed acid of phosphoric acid is preferable, and sodium pyrophosphate or potassium pyrophosphate is particularly preferable.
  • the addition amount of the condensed acid salt is preferably 0.1 to 10 parts by weight of the condensed acid salt with respect to 100 parts by mass (as solid content) of the rubber polymer latex having a relatively small particle size.
  • the acid group-containing copolymer latex used for enlargement is an acid group-containing monomer, a (meth) acrylic acid alkyl ester monomer, and other monomers copolymerizable with these if necessary. It is the latex of the acid group containing copolymer obtained by superposing
  • an unsaturated compound having a carboxy group is preferable, and examples of the compound include (meth) acrylic acid, itaconic acid, crotonic acid and the like, and (meth) acrylic acid is particularly preferable.
  • An acid group containing monomer may be used individually by 1 type, and may use 2 or more types together.
  • Examples of (meth) acrylic acid alkyl ester monomers include esters of acrylic acid and / or methacrylic acid with alcohols having a linear or branched alkyl group having 1 to 12 carbon atoms, such as acrylic acid. Methyl, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, Examples thereof include isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate and the like. Of these, (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms are particularly preferred. One (meth) acrylic acid alkyl ester monomer may be used alone, or two or more
  • the other monomer is a monomer copolymerizable with the acid group-containing monomer and the (meth) acrylic acid alkyl ester monomer, and the acid group-containing monomer and the alkyl (meth) acrylate.
  • monomers include aromatic vinyl monomers (eg, styrene, ⁇ -methylstyrene, p-methylstyrene, etc.), vinyl cyanide monomers (eg, acrylonitrile, methacrylonitrile, etc.), Examples thereof include compounds having two or more polymerizable functional groups (for example, allyl methacrylate, polyethylene glycol ester dimethacrylate, triallyl cyanurate, triallyl isocyanurate, triallyl trimellitic acid, etc.). Another monomer may be used individually by 1 type and may use 2 or more types together.
  • the amount of the polymerizable monomer used is such that the acid group-containing monomer is preferably 5 to 40% by weight, more preferably 8 to 30% by weight, based on 100% by weight of the acid group-containing copolymer latex.
  • the meth) acrylic acid alkyl ester monomer is preferably 60 to 95% by weight, more preferably 70 to 92% by weight, and other copolymerizable monomers are preferably 0 to 48% by weight, more preferably 0%. ⁇ 30% by weight. If the ratio of the acid group-containing monomer is less than the above lower limit, the enlargement ability is insufficient. When the ratio of the acid group-containing monomer exceeds the above upper limit, a large amount of agglomerates are produced during the production of the acid group-containing copolymer latex.
  • the acid group-containing copolymer latex can be produced by a general emulsion polymerization method.
  • emulsifiers used in emulsion polymerization include carboxylic acid-based emulsifiers exemplified by oleic acid, palmitic acid, stearic acid, alkali metal salts of rosin acid, alkali metal salts of alkenyl succinic acid, alkyl sulfates, alkyl benzene sulfones.
  • Known emulsifiers such as anionic emulsifiers selected from sodium acid, sodium alkylsulfosuccinate, sodium polyoxyethylene nonylphenyl ether sulfate and the like can be used alone or in combination of two or more.
  • the entire amount may be charged all at the beginning of the polymerization, or a part of the emulsifier may be used initially, and the remaining may be added intermittently or continuously during the polymerization.
  • the particle size of the acid group-containing copolymer latex, and hence the particle size of the enlarged rubber polymer (e) is affected, so it is necessary to select the appropriate amount and method of use. There is.
  • a thermal decomposition type initiator As the polymerization initiator used for polymerization, a thermal decomposition type initiator, a redox type initiator, or the like can be used.
  • the thermal decomposition type initiator include potassium persulfate, sodium persulfate, and ammonium persulfate.
  • the redox type initiator include organic peroxides represented by cumene hydroperoxide-sodium formaldehyde sulfoxylate-iron. Combinations of salts and the like are exemplified. These can be used alone or in combination of two or more.
  • mercaptans such as t-dodecyl mercaptan and n-octyl mercaptan to adjust the molecular weight
  • chain transfer agents such as terpinolene and ⁇ -methylstyrene dimer
  • alkali or An electrolyte can also be added as an acid or a thinning agent.
  • the addition amount of the acid group-containing copolymer latex is preferably 0.1 to 10 parts by mass (as solids) with respect to 100 parts by mass (as solids) of the rubber polymer latex having a relatively small particle size, 0.3-7 parts by mass is more preferable. If the addition amount of the acid group-containing copolymer latex is less than the above lower limit, enlargement does not proceed sufficiently, and a large amount of coagulum may be generated. When the addition amount of the acid group-containing copolymer latex exceeds the above upper limit, the pH of the enlarged latex is lowered, and the latex tends to become unstable.
  • a cross-linked structure may be introduced into the rubbery polymer (e).
  • the cross-linking agent used in this case include divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl phthalate, dicyclo Pentadiene di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triary Examples include lucyanurate and triallyl isocyanurate. These can be used alone or in combination of two or more.
  • examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, bromostyrene and the like. Species or two or more can be used. In particular, styrene and ⁇ -methylstyrene are preferable.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and the like, and one or more of these can be used. Particularly preferred is acrylonitrile.
  • the rubber polymer (e) is graft-polymerized with other vinyl monomers copolymerizable with these monomers. Also good.
  • examples of other copolymerizable vinyl monomers include (meth) acrylic acid ester monomers, maleimide monomers, amide monomers, and the like. Can be used.
  • Examples of the (meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Examples thereof include phenyl (meth) acrylate, 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, chlorophenyl (meth) acrylate, and the like.
  • maleimide monomers examples include N-phenylmaleimide and N-cyclohexylmaleimide.
  • amide monomers examples include acrylamide and methacrylamide.
  • composition ratio of the above-mentioned monomer that is graft-polymerized to the rubber polymer (e) is not particularly limited, but is preferably the following composition ratio.
  • Composition ratio of 0 to 30% by weight of monomer Composition ratio of 60 to 90% by weight of aromatic vinyl monomer, 10 to 40% by weight of vinyl cyanide monomer, and 0 to 30% by weight of other copoly
  • graft copolymer (B) used in the present invention 20 to 90 parts by weight of one or more of the above-mentioned monomers are added to 10 to 80 parts by weight of the rubbery polymer (e). Polymerized (100 parts by weight in total of rubbery polymer and monomer). When the amount of the rubbery polymer (e) is less than 10 parts by weight, the resulting thermoplastic resin composition has poor impact resistance. If the rubber polymer (e) exceeds 80 parts by weight, the resulting thermoplastic resin composition will be inferior in fluidity.
  • the rubbery polymer (e) is preferably 30 to 70 parts by weight and the monomer is preferably 30 to 70 parts by weight.
  • the rubbery polymer (e) is 40 to 60 parts by weight and the monomer is 60 parts by weight. More preferably, it is ⁇ 40 parts by weight (total 100 parts by weight of rubbery polymer and monomer).
  • the method for producing the graft copolymer (B) of the present invention is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method and the like can be used.
  • a latex of the graft copolymer (B) can be obtained by graft polymerization of the above-mentioned monomer to the above-mentioned rubbery polymer (e).
  • the latex of the obtained graft copolymer (B) is coagulated by a known method, and the graft copolymer (B) powder can be obtained through washing, dehydration and drying steps.
  • the graft component can be selected by appropriately selecting the production conditions such as the type or amount of the emulsifier, the type or amount of the initiator, the polymerization time, the polymerization temperature, and the stirring conditions.
  • the molecular weight and graft ratio of can be adjusted.
  • an anionic emulsifier is preferable from the viewpoint that the stability of the latex during the emulsion polymerization is excellent and the polymerization rate can be increased.
  • the anionic emulsifier include carboxylates (for example, sodium sarcosine, fatty acid potassium, fatty acid sodium, dipotassium alkenyl succinate, rosin acid soap), alkyl sulfate ester salts, sodium alkylbenzene sulfonate, sodium alkylsulfosuccinate, polyoxy Examples include ethylene nonylphenyl ether sulfate sodium ester.
  • examples of the emulsifier include sodium sarcosine, dipotassium alkenyl succinate, alkyl sulfate ester salt, sodium alkylbenzene sulfonate, sodium alkyl sulfosuccinate, sodium polyoxyethylene nonylphenyl ether sulfate, and the like.
  • dipotassium alkenyl succinate is particularly preferable from the viewpoint of polymerization stability.
  • These emulsifiers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • Examples of a method for recovering the graft copolymer (B) from the graft copolymer (B) latex obtained by emulsion graft polymerization include, for example, hot water in which the graft copolymer (B) latex is dissolved in a coagulant.
  • Examples of the coagulant used in the wet method include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid, and metal salts such as calcium chloride, calcium acetate, and aluminum sulfate, which are selected according to the emulsifier used in the polymerization.
  • inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and nitric acid
  • metal salts such as calcium chloride, calcium acetate, and aluminum sulfate, which are selected according to the emulsifier used in the polymerization.
  • carboxylic acid soap such as fatty acid soap or rosin acid soap
  • the graft copolymer (B) can be recovered by using any coagulant, but an inorganic acid can be used from the viewpoint of residence heat stability.
  • graft copolymer (B) It is preferable to recover the graft copolymer (B) using When an emulsifier exhibiting stable emulsifying power is contained even in an acidic region such as sodium alkylbenzene sulfonate, the recovered solution becomes turbid with the inorganic acid, and it is difficult to recover the graft copolymer (B). It is necessary to use a metal salt as an agent.
  • a dry graft copolymer (B) from the slurry-like graft copolymer (B) obtained by the wet method first, the remaining emulsifier residue is eluted in water and washed, and then this Examples include a method of dehydrating the slurry with a centrifugal or press dehydrator and the like and then drying with an air dryer, a method of simultaneously performing dehydration and drying with a press dehydrator or an extruder. By this method, a powder or particulate dry graft copolymer (B) is obtained.
  • the graft copolymer (B) can be directly sent to an extruder or a molding machine for producing the resin composition to obtain a molded product.
  • Graft rate of the graft copolymer (B) used in the present invention (determined from the amount of acetone soluble and insoluble components of the graft copolymer (B) and the weight of the rubbery polymer in the graft copolymer (B)).
