WO2015184009A1 - Compositions and methods relating to universal glycoforms for enhanced antibody efficacy - Google Patents
Compositions and methods relating to universal glycoforms for enhanced antibody efficacy Download PDFInfo
- Publication number
- WO2015184009A1 WO2015184009A1 PCT/US2015/032745 US2015032745W WO2015184009A1 WO 2015184009 A1 WO2015184009 A1 WO 2015184009A1 US 2015032745 W US2015032745 W US 2015032745W WO 2015184009 A1 WO2015184009 A1 WO 2015184009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virus
- cancer
- cell
- antibody
- glcnac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/42—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1018—Orthomyxoviridae, e.g. influenza virus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2896—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/40—Immunoglobulins specific features characterized by post-translational modification
- C07K2317/41—Glycosylation, sialylation, or fucosylation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/72—Increased effector function due to an Fc-modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01051—Alpha-L-fucosidase (3.2.1.51)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- Antibody-based therapies have a proven record of efficacy against many diseases including inflammatory disorders, cancers, infectious diseases, and solid organ transplant rejection.
- mAbs therapeutic monoclonal antibodies
- Examples of therapeutic antibodies with anti-tumor activities include anti- CD20, anti-Her2, anti-EGFR, anti-CD40, anti-CTLA-4, and anti-PD-1 antibodies.
- the two FDA approved glyco- engineered antibodies mogamulizumab (POTELLIGENT ® ) and obinutuzuman (GA101), are defucosylated antibodies in which POTELLIGENT ® was produced by the FUT8 knockout CHO cell line and GA101 was from the GnT-III overexpressing system.
- POTELLIGENT ® was produced by the FUT8 knockout CHO cell line
- GA101 was from the GnT-III overexpressing system.
- more Fcyllla was expressed on the monocytes of long-term RA, and the tendency of more fucosylation was also found in the IgG heavy chain of RA patients, implying the possibility of RA treatment and remission with afucosylated pharmaceutical antibodies, which not only neutralize
- proinflammatory cytokines but also compete with autologous autoantibodies for Fcyllla.
- the present disclosure is based on the discovery of glyco-optimized Fc for monoclonal antibodies, specifically a homogeneous population of monoclonal antibodies ("glycoantibodies").
- the optimized glycoform exhibits an enhanced efficacy of effector cell function (e.g., ADCC).
- glycoantibodies was coined by the inventor, Dr. Chi-Huey Wong, to refer to a homogeneous population of monoclonal antibodies (preferably, therapeutic monoclonal antibodies) having a single, uniform N-glycan on Fc.
- the individual glycoantibodies comprising the homogeneous population are substantially identical, bind to the same epitope, and contain the same Fc glycan with a well-defined glycan structure and sequence.
- Substantially identical means the objects being compared have such close resemblance as to be essentially the same - as understood by one having ordinary skill in the art.
- glycoantibodies refers to a homogeneous population of IgG molecules having the same N-glycan on Fc.
- glycoantibody refers to an individual IgG molecule in the glycoantibodies.
- one aspect of the present disclosure relates to a composition of a homogeneous population of monoclonal antibodies comprising a single, uniform N-glycan on Fc, wherein the structure is an optimized N-glycan structure for enhancing the efficacy of effector cell function.
- the N-glycan is attached to the Asn-297 of the Fc region.
- N-glycan consists of the structure of Sia 2 (a2- 6)Gal 2 GlcNAc2Man 3 GlcNAc2.
- the glycoantibodies described herein may be produced in vitro.
- the glycoantibodies may be generated by Fc glycoengineering.
- the glycoantibodies are enzymatically or chemoenzymatically engineered from the monoclonal antibodies obtained by mammalian cell cul hiring.
- the Fc region of the glycoantibodies described herein exhibits an increased binding affinity for FcyRIIA or FcyRIIIA relative to a wild-type Fc region in the corresponding monoclonal antibodies.
- the glycoantibodies described herein exhibit an enhanced antibody-dependent cell mediated cytotoxicity (ADCC) activity relative to wild-type immunoglobulins .
- ADCC antibody-dependent cell mediated cytotoxicity
- the glycoantibodies are selected from a group consisting of human IgGl, IgG2, IgG3, and IgG4.
- the monoclonal antibodies may be humanized, human or chimeric.
- glycoantibodies described herein may bind to an antigen associated with cancers, autoimmune disorders, inflammatory disorders or infectious diseases.
- the glycoantibody described herein is a glycoengineered anti-
- the glycoantibody described herein is a glycoengineered Rituximab
- the glycoantibody described herein is a glycoengineered anti- HER2. In some examples, the glycoantibody described herein is a glycoengineered
- the glycoantibody described herein is a glycoengineered anti- TNFa. In some examples, the glycoantibody described herein is a glycoengineered
- Adalimumab (Humira®).
- the glycoantibody described herein is a glycoengineered F16 antibodies.
- compositions comprising a composition of glycoantibodies described herein and a pharmaceutically acceptable carrier.
- the pharmaceutical composition may be used in therapeutics such as oncology, autoimmune disorders, inflammatory disorders and infectious diseases.
- the pharmaceutical composition is used for preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcyR is desired, e.g., cancer, autoimmune, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
- ADCC effector cell function
- Disclosed herein also include methods for enhancing antibody-dependent cell mediated cytotoxicity (ADCC) activity, the method comprising administering to a subject an amount of glycoantibodies described herein.
- ADCC antibody-dependent cell mediated cytotoxicity
- disclosed herein include methods for preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection, the method comprising administering to a subject in need thereof a therapeutically effective amount of the
- the disease, disorder, or infection may be selected from a group consisting of cancers, autoimmune disorders, inflammatory disorders and infectious infections.
- Another aspect of the present disclosure features a method for treating a viral disease in a human subject in need thereof, comprising (a) administering to the subject a first compound that blocks an inhibitory receptor of an NK cell, and (b) administering to the subject a therapeutically effective amount of the pharmaceutical composition described herein.
- the pharmaceutical composition of glycoantibodies can be administered alone or in conjunction with a second therapeutic agent such as a second antibody, or a chemotherapeutic agent or an immunosuppressive agent.
- Figure 1 shows (a) general strategy for the preparation of homogeneous antibody through remodeling of the glycan structures on the Fc region of IgGl (b).
- glycoengineered Rituximab The depletion of human B cells was conducted using freshly prepared human PBMC cells and analyzed on FACS, based on the CD 19+ CD2- B cells.
- A Compared to a series of different glycoengineered Riruximabs, the 2,6-NSCT Rituximab showed higher depletion ability.
- B In the whole blood B-cell depletion activity of 10 donors, the 2,6-sialylated Rituximab was significantly more active than the non-treated Rituximab with a p value of 0.0016, whereas the mono-GlcNAc Rituximab showed the lowest activity.
- C The prepared Rituximab-resistant cells of Ramos and Raji express lower level of CD20 on cell surface.
- D, E The 2,6-NSCT Rituximab showed a remarkable ADCC efficacy towards both normal and resistant cells, whereas non-treated antibody dramatically lost its activity towards resistant strains.
- FIG. 3 shows that EC50 of glycoengineered Herceptin in V158 FcyRIIIa mediated ADCC reporter bioassay. Experiments were performed under E/T ratio of 6 to 1 with SKBR3 as target cells and V158 FcyRIIIa engineered Jurkat as effector cells. All data shown in the same graph were experiments done in the same microplate and the same batch of effector cells; bars of 95% confidence interval were plotted.
- FIG. 4 shows that anti-influenza antibody FI6 with a modified homogeneous SCT glycan attached to its Fc Asn297 (FI6m) significantly showed an enhancement of its ADCC activity and prophylactically protects mice from a lethal dose of H1 1 virus challenge,
- Cytotoxicity is represented as the percentage of lysed HEK293T cells (target cells) expressed with influenza HI hemagglutinin (HA) (A/California/07/09) when incubated with PBMCs (effector cells) and various concentrations of antibodies
- ADCC activity was shown as fold increases of bioluminescence from a luciferase reporter assay that gave signals when ADCC signaling nuclear factor of activated T-cell pathway was activated.
- HA expressed HEK293T cells were incubated with NK cells with the said luciferase reporter (effector cells) and various amounts of anti-influenza antibody FI6 and FI6m.
- glycoantibodies was coined by the inventor, Dr. Chi-Huey Wong, to refer to a homogeneous population of monoclonal antibodies (preferably, therapeutic monoclonal antibodies) having a single, uniformed glycoform bound to the Fc region.
- the individual glycoantibodies comprising the essentially homogeneous population are identical, bind to the same epitope, and contain the same Fc glycan with a well-defined glycan structure and sequence.
- anti-CD20 glycoantibodies refers to a homogeneous population of anti-CD20 IgG molecules having the same glycoform on Fc.
- anti-CD20 glycoantibody refers to an individual IgG antibody molecule in the anti-CD20 glycoantibodies.
- molecule can also refer to antigen binding fragments.
- glycocan refers to a polysaccharide, oligosaccharide or monosaccharide. Glycans can be monomers or polymers of sugar residues and can be linear or branched.
- a glycan may include natural sugar residues (e.g., glucose, N-acetylglucosamine, N- acetyl neuraminic acid, galactose, mannose, fucose, hexose, arabinose, ribose, xylose, etc.) and/or modified sugars (e.g., 2'-fluororibose, 2'-deoxyribose, phosphomannose, 6' sulfo N- acetylglucosamine, etc).
- natural sugar residues e.g., glucose, N-acetylglucosamine, N- acetyl neuraminic acid, galactose, mannose, fucose, hexose, arabinose, ribose, xylose, etc.