  • the reduced viscosity of acetone-soluble matter (0.2 g / dL, measured as N, N-dimethylformamide solution at 25 ° C.) is not particularly limited, and those having any structure can be used depending on the required performance. From the viewpoint of balance of physical properties, the graft ratio is preferably 5 to 150%, and the reduced viscosity is preferably 0.2 to 2.0 dL / g.
  • the graft ratio of the graft copolymer (B) and the reduced viscosity of the acetone-soluble component can be determined by the method described in the Examples section below.
  • the copolymer (C) used in the present invention is selected from aromatic vinyl monomers, vinyl cyanide monomers, and other vinyl monomers copolymerizable with these monomers. It can be obtained by copolymerizing more than one monomer.
  • the monomers constituting the copolymer (C) the same monomers as those used in the graft copolymer (B) can be used.
  • the monomer composition of the copolymer (C) is not particularly limited.
  • aromatic vinyl monomers 60 to 95% by weight, preferably 70 to 85% by weight, vinyl cyanide monomer 5 It is obtained by polymerizing a monomer mixture comprising ⁇ 40% by weight, preferably 15 to 30% by weight, and other monomers copolymerizable therewith 0 to 40% by weight, preferably 0 to 30% by weight. It is a copolymer.
  • the aromatic vinyl monomer, vinyl cyanide monomer and other monomers are within the above range, the compatibility of the graft copolymer (B) and the copolymer (C) becomes good, Appearance defects of the resulting molded product are unlikely to occur.
  • the method for producing the copolymer (C) is not particularly limited, and methods such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization can be used.
  • the weight average molecular weight (Mw) of the copolymer (C) is preferably in the range of 50,000 to 200,000, more preferably in the range of 75,000 to 150,000.
  • the weight average molecular weight of the copolymer (C) is measured by the method described in the Examples section below.
  • the thermoplastic resin composition of the present invention comprises a component (A), component (B), and component (C), as necessary, a hindered amine light stabilizer; a hindered phenol compound, a sulfur-containing organic compound compound, Phosphorus-containing organic compound-based antioxidants; phenolic and acrylate-based thermal stabilizers; benzoate-based, benzotriazole-based, benzophenone-based, salicylate-based UV absorbers; organic nickel-based, higher fatty acid amides, etc.
  • Plasticizers such as phosphate esters; Halogen-containing compounds such as polybromophenyl ether, tetrabromobisphenol-A, brominated epoxy oligomers, brominated polycarbonate oligomers, etc., flame retardants / difficulty such as phosphorus compounds, antimony trioxide Combustion aid; Odor masking agent; Add pigments and dyes such as carbon black and titanium oxide Door can be. Furthermore, reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fiber, glass flake, glass bead, carbon fiber, and metal fiber can be added.
  • thermoplastic resin composition of the present invention can be obtained by mixing the above-described components.
  • a known kneading apparatus such as an extruder, a roll, a Banbury mixer, and a kneader can be used.
  • any two of these three components are mixed and kneaded in advance.
  • One component can be mixed and kneaded.
  • mixing and kneading timing of the other components In the melt kneading, it is preferable to melt knead at 180 to 300 ° C. using various known extruders.
  • thermoplastic resin composition of the present invention can be used by mixing with other thermoplastic resins as long as the purpose is not impaired.
  • another thermoplastic resin for example, one or more of acrylic resins such as polymethyl methacrylate, polyester resins such as polybutylene terephthalate resin, polyethylene terephthalate resin and polylactic acid resin, and polyamide resins are used. be able to.
  • the molded article of the present invention is molded using the above-described thermoplastic resin composition of the present invention.
  • the molding method of the thermoplastic resin composition of the present invention is not limited at all. Examples of the molding method include an injection molding method, an extrusion molding method, a compression molding method, an insert molding method, a vacuum molding method, and a blow molding method.
  • thermoplastic resin composition of the present invention is excellent in fluidity and moldability, and the molded product of the present invention formed by molding the thermoplastic resin composition is excellent in impact resistance and heat resistance.
  • the resin molded product of the present invention is suitably used for a wide variety of applications including vehicle parts, building materials, daily necessities, home appliances and office equipment parts.
  • vehicle parts for example, center clusters, register bezels, console upper panels, cup folders, door armrests, inside handles, various switch parts, malls such as audio moldings, or Examples include door mirror housings, radiator grilles, pillar garnishes, rear combination lamp housings, emblems, and roof rails.
  • building materials include wall materials, floor materials, window frames, handrails, interior members, and gutters. Daily necessities include tableware, toys and sundries.
  • Home appliances and office equipment parts include household appliance parts such as vacuum cleaner housing, television housing, and air conditioner housing, communication equipment housing, laptop computer housing, portable terminal housing, mobile communication equipment housing, and liquid crystal projector housing. Etc. are preferably used.
  • Solid content of rubbery polymer latex was determined from the following formula by accurately weighing 1 g of latex, weighing the residue after evaporating volatile components over 20 minutes at 200 ° C.
  • the polymerization conversion was determined from the following formula by measuring the solid content.
  • ⁇ Particle size> The weight average particle size and particle size cumulative weight fraction of rubbery polymers, enlarged rubbers, blended rubbers, etc. were determined by the photon correlation method using “Microtrac Model: 9230UPA” manufactured by Nikkiso Co., Ltd.
  • Polycarbonate resin (A) A commercially available product (“S-2000F” manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was prepared as the polycarbonate (A). The viscosity average molecular weight (Mv) of this polycarbonate resin was 22,000.
  • an aqueous solution consisting of 0.09 part of sodium formaldehyde sulfoxylate, 0.006 part of ferrous sulfate heptahydrate, 0.012 part of disodium ethylenediaminetetraacetate, and 5 parts of water was added, Polymerization was started. After the polymerization exotherm was confirmed, the jacket temperature was set to 60 ° C., and the polymerization was continued until no polymerization exotherm was confirmed.
  • an aqueous solution consisting of 0.34 parts of sodium formaldehyde sulfoxylate, 0.0005 parts of ferrous sulfate heptahydrate, 0.0015 parts of disodium ethylenediaminetetraacetate, and 10 parts of water was added, Polymerization was started. After the polymerization exotherm was confirmed, the jacket temperature was set to 60 ° C., and the polymerization was continued until no polymerization exotherm was confirmed.
  • Rubber polymer latex (e-2) (alkyl acrylate rubber latex) was obtained.
  • graft copolymer (B-1)> In a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer, 260 parts of water (including water in rubber latex), 140 parts of rubbery polymer latex (e-1) (solid content 60) Part) and 0.5 parts of sodium alkylbenzene sulfonate, and the temperature inside the reactor was raised to 60 ° C., then 0.2 parts of sodium formaldehyde sulfoxylate, ferrous sulfate heptahydrate 0.
  • graft copolymer (B-2)> In a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer, 220 parts of water (including water in rubber latex), 250 parts of enlarged rubber latex (f-1) (solid part 60 parts) ), And 0.2 part of dipotassium alkenyl succinate (Laomul ASK, manufactured by Kao Corporation), the temperature inside the reactor was raised to 70 ° C., 0.3 part of sodium formaldehyde sulfoxylate, Add an aqueous solution consisting of 0.001 part of ferrous heptahydrate, 0.03 part of disodium ethylenediaminetetraacetate and 10 parts of water, then 15 parts of acrylonitrile, 25 parts of styrene, and 0.2% of t-butyl hydroperoxide.
  • aqueous solution consisting of 0.001 part of ferrous heptahydrate, 0.03 part of disodium ethylenediaminetetraa
  • Part of the mixture was added dropwise over 2 hours to polymerize. After completion of the dropwise addition, the mixture was stirred for 30 minutes while maintaining the internal temperature at 60 ° C. and then cooled to obtain a graft copolymer (B-2) latex.
  • graft copolymer (B-17)> In an autoclave, 240 parts of water (including water in rubber latex), 180 parts of blend rubber latex (g-4) (solid content 60 parts), 1.5 parts of semi-cured beef tallow soda soap, and 0.05% potassium hydroxide Part, 0.004 part of ferrous sulfate heptahydrate, 0.1 part of sodium pyrophosphate, 0.15 part of crystalline glucose, and 10 parts of water, and the temperature inside the reactor is increased to 60 ° C. The temperature rose.
  • a mixed liquid of 13 parts of acrylonitrile, 27 parts of styrene, and 0.2 part of cumene hydroperoxide was dropped over 2 hours for polymerization. After completion of dropping, the mixture was stirred for 30 minutes while maintaining the internal temperature at 65 ° C., and then cooled to obtain a graft copolymer (B-17) latex.
  • an antioxidant is added to the graft copolymer latex (B-17), 150 parts of a 1.2 wt% sulfuric acid aqueous solution is heated to 75 ° C., and the aqueous solution is stirred while the aqueous solution is stirred. (B-17) 100 parts of latex was gradually added dropwise to solidify the graft copolymer (B-17), and the temperature was raised to 90 ° C. and held for 5 minutes. Next, the solidified product was dehydrated, washed and dried to obtain a powdered graft copolymer (B-17).
  • Table 4 shows the graft ratio of the obtained graft copolymer and the reduced viscosity of the acetone-soluble component.
  • thermoplastic resin composition ⁇ Examples 1 to 19 and Comparative Examples 1 to 16>
  • the polycarbonate resin (A), graft copolymer (B), and copolymer (C) shown in Tables 5 to 7 were used in the formulations shown in Tables 5 to 7, and Sumitomo Seika as additive (D).
  • 0.5 parts of a lubricant “Flusen UF” manufactured by the company was mixed using a Henschel mixer. The mixture was melt-kneaded at 260 ° C. using a TEX28V twin screw extruder manufactured by Nippon Steel Co., Ltd. to obtain pellets. The following physical property evaluation was performed using the obtained pellets. The evaluation results are shown in Tables 5-7.
  • thermoplastic resin compositions of Examples 1 to 19 of the present invention are excellent in the balance of physical properties such as impact resistance, fluidity, and heat resistance.
  • Example 12 was excellent in heat resistance.
  • the impact resistance was good.
  • Example 1-4 the impact resistance was further improved.
  • Example 5 using the graft copolymer recovered with sulfuric acid good results were also obtained in the residence heat stability.
  • thermoplastic resin composition excellent in a balance of physical properties such as impact resistance, fluidity and heat resistance, and a molded product thereof.
  • the thermoplastic resin composition and molded article thereof of the present invention are useful for applications such as vehicle parts, building materials, daily necessities, home appliances and office equipment parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物を提供する。ポリカーボネート樹脂(A)10~95重量部と、下記グラフト共重合体(B)5~90重量部と、下記共重合体(C)0~50重量部とを含有する熱可塑性樹脂組成物。 グラフト共重合体(B):重量平均粒子径150~450nmで、粒子径累積重量分率における10重量%粒子径が50~250nm、90重量%粒子径が450~650nmのゴム質重合体10~80重量部に、芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む単量体20~90重量部をグラフト重合して得られるグラフト共重合体 共重合体(C):芳香族ビニル系単量体、シアン化ビニル系単量体、及びその他のビニル系単量体を共重合してなる共重合体

Description

熱可塑性樹脂組成物及びその成形品
 本発明は、ポリカーボネート樹脂と、ゴム成分として特定の平均粒子径と粒子径分布を有するゴム質重合体を用いたグラフト共重合体とを含み、耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物に関する。本発明は、この熱可塑性樹脂組成物を成形してなる成形品に関するものである。
 ポリカーボネート樹脂とABS系樹脂からなる組成物(以下、「PC/ABS系樹脂組成物」と記す)は、耐衝撃性、耐熱性、成形加工性に優れることから、車輌用部品、家庭電化製品、事務機器部品をはじめとする多様な用途に使用されている。ABS系樹脂は、ブタジエン系ゴムを使用しているため、耐候性に劣ることから、このジエンをポリマーの主鎖に含まないエチレン-プロピレン-非共役ジエン系ゴムを使用したAES樹脂やアクリル系ゴムを使用したASA系樹脂と、ポリカーボネート樹脂からなる組成物(以下、「PC/ASA系樹脂組成物」と記す)も提案されている。
 特許文献1には、特定構造を有する共役ジエンゴム質重合体と架橋アクリルエステル系重合体から構成される複合ゴムを用いたASA樹脂と、ポリカーボネート樹脂から構成される熱可塑性樹脂組成物が提案されている。
 特許文献2には、芳香族ポリカーボネート系樹脂に流動性向上剤としてフェニルメタクリレートに代表される特定構造の(メタ)アクリル酸エステルからなる重合体単位と芳香族ビニルからなる重合体単位とで構成される共重合体と、衝撃向上剤であるゴム変性樹脂を配合した芳香族ポリカーボネート樹脂組成物が提案されている。
特開2013-151652号公報 特開2006-257127号公報
 従来の熱可塑性樹脂組成物では、耐衝撃性、流動性、耐熱性などの物性バランスにおいて、未だ十分であるとは言えず、その改良が望まれる。
 本発明の目的は、耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物及び該熱可塑性樹脂組成物から得られた成形品を提供することにある。
 本発明者は、特定の平均粒子径と粒子径分布を持つゴム質重合体に、シアン化ビニル系単量体、芳香族ビニル系単量体等の単量体をグラフト重合して得られるグラフト共重合体を用いることで、上記目的を達成できることを見出し、本発明に到達した。
 即ち、本発明は以下を要旨とする。
[1] ポリカーボネート樹脂(A)10~95重量部と、下記のグラフト共重合体(B)5~90重量部とを合計で100重量部となるように含有することを特徴とする熱可塑性樹脂組成物。
 グラフト共重合体(B):重量平均粒子径が150~450nmであり、粒子径累積重量分率において、10重量%の粒子径が50~250nmであり、かつ90重量%の粒子径が450~650nmであるゴム質重合体10~80重量部に、少なくとも芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む1種又は2種以上の単量体20~90重量部をグラフト重合して得られるグラフト共重合体(ゴム質重合体と単量体との合計で100重量部)
[2] ポリカーボネート樹脂(A)10~95重量部と、下記のグラフト共重合体(B)5~90重量部と、下記の共重合体(C)50重量部以下とを合計で100重量部となるように含有することを特徴とする熱可塑性樹脂組成物。
 グラフト共重合体(B):重量平均粒子径が150~450nmであり、粒子径累積重量分率において、10重量%の粒子径が50~250nmであり、かつ90重量%の粒子径が450~650nmであるゴム質重合体10~80重量部に、少なくとも芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む1種又は2種以上の単量体20~90重量部をグラフト重合して得られるグラフト共重合体(ゴム質重合体と単量体との合計で100重量部)
 共重合体(C):芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれる2種以上の単量体を共重合することで得られる共重合体
[3] [1]又は[2]に記載の熱可塑性樹脂組成物を成形してなる成形品。
 本発明により、耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物及び該熱可塑性樹脂を成形してなる成形品を提供することができる。
 以下に本発明の実施の形態を詳細に説明する。
 本発明において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の一方又は双方を意味するものである。「(メタ)アクリル酸アルキルエステル」とは、「アクリル酸アルキルエステル」と「メタクリル酸アルキルエステル」の一方又は双方を意味する。「(メタ)アクリレート」についても同様である。
 ポリカーボネート樹脂(A)を「(A)成分」、グラフト共重合体(B)を「(B)成分」、共重合体(C)を「(C)成分」と称す場合がある。
[熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)10~95重量部と、下記のグラフト共重合体(B)5~90重量部と、下記の共重合体(C)0~50重量部とを合計で100重量部となるように含有することを特徴とする。
 グラフト共重合体(B):重量平均粒子径が150~450nmであり、粒子径累積重量分率において、10重量%の粒子径が50~250nmであり、かつ90重量%の粒子径が450~650nmであるゴム質重合体10~80重量部に、少なくとも芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む1種又は2種以上の単量体20~90重量部をグラフト重合して得られるグラフト共重合体(ゴム質重合体と単量体との合計で100重量部)
 共重合体(C):芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれる2種以上の単量体を共重合することで得られる共重合体
 本発明の熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)10~95重量部と、グラフト共重合体(B)5~90重量部と、共重合体(C)0~50重量部とを含むことにより、耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物となる。これらの成分のうちの一つでも上記範囲外である場合は、耐衝撃性や流動性、耐熱性などの物性バランスに劣るものとなる。物性バランスの観点から、ポリカーボネート樹脂(A)の含有量は20~90重量部であることが好ましく、30~70重量部であることがより好ましい。グラフト共重合体(B)の含有量は10~80重量部であることが好ましく、10~60重量部であることがより好ましい。共重合体(C)の含有量は0~45重量部であることが好ましく、0~40重量部であることがより好ましい(ポリカーボネート樹脂(A)とグラフト共重合体(B)と共重合体(C)の合計で100重量部)。
<ポリカーボネート樹脂(A)>
 ポリカーボネート樹脂(A)とは、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネート等の炭酸エステルとを反応させるエステル交換法によって得られる重合体である。代表的なものとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)から製造された芳香族ポリカーボネート樹脂が挙げられる。
 上記ジヒドロキシジアリール化合物としては、ビスフェノールAの他に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-第3ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパンのようなビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンのようなビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテルのようなジヒドロキシジアリールエーテル類、4,4’-ジヒドロキシジフェニルスルファイド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルファイドのようなジヒドロキシジアリールスルファイド類、4,4’-ジヒドロキシジフェニルスルホキシドのようなジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホンのようなジヒドロキシジアリールスルホン類等が挙げられる。
 これらは単独又は2種類以上混合して使用されるが、これらの他に、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル類等を混合して用いても良い。
 上記のジヒドロキシジアリール化合物と以下に示すような3価以上のフェノール化合物を混合使用しても良い。3価以上のフェノールとしては、フロログルシン、4,6-ジメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプテン、2,4,6-トリメチル-2,4,6-トリ-(4-ヒドロキシフェニル)-ヘプタン、1,3,5-トリ-(4-ヒドロキシフェニル)-ベンゾール、1,1,1-トリ-(4-ヒドロキシフェニル)-エタン及び2,2-ビス-(4,4-ジ(4-ヒドロキシフェニル)シクロヘキシル)-プロパン等が挙げられる。
 ポリカーボネート樹脂(A)は、粘度平均分子量(Mv)が10,000~80,000、特に15,000~60,000のものが好適に使用される。
 ポリカーボネート樹脂(A)を製造するに際しては、上記のジヒドロキシジアリール化合物等と必要に応じて分子量調整剤や触媒等を使用して、このような粘度平均分子量のものを製造することが好ましい。
 ポリカーボネート樹脂(A)の具体例としては、市販品の三菱エンジニアリングプラスチック(株)製「ユーピロンシリーズ」、「ノバレックスシリーズ」、出光興産(株)製「タフロンシリーズ」などが挙げられる。
 本発明では、ポリカーボネート樹脂(A)として、2種以上のポリカーボネート樹脂を混合して用いてもよい。例えば粘度平均分子量が互いに異なる2種類以上のポリカーボネート樹脂を混合して上記の好適な粘度平均分子量に調整して用いることもできる。
<グラフト共重合体(B)>
 グラフト共重合体(B)は、特定の平均粒子径と粒子径分布を有するゴム質重合体(以下、「ゴム質重合体(e)」と称す場合がある。)の存在下に、芳香族ビニル系単量体及び/又はシアン化ビニル系単量体、並びに必要に応じて用いられるこれらと共重合可能な他のビニル系単量体から選ばれる少なくとも1種の単量体をグラフト重合して得られたグラフト共重合体である。
 本発明で使用されるゴム質重合体(e)のゴム種は、特に制限されないが、例えば、ポリブタジエン等のジエン系ゴム、ブチルアクリルゴム等のアルキル(メタ)アクリレート系ゴム、エチレン-プロピレンゴム等のエチレン-プロピレン系共重合体ゴム、ポリオルガノシロキシサン系ゴム、ジエン/アルキル(メタ)アクリレート系複合ゴム、ポリオルガノシロキシサン/アルキル(メタ)アクリレート系複合ゴムなどが挙げられる。好ましくは、アルキル(メタ)アクリレート系ゴム、ジエン/アルキル(メタ)アクリレート系複合ゴム、ポリオルガノシロキシサン/アルキル(メタ)アクリレート系複合ゴムである。
 これらのゴム質重合体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 ゴム質重合体(e)の重量平均粒子径は、耐衝撃性の観点から、150~450nmであり、好ましくは200~400nmである。ゴム質重合体(e)の重量平均粒子径の調節は公知の方法が使用できる。
 ゴム質重合体(e)は、粒子径累積重量分率において、耐衝撃性の観点から、10重量%の粒子径が50~250nmであり、90重量%の粒子径が450~650nmであり、好ましくは、10重量%の粒子径が100~200nm、90重量%の粒子径が500~600nmである。
 ゴム質重合体(e)の粒子径累積重量分率の調節は、公知の粒子径分布の調節方法を使用することができ、例えば、次のような方法が挙げられる。
 連続重合において、乳化剤と、ゴム質重合体原料のゴム質単量体を長時間かけて導入することで、目的とする粒子径分布のゴム質重合体を得る。
 個別に用意した異なる粒子径のゴム質重合体を混合することにより、目的とする粒子径分布のゴム質重合体を得る。