- modified sugars e.g., 2'-fluororibose, 2'-deoxyribose, phosphomannose,
- Glycan is also used herein to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, glycopeptide, glycoproteome, peptidoglycan, lipopolysaccharide or a proteoglycan.
- Glycans usually consist solely of O-glycosidic linkages between monosaccharides.
- cellulose is a glycan (or more specifically a glucan) composed of B-l,4-linked D-glucose
- chitin is a glycan composed of B- 1 ,4-linked N-acetyl- D-glucosamine.
- Glycans can be homo or heteropolymers of monosaccharide residues, and can be linear or branched. Glycans can be found attached to proteins as in glycoproteins and proteoglycans. They are generally found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotes but may also be found, although less commonly, in prokaryotes. N-Linked glycans are found attached to the R-group nitrogen (N) of asparagine in the sequon. The sequon is a Asn-X-Ser or Asn-X-Thr sequence, where X is any amino acid except praline.
- fucose As used herein, the terms “fucose”, “core fucose” and “core fucose residue” are used interchangeably and refer to a fucose in al,6-position linked to the N-acetylglucosamine .
- N-glycan N-linked glycan
- N-linked glycosylation N-linked glycosylation
- Fc glycan Fc glycosylation
- Fc-containing polypeptide refers to a polypeptide, such as an antibody, which comprises an Fc region.
- glycosylation pattern and “glycosylation profile” are used interchangeably and refer to the characteristic "fingerprint” of the N-glycan species that have been released from a glycoprotein or antibody, either enzymatically or chemically, and then analyzed for their carbohydrate structure, for example, using LC-HPLC, or MALDI-TOF MS, and the like. See, for example, the review in Current Analytical Chemistry, Vol. 1, No. 1 (2005), pp. 28-57; herein incorporated by reference in its entirety.
- glycoengineered Fc when used herein refers to N-glycan on the Fc region has been altered or engineered either enzymatically or chemically.
- Fc glycoengineering refers to the enzymatic or chemical process used to make the glycoengineered Fc. Exemplary methods of engineering are described in, for example, Wong et al USSN12/959,351, the contents of which is hereby incorporated by reference.
- homogeneous in the context of a glycosylation profile of Fc region are used interchangeably and are intended to mean a single glycosylation pattern represented by one desired N-glycan species, with little or no trace amount of precursor N-glycan.
- the trace amount of the precursor N-glycan is less than about 2%.
- Essentially pure protein means a composition comprising at least about 90% by weight of the protein, based on total weight of the composition, including, for example, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% by weight.
- Essentially homogeneous protein means a composition comprising at least about 98% by weight of protein, including for example, at least about 98.5 %, at least about 99% based on total weight of the composition.
- the protein is an antibody, structural variants, and/or antigen binding fragment thereof.
- immunoglobulin and “immunoglobulin molecule” are used interchangeably.
- molecule can also refer to antigen binding fragments.
- Fc receptor or "FcR” describes a receptor that binds to the Fc region of an antibody.
- the preferred FcR is a native sequence human FcR.
- a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI (CD64), FcyRII (CD32), and FcyRIII (CD 16) subclasses, including allelic variants and alternatively spliced forms of these receptors.
- FcyRII receptors include FcyRIIA (an “activating receptor”) and FcyRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof.
- Activating receptor FcyRIIA contains an immunoreceptor tyrosine-based activation motif (IT AM) in its cytoplasmic domain.
- Inhibiting receptor FcyRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain, (see review M. in Daeron, Annu. Rev. Immunol. 15:203-234 (1997)).
- FcRs are reviewed in Ravetch and Kinet, Annu. Rev.
- FcR neonatal receptor
- effector function refers to a biochemical event that results from the interaction of an antibody Fc region with an Fc receptor or ligand.
- exemplary "effector functions” include Clq binding; complement dependent cytotoxicity; Fc receptor binding;
- ADCC antibody-dependent cell-mediated cytotoxicity
- phagocytosis phagocytosis
- down regulation of cell surface receptors e.g. B cell receptor; BCR
- ADCC antibody-dependent cell-mediated cytotoxicity
- FcRs Fc receptors
- cytotoxic cells e.g. Natural Killer (NK) cells, neutrophils, and macrophages
- NK cells Natural Killer cells
- neutrophils neutrophils
- macrophages cytotoxic cells
- the antibodies “arm” the cytotoxic cells and are absolutely required for such killing.
- the primary cells for mediating ADCC, NK cells express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII.
- ADCC activity of a molecule of interest is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991).
- an in vitro ADCC assay such as that described in U.S. Pat. No. 5,500,362 or U.S. Pat. No. 5,821,337 may be performed.
- Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- PBMC peripheral blood mononuclear cells
- NK Natural Killer
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).
- CDC complement dependent cytotoxicity
- Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Clq) to antibodies (of the appropriate subclass) which are bound to their cognate antigen.
- Clq first component of the complement system
- a CDC assay e.g. as described in Gazzano-Santoro et al, J. Immunol. Methods 202: 163 (1996), may be performed.
- “Chimeric" antibodies have a portion of the heavy and/or light chain identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81 :6851-6855 (1984)).
- Humanized antibody as used herein is a subset of chimeric antibodies.
- Humanized forms of non-human (e.g., murine) antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient or acceptor antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
- donor antibody such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity.
- Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance such as binding affinity.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence although the FR regions may include one or more amino acid substitutions that improve binding affinity.
- the number of these amino acid substitutions in the FR is typically no more than 6 in the H chain, and in the L chain, no more than 3.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human
- the term "antigen” is defined as any substance capable of eliciting an immune response.
- the term “antigen specific” refers to a property of a cell population such that supply of a particular antigen, or a fragment of the antigen, results in specific cell proliferation.
- immunogenicity refers to the ability of an immunogen, antigen, or vaccine to stimulate an immune response.
- epitope is defined as the parts of an antigen molecule which contact the antigen binding site of an antibody or a T cell receptor.
- specifically binding refers to the interaction between binding pairs (e.g., an antibody and an antigen). In various instances, specifically binding can be embodied by an affinity constant of about 10-6 moles/liter, about 10-7 moles/liter, or about 10-8 moles/liter, or less.
- An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or
- substantially equivalent denotes a sufficiently high degree of similarity between two numeric values (for example, one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values, anti-viral effects, etc.).
- the difference between said two values is, for example, less than about 50%, less than about 40%, less than about 30%, less than about 20%, and/or less than about 10% as a function of the value for the reference/comparator molecule.
- the phrase "substantially reduced,” or “substantially different”, as used herein, denotes a sufficiently high degree of difference between two numeric values (generally one associated with a molecule and the other associated with a reference/comparator molecule) such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values).
- the difference between said two values is, for example, greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, and/or greater than about 50% as a function of the value for the reference/comparator molecule.
- Binding affinity generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity” refers to intrinsic binding affinity which reflects a 1 : 1 interaction between members of a binding pair (e.g., antibody and antigen).
- the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein.
- Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer.
- a variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention. Specific illustrative embodiments are described in the following.
- variable region or “variable domain” of an antibody refers to the amino-terminal domains of heavy or light chain of the antibody. These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.
- variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR).
- CDRs complementarity-determining regions
- FR framework
- the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure.
- the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al, Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)).
- the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
- Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual "Fc” fragment, whose name reflects its ability to crystallize readily.
- Pepsin treatment yields an F(ab')2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
- Fv is the minimum antibody fragment which contains a complete antigen-recognition and -binding site.
- this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association.
- one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer.
- the six CDRs confer antigen-binding specificity to the antibody.
- a single variable domain or half of an Fv comprising only three CDRs specific for an antigen
- the Fab fragment also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain.
- Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CHI domain including one or more cysteines from the antibody hinge region.
- Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
- F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
- the "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequences of their constant domains.
- antibodies can be assigned to different classes.
- immunoglobulins There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgAl, and IgA2.
- the heavy chain constant domains that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
- An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.
- full length antibody intact antibody
- whole antibody are used herein interchangeably, to refer to an antibody in its substantially intact form, not antibody fragments as defined below.
- Antibody fragments comprise only a portion of an intact antibody, wherein the portion retains at least one, and as many as most or all, of the functions normally associated with that portion when present in an intact antibody.
- an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability to bind antigen.
- an antibody fragment for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half life modulation, ADCC function and complement binding.
- an antibody fragment is a monovalent antibody that has an in vivo half life substantially similar to an intact antibody.
- such an antibody fragment may comprise an antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment.
- the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier “monoclonal” indicates the character of the antibody as not being a mixture of discrete antibodies.
- Such monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target- binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences.
- the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones or recombinant DNA clones.
- the selected target binding sequence can be further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention.
- each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
- the monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.
- the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma method (e.g., Kohler et al, Nature, 256: 495 (1975); Harlow et al, Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling et al, in: Monoclonal Antibodies and T- Cell hybridomas 563-681 (Elsevier, N.Y., 1981)), recombinant DNA methods (see, e.g., U.S. Pat. No.
- phage display technologies See, e.g., Clackson et al, Nature, 352: 624-628 (1991); Marks et al, J. Mol. Biol. 222: 581-597 (1992); Sidhu et al, J. Mol. Biol. 338(2): 299- 310 (2004); Lee et al, J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al, J. Immunol.
- the monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al, Proc. Natl. Acad. Sci. USA 81 :6851-6855 (1984)). [0073] See also the following review articles and references cited therein: Vaswani and
- hypervariable region when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops.
- antibodies comprise six hypervariable regions; three in the VH (HI, H2, H3), and three in the VL (LI, L2, L3).