 比較的小粒子径のゴム質重合体を予め製造し、これを凝集肥大化させることで、目的とする粒子径分布とした凝集肥大化ゴム質重合体とする。
 上記ゴム質重合体を乳化重合法により製造する場合、乳化剤の種類ないしは量を適宜選択することにより重量平均粒子径、粒子径分布の調整を行うことができる。連続重合する場合、ゴム質単量体を滴下するにつれてラテックスのpHが低下し安定性を保てず凝塊物が発生する場合がある。その際、酸性領域でも安定な乳化力を示すアルキルベンゼンスルホン酸ナトリウム等の乳化剤を使用することにより安定して重合することが可能である。
 予め製造した比較的小粒子径のゴム質重合体の肥大化処理を行う場合は、比較的小粒子径のゴム質重合体のラテックスと酸基含有共重合体ラテックスとを混合して肥大化処理することが好ましく、酸基含有共重合体ラテックスを混合する前に縮合酸塩を添加することがさらに好ましい。このようにして肥大化させることにより、所望の平均粒子径と粒子径分布を有するゴム質重合体(e)を得ることができる。縮合酸塩を添加することにより小粒子径のゴム質重合体の生成を調整することができる。
 肥大化処理に際して、酸基含有共重合体ラテックスの混合前に添加する縮合酸塩としては、リン酸、ケイ酸等の縮合酸と、アルカリ金属及び/又はアルカリ土類金属との塩が用いられる。縮合酸塩としては、リン酸の縮合酸であるピロリン酸とアルカリ金属の塩が好ましく、ピロリン酸ナトリウム又はピロリン酸カリウムが特に好ましい。縮合酸塩の添加量は、比較的小粒子径のゴム質重合体のラテックス100質量部(固形分として)に対し、縮合酸塩0.1~10重量部とすることが好ましく、0.5~7重量部がより好ましい。縮合酸塩の添加量が上記下限未満では、肥大化が十分進行しない。縮合酸塩の添加量が上記上限を超えると肥大化が十分進行しなくなったり、あるいはゴムラテックスが不安定になり多量の凝塊物が発生する場合がある。
 肥大化に用いる酸基含有共重合体ラテックスは、水中で、酸基含有単量体、(メタ)アクリル酸アルキルエステル系単量体、及び必要に応じてこれらと共重合可能な他の単量体を含む単量体混合物を重合して得られた酸基含有共重合体のラテックスである。
 酸基含有単量体としては、カルボキシ基を有する不飽和化合物が好ましく、該化合物としては、(メタ)アクリル酸、イタコン酸、クロトン酸等が挙げられ、(メタ)アクリル酸が特に好ましい。酸基含有単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 (メタ)アクリル酸アルキルエステル系単量体としては、アクリル酸及び/又はメタクリル酸と、炭素数1~12の直鎖又は分岐のアルキル基を有するアルコールとのエステルが挙げられ、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル等が挙げられる。これらのうち、炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルが特に好ましい。(メタ)アクリル酸アルキルエステル系単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 他の単量体は、酸基含有単量体及び(メタ)アクリル酸アルキルエステル系単量体と共重合可能な単量体であり、かつ酸基含有単量体及び(メタ)アクリル酸アルキルエステル系単量体を除く単量体である。他の単量体としては、芳香族ビニル系単量体(例えば、スチレン、α-メチルスチレン、p-メチルスチレン等)、シアン化ビニル系単量体(例えば、アクリロニトリル、メタクリロニトリル等)、2つ以上の重合性官能基を有する化合物(例えば、メタクリル酸アリル、ジメタクリル酸ポリエチレングリコールエステル、シアヌル酸トリアリル、イソシアヌル酸トリアリル、トリメリット酸トリアリル等)等が挙げられる。他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合性単量体の使用量は、酸基含有共重合体ラテックス100重量%中の割合として、酸基含有単量体が好ましくは5~40重量%、さらに好ましくは8~30重量%、(メタ)アクリル酸アルキルエステル系単量体が好ましくは60~95重量%、さらに好ましくは70~92重量%、その他の共重合可能な単量体が好ましくは0~48重量%、さらに好ましくは0~30重量%である。酸基含有単量体の割合が上記下限未満では肥大化能力が不足する。酸基含有単量体の割合が上記上限を超えた場合には、酸基含有共重合体ラテックス製造の際に多量の凝塊物が生成する。
 酸基含有共重合体ラテックスは一般的な乳化重合法により製造することができる。
 乳化重合で使用される乳化剤としては、オレイン酸、パルミチン酸、ステアリン酸、ロジン酸のアルカリ金属塩、アルケニルコハク酸のアルカリ金属塩等で例示されるカルボン酸系の乳化剤、アルキル硫酸エステル、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどの中から選ばれたアニオン系乳化剤等、公知の乳化剤を単独又は2種以上を組み合わされて使用できる。
 乳化剤の使用方法としては、重合初期に全量を一括仕込してもよいし、一部を初期に使用し、残りを重合中に間欠的にあるいは連続的に追加しても良い。乳化剤量やその使用方法によって、酸基含有共重合体ラテックスの粒子径、ひいては肥大化されたゴム質重合体(e)の粒子径に影響を及ぼすため、適正な量及び使用方法を選択する必要がある。
 重合に用いる重合開始剤は、熱分解型の開始剤やレドックス型の開始剤等が使用できる。熱分解型開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられ、レドックス型開始剤としては、クメンハイドロパーオキシドに代表される有機過酸化物-ナトリウムホルムアルデヒドスルホキシレート-鉄塩等の組み合わせが例示される。これらは単独又は2種以上を併用して使用することができる。
 これら以外にも、分子量を調整するためにt-ドデシルメルカプタンやn-オクチルメルカプタン等のメルカプタン類やテルピノレン、α-メチルスチレンダイマー等の連鎖移動剤を使用したり、pHを調節するためにアルカリや酸、減粘剤として電解質を添加することもできる。
 酸基含有共重合体ラテックスの添加量は、比較的小粒子径のゴム質重合体のラテックス100質量部(固形分として)に対し、0.1~10質量部(固形分として)が好ましく、0.3~7質量部がより好ましい。酸基含有共重合体ラテックスの添加量が上記下限未満では、肥大化が十分に進行せず、凝塊物が多量に発生することもある。酸基含有共重合体ラテックスの添加量が上記上限を超えると肥大化ラテックスのpHが低下し、ラテックスが不安定になる傾向にある。
 ゴム質重合体(e)に架橋構造を導入してもよく、この場合に用いられる架橋剤としては、例えばジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジシクロペンタジエンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて用いることができる。
 上記ゴム質重合体(e)にグラフト重合させる単量体のうち、芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、ブロムスチレン等が挙げられ、これらの1種又は2種以上を用いることができる。特にスチレン、α-メチルスチレンが好ましい。
 シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が挙げられ、これらの1種又は2種以上を用いることができる。特にアクリロニトリルが好ましい。
 ゴム質重合体(e)には、芳香族ビニル系単量体、シアン化ビニル系単量体以外に、これらの単量体と共重合可能な他のビニル系単量体をグラフト重合させてもよい。共重合可能な他のビニル系単量体としては、(メタ)アクリル酸エステル系単量体、マレイミド系単量体、アミド系単量体等が挙げられ、これらの1種又は2種以上を用いることができる。
 (メタ)アクリル酸エステル系単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4-t-ブチルフェニル、(メタ)アクリル酸ブロモフェニル、(メタ)アクリル酸ジブロムフェニル、(メタ)アクリル酸クロルフェニル等が挙げられる。
 マレイミド系単量体としてはN-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
 アミド系単量体としてはアクリルアミド、メタクリルアミド等が挙げられる。
 ゴム質重合体(e)にグラフト重合する上述の単量体の組成比率に特に制限はないが、以下の組成比率などであることが好ましい。
 芳香族ビニル系単量体60~90重量%、シアン化ビニル系単量体10~40重量%及び共重合可能な他のビニル系単量体0~30重量%の組成比率;
 芳香族ビニル系単量体30~80重量%、(メタ)アクリル酸エステル系単量体20~70重量%及び共重合可能な他のビニル系単量体0~50重量%の組成比率;
 芳香族ビニル系単量体20~70重量%、(メタ)アクリル酸エステル系単量体20~70重量%、シアン化ビニル系単量体10~60重量%及び共重合可能な他のビニル系単量体0~30重量%の組成比率;
 本発明で用いるグラフト共重合体(B)は、前記のゴム質重合体(e)10~80重量部に、上述のような単量体の1種又は2種以上を20~90重量部グラフト重合してなるものである(ゴム質重合体と単量体との合計で100重量部)。ゴム質重合体(e)が10重量部より少ないと得られる熱可塑性樹脂組成物の耐衝撃性に劣るものとなる。ゴム質重合体(e)が80重量部を超えると得られる熱可塑性樹脂組成物が流動性に劣るものとなる。ゴム質重合体(e)は30~70重量部で、単量体は30~70重量部であることが好ましく、ゴム質重合体(e)は40~60重量部で、単量体は60~40重量部であることがより好ましい(ゴム質重合体と単量体との合計で100重量部)。
 本発明のグラフト共重合体(B)を製造するための手法に特に制限はなく、乳化重合法、懸濁重合法、塊状重合法等を用いることが出来る。乳化重合法を用いた場合、上述のゴム質重合体(e)に上述の単量体をグラフト重合することによって、グラフト共重合体(B)のラテックスを得ることが出来る。得られたグラフト共重合体(B)のラテックスを公知の方法により凝固させ、洗浄、脱水、乾燥工程を経ることでグラフト共重合体(B)のパウダーを得ることができる。
 乳化重合法によりグラフト共重合体(B)を製造する場合、乳化剤の種類ないしは量、開始剤の種類ないしは量、重合時間、重合温度、撹拌条件等の製造条件を適宜選択することにより、グラフト成分の分子量やグラフト率を調節することができる。
 乳化重合で用いる乳化剤としては、乳化重合時のラテックスの安定性に優れ、重合率を高めることができる点から、アニオン系乳化剤が好ましい。アニオン系乳化剤としては、カルボン酸塩(例えば、サルコシン酸ナトリウム、脂肪酸カリウム、脂肪酸ナトリウム、アルケニルコハク酸ジカリウム、ロジン酸石鹸等)、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等が挙げられる。前記単量体の加水分解抑制といった点から、乳化剤としては、サルコシン酸ナトリウム、アルケニルコハク酸ジカリウム、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等が好ましく、これらの中でも特に重合安定性などの面から、アルケニルコハク酸ジカリウムが好ましい。これらの乳化剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 乳化グラフト重合で得られたグラフト共重合体(B)ラテックスからグラフト共重合体(B)を回収する方法としては、例えば、グラフト共重合体(B)ラテックスを、凝固剤を溶解させた熱水中に投入することによってスラリー状に凝析させる湿式法や、加熱雰囲気中にグラフト共重合体(B)ラテックスを噴霧することによって半直接的にグラフト共重合体(B)を回収するスプレードライ法等が挙げられる。
 湿式法に用いる凝固剤としては、硫酸、塩酸、リン酸、硝酸等の無機酸や、塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等の金属塩等が挙げられ、重合で用いた乳化剤に応じて選定される。乳化剤として脂肪酸石鹸やロジン酸石鹸等のカルボン酸石鹸のみが使用されている場合にはいかなる凝固剤を用いてもグラフト共重合体(B)を回収できるが、滞留熱安定性の点から無機酸を用いグラフト共重合体(B)を回収することが好ましい。アルキルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合には、上記無機酸では回収液が濁り、グラフト共重合体(B)の回収が困難であるため、凝固剤として金属塩を用いる必要がある。
 湿式法により得られたスラリー状のグラフト共重合体(B)から乾燥状態のグラフト共重合体(B)を得る方法としては、まず残存する乳化剤残渣を水中に溶出させて洗浄し、次いで、このスラリーを遠心又はプレス脱水機等で脱水した後に気流乾燥機等で乾燥する方法、圧搾脱水機や押出機等で脱水と乾燥とを同時に実施する方法等が挙げられる。かかる方法によって、粉体又は粒子状の乾燥グラフト共重合体(B)が得られる。圧搾脱水機や押出機から排出されたグラフト共重合体(B)を回収せず、直接、樹脂組成物を製造する押出機や成形機に送って成形品とすることも可能である。
 本発明で用いるグラフト共重合体(B)のグラフト率(グラフト共重合体(B)のアセトン可溶分量と不溶分量及びグラフト共重合体(B)中のゴム質重合体の重量から求める。)、及びアセトン可溶分の還元粘度(0.2g/dL、N,N-ジメチルホルムアミド溶液として25℃で測定)に特に制限はなく、要求性能によって任意の構造のものを使用することができるが、物性バランスの観点から、グラフト率は5~150%であることが好ましく、還元粘度は0.2~2.0dL/gであることが好ましい。
 グラフト共重合体(B)のグラフト率及びアセトン可溶分の還元粘度は、具体的には、後述の実施例の項に記載される方法で求められる。
<共重合体(C)>
 本発明で用いる共重合体(C)は、芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらの単量体と共重合可能な他のビニル系単量体から選ばれる2種以上の単量体を共重合することで得られる。共重合体(C)を構成する各単量体は、グラフト共重合体(B)で用いられる単量体と同様のものを用いる事ができる。
 共重合体(C)の単量体組成については特に制限はないが、例えば、芳香族ビニル系単量体60~95重量%、好ましくは70~85重量%、シアン化ビニル系単量体5~40重量%、好ましくは15~30重量%、及びこれらと共重合可能な他の単量体0~40重量%、好ましくは0~30重量%からなる単量体混合物を重合して得られる共重合体である。芳香族ビニル系単量体、シアン化ビニル系単量体及び他の単量体が上記範囲内であると、グラフト共重合体(B)と共重合体(C)の相溶性が良好となり、得られる成形品の外観不良が生じにくい。
 共重合体(C)の製造方法としては、特に限定されず、乳化重合、懸濁重合、溶液重合、塊状重合等の方法が使用できる。
 共重合体(C)の重量平均分子量(Mw)は、50000~200000の範囲が好ましく、さらに好ましくは75000~150000の範囲である。共重合体(C)の重量平均分子量がこの範囲よりも低い場合には、得られる成形品の耐衝撃性が不足する。共重合体(C)の重量平均分子量が、この範囲を超えた場合には、成形加工性が低下する。共重合体(C)の重量平均分子量は、後掲の実施例の項に記載される方法で測定される。
<その他の成分>
 本発明の熱可塑性樹脂組成物は、上記(A)成分、(B)成分及び(C)成分の他、必要に応じてヒンダードアミン系の光安定剤;ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤;フェノール系、アクリレート系等の熱安定剤;ベンゾエート系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤;有機ニッケル系、高級脂肪酸アミド類等の滑剤;リン酸エステル類等の可塑剤;ポリブロモフェニルエーテル、テトラブロモビスフェノール-A、臭素化エポキシオリゴマー、臭素化ポリカーボネートオリゴマー等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤;臭気マスキング剤;カーボンブラック、酸化チタン等の顔料、及び染料等を添加することができる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。
<熱可塑性樹脂組成物の製造方法>
 本発明の熱可塑性樹脂組成物は、上述の成分を混合することで得ることができる。これらの成分の混合には、例えば、押出機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いることができる。
 ポリカーボネート樹脂(A)、グラフト共重合体(B)及び共重合体(C)の混合順序、方法には何ら制限はなく、これら3成分のうち、予め任意の2成分を混合・混練後、残る1成分を混合・混練することもできる。その他の成分についても、その混合・混練時期に特に制限はない。なお、溶融混練に際しては各種公知の押出機を用い、180~300℃で溶融混練することが好ましい。
 本発明の熱可塑性樹脂組成物は、その目的を損なわない範囲内において、他の熱可塑性樹脂と混合して使用することもできる。他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリ乳酸樹脂などのポリエステル系樹脂、ポリアミド系樹脂等の1種又は2種以上を使用することができる。
[成形品]
 本発明の成形品は、上述の本発明の熱可塑性樹脂組成物を用いて成形されたものである。本発明の熱可塑性樹脂組成物の成形方法は、何等限定されるものではない。成形方法としては、例えば、射出成形法、押出成形法、圧縮成形法、インサート成形法、真空成形法、ブロー成形法などが挙げられる。
 本発明の熱可塑性樹脂組成物は流動性、成形性に優れ、これを成形してなる本発明の成形品は、耐衝撃性、耐熱性に優れるものである。
 本発明の樹脂成形品は、車輌用部品、建材、日用品、家庭電化製品・事務機器部品をはじめとする多種多様な用途に好適に用いられる。
 本発明の樹脂成形品の用途のうち、車輌用部品としては、例えば、センタクラスタ、レジスタベゼル、コンソールアッパーパネル、カップフォルダー、ドアアームレスト、インサイドハンドル、各種スイッチ部品、オーディオモール等のモール類、或いはドアミラー筐体、ラジエターグリル、ピラーガーニッシュ、リアコンビネーションランプハウジング、エンブレム、ルーフレール等が挙げられる。建材としては、壁材、床材、窓枠、手すり、インテリア部材、雨どい等の建材部品が挙げられる。日用品としては食器、玩具、雑貨などが挙げられる。家庭電化製品・事務機器部品としては、掃除機ハウジング、テレビジョンハウジング、エアコンハウジング等の家電部品、通信機器ハウジング、ノートパソコンハウジング、携帯端末ハウジング、モバイル通信機器ハウジング、液晶プロジェクターハウジング等の電機機器ハウジング等に好適に使用される。
 以下に、合成例、実施例、及び比較例を挙げて本発明をより具体的に説明する。本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
 以下において、「部」は「重量部」を意味するものとする。
[物性の測定方法]
 以下の実施例及び比較例で熱可塑性樹脂組成物の製造に用いた各成分の物性の測定方法は以下の通りである。
<ポリカーボネート樹脂の粘度平均分子量>
 ウベローデ粘度計を用いて塩化メチレンを溶媒とした溶液で測定し、以下のSchnellの粘度式を用いて算出した。
  [η]=1.23×10-4Mv0.83
(式中、ηは固有粘度を示し、Mvは粘度平均分子量を示す)
<ゴム質重合体ラテックスの固形分>
 ゴム質重合体ラテックスの固形分は、ラテックス1gを正確に秤量し、200℃で20分かけて揮発分を蒸発させた後の残渣物を計量し、下記の式より求めた。
Figure JPOXMLDOC01-appb-M000001
<重合転化率>
 重合転化率は、前記固形分を測定し、下記の式より求めた。
Figure JPOXMLDOC01-appb-M000002
<粒子径>
 ゴム質重合体、肥大化ゴム及びブレンドゴム等の重量平均粒子径、粒子径累積重量分率は、日機装社製「Microtrac Model:9230UPA」を用いて光子相関法より求めた。
<グラフト共重合体のグラフト率>
 グラフト共重合体2.5gにアセトン80mLを加え65℃の湯浴で3時間還流し、アセトン可溶分の抽出を行った。残留したアセトン不溶物を遠心分離により分離し、乾燥した後の重量を測定し、グラフト共重合体中のアセトン不溶物の重量割合を算出した。得られたグラフト共重合体中のアセトン不溶物の重量割合より次の式を用いて、グラフト率を算出した。
Figure JPOXMLDOC01-appb-M000003
<グラフト共重合体のアセトン可溶分の還元粘度>
 グラフト共重合体のアセトン可溶分の濃度が0.2g/dLとなるように調製したN,N-ジメチルホルムアミド溶液について、ウベローデ粘度計を用いて25℃での還元粘度:ηsp/C(単位:dL/g)を測定した。
<共重合体の重量平均分子量(Mw)>
 共重合体をテトラヒドロフランに溶解して得られた溶液を測定試料として、GPC(ゲル浸透クロマトグラフィー)(東ソー(株)製)を用いて測定し、標準ポリスチレン換算法にて算出した。
[ポリカーボネート樹脂(A)]
 ポリカーボネート(A)として、市販品(三菱エンジニアリングプラスチック(株)製「S-2000F」)を準備した。このポリカーボネート樹脂の粘度平均分子量(Mv)は22,000であった。
[各成分の合成]
<合成例1:ゴム質重合体ラテックス(e-1)の製造>
 試薬注入容器、冷却管、ジャケット加熱機及び撹拌装置を備えた反応器内に、脱イオン水(以下、単に水と記す。)200部、アルキルベンゼンスルホン酸ナトリウム2.4部、アクリル酸n-ブチル10部、トリアリルイソシアヌレート0.05部、及びクメンヒドロパーオキシド0.02部を撹拌下で仕込み、反応器内を窒素置換した後、内容物を昇温した。
 内温60℃にて、ナトリウムホルムアルデヒドスルホキシレート0.09部、硫酸第一鉄七水塩0.006部、エチレンジアミン四酢酸二ナトリウム0.012部、及び水5部からなる水溶液を添加し、重合を開始させた。重合発熱が確認された後、ジャケット温度を60℃とし、重合発熱が確認されなくなるまで重合を継続した。次いで、アクリル酸n-ブチル99.5部、トリアリルイソシアヌレート0.5部、及びクメンヒドロパーオキシド0.2部からなる混合液を1.8リットル/時間で、アルキルベンゼンスルホン酸ナトリウム2.5部、及び水115部からなる水溶液を2.4リットル/時間で、ナトリウムホルムアルデヒドスルホキシレート0.09部、硫酸第一鉄七水塩0.006部、エチレンジアミン四酢酸二ナトリウム0.012部、及び水5部からなる水溶液を100ミリリットル/時間で10時間かけて導入し、重合温度60℃で連続重合を実施し、固形分が43重量%、ゴム質重合体の重量平均粒子径が260nm、10重量%の粒子径が110nmであり、かつ90重量%の粒子径が550nmであるゴム質重合体ラテックス(e-1)(アルキルアクリレート系ゴムラテックス)を得た。
<合成例2:ゴム質重合体ラテックス(e-2)の製造>
 試薬注入容器、冷却管、ジャケット加熱機及び撹拌装置を備えた反応器内に、水340部、アルケニルコハク酸ジカリウム(花王社製、ラテムルASK)1.7部、アクリル酸n-ブチル100部、トリアリルイソシアヌレート0.5部、及びt-ブチルハイドロパーオキシド0.34部を撹拌下で仕込み、反応器内を窒素置換した後、内容物を昇温した。
 内温55℃にて、ナトリウムホルムアルデヒドスルホキシレート0.34部、硫酸第一鉄七水塩0.0005部、エチレンジアミン四酢酸二ナトリウム0.0015部、及び水10部からなる水溶液を添加し、重合を開始させた。重合発熱が確認された後、ジャケット温度を60℃とし、重合発熱が確認されなくなるまで重合を継続した。重合開始から3時間後に冷却し、固形分が23重量%、ゴム質重合体の重量平均粒子径が105nm、10重量%の粒子径が70nmであり、かつ90重量%の粒子径が150nmであるゴム質重合体ラテックス(e-2)(アルキルアクリレート系ゴムラテックス)を得た。
<合成例3:ゴム質重合体ラテックス(e-3)~(e-6)の製造>
 トリアリルイソシアヌレートをメタクリル酸アリルに変更し、使用量を表1に記載した量にした以外は合成例2と同様にして、表1に示す粒子径のゴム質重合体ラテックス(e-3)~(e-6)を得た。
Figure JPOXMLDOC01-appb-T000004
<合成例4:ゴム質重合体ラテックス(e-7)の製造>