- a number of hypervariable region delineations are in use and are encompassed herein.
- the Kabat Complementarity Determining Regions are based on sequence variability and are the most commonly used (Kabat et al, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
- Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).
- the AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software.
- the "contact" hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below.
- Hypervariable regions may comprise "extended hypervariable regions” as follows: 24-36 or 24-34 (LI), 46-56 or 50-56 or 49-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (HI), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH.
- the variable domain residues are numbered according to Kabat et al, supra, for each of these definitions.
- variable domain residue numbering as in Kabat or “amino acid position numbering as in Kabat,” and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991). Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain.
- a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after heavy chain FR residue 82.
- the Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence.
- Single-chain Fv or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
- the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
- diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL).
- VH heavy-chain variable domain
- VL light-chain variable domain
- VH-VL polypeptide chain
- a "human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
- an "affinity matured" antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s).
- an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen.
- Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas et al. Proc Nat. Acad. Sci.
- a “blocking” antibody or an “antagonist” antibody is one which inhibits or reduces biological activity of the antigen it binds. Certain blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
- An "agonist antibody”, as used herein, is an antibody which mimics at least one of the functional activities of a polypeptide of interest.
- a “disorder” is any condition that would benefit from treatment with an antibody of the invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
- disorders to be treated herein include cancer.
- cell proliferative disorder and “proliferative disorder” refer to disorders that are associated with some degree of abnormal cell proliferation.
- the cell proliferative disorder is cancer.
- Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
- cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
- cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
- cancer cancer
- cancer cancer
- cancer cancer
- cancer cancer
- cancer cancer
- cancer cancer
- cancer and “cancerous” generally refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
- examples of cancer include, but are not limited to, carcinoma, lymphoma (e.g., Hodgkin's and non-Hodgkin's lymphoma), blastoma, sarcoma, and leukemia.
- cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, leukemia and other lymphoproliferative disorders, and various types of head and neck cancer.
- the term "antigen” is defined as any substance capable of eliciting an immune response.
- the term “antigen specific” refers to a property of a cell population such that supply of a particular antigen, or a fragment of the antigen, results in specific cell proliferation.
- CD20 expressing cancer refers to all cancers in which the cancer cells show an expression of the CD20 antigen.
- CD20 expressing cancer refers to lymphomas (preferably B-Cell Non-Hodgkin's lymphomas (NHL)) and lymphocytic leukemias.
- lymphomas and lymphocytic leukemias include e.g.
- follicular lymphomas b) Small Non-Cleaved Cell Lymphomas/Burkitt's lymphoma (including endemic Burkitt's lymphoma, sporadic Burkitt's lymphoma and Non-Burkitt's lymphoma) c) marginal zone lymphomas (including extranodal marginal zone B cell lymphoma (Mucosa-associated lymphatic tissue lymphomas, MALT), nodal marginal zone B cell lymphoma and splenic marginal zone lymphoma), d) Mantle cell lymphoma (MCL), e) Large Cell Lymphoma
- B-cell diffuse large cell lymphoma including B-cell diffuse large cell lymphoma (DLCL), Diffuse Mixed Cell Lymphoma, Immunoblastic Lymphoma, Primary Mediastinal B-Cell Lymphoma, Angiocentric Lymphoma- Pulmonary B-Cell Lymphoma
- DLCL B-cell diffuse large cell lymphoma
- DLCL Diffuse Mixed Cell Lymphoma
- Immunoblastic Lymphoma Primary Mediastinal B-Cell Lymphoma
- Angiocentric Lymphoma- Pulmonary B-Cell Lymphoma f) hairy cell leukemia
- g) lymphocytic lymphoma including B-cell diffuse large cell lymphoma (DLCL), Diffuse Mixed Cell Lymphoma, Immunoblastic Lymphoma, Primary Mediastinal B-Cell Lymphoma, Angiocentric Lymphoma- Pulmonary B-Cell Lymphoma
- the CD20 expressing cancer is a B-Cell Non-Hodgkin's lymphomas (NHL).
- NHL B-Cell Non-Hodgkin's lymphomas
- CD20 expressing cancer is a Mantle cell lymphoma (MCL), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), B-cell diffuse large cell lymphoma (DLCL), Burkitt's lymphoma, hairy cell leukemia, follicular lymphoma, multiple myeloma, marginal zone lymphoma, post transplant lymphoproliferative disorder (PTLD), HIV associated lymphoma, Waldenstrom's macro globulinemia, or primary CNS lymphoma.
- MCL Mantle cell lymphoma
- ALL acute lymphocytic leukemia
- CLL chronic lymphocytic leukemia
- DLCL B-cell diffuse large cell lymphoma
- Burkitt's lymphoma hairy cell leukemia
- follicular lymphoma multiple myeloma
- marginal zone lymphoma marginal zone lymphoma
- PTLD post transplant lymphoproliferative
- treatment refers to clinical intervention in an attempt to alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing or decreasing
- antibodies of the invention are used to delay development of a disease or disorder.
- an "individual” or a “subject” is a vertebrate.
- the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs, and horses), primates, mice and rats.
- the vertebrate is a human.
- mammal for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In certain embodiments, the mammal is human.
- an “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
- a “therapeutically effective amount” of a substance/molecule of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the substance/molecule are outweighed by the therapeutically beneficial effects.
- a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
- cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
- the term is intended to include radioactive isotopes (e.g., At211, 1131, 1125, Y90, Rel86, Rel 88, Sml53, Bi212, P32, Pb212 and radioactive isotopes of Lu), chemotherapeutic agents (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolyticenzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitum
- a "chemotherapeutic agent” is a chemical compound useful in the treatment of cancer.
- chemotherapeutic agents include alkylating agents such as thiotepa and
- CYTOXAN® cyclosphosphamide alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARTNOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9-amin
- dynemicin including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine,
- ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino- doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin,
- olivomycins peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adren
- DMFO difluoromethylornithine
- retinoids such as retinoic acid
- capecitabine XELODA®
- pharmaceutically acceptable salts, acids or derivatives of any of the above as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined with 5-FU and leucovovin.
- ELOXATINTM oxaliplatin
- treatment refers to clinical intervention in an attempt to alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing or decreasing
- antibodies of the invention are used to delay development of a disease or disorder.
- an "individual” or a “subject” is a vertebrate.
- the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs, and horses), primates, mice and rats.
- the vertebrate is a human.
- mammal for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. In certain embodiments, the mammal is human.
- an “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
- a “therapeutically effective amount” of a substance/molecule of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the substance/molecule are outweighed by the therapeutically beneficial effects.
- a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount would be less than the therapeutically effective amount.
- cytotoxic agent refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells.
- the term is intended to include radioactive isotopes (e.g., At211, 1131, 1125, Y90, Rel86, Rel 88, Sml53, Bi212, P32, Pb212 and radioactive isotopes of Lu), chemotherapeutic agents (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolyticenzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitum
- Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic or preventative measures; wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
- Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
- a subject or mammal is successfully "treated" for an infection if, after receiving a therapeutic amount of an antibody according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of infected cells or absence of the infected cells; reduction in the percent of total cells that are infected; and/or relief to some extent, one or more of the symptoms associated with the specific infection; reduced morbidity and mortality, and improvement in quality of life issues.
- the above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician.
- terapéuticaally effective amount refers to an amount of an antibody or a drug effective to "treat" a disease or disorder in a subject or mammal See preceding definition of "treating.”
- Carriers as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers that are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or
- immunoglobulins include hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM polyethylene glycol (PEG), and PLURONICSTM.
- hydrophilic polymers such as polyvinylpyrrolidone
- amino acids such as glycine, glutamine, asparagine, arginine or lysine
- monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins include chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium;
- glycosylation of recombinant proteins produced from mammalian cells in culture is an important process in ensuring the effective use of therapeutic antibodies (Goochee et al, 1991 ; Jenkins and Curling, 1994).
- Mammalian cell culture delivers a heterogeneous mixture of glycosylation patterns which do not all have the same properties. Properties like safety, efficacy and the serum half-life of therapeutic proteins can be affected by these glycosylation patterns.
- glycoform heterogeneity problem by the development of a novel class of monoclonal antibodies, named "glycoantibodies”.
- glycoantibodies was coined by the inventor, Dr. Chi-Huey Wong, to refer to a homogeneous population of monoclonal antibodies (preferably, therapeutic monoclonal antibodies) having a single, uniformed glycoform on Fc.
- the individual glycoantibodies comprising the homogeneous population are identical, bind to the same epitope, and contain the same Fc glycan with a well-defined glycan structure and sequence.
- Glycoantibodies may be generated from monoclonal antibodies (preferably, therapeutic monoclonal antibodies) commercially available or in the development. Monoclonal antibodies for therapeutic use can be humanized, human or chimeric.
- the term "parental antibody” as used herein refers to the monoclonal antibody used to produce a glycoantibody.
- the parental antibodies can be obtained by cell culturing such as mammalian cell culture, Pichia pastoris or insect cell lines. Preferrably, the parental antibodies are produced in mammalian cell culture.
- the parental antibodies may be FDA approved or in development.
- Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
- monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al, Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al, in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981); each of which is incorporated herein by reference in its entirety.
- mAb monoclonal antibody
- the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
- a “monoclonal antibody” may comprise, or alternatively consist of, two proteins, i.e., a heavy and a light chain.
- glycoantibodies with optimized glycoforms exhibit more potent biological activities compared to the therapeutic monoclonal antibodies. It is contemplated that the glycoantibodies with optimized glycoforms may provide an alternative for therapeutic use.
- Glycoantibodies of the invention consist of a single, uniformed glycoform (N-glycan) on Fc.