 耐熱容器に、1,3-ブタジエン100部、t-ドデシルメルカプタン1.0部、過硫酸カリウム0.15部、ロジン酸ナトリウム1.5部、水酸化カリウム0.02部、ピロリン酸ナトリウム0.3部、及び水200部を仕込み、60℃にて反応させた。15時間後、冷却して反応を終了させて、固形分32重量%、ゲル含有率60重量%で、重量平均粒子径が75nm、10重量%の粒子径が45nmであり、かつ90重量%の粒子径が110nmであるゴム質重合体ラテックス(e-7)(ポリブタジエン系ゴムラテックス)を得た。
<合成例5:ゴム質重合体ラテックス(e-8)の製造>
 t-ドデシルメルカプタン1.0部を、0.5部に変更した以外は、合成例4と同様にして、固形分33重量%、ゲル含有率88重量%で、重量平均粒子径が75nm、10重量%の粒子径が40nmであり、かつ90重量%の粒子径が105nmであるゴム質重合体ラテックス(e-8)(ポリブタジエン系ゴムラテックス)を得た。
<合成例6:酸基含有共重合体ラテックス(K-1)の製造>
 試薬注入容器、冷却管、ジャケット加熱機及び撹拌装置を備えた反応器内に、水200部、オレイン酸カリウム2部、ジオクチルスルホコハク酸ナトリウム4部、硫酸第一鉄七水塩0.003部、エチレンジアミン四酢酸二ナトリウム0.009部、及びナトリウムホルムアルデヒドスルホキシレート0.3部を窒素フロー下で仕込み、60℃に昇温した。60℃になった時点から、アクリル酸n-ブチル82部、メタクリル酸18部、及びクメンヒドロパーオキシド0.5部からなる混合物を120分かけて連続的に滴下した。滴下終了後、さらに2時間、60℃のまま熟成を行い、固形分が33重量%、重合転化率が96%、酸基含有共重合体の重量平均粒子径が150nmである酸基含有共重合体ラテックス(K-1)を得た。
<合成例7:酸基含有共重合体ラテックス(K-2)の製造>
 アクリル酸n-ブチル82部、メタクリル酸18部を、アクリル酸n-ブチル86部、メタクリル酸14部に変更した以外は、合成例6と同様にして、固形分が33重量%、重合転化率が95%、酸基含有共重合体の重量平均粒子径が110nmである酸基含有共重合体ラテックス(K-2)を得た。
<合成例8:酸基含有共重合体ラテックス(K-3)の製造>
 アクリル酸n-ブチル82部、メタクリル酸18部を、アクリル酸n-ブチル89部、メタクリル酸11部に変更した以外は、合成例6と同様にして、固形分が33重量%、重合転化率が97%、酸基含有共重合体の重量平均粒子径が60nmである酸基含有共重合体ラテックス(K-3)を得た。
<合成例9:肥大化ゴムラテックス(f-1)の製造>
 試薬注入容器、ジャケット加熱機及び撹拌装置を備えた反応器内に、ゴム質重合体ラテックス(e-2)435部(固形分100部)を仕込み、撹拌下でジャケット加熱機により内温を30℃に昇温した。ピロリン酸ナトリウム0.8部を5重量%水溶液として反応器内に添加し、十分撹拌した後、酸基含有共重合体ラテックス(K-1)3部(固形分1部)と酸基含有共重合体ラテックス(K-2)0.9部(固形分0.3部)を添加した。内温30℃を保持したまま30分撹拌し、肥大化ゴムの重量平均粒子径が350nm、10重量%の粒子径が150nmであり、かつ90重量%の粒子径が580nmである肥大化ゴムラテックス(f-1)を得た。
<合成例10:肥大化ゴムラテックス(f-2)~(f-14)の製造>
 ゴム質重合体ラテックス(e)、ピロリン酸ナトリウム、及び酸基含有共重合体ラテックス(K)の種類と量を表2に記載の通り変更した以外は、合成例9と同様にして、表2に示す粒子径の肥大化ゴムラテックス(f-2)~(f-14)を得た。
Figure JPOXMLDOC01-appb-T000005
<合成例11:ブレンドゴムラテックス(g-1)の製造>
 撹拌装置を備えた反応器内に、撹拌下でゴム質重合体ラテックス(e-3)260部(固形分60部)と肥大化ゴムラテックス(f-10)174部(固形分40部)を仕込み、重量平均粒子径が130nm、10重量%の粒子径が90nmであり、かつ90重量%の粒子径が490nmであるブレンドゴムラテックス(g-1)を得た。
<合成例12:ブレンドゴムラテックス(g-2)~(g-5)の製造>
 ゴム質重合体ラテックス又は肥大化ゴムラテックスの種類と量を表3に記載の通り変更した以外は、合成例11と同様にして、表3に示す粒子径のブレンドゴムラテックス(g-2)~(g-5)を得た。
Figure JPOXMLDOC01-appb-T000006
<合成例13:グラフト共重合体(B-1)の製造>
 試薬注入容器、冷却管、ジャケット加熱機及び撹拌装置を備えた反応器内に、水(ゴムラテックス中の水を含む)260部、ゴム質重合体ラテックス(e-1)140部(固形分60部)、及びアルキルベンゼンスルホン酸ナトリウム0.5部を添加し、反応器内部の液温を60℃まで昇温した後、ナトリウムホルムアルデヒドスルホキシレート0.2部、硫酸第一鉄七水塩0.003部、エチレンジアミン四酢酸二ナトリウム0.017部、及び水10部からなる水溶液と、アクリロニトリル15部、スチレン25部、及びクメンヒドロパーオキシド0.2部の混合液を2時間にわたって滴下し、重合した。滴下終了後、内温を60℃に保持したまま30分間撹拌した後、冷却し、グラフト共重合体(B-1)ラテックスを得た。
 次いで、1重量%酢酸カルシウム(酢酸Ca)水溶液150部を75℃に加熱し、該水溶液を撹拌しながら、該水溶液にグラフト共重合体(B-1)ラテックス100部を徐々に滴下し、グラフト共重合体(B-1)を固化させ、さらに90℃に昇温して5分間保持した。次いで、固化物を脱水、洗浄、乾燥し、粉末状のグラフト共重合体(B-1)を得た。
<合成例14:グラフト共重合体(B-2)の製造>
 試薬注入容器、冷却管、ジャケット加熱機及び撹拌装置を備えた反応器内に、水(ゴムラテックス中の水を含む)220部、肥大化ゴムラテックス(f-1)250部(固形分60部)、及びアルケニルコハク酸ジカリウム(花王社製、ラテムルASK)0.2部を添加し、反応器内部の液温を70℃まで昇温した後、ナトリウムホルムアルデヒドスルホキシレート0.3部、硫酸第一鉄七水塩0.001部、エチレンジアミン四酢酸二ナトリウム0.03部、及び水10部からなる水溶液を添加し、次いでアクリロニトリル15部、スチレン25部、及びt-ブチルハイドロパーオキシド0.2部の混合液を2時間にわたって滴下し、重合した。滴下終了後、内温を60℃に保持したまま30分間撹拌した後、冷却し、グラフト共重合体(B-2)ラテックスを得た。
 次いで、1.2重量%硫酸水溶液150部を75℃に加熱し、該水溶液を撹拌しながら、該水溶液にグラフト共重合体(B-2)ラテックス100部を徐々に滴下し、グラフト共重合体(B-2)を固化させ、さらに90℃に昇温して5分間保持した。次いで、固化物を脱水、洗浄、乾燥し、粉末状のグラフト共重合体(B-2)を得た。
<合成例15:グラフト共重合体(B-3)~(B-16)の製造>
 ゴム質重合体ラテックス、肥大化ゴムラテックス又はブレンドゴムラテックス、単量体成分、凝固剤を、表4に示す種類と量に変更した以外は、合成例14と同様にして、粉末状のグラフト共重合体(B-3)~(B-16)を得た。
<合成例16:グラフト共重合体(B-17)の製造>
 オートクレーブに、水(ゴムラテックス中の水を含む)240部、ブレンドゴムラテックス(g-4)180部(固形分60部)、半硬化牛脂ソーダ石鹸1.5部、及び水酸化カリウム0.05部、硫酸第一鉄七水塩0.004部、ピロリン酸ナトリウム0.1部、結晶ブドウ糖0.15部、及び水10部からなる水溶液を添加し、反応器内部の液温を60℃まで昇温した。60℃に保持したまま、アクリロニトリル13部、スチレン27部、及びクメンヒドロパーオキシド0.2部の混合液を2時間にわたって滴下し、重合した。滴下終了後、内温を65℃に保持したまま30分間撹拌した後、冷却し、グラフト共重合体(B-17)ラテックスを得た。
 次いで、グラフト共重合体ラテックス(B-17)に酸化防止剤を添加し、1.2重量%硫酸水溶液150部を75℃に加熱し、該水溶液を撹拌しながら、該水溶液にグラフト共重合体(B-17)ラテックス100部を徐々に滴下し、グラフト共重合体(B-17)を固化させ、さらに90℃に昇温して5分間保持した。次いで、固化物を脱水、洗浄、乾燥し、粉末状のグラフト共重合体(B-17)を得た。
<合成例17:グラフト共重合体(B-18)の製造>
 ブレンドゴムラテックス(g-4)をブレンドゴムラテックス(g-5)に変更した以外は、合成例16と同様にして、粉末状のグラフト共重合体(B-18)を得た。
 表4には、得られたグラフト共重合体のグラフト率とアセトン可溶分の還元粘度を併記する。
Figure JPOXMLDOC01-appb-T000007
<合成例18:共重合体(C)の製造>
 窒素置換した反応器に、水120部、アルキルベンゼンスルホン酸ソーダ0.002部、ポリビニルアルコール0.5部、アゾイソブチルニトリル0.3部、及びt-ドデシルメルカプタン0.5部と、アクリロニトリル27部、及びスチレン73部からなる単量体混合物を使用し、スチレンの一部を逐次添加しながら開始温度60℃から5時間昇温加熱後、120℃に到達させた。更に、120℃で4時間反応した後、重合物を取り出し、重量平均分子量(Mw)110000の共重合体(C)を得た。
[熱可塑性樹脂組成物の製造と評価]
<実施例1~19、比較例1~16>
 表5~7に示すポリカーボネート樹脂(A)、グラフト共重合体(B)、及び共重合体(C)を、表5~7に示す配合で用い、更に、添加剤(D)として住友精化社製滑剤「フローセンUF」0.5部をヘンシェルミキサーを用いて混合した。該混合物を日本製鋼製TEX28V二軸押出機を用いて260℃にて溶融混練してペレットを得た。得られたペレットを用いて以下の物性評価を行った。評価結果を表5~7に示す。
<耐衝撃性>
 各実施例及び比較例で得られたペレットを用いISO試験方法294に準拠して試験片を成形し、各温度(23℃、-30℃)での耐衝撃性を測定した。耐衝撃性はISO179に準拠し、4mm厚みで、ノッチ付きシャルピー衝撃値を測定した。単位:kJ/m(NB:Non Break、非破断となり計測できないことを示す)
<流動性>
 各実施例及び比較例で得られたペレットを用い、ISO1133に準拠して、220℃、10kg荷重の条件でメルトボリュームフローレイトを測定した。単位:cm/10分
<曲げ弾性率>
 各実施例及び比較例で得られたペレットを用い、ISO試験方法294に準拠して試験片を成形し、ISO178に準拠して温度23℃での曲げ弾性率を測定した。単位:GPa
<耐熱性>
 各実施例及び比較例で得られたペレットを用い、ISO試験方法294に準拠して試験片を成形し、ISO75に準拠して、荷重1.8MPaの荷重たわみ温度を測定した。単位:℃
<滞留熱安定性>
 各実施例及び比較例で得られたペレットを用い、射出成形機(東芝機器製 IS55FP-1.5A、シリンダー温度:280℃、金型温度:60℃)を用いて、成形サイクル50秒で成形した成形品と、成形サイクル10分で成形した成形品を得た。得られた各成形品について、上述の耐衝撃性(23℃)の測定を行った。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 
 表5,6に示すように、実施例1~19の本発明の熱可塑性樹脂組成物は、耐衝撃性や流動性、耐熱性などの物性バランスに優れる。特に、実施例12では、耐熱性に優れる結果となった。実施例6-11、13、14では耐衝撃性が良好な結果となった。実施例1-4において、耐衝撃性がさらに優れる結果となった。硫酸にて回収したグラフト共重合体を用いた実施例5では、滞留熱安定性においても良好な結果となった。
 表7に示すように、グラフト共重合体(B)の使用量が5重量部未満であった比較例1、グラフト共重合体(B)の使用量が90重量部より多かった比較例2では、耐衝撃性に劣る結果となった。グラフト共重合体(B)のゴム質重合体の重量平均粒子径が150~450nmの範囲外である比較例3、7、8、10、13では、耐衝撃性に劣る結果となった。ゴム質重合体の粒子径累積重量分率において、10重量%の粒子径が50~250nmの範囲外である比較例6、12、16、90重量%の粒子径が450~650nmの範囲外である比較例3-5、7、9、11、13-15においても耐衝撃性が劣る結果となった。
 本発明により、耐衝撃性や流動性、耐熱性などの物性バランスに優れた熱可塑性樹脂組成物及びその成形品を提供することができる。本発明の熱可塑性樹脂組成物及びその成形品は、車輌用部品、建材、日用品、家庭電化製品・事務機器部品等の用途に有用である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年6月13日付で出願された日本特許出願2014-122591に基づいており、その全体が引用により援用される。