- N-glycan uniformed glycoform
- the N-glycan is attached to the Asn-297 of the Fc region.
- N-glycans according to the invention have a common pentasaccharide core of Man 3 Glc Ac 2 which is also referred to as "trimannose core” or "pentasaccharide core", wherein “Man” refers to mannose, “Glc” refers to glucose, “NAc” refers to N-acetyl, and GlcNAc refers to N-acetylglucosamine.
- the N-glycan has a biantennary structure.
- N-glycan described herein may have intrachain substitutions comprising
- the N-glycan may comprise one or more termial sialic acids (e.g. N-acetylneuraminic acid).
- the structure represented as "Sia” refers to a termial sialic acid. Sialylation may occur on either the a 1-3 or al-6 arm of the biantennary structures.
- the N-glycan described herein comprises at least one a2-6 terminal sialic acid. In certain embodiments, the N-glycan comprises one a2-6 terminal sialic acid. In a preferred embodiment, the N-glycan comprises two a2-6 terminal sialic acids. [00119] In some embodiments, the N-glycan described herein comprises at least one a2-3 terminal sialic acid. In certain embodiments, the N-glycan comprises one a2-3 terminal sialic acid. In a preferred embodiment, the N-glycan comprises two a2-3 terminal sialic acids.
- the N-glycan described herein comprises at least one galactose. In certain embodiments, the N-glycan comprises one galactose. In a preferred embodiment, the N-glycan comprises two galactoses.
- the N-glycan according to the disclosure is free of core fucose.
- Table 1 lists exemplary N-glycans in glycoantibodies.
- ADCC enhancement is a key strategy for improving therapeutic antibody drug efficacy. It has the potential of lowering effective drug dosage for benefits of lower drug cost.
- the glycoantibodies described herein can be characterized by functional properties.
- Glycoantibodies described herein may be useful for treating a cancer.
- the FDA has approved multiple therapeutic monoclonal antibodies for cancer therapies, and many more are being studied in clinical trials either alone or in combination with other treatments. These monoclonal antibodies (“parental antibodies”) can be used to produce glycoantibodies.
- Exemplary monoclonal antibodies for cancers include, but are not limited to, Ado- trastuzumab emtansine (Kadcyla), Alemtuzumab (Campath), Belimumab (Benlysta),
- Bevacizumab (Avastin), Brentuximab vedotin (Adcetris), Cabozantinib (Cometriq),
- Canakinumab (Ilaris), Cetuximab (Erbitux), Denosumab (Xgeva), Ibritumomab tiuxetan (Zevalin), Ipilimumab (Yervoy), Nivolumab (Opdivo), Obinutuzumab (Gazyva), Ofatumumab (Arzerra, HuMax-CD20), Panitumumab (Vectibix), Pembrolizumab (Keytruda), Pertuzumab (Perjeta), Ramucirumab (Cyramza), Rituximab (Rituxan, Mabthera), Siltuximab (Sylvant), Tocilizumab, Tositumomab (Bexxar) and Trastuzumab (Herceptin).
- Anti-CD20 Glycoantibodies Anti-CD20 GAb
- the "CD20" antigen is a non-glycosylated, transmembrane phosphoprotein with a molecular weight of approximately 35 kD that is found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is expressed during early pre-B cell development and remains until plasma cell differentiation; it is not found on human stem cells, lymphoid progenitor cells or normal plasma cells. CD20 is present on both normal B cells as well as malignant B cells. Other names for CD20 in the literature include "B -lymphocyte- restricted differentiation antigen" and "Bp35". The CD20 antigen is described in, for example, Clark and Ledbetter, Adv. Can Res. 52:81-149 (1989) and Valentine et al. J. Biol. Chem.
- anti-CD20 glycoantibodies termed "anti- CD20 GAb"
- the anti-CD20 glycoantibodies can be generated from anti-CD20 monoclonal antibodies by Fc glycoengineering.
- the individual anti-CD20 glycoantibodies comprising the homogeneous population are identical and contain the same Fc glycan with a well-defined glycan structure and sequence.
- the anti-CD20 GAb according to the present invention specifically binds to the same epitope of a human CD20 antigen on a cell membrane as its patent antibody.
- the term "parental antibody” as used herein refers to the anti-CD20 monoclonal antibody used to produce an anti-CD20 glycoantibody.
- the parental antibodies can be obtained by cell culturing such as mammalian cell culture, Pichia pastoris or insect cell lines. Preferrably, the parental antibodies are produced in mammalian cell culture. The parental antibodies may be FDA approved or in development. Exemplary parental antibodies include, but not limited to, Rituximab, Ofatumumab,
- Tositumomab, Ocrelizumab, 1 1B8 or 7D8 (disclosed in W02004/035607), an anti-CD20 antibody disclosed in WO 2005/103081 such as C6, an anti-CD antibody disclosed in
- W02003/68821 such as IMMU-106 (from Immunomedics), an anti-CD20 antibody disclosed in W02004/103404 such as AME-133 (from Applied Molecular Evolution/Lilly), and anti-CD20 antibody disclosed in US 2003/0118592 such as TRU-015 (from Trubion Pharmaceuticals Inc), 90Y-labeled 2B8 murine antibody designated "Y2B8" (ZEVALIN®) (Biogen-Idec, Inc.) (e.g., U.S. Pat. No. 5,736,137, Anderson et al; ATCC deposit HB 11388); murine and chimeric 2H7 antibody (e.g., U.S. Pat. No.
- humanized 2H7 antibodies such as rhuMAb2H7 and other versions (Genentech, Inc.) (e.g., WO 2004/056312, Adams et al, and other references noted below); human monoclonal antibodies against CD20 (GenMab
- A/S/Medarex, Inc. e.g., WO 2004/035607 and WO 2005/103081, Teeling et al
- a chimerized or humanized monoclonal antibody binding to an extracellular epitope of CD20 Biomedics Inc.
- Biomedics Inc. e.g., WO 2006/106959, Numazaki et al
- A20 antibodies such as chimeric A20 (cA20) or humanized A20 antibody (hA20, IMMUN-106T, veltuzumab) (e.g., US 2003/0219433, Hansen et al); fully human antibodies against CD20 (Amgen/AstraZeneca) (e.g., WO 2006/130458, Gazit et al); antibodies against CD20 (Avestha Gengraine Technologies Pvt Ltd.) (e.g., WO 2006/126069, Morawala); and chimeric or humanized B-Lyl antibodies to CD20 (Roche/GlycArt Biotechnology AG) such as GA101 (e.g., WO 2005/044859; US 2005/0123546; US 2004/0072290; and US
- the exemplary anti-CD20 GAb described herein comprise a heavy chain having the amino acid sequence set forth in SEQ ID NO: 1, and a light chain having the amino acid sequence set forth in SEQ ID NO: 2.
- the anti-CD20 GAb comprises a light chain sequence and a heavy chain sequence of Rituximab. Table 2 below shows the heavy chain and the light chain sequences of Rituximab.
- the N-glycan is attached to the Asn-297 of the Fc region.
- N-glycans according to the invention have a common pentasaccharide core of Man 3 Glc Ac 2 which is also referred to as "trimannose core” or "pentasaccharide core", wherein “Man” refers to mannose, “Glc” refers to glucose, “NAc” refers to N-acetyl, and GlcNAc refers to N-acetylglucosamine.
- the N-glycan has a biantennary structure.
- the N-glycan described herein may have intrachain substitutions comprising "bisecting" GlcNAc.
- a glycan comprises a bisecting GlcNAc on the trimannose core
- the structure is represented as Man 3 GlcNAc3.
- a glycan comprises a core fucose attached to the trimannose core
- the structure is represented as Man 3 GlcNAc 2 (F).
- the N-glycan may comprise one or more termial sialic acids (e.g. N-acetylneuraminic acid).
- the structure represented as "Sia" refers to a termial sialic acid.
- the N-glycan described herein comprises at least one a2-6 terminal sialic acid. In certain embodiments, the N-glycan comprises one a2-6 terminal sialic acid. In a preferred embodiment, the N-glycan comprises two a2-6 terminal sialic acids.
- the N-glycan described herein comprises at least one a2-3 terminal sialic acid. In certain embodiments, the N-glycan comprises one a2-3 terminal sialic acid. In a preferred embodiment, the N-glycan comprises two a2-3 terminal sialic acids.
- the N-glycan described herein comprises at least one galactose. In certain embodiments, the N-glycan comprises one galactose. In a preferred embodiment, the N-glycan comprises two galactoses.
- the N-glycan according to the disclosure is free of core fucose.
- Table 3 lists exemplary N-glycans in anti-CD20 glycoantibodies. Embodiments of the present disclosure may include or exclude any of the N-glycans listed herein.
- GlcNAc 2 -107 GlcNAc 3 Man 3 GlcNAc 2 -108 GlcNAc 2 Man 3 GlcNAc 2 -109 GlcNAcMan 3 GlcNAc 2 -110 GlcNAcMan 3 GlcNAc 2 -111 Man 3 GlcNAc 2 -112 Sia 2 (a2-6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 -113 Sia(a2-6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 -114 Sia(a2-6)GalGlcNAc 3 Man 3 GlcNAc 2 -115 Gal 2 GlcNAc 3 Man 3 GlcNAc 2 -116 GalGlcNAc 3 Man 3 GlcNAc 2 -117 Sia 2 (a2-3)Gal 2 GlcNAc2Man 3 GlcNAc2
- ADCC enhancement is a key strategy for improving therapeutic antibody drug efficacy. It has the potential of lowering effective drug dosage for benefits of lower drug cost.
- the anti-CD20 glycoantibodies described herein can be characterized by functional properties.
- the anti-CD20 GAb has cell growth inhibitory activities including apoptosis against human CD20 expressing cells. In some embodiments, the anti- CD20 GAb exhibits more potent cell growth inhibitory activities as compared to its patent antibody.
- the increased ADCC activity of the glycoantibody according to the invention is at least about 5 fold, including but not limited to, at least about 6 fold, about 7 fold, about 8 fold, about 9 fold about 10 fold, about 15 fold, about 20 fold, about 25 fold, about 30 fold, about 35 fold, about 40 fold, about 50 fold, about 60 fold, and about 80 fold or at least about a value in the range between any of the two numbers listed herein compared to the ADCC activity of the parental antibody.
- Table 4 lists exemplary enhanced ADCC activities of anti-CD20 GAbs as compared to Rituximab. Exemplary assays are described in the examples.
- CDC Activities of anti-CD20 glycoantibodies [00143]
- the glycoantibody described herein is surprisingly able to provide improved ADCC without affecting CDC.
- Exemplary CDC assays are described in the examples.
- ADCC of the glycoantibody is increased but other immunoglobulin-type effector functions such as complement-dependent cytoxicity (CDC) remain similar or are not significantly affected.
- CDC complement-dependent cytoxicity
- Table 5 lists exemplary FcyRIIIA binding of anti-CD20 GAbs and Rituximab.
- FcyRIIIA binding may be measured using assays known in the art. Exemplary assays are described in the examples.
- the Fc receptor binding may be determined as the relative ratio of anti-CD20 GAb vs Rituximab. Fc receptor binding in exemplary embodiments is increased by at least 1.2-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold or 20- fold, 30-fold, 40-fold, 50-fold, 100-fold or higher.
- the binding data showed that the anti-CD20 GAbs, in particular GAblOl and GAM04, exhibit stronger binding affinity for the target molecule CD20.
- anti-CD20 Gabs exhibit enhanced ADCC activity and stronger FcyRIIIA binding affinity as compared to Rituximab.
- the glycoantibodies of the invention may provide a superior clinical response either alone or, in a composition comprising two or more such antibodies, and optionally in combination with other treatments such as chemotherapy.
- the ADCC-enhanced anti-CD20 glycoantibody may provide an alternative therapeutic for B-cell lymphoma and other diseases.
- glycoantibodies of the present invention advantageously can be used to alter current routes of administration and current therapeutic regimens, as their increased effector function means they can be dosed at lower concentrations and with less frequency, thereby reducing the potential for antibody toxicity and/or development of antibody tolerance. Furthermore, the improved effector function yields new approaches to treating clinical indications that have previously been resistant or refractory to treatment with the corresponding anti-CD20 monoclonal antibody produced in recombinant host systems.
- the anti-CD20 glycoantibodies of the invention can be produced by Fc
- the monoclonal antibodies are therapeutic monoclonal antibodies.
- Fc glycoengineering may be performed enzymatically or chemoenzymatically.
- the parental antibody is Rituximab.
- N-glycans in the glycoantibodies of the invention are preferrably defucosylated.
- Defucosylation of N-glycans is a process to remove core fucoses in N-glycans of the Fc domains. Defucosylation can be employed enzymatically. Since N-glycans are embedded between two Fc domains, the enzymatic defucosylation efficiency is much lower due to steric hindrance, i.e., access of fucosidase to fucose residues is blocked by potions of the Fc domains.
- a-fucosidases are known in the art. Examples include a-fucosidases from Turbo cornutus, Charonia lampas, Bacillus fulminans, Aspergillus niger, Clostridium perfringens, Bovine kidney (Glyko), chicken liver (Tyagarajan et al, 1996, Glycobiology 6:83- 93) and a-fucosidase II from Xanthomonas manihotis (Glyko, PROzyme).
- fucosidase Many varieties of fucosidase are also commercially available (Glyko, Novato, Calif; PROzyme, San Leandro, Calif; Calbiochem-Novabiochem Corp., San Diego, Calif; among others). However, none of a- fucosidases are known to efficiently remove the core fucose from N-linked glycans.
- WO 2013/12066 disclosed the defucosylation of (Fucod ,6)GlcNAc-Rituximab by an a-fucosidase from bovine kidney. As described in WO 2013/12066, a reaction mixture of (Fuc al, 6)GlcNAc-Rituximab was incubated with a-fucosidase from bovine kidney (commercially available from Prozyme) at 37°C for 20 days to completely remove the fucose in
- YP_212855.1 that is capable of efficiently removing fucose residues from N-linked glycans. Efficient defucosylation has been successfully achieved using the specific enzyme. Importantly, the efficiency of making the glycoantibodies of the invention has been valuably improved by the use of the specific a-fucosidase that yields a facile defucosylation of N-glycans, as illustrated in Figure 1.
- the present invention provides a compostion of the a-fucosidase, and an improved method for removing core fucoses of N-glycans using the a-fucosidase.
- the a- fucosidase comprises a polypeptide having an amino acid sequence having at least 80%, 85% 90%, 95%, 98% or 99% identity to the sequences of SEQ ID NO: 5 or variants thereof.
- the improved method of defucosylation comprises contacting an antibody with an a-fucosidase, and in which the a-fucosidase comprises a polypeptide having an amino acid sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to the sequences of SEQ ID NO: 5, a variant or a fragment thereof.
- Described herein includes an improved method for making an anti-CD20
- glycoantibody the method comprising the steps of (a) contacting an anti-CD20 monoclonal antibody with an a-fucosidase and at least one endoglycosidase, thereby yielding a
- defucosylated antibody having a single N-acetylglucosamine (GlcNAc), and (b) adding a carbohydrate moiety to GlcNAc under suitable conditions.
- GlcNAc N-acetylglucosamine
- the anti-CD20 monoclonal antibody according to the method of the invention is Rituximab.
- Endoglycosidase is used to trim off the variable portions of an oligosaccharide in N- glycan.
- Examples of endoglycosidases used herein include, but not limited to, EndoA, EndoF, EndoFl, EndoF2, EndoF3, EndoH, EndoM, EndoS, EndoS2 and variants thereof.
- the ⁇ -fucosidase according to the method of the invention comprises a polypeptide having an amino acid sequence having at least 85% identity to the sequences of SEQ ID NO: 5, a functional variant thereof.
- the a-fucosidase comprises a polypeptide having an amino acid sequence having at least 90% or 95% identity to the sequences of SEQ ID NO: 5, a variant or a fragment thereof.
- the a-fucosidase is a recombinant Bacteroides a-fucosidase.
- Step (a) in the method of the invention leads to a defucosylated antibody having a single N-acetylglucosamine (GlcNAc).
- GlcNAc N-acetylglucosamine
- Subsequent enzyme-mediated glycosylation using a transglycosylase is performed to add a designated carbohydrate moiety to GlcNAc and extend the sugar chain.
- a homogenous population of glycoantibodies can therefore be produced.
- transglycosylases as described herein include, but not limited to, EndoA, EndoF, EndoFl, EndoF2, Endo F3, EndoH, EndoM, EndoS, Endo S2 and variants thereof.
- the carbohydrate moiety according to the method the invention is sleeted from the group consisting of Sia 2 (a2-6)Gal 2 GlcNAc2Man 3 GlcNAc2, Sia 2 (a2- 6)Gal 2 GlcNAc 3 Man 3 GlcNAc2, Sia 2 (a2-3)Gal 2 GlcNAc2Man 3 GlcNAc2, Sia 2 (a2- 3)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2-6)Gal 2 GlcNAc2Man 3 GlcNAc2, Sia 2 (a2-6/a2- 3)Gal 2 GlcNAc 2 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2-6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2-6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2-6)Gal 2 G
- the carbohydrate moiety is selected from the group consisting of Sia 2 (a2-6)Gal 2 GlcNAc 2 Man 3 GlcNAc 2 , Sia 2 (a2-6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3)Gal 2 GlcNAc 2 Man 3 GlcNAc 2 , Sia 2 (a2-3)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2- 6)Gal 2 GlcNAc 2 Man 3 GlcNAc 2 , Sia 2 (a2-6/a2-3)Gal 2 GlcNAc 2 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2- 6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2- 6)Gal 2 GlcNAc 3 Man 3 GlcNAc 2 , Sia 2 (a2-3/a2-6)Gal 2 Glc
- GalGlcNAcMan 3 GlcNAc 2 and Gal 2 GlcNAc 3 Man 3 GlcNAc 2 Man 3 GlcNAc 2 .
- Step (b) in the method of the invention leads to sugar chain extension.
- One method for sugar chain extension is through an enzyme-catalyzed glycosylation reaction. It is well known in the art that glycosylation using a sugar oxazoline as the sugar donor among the enzyme- catalyzed glycosylation reactions is useful for synthesizing oligosaccharides because the glycosylation reaction is an addition reaction and advances without any accompanying elimination of acid, water, or the like. (Fujita, et al, Biochim. Biophys. Acta 2001, 1528, 9-14)
- the carbohydrate moiety is a sugar oxazoline.
- Suitable conditions also include incubation of the reaction mixture for at least 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 minutes or 100 minutes, preferably less than 60 minutes. Incubation preferably takes place at room temperature, more preferably at approximately 20°C, 25 °C, 30°C, 35 °C, 40°C or 45 °C, and most preferably at approximately 37°C.
- the polypeptide of the a-fucosidase of the invention may be derivatized or modified to assist with their isolation or purification.
- the polypeptide for use in the invention is derivatized or modified by addition of a ligand which is capable of binding directly and specifically to a separation means.