Claims (10)

  1.  ポリカーボネート樹脂(A)10~95重量部と、下記のグラフト共重合体(B)5~90重量部とを合計で100重量部となるように含有することを特徴とする熱可塑性樹脂組成物。
     グラフト共重合体(B):重量平均粒子径が150~450nmであり、粒子径累積重量分率において、10重量%の粒子径が50~250nmであり、かつ90重量%の粒子径が450~650nmであるゴム質重合体10~80重量部に、少なくとも芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む1種又は2種以上の単量体20~90重量部をグラフト重合して得られるグラフト共重合体(ゴム質重合体と単量体との合計で100重量部)
  2.  ポリカーボネート樹脂(A)10~95重量部と、下記のグラフト共重合体(B)5~90重量部と、下記の共重合体(C)50重量部以下とを合計で100重量部となるように含有することを特徴とする熱可塑性樹脂組成物。
     グラフト共重合体(B):重量平均粒子径が150~450nmであり、粒子径累積重量分率において、10重量%の粒子径が50~250nmであり、かつ90重量%の粒子径が450~650nmであるゴム質重合体10~80重量部に、少なくとも芳香族ビニル系単量体及び/又はシアン化ビニル系単量体を含む1種又は2種以上の単量体20~90重量部をグラフト重合して得られるグラフト共重合体(ゴム質重合体と単量体との合計で100重量部)
     共重合体(C):芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれる2種以上の単量体を共重合することで得られる共重合体
  3.  請求項1又は2において、グラフト共重合体(B)の前記ゴム質重合体が、アルキル(メタ)アクリレート系ゴム、ジエン/アルキル(メタ)アクリレート系複合ゴム、及びポリオルガノシロキシサン/アルキル(メタ)アクリレート系複合ゴムから選ばれる1種又は2種以上であることを特徴とする熱可塑性樹脂組成物。
  4.  請求項1ないし3のいずれか1項において、グラフト共重合体(B)の前記ゴム質重合体は、小粒子径のゴム質重合体のラテックスに縮合酸塩を添加した後、酸基含有共重合体ラテックスと混合して肥大化処理して得られることを特徴とする熱可塑性樹脂組成物。
  5.  請求項4において、前記縮合酸塩の添加量が、前記小粒子径のゴム質重合体のラテックス100質量部(固形分として)に対し、0.1~10重量部であり、前記酸基含有共重合体ラテックスの添加量が、前記小粒子径のゴム質重合体のラテックス100質量部(固形分として)に対し、0.1~10質量部(固形分として)であることを特徴とする熱可塑性樹脂組成物。
  6.  請求項4又は5において、前記酸基含有共重合体ラテックスは、酸基含有単量体、(メタ)アクリル酸アルキルエステル系単量体、及び必要に応じてこれらと共重合可能な他の単量体を含む単量体混合物を重合して得られることを特徴とする熱可塑性樹脂組成物。
  7.  請求項1ないし6のいずれか1項において、グラフト共重合体(B)の前記ゴム質重合体にグラフト重合する前記単量体の組成比率が、
     芳香族ビニル系単量体60~90重量%、シアン化ビニル系単量体10~40重量%及び共重合可能な他のビニル系単量体0~30重量%の組成比率;
     芳香族ビニル系単量体30~80重量%、(メタ)アクリル酸エステル系単量体20~70重量%及び共重合可能な他のビニル系単量体0~50重量%の組成比率;或いは
     芳香族ビニル系単量体20~70重量%、(メタ)アクリル酸エステル系単量体20~70重量%、シアン化ビニル系単量体10~60重量%及び共重合可能な他のビニル系単量体0~30重量%の組成比率;であることを特徴とする熱可塑性樹脂組成物。
  8.  請求項1ないし7のいずれか1項において、グラフト共重合体(B)のグラフト率が5~150%で、還元粘度が0.2~2.0dL/gであることを特徴とする熱可塑性樹脂組成物。
  9.  請求項2において、共重合体(C)は、芳香族ビニル系単量体60~95重量%、シアン化ビニル系単量体5~40重量%、及びこれらと共重合可能な他の単量体0~40重量%からなる単量体混合物を重合して得られる共重合体であり、共重合体(C)の重量平均分子量(Mw)が、50000~200000の範囲であることを特徴とする熱可塑性樹脂組成物。
  10.  請求項1ないし9のいずれか1項に記載の熱可塑性樹脂組成物を成形してなる成形品。
PCT/JP2015/064272 2014-06-13 2015-05-19 熱可塑性樹脂組成物及びその成形品 WO2015190237A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201580031582.2A CN106459574B (zh) 2014-06-13 2015-05-19 热塑性树脂组合物及其成型品
BR112016026520-3A BR112016026520B1 (pt) 2014-06-13 2015-05-19 Composição de resina termoplástica, e artigo moldado
KR1020167033547A KR102256423B1 (ko) 2014-06-13 2015-05-19 열가소성 수지 조성물 및 그 성형품
EP15806765.2A EP3156452B1 (en) 2014-06-13 2015-05-19 Thermoplastic resin composition and molded product thereof
RU2017100916A RU2017100916A (ru) 2014-06-13 2015-05-19 Композиция термопластичной смолы и формованное изделие из нее
JP2015552709A JP5950059B2 (ja) 2014-06-13 2015-05-19 熱可塑性樹脂組成物及びその成形品
AU2015272757A AU2015272757B2 (en) 2014-06-13 2015-05-19 Thermoplastic resin composition and molded product thereof
SG11201609505XA SG11201609505XA (en) 2014-06-13 2015-05-19 Thermoplastic resin composition and molded product thereof
US15/311,049 US10208202B2 (en) 2014-06-13 2015-05-19 Thermoplastic resin composition containing polycarbonate resin, graft copolymer, and copolymer, and molded article thereof
IL248841A IL248841B (en) 2014-06-13 2016-11-08 Thermoplastic resin composition and mold-produced article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122591 2014-06-13
JP2014122591 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190237A1 true WO2015190237A1 (ja) 2015-12-17