- the polypeptide is derivatized or modified by addition of one member of a binding pair and the separation means comprises a reagent that is derivatized or modified by addition of the other member of a binding pair. Any suitable binding pair can be used.
- the polypeptide for use in the invention is derivatized or modified by addition of one member of a binding pair
- the polypeptide is preferably histidine-tagged or biotin-tagged.
- the amino acid coding sequence of the histidine or biotin tag is included at the gene level and the proteins are expressed recombinantly in E. coli.
- the histidine or biotin tag is typically present at one end of the polypeptide, either at the N-terminus or at the C-terminus.
- the histidine tag typically consists of six histidine residues, although it can be longer than this, typically up to 7, 8, 9, 10 or 20 amino acids or shorter, for example 5, 4, 3, 2 or 1 amino acids.
- the histidine tag may contain one or more amino acid substitutions, preferably conservative substitutions as defined above.
- Variant polypeptide as described herein are those for which the amino acid sequence varies from that in SEQ ID NO: 5, but exhibit the same or similar function of the enzyme comprising the polypeptide having an amino acid sequence of SEQ ID NO: 5.
- percent (%) sequence identity with respect to a sequence is defined as the percentage of amino acid residues in a candidate polypeptide sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
- a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al, Nature, 321 :522-525 (1986); Riechmann et al, Nature, 332:323-327 (1988); Verhoeyen et al, Science, 239: 1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
- humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- variable domains both light and heavy
- sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
- the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al, J. Immunol., 151 :2296 (1993); Chothia et al, J. Mol. Biol, 196:901 (1987)).
- Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
- the same framework may be used for several different humanized antibodies (Carter et al, Proc. Natl. Acad Sci. USA, 89:4285 (1992); Prestaetal, J. Immnol., 151 :2623 (1993)).
- humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences.
- Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
- Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i. e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
- FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.
- the CDR residues are directly and most substantially involved in influencing antigen binding.
- transgenic animals e.g., mice
- JH antibody heavy-chain joining region
- Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol, 227:381 (1991); Marks et al, J. Mol. Biol, 222:581-597 (1991)).
- Anti-HER2 Glycoantibodies Anti-HER2 GAb
- the HER2 gene is overexpressed or amplified in approximately 30% of breast cancers. Breast cancer patients with HER2 overexpression or amplification have shortened disease-free and overall survivals. The HER2 protein is thought to be a unique and useful target for antibody therapy of cancers overexpressing the HER2 gene.
- a monoclonal antibody anti-HER2 A monoclonal antibody anti-HER2,
- trastuzumab (Herceptin®), has been successfully used in therapy for malignant cancers relating to this target, which was approved by FDA in 1998 for the treatment of HER2 overexpressing breast cancer.
- anti-HER2 glycoantibodies termed "anti-HER2 GAb"
- anti-HER2 GAb anti-HER2 glycoantibodies
- the anti-HER2 glycoantibodies can be generated from anti-HER2 monoclonal antibodies by Fc glycoengineering.
- the individual anti-HER2 glycoantibodies comprising the homogeneous population are identical and contain the same Fc glycan with a well-defined glycan structure and sequence.
- the anti-HER2 GAb according to the present invention specifically binds to the same epitope of a human HER2 antigen as its patent antibody.
- parental antibody refers to the anti-HER2 monoclonal antibody used to produce an anti-HER2 glycoantibody.
- the parental antibodies can be obtained by cell culturing such as mammalian cell culture, Pichia pastoris or insect cell lines. Preferrably, the parental antibodies are produced in mammalian cell culture.
- the parental antibodies may be FDA approved or in development.
- FDA approved anti-HER2 therapeutic antibodies include Trastuzumab (Herceptin), Lapatinib (Tykerb), Pertuzumab (Perjeta), Ado-trastuzumab emtansine (Kadcyla, Genentech).
- the anti-HER2 GAb described herein comprise a heavy chain having the amino acid sequence set forth in SEQ ID NO: 3, and a light chain having the amino acid sequence set forth in SEQ ID NO: 4.
- the anti-HER2 GAb comprises a light chain sequence and a heavy chain sequence of Trastuzumab. Table 7 below shows the heavy chain and the light chain sequences of Trastuzumab.
- ADCC enhancement is a key strategy for improving therapeutic antibody drug efficacy. It has the potential of lowering effective drug dosage for benefits of lower drug cost.
- the anti-HER2 glycoantibodies described herein can be characterized by functional properties.
- the anti-HER2 GAb has cell growth inhibitory activities including apoptosis against human HER2 expressing cells. In some embodiments, the anti- HER2 GAb exhibits more potent cell growth inhibitory activities as compared to its patent antibody.
- the ADCC activity of the glycoantibody according to the invention is at least 3 fold increased, preferably at least 9 fold, more preferably at least 10 fold increased ADCC activity, preferably at least 12 fold increased ADCC activity, preferably at least 20 fold increased ADCC activity, most preferred at least 30 fold increased ADCC activity compared to the ADCC activity of the parental antibody.
- the ADCC lysis activity of the inventive glycoantibody can be measured in comparison to the parental antibody using target cancer cell lines such as SKBR5, SKBR3, LoVo, MCF7, OVCAR3 and/or Kato III.
- Table 8 lists exemplary enhanced ADCC activities of anti-HER2 GAbs as compared to Trastuzumab. Exemplary assays are described in the examples.
- the glycoantibody described herein is surprisingly able to provide improved ADCC without affecting CDC.
- Exemplary CDC assays are described in the examples.
- ADCC of the glycoantibody is increased but other immunoglobulin-type effector functions such as complement-dependent cytoxicity (CDC) remain similar or are not significantly affected.
- CDC complement-dependent cytoxicity
- Table 9 lists exemplary FcyRIIIA binding of anti-HER2 GAbs and Herceptin.
- FcyRIIIA binding may be measured using assays known in the art. Exemplary assays are described in the examples. The Fc receptor binding may be determined as the relative ratio of anti-HER2 GAb vs Trastuzumab. Fc receptor binding in exemplary embodiments is increased by at least 2.5-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold or 20- fold, 30-fold, 40-fold, 50-fold or higher.
- the binding data showed that the anti-HER2 GAbs, in particular GAblOl and GAb 104, exhibit stronger binding affinity for the target molecule HER2.
- anti-HER2 GAbs in particular GAblOl, and GAM04, exhibit enhanced ADCC activity and stronger FcyRIIIA binding affinity as compared to Trastuzumab.
- the glycoantibodies of the invention may provide a superior clinical response either alone or, preferably, in a composition comprising two or more such antibodies, and optionally in combination with other treatments such as chemotherapy. It is contemplated that the ADCC-enhanced anti-HER2 glycoantibody may provide an alternative therapeutic for HER2 -positive diseases.
- glycoantibodies of the present invention advantageously can be used to alter current routes of administration and current therapeutic regimens, as their increased effector function means they can be dosed at lower concentrations and with less frequency, thereby reducing the potential for antibody toxicity and/or development of antibody tolerance. Furthermore, their improved effector function yields new approaches to treating clinical indications that have previously been resistant or refractory to treatment with the corresponding anti-HER2 monoclonal antibody produced in recombinant host systems.
- the anti-HER2 glycoantibodies of the invention can be produced by Fc
- the monoclonal antibodies are therapeutic monoclonal antibodies.
- Fc glycoengineering may be performed enzymatically or chemoenzymatically.
- the parental antibody is Trastuzumab.
- N-glycans in the glycoantibodies of the invention are preferrably defucosylated.
- the method for making an anti- HER2 glycoantibody is similar to the methods described herein for making an anti-CD20 glycoantibody. Briefly, the method comprises the steps of (a) contacting an anti- HER2 monoclonal antibody with an a-fucosidase and at least one endoglycosidase, thereby yielding a defucosylated antibody having a single N- acetylglucosamine (GlcNAc), and (b) adding a desired carbohydrate moiety to GlcNAc under suitable conditions.
- the carbohydrate moiety is Sia 2 (a2- 6)Gal 2 GlcNAc2Man 3 GlcNAc.
- Glycoantibodies described herein may be useful for treating an autoimmunity and/or inflammation.
- exemplary monoclonal antibodies for autoimmunity and inflammation include, but are not limited to, Natalizumab (Tysabri; Biogen Stahl/Elan), Vedolizumab (MLN2;
- Mepolizumab (Bosatria; GlaxoSmithKline), Reslizumab (SCH55700; Ception Therapeutics), Tocilizumab (Actemra/RoActemra; Chugai/Roche), Ustekinumab (Stelara; Centocor),
- Anti-TNFa Glycoantibodies Anti-TNFa GAb
- TNFa tumor necrosis factor-a
- TNFp tumor necrosis factor- ⁇
- TNFa is a soluble homotrimer of 17 kD protein subunits (Smith, et al, J. Biol. Chem. 262:6951-6954 (1987)).
- a membrane-bound 26 kD precursor form of TNF also exists (Kriegler, et al, Cell 53 :45-53 (1988)).
- TNF-a is a potent inducer of the inflammatory response, a key regulator of innate immunity and plays an important role in the regulation of Thl immune responses against intracellular bacteria and certain viral infections.
- dysregulated TNF can also contribute to numerous pathological situations. These include immune-mediated inflammatory diseases (IMIDs) including rheumatoid arthritis, Crohn's disease, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis and severe chronic plaque psoriasis.
- IMIDs immune-mediated inflammatory diseases
- anti-TNFa glycoantibodies a novel class of anti-TNFa monoclonal antibodies, termed "anti-TNFa GAbs").
- Anti-TNFa glycoantibodies can be generated from anti-TNFa monoclonal antibodies ("parental antibodies”) by Fc
- parental antibodies refers to the anti-TNFa monoclonal antibodies used to produce anti-TNFa glycoantibodies.
- the individual anti- TNFa glycoantibodies comprising the homogeneous population are identical and contain the same Fc glycan with a well-defined glycan structure and sequence.
- Anti-TNFa glycoantibodies of the invention may bind to the same epitope of a human TNFa antigen as its patental antibodies do.
- the parental antibodies may be produced in cells such as mammalian cells, Pichia pastoris or insect cells. Preferrably, the parental antibodies are produced in mammalian cells.
- the parental antibodies may be FDA approved or in development.
- Anti-TNFa monoclonal antibodies approved or in development include Infliximab, Adalimumab, Golimumab, CDP870 (certolizumab), TNF-TeAb and CDP571.
- An anti-TNFa glycoantibody of the invention may comprise a heavy chain having the amino acid sequence set forth in SEQ ID NO: 1, and a light chain having the amino acid sequence set forth in SEQ ID NO: 2.
- An anti-TNFa glycoantibody of the invention may comprise a light chain sequence and a heavy chain sequence of Adalimumab (Humira®).
- Table 10 below shows the heavy chain and the light chain sequences of Adalimumab.
- An anti-TNFa glycoantibody of the invention can be produced by Fc
- the parental antibody is Adalimumab (Humira®).
- the method for making an anti- TNFa glycoantibody is similar to the methods described herein for making an anti-CD20 glycoantibody. Briefly, the method comprises the steps of (a) contacting an anti- TNFa monoclonal antibody with an a-fucosidase and at least one endoglycosidase, thereby yielding a defucosylated antibody having a single N- acetylglucosamine (GlcNAc), and (b) adding a desired carbohydrate moiety to GlcNAc under suitable conditions.
- the carbohydrate moiety is Sia 2 (a2- 6)Gal 2 GlcNAc 2 Man 3 GlcNAc. (III) Glycoantibodies for Infectious Diseases
- glycoantibodies described herein are useful for treating an infectious disease.
- Exemplary monoclonal antibodies for infectious disease include, but are not limited to, anti-Ebola antibodies sue as MB-003 (cl3C6, hl3F6 and c6D8), ZMab (mlH3, m2G4 and m4G7) and ZMapp (cl3C6, c2G4, c4G7), anti-HIV antibodies such as_VRC01, VRC02, VRC03, VRC06, bl2, HJ16, 8ANC131, 8ANC134, CH103, NIH45, NIH46, NIH45G54W, NIH46G54W, 3BNC117, 3BNC60, VRC-PG04, 1NC9, 12A12, 12A21, VRC23, PG9, PGT145, PGDM1400, PG16, 2G12, PGT121, PGT128, PGT135, 4E10, 10E8, Z13 and 2F5, and anti-influenza antibodies such as C
- the present disclosure features a novel class of
- F 16 monoclonal antibodies are neutralizing anti- influenza A virus antibodies.
- the neutralizing antibodies response to Influenza A virus.
- Amino acid sequences of a heavy chain and a lights of the antibodies are as those described in PCT publication WO 2013011347.
- the method for making an FI6 glycoantibody is similar to the methods described herein for making an anti-CD20 glycoantibody. Briefly, the method comprises the steps of (a) contacting an FI6 monoclonal antibody with an a-fucosidase and at least one endoglycosidase, thereby yielding a defucosylated antibody having a single N-acetylglucosamine (GlcNAc), and (b) adding a desired carbohydrate moiety to GlcNAc under suitable conditions.
- the carbohydrate moiety is Sia 2 (a2- 6)Gal 2 GlcNAc 2 Man 3 GlcNAc.
- the pharmaceutical composition according to the disclosure may be used in therapeutics.
- the pharmaceutical composition can be used for preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcyR is desired, e.g., cancer, autoimmune, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
- ADCC effector cell function
- the antibody for preparing the formulation is preferably essentially pure and desirably essentially homogeneous (i.e. free from contaminating proteins etc).
- Essentially pure protein means a composition comprising at least about 90% by weight of the protein, based on total weight of the composition, preferably at least about 95% by weight.
- Essentially homogeneous protein means a composition comprising at least about 99% by weight of protein, based on total weight of the composition.
- the protein is an antibody.
- the amount of antibody in the pre-lyophilized formulation is determined taking into account the desired dose volumes, mode(s) of administration etc.
- the protein of choice is an intact antibody (a full-length antibody)
- from about 2 mg/mL to about 50 mg/mL, preferably from about 5 mg/mL to about 40 mg/mL and most preferably from about 20-30 mg/mL is an exemplary starting protein concentration.
- the protein is generally present in solution.
- the protein may be present in a pH-buffered solution at a pH from about 4-8, and preferably from about 5-7.
- Exemplary buffers include histidine, phosphate, Tris, citrate, succinate and other organic acids.
- the buffer concentration can be from about 1 mM to about 20 mM, or from about 3 mM to about 15 mM, depending, for example, on the buffer and the desired isotonicity of the formulation (e.g. of the reconstituted formulation).
- the preferred buffer is histidine in that, as demonstrated below, this can have lyoprotective properties.
- Succinate was shown to be another useful buffer.
- the lyoprotectant is added to the pre-lyophilized formulation.
- the lyoprotectant is a non-reducing sugar such as sucrose or trehalose.
- the amount of lyoprotectant in the pre-lyophilized formulation is generally such that, upon reconstitution, the resulting formulation will be isotonic. However, hypertonic reconstituted formulations may also be suitable. In addition, the amount of lyoprotectant must not be too low such that an unacceptable amount of degradation/aggregation of the protein occurs upon lyophilization.
- lyoprotectant concentrations in the pre-lyophilized formulation are from about 10 mM to about 400 mM, and preferably from about 30 mM to about 300 mM, and most preferably from about 50 mM to about 100 mM.
- the ratio of protein to lyoprotectant is selected for each protein and lyoprotectant combination.
- the molar ratio of lyoprotectant to antibody may be from about 100 to about 1500 moles lyoprotectant to 1 mole antibody, and preferably from about 200 to about 1000 moles of lyoprotectant to 1 mole antibody, for example from about 200 to about 600 moles of lyoprotectant to 1 mole antibody.
- a surfactant to the pre-lyophilized formulation.
- the surfactant may be added to the lyophilized formulation and/or the reconstituted formulation.
- exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20 or 80); poloxamers (e.g.
- poloxamer 188 Triton; sodium dodecyl sulfate (SDS); sodium laurel sulfate; sodium octyl glycoside; lauryl-, myristyl-, linoleyl-, or stearyl-sulfobetaine; lauryl-, myristyl-, linoleyl- or stearyl-sarcosine; linoleyl-, myristyl-, or cetyl-betaine; lauroamidopropyl-, cocamidopropyl-, linoleamidopropyl-, myristamidopropyl-, palnidopropyl-, or isostearamidopropyl-betaine (e.g lauroamidopropyl); myristamidopropyl-, palmidopropyl-, or isostearamidopropyl- dimethylamine; sodium methyl cocoyl
- MONAQUATTM series Mona Industries, Inc., Paterson, N.J.
- polyethyl glycol polypropyl glycol
- copolymers of ethylene and propylene glycol e.g. Pluronics, PF68 etc.
- the amount of surfactant added is such that it reduces aggregation of the reconstituted protein and minimizes the formation of particulates after reconstitution.
- the surfactant may be present in the pre-lyophilized formulation in an amount from about 0.001-0.5%, and preferably from about 0.005-0.05%.
- a mixture of the lyoprotectant such as sucrose or trehalose
- a bulking agent e.g. mannitol or glycine
- the bulking agent may allow for the production of a uniform lyophilized cake without excessive pockets therein etc.
- compositions such as those described in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) may be included in the pre-lyophilized formulation (and/or the lyophilized formulation and/or the reconstituted formulation) provided that they do not adversely affect the desired characteristics of the formulation.
- Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include; additional buffering agents; preservatives; co-solvents; antioxidants including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g. Zn-protein complexes); biodegradable polymers such as polyesters; and/or salt-forming counterions such as sodium.
- compositions and formulations described herein are preferably stable.
- a “stable" formulation/composition is one in which the antibody therein essentially retains its physical and chemical stability and integrity upon storage.
- Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993). Stability can be measured at a selected temperature for a selected time period.
- the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to, or following, lyophilization and reconstitution. Alternatively, sterility of the entire mixture may be accomplished by autoclaving the ingredients, except for protein, at about 120° C. for about 30 minutes, for example.
- the formulation is lyophilized.
- freeze-dryers are available for this purpose such as Hull50® (Hull, USA) or GT20® (Leybold-Heraeus, Germany) freeze-dryers. Freeze-drying is accomplished by freezing the formulation and subsequently subliming ice from the frozen content at a temperature suitable for primary drying. Under this condition, the product temperature is below the eutectic point or the collapse temperature of the formulation.
- the shelf temperature for the primary drying will range from about -30 to 25° C. (provided the product remains frozen during primary drying) at a suitable pressure, ranging typically from about 50 to 250 mTorr.
- the formulation, size and type of the container holding the sample (e.g., glass vial) and the volume of liquid will mainly dictate the time required for drying, which can range from a few hours to several days (e.g. 40-60hrs).
- a secondary drying stage may be carried out at about 0-40° C, depending primarily on the type and size of container and the type of protein employed. However, it was found herein that a secondary drying step may not be necessary.
- the shelf temperature throughout the entire water removal phase of lyophilization may be from about 15-30° C. (e.g., about 20° C).
- the time and pressure required for secondary drying will be that which produces a suitable lyophilized cake, dependent, e.g., on the temperature and other parameters.