Family

ID=54833342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064272 WO2015190237A1 (ja) 2014-06-13 2015-05-19 熱可塑性樹脂組成物及びその成形品

Country Status (13)

Country Link
US (1) US10208202B2 (ja)
EP (1) EP3156452B1 (ja)
JP (1) JP5950059B2 (ja)
KR (1) KR102256423B1 (ja)
CN (1) CN106459574B (ja)
AU (1) AU2015272757B2 (ja)
BR (1) BR112016026520B1 (ja)
IL (1) IL248841B (ja)
MY (1) MY181194A (ja)
RU (1) RU2017100916A (ja)
SG (1) SG11201609505XA (ja)
TW (1) TWI664233B (ja)
WO (1) WO2015190237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094518A (ja) * 2014-11-13 2016-05-26 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物及びその成形品
JP6602516B1 (ja) * 2019-03-28 2019-11-06 日本エイアンドエル株式会社 熱可塑性樹脂組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018714B1 (ko) * 2016-12-30 2019-09-04 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
CN110574095A (zh) * 2017-04-19 2019-12-13 Agc株式会社 罩构件和显示装置
JP6218347B1 (ja) * 2017-07-21 2017-10-25 ユーエムジー・エービーエス株式会社 めっき用熱可塑性樹脂組成物、樹脂成形品およびめっき加工品
EP3473918B1 (de) * 2017-10-19 2021-12-01 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer
KR102465681B1 (ko) 2019-09-06 2022-11-11 주식회사 엘지화학 열가소성 수지 조성물 및 이의 성형품
JP6850932B1 (ja) * 2020-11-10 2021-03-31 日本エイアンドエル株式会社 塗装用樹脂組成物
US20230167218A1 (en) * 2020-11-27 2023-06-01 Lg Chem, Ltd. Method for preparing graft copolymer, graft copolymer, and resin composition comprising the same
JP6938753B1 (ja) * 2020-12-23 2021-09-22 テクノUmg株式会社 めっき用樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143287A (ja) * 2002-10-24 2004-05-20 Umg Abs Ltd グラフト共重合体含有樹脂組成物
JP2007308648A (ja) * 2006-05-22 2007-11-29 Toray Ind Inc 熱可塑性樹脂組成物およびシート
JP2009203270A (ja) * 2008-02-26 2009-09-10 Teijin Chem Ltd 外観に優れたポリカーボネート樹脂組成物
JP2010077379A (ja) * 2008-08-27 2010-04-08 Mitsubishi Rayon Co Ltd ポリカーボネート樹脂組成物、成形体の製造方法
JP2014122255A (ja) * 2012-12-20 2014-07-03 Nippon A&L Inc 熱可塑性樹脂組成物及び成形品
JP2014181279A (ja) * 2013-03-19 2014-09-29 Toray Ind Inc 天然ゴム含有熱可塑性樹脂組成物およびその成形品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427960B1 (de) 1974-06-10 1975-06-19 Basf Ag Verfahren zur Herstellung von schlagfesten thermoplastischen Formmassen
DE3114875A1 (de) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von schlagfesten thermoplastischen formmassen
DE3339001A1 (de) 1983-07-06 1985-01-17 Bayer Ag, 5090 Leverkusen Thermoplastische polyester-formmassen mit hoher zaehigkeit
DE4121975A1 (de) 1991-07-03 1993-01-07 Basf Ag Thermoplastische formmassen auf der basis von polycarbonaten, styrol/acrylnitril-polymerisaten und polyolefinen
BR9712121A (pt) 1996-09-26 1999-08-31 Basf Ag Processo para a preparação de termoplásticos endurecidos ou misturas poliméricas contendo termoplásticos endurecidos, meterial de moldagem termoplástico e uso do mesmo, e, extrusora.
JPH111522A (ja) * 1997-06-11 1999-01-06 Kanegafuchi Chem Ind Co Ltd 耐衝撃性に優れた高ゴム含量グラフト共重合体および熱可塑性樹脂組成物
JP4438128B2 (ja) * 1999-06-21 2010-03-24 ユーエムジー・エービーエス株式会社 ダイレクト蒸着された熱可塑性樹脂成形品
MXPA02008732A (es) 2000-03-09 2003-04-14 Bayer Ag Masas de moldeo de policarbonato con caucho de injerto.
DE60143593D1 (de) 2000-12-25 2011-01-13 Mitsubishi Rayon Co Pfropfcopolymer und thermoplastische Harzzusammensetzung
US7317043B2 (en) * 2002-02-27 2008-01-08 Mitsubishi Rayon Co., Ltd. Impact modifier, process for producing the same, and thermoplastic resin composition
JP4112893B2 (ja) * 2002-05-07 2008-07-02 三菱レイヨン株式会社 ダイレクトめっき用樹脂組成物
KR100622808B1 (ko) 2004-10-22 2006-09-19 주식회사 엘지화학 그라프트 공중합체, 그의 제조방법 및 이를 함유하는열가소성 수지 조성물
JP4817681B2 (ja) 2005-03-15 2011-11-16 帝人化成株式会社 芳香族ポリカーボネート樹脂組成物
US8674007B2 (en) * 2006-07-12 2014-03-18 Sabic Innovative Plastics Ip B.V. Flame retardant and scratch resistant thermoplastic polycarbonate compositions
CN102399424A (zh) 2010-09-08 2012-04-04 上海纳米技术及应用国家工程研究中心有限公司 一种聚碳酸酯/丙烯腈-苯乙烯-丙烯酸酯共聚物合金材料及其制备方法
BR112013025003B1 (pt) * 2011-03-29 2020-12-01 Techno-Umg Co., Ltd. copolímero enxertado à base de borracha acrílica, composição de resina termoplástica, e artigo
CN103649141B (zh) 2011-07-12 2016-03-02 日本A&L株式会社 接枝共聚物、热塑性树脂组合物、成型品以及接枝共聚物的制造方法
JP5547793B2 (ja) 2011-12-27 2014-07-16 日本エイアンドエル株式会社 熱可塑性樹脂組成物及び成形品
JP5742994B1 (ja) 2014-03-19 2015-07-01 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物及び樹脂成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143287A (ja) * 2002-10-24 2004-05-20 Umg Abs Ltd グラフト共重合体含有樹脂組成物
JP2007308648A (ja) * 2006-05-22 2007-11-29 Toray Ind Inc 熱可塑性樹脂組成物およびシート
JP2009203270A (ja) * 2008-02-26 2009-09-10 Teijin Chem Ltd 外観に優れたポリカーボネート樹脂組成物
JP2010077379A (ja) * 2008-08-27 2010-04-08 Mitsubishi Rayon Co Ltd ポリカーボネート樹脂組成物、成形体の製造方法
JP2014122255A (ja) * 2012-12-20 2014-07-03 Nippon A&L Inc 熱可塑性樹脂組成物及び成形品
JP2014181279A (ja) * 2013-03-19 2014-09-29 Toray Ind Inc 天然ゴム含有熱可塑性樹脂組成物およびその成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156452A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094518A (ja) * 2014-11-13 2016-05-26 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物及びその成形品
JP6602516B1 (ja) * 2019-03-28 2019-11-06 日本エイアンドエル株式会社 熱可塑性樹脂組成物
WO2020194683A1 (ja) * 2019-03-28 2020-10-01 日本エイアンドエル株式会社 熱可塑性樹脂組成物

Also Published As

Publication number Publication date
US10208202B2 (en) 2019-02-19
SG11201609505XA (en) 2016-12-29
EP3156452B1 (en) 2019-01-23
AU2015272757A1 (en) 2016-12-08
CN106459574B (zh) 2018-11-13
BR112016026520B1 (pt) 2021-11-23
BR112016026520A2 (pt) 2017-08-15
KR20170017897A (ko) 2017-02-15
EP3156452A4 (en) 2018-01-17
CN106459574A (zh) 2017-02-22
IL248841B (en) 2018-10-31
US20170107373A1 (en) 2017-04-20
KR102256423B1 (ko) 2021-05-25
RU2017100916A (ru) 2018-07-16
TW201602230A (zh) 2016-01-16
TWI664233B (zh) 2019-07-01
IL248841A0 (en) 2017-01-31
JPWO2015190237A1 (ja) 2017-04-20
JP5950059B2 (ja) 2016-07-13
MY181194A (en) 2020-12-21
EP3156452A1 (en) 2017-04-19
AU2015272757B2 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5950059B2 (ja) 熱可塑性樹脂組成物及びその成形品
WO2012133190A1 (ja) アクリルゴム系グラフト共重合体、および熱可塑性樹脂組成物
JP6439317B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP5547793B2 (ja) 熱可塑性樹脂組成物及び成形品
JPH1135816A (ja) 難燃性熱可塑性樹脂組成物
JP4932199B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP6276116B2 (ja) 熱可塑性樹脂組成物、およびそれを用いた車両用ランプハウジング
JP6405923B2 (ja) 熱可塑性樹脂組成物及びその成形品
JP2006193582A (ja) 熱可塑性樹脂組成物および成形品
JP2002146146A (ja) 難燃性熱可塑性樹脂組成物
JP6413705B2 (ja) 樹脂組成物及びその成形体
JP2015168814A (ja) 熱可塑性樹脂組成物およびその成形品
JP5547796B2 (ja) 熱可塑性樹脂組成物及び成形品
JP6341593B2 (ja) グラフト共重合体の製造方法、および熱可塑性樹脂組成物の製造方法
JP2001226556A (ja) 難燃性熱可塑性樹脂組成物
JP5025905B2 (ja) 熱可塑性樹脂組成物および成形品
JP6554870B2 (ja) 熱可塑性樹脂組成物
JP2019147890A (ja) 熱可塑性樹脂組成物及びその製造方法、並びに成形品
JP2022547243A (ja) 難燃ゴム強化ポリカーボネート系樹脂組成物およびその成形品
JP2002146148A (ja) 難燃性熱可塑性樹脂組成物
JP2006045465A (ja) 熱可塑性樹脂組成物および成形品
JP2007321132A (ja) 熱可塑性樹脂組成物および成形品
JP2006045467A (ja) 熱可塑性樹脂組成物および成形品
JP2013018949A (ja) グラフト共重合体及び熱可塑性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015552709

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 248841

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 15311049

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026520

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167033547

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015272757

Country of ref document: AU

Date of ref document: 20150519

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015806765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806765

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017100916

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016026520

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161111