- the secondary drying time is dictated by the desired residual moisture level in the product and typically takes at least about 5 hours (e.g. 10-15 hours).
- the pressure may be the same as that employed during the primary drying step. Freeze- drying conditions can be varied depending on the formulation and vial size.
- the container in this instance may, for example, be a 3, 5, 10, 20, 50 or 100 cc vial.
- lyophilization will result in a lyophilized formulation in which the moisture content thereof is less than about 5%, and preferably less than about 3%.
- the lyophilized formulation may be reconstituted with a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/mL, and most preferably from about 90 mg/mL to about 150 mg/mL.
- a diluent such that the protein concentration in the reconstituted formulation is at least 50 mg/mL, for example from about 50 mg/mL to about 400 mg/mL, more preferably from about 80 mg/mL to about 300 mg/mL, and most preferably from about 90 mg/mL to about 150 mg/mL.
- Such high protein concentrations in the reconstituted formulation are considered to be particularly useful where subcutaneous delivery of the reconstituted formulation is intended.
- the protein concentration in the reconstituted formulation is significantly higher than that in the pre-lyophilized formulation.
- the protein concentration in the reconstituted formulation may be about 2-40 times, preferably 3-10 times and most preferably 3-6 times (e.g. at least three fold or at least four fold) that of the pre-lyophilized formulation.
- Reconstitution generally takes place at a temperature of about 25° C. to ensure complete hydration, although other temperatures may be employed as desired.
- the time required for reconstitution will depend, e.g., on the type of diluent, amount of excipient(s) and protein.
- Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.
- BWFI bacteriostatic water for injection
- the diluent optionally contains a preservative. Exemplary preservatives have been described above, with aromatic alcohols such as benzyl or phenol alcohol being the preferred preservatives.
- the amount of preservative employed is determined by assessing different preservative concentrations for compatibility with the protein and preservative efficacy testing.
- the preservative is an aromatic alcohol (such as benzyl alcohol)
- it can be present in an amount from about 0.1-2.0% and preferably from about 0.5-1.5%, but most preferably about 1.0-1.2%.
- the reconstituted formulation has less than 6000 particles per vial which are >10 ⁇ m size.
- Disclosed herein include methods for preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection, the method comprising administering to a subject in need thereof a therapeutically effective amount of the
- the diseases, disorders, or infections include, but not limited to, cancers, autoimmune disorders, inflammatory disorders and infectious infections.
- the pharmaceutical composition according to the disclosure may be used in cancers.
- Disclosed herein include methods for the treatment of cancer in a patient, the method comprising administering to the patient an effective amount of a pharmaceutical composition described herein.
- cancers include, but not limited to, acoustic neuroma, adenocarcinoma, adrenal gland cancer, anal cancer, angiosarcoma (e.g., lymphangiosarcoma,
- lymphangioendotheliosarcoma hemangiosarcoma
- appendix cancer benign monoclonal gammopathy
- biliary cancer e.g., cholangiocarcinoma
- bladder cancer e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast
- brain cancer e.g., meningioma; glioma, e.g., astrocytoma,
- oligodendroglioma oligodendroglioma; medulloblastoma), bronchus cancer, carcinoid tumor, cervical cancer (e.g., cervical adenocarcinoma), choriocarcinoma, chordoma, craniopharyngioma, colorectal cancer (e.g., colon cancer, rectal cancer, colorectal adenocarcinoma), epithelial carcinoma,
- endotheliosarcoma e.g., Kaposi's sarcoma, multiple idiopathic hemorrhagic sarcoma
- endometrial cancer e.g., uterine cancer, uterine sarcoma
- esophageal cancer e.g., adenocarcinoma of the esophagus, Barrett's adenocarinoma
- Ewing sarcoma eye cancer (e.g., intraocular melanoma, retinoblastoma), familiar hypereosinophilia, gall bladder cancer, gastric cancer (e.g., stomach adenocarcinoma), gastrointestinal stromal tumor (GIST), head and neck cancer (e.g., head and neck squamous cell carcinoma, oral cancer (e.g., oral squamous cell carcinoma (OSCC), throat cancer (e.g., laryngeal cancer, phary
- lymphocytic leukemia ALL (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL); lymphoma such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL such as diffuse large cell lymphoma (DLCL) (e.g., diffuse large B-cell lymphoma (DLBCL)), follicular lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell
- angioimmunoblastic T-cell lymphoma extranodal natural killer T-cell lymphoma, enteropathy type T-cell lymphoma, subcutaneous panniculitis-like T-cell lymphoma, anaplastic large cell lymphoma
- MM multiple myeloma
- heavy chain disease e.g., alpha chain disease, gamma chain disease, mu chain disease
- hemangioblastoma e.g., hemangioblastoma, inflammatory myofibroblastic tumors, immunocytic amyloidosis
- kidney cancer e.g., nephroblastoma a.k.a.
- liver cancer e.g., hepatocellular cancer (HCC), malignant hepatoma
- lung cancer e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC)
- LMS leiomyosarcoma
- mastocytosis e.g., systemic
- MDS myelodysplasia syndrome
- MDS mesothelioma
- myeloproliferative disorder e.g., polycythemia Vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM), a.k.a, myelofibrosis (MF), chronic idiopathic myelofibrosis, chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)), neuroblastoma, neurofibroma (e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis), neuroendocrine cancer (e.g., gastroenteropancreatic neuroendoctrine tumor (GEP-NET), carcinoid tumor), osteosarcoma, ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma
- MDS mye
- myxosarcoma sebaceous gland carcinoma, sweat gland carcinoma, synovioma, testicular cancer (e.g., seminoma, testicular embryonal carcinoma), thyroid cancer (e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer), urethral cancer, vaginal cancer and vulvar cancer (e.g., Paget's disease of the vulva).
- testicular cancer e.g., seminoma, testicular embryonal carcinoma
- thyroid cancer e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer
- urethral cancer e.g., Paget's disease of the vulva.
- provided glycoantibodies are useful in treating lung cancer.
- a provided compound is useful in treating small lung cancer.
- a provided compound is useful in treating non-small lung cancer.
- a provided compound is useful in treating large bowel cancer.
- a provided compound is useful in treating pancreas cancer.
- a provided compound is useful in treating biliary tract cancer or endometrial cancer. Treatment using Anti-CD20 glycoantibodies
- the present disclosure features a method for treating a cancer in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of anti-CD20 glycoantibodies and a pharmaceutically acceptable carrier.
- cancers include, but not limited to, B cell lymphomas, NHL, precursor B cell lymphoblastic leukemia/lymphoma and mature B cell neoplasms, B cell chronic
- lymphocytic leukemia CLL/small lymphocytic lymphoma (SLL), B cell pro lymphocytic leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma (MCL), follicular lymphoma (FL), low-grade, intermediate-grade and high-grade (FL), cutaneous follicle center lymphoma, marginal zone B cell lymphoma, MALT type marginal zone B cell lymphoma, nodal marginal zone B cell lymphoma, splenic type marginal zone B cell lymphoma, hairy cell leukemia, diffuse large B cell lymphoma, Burkitt's lymphoma, plasmacytoma, plasma cell myeloma, post- transplant lymphoproliferative disorder, Waldenstrom's macroglobulinemia, and anaplastic large-cell lymphoma (ALCL).
- CLL lymphocytic leukemia
- SLL small lymphocytic lymphoma
- the cancer is B-cell lymphoma such as non-Hodgkin's lymphoma.
- the present disclosure features a method for treating a cancer in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of anti-HER2 glycoantibodies and a pharmaceutically acceptable carrier.
- cancers include, but not limited to, breast cancer, brain cancer, lung cancer, oral cancer, esophagus cancer, stomach cancer, liver cancer, bile duct cancer, pancreas cancer, colon cancer, kidney cancer, cervix cancer, ovary cancer and prostate cancer.
- the cancer is brain cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, or pancreas cancer.
- the pharmaceutical composition of glycoantibodies can be administered alone or in conjunction with a second therapeutic agents such as a second antibody, or a chemotherapeutic agent or an immunosuppressive agent.
- the second therapeutic agent is an anti-cancer agent.
- Anticancer agents encompass biotherapeutic anti-cancer agents as well as chemotherapeutic agents.
- Exemplary biotherapeutic anti-cancer agents include, but are not limited to, interferons, cytokines (e.g., tumor necrosis factor, interferon a, interferon ⁇ ), vaccines, hematopoietic growth factors, monoclonal serotherapy, immunostimulants and/or immunodulatory agents (e.g., IL-1, 2, 4, 6, or 12), immune cell growth factors (e.g., GM-CSF) and antibodies (e.g.
- HERCEPTIN (trastuzumab), T-DM1, AVASTIN (bevacizumab), ERBITUX (cetuximab), VECTIBIX (panitumumab), RITUXAN (rituximab), BEXXAR (tositumomab)).
- chemotherapeutic agents include, but are not limited to, anti-estrogens (e.g. tamoxifen, raloxifene, and megestrol), LHRH agonists (e.g. goscrclin and leuprolide), anti-androgens (e.g. flutamide and bicalutamide), photodynamic therapies (e.g. vertoporfin (BPD-MA),
- anti-estrogens e.g. tamoxifen, raloxifene, and megestrol
- LHRH agonists e.g. goscrclin and leuprolide
- anti-androgens e.g. flutamide and bicalutamide
- photodynamic therapies e.g. vertoporfin (BPD-MA)
- phthalocyanine phthalocyanine, photosensitizer Pc4, and demethoxy-hypocrellin A (2BA-2-DMHA)
- nitrogen mustards e.g. cyclophosphamide, ifosfamide, trofosfamide, chlorambucil, estramustine, and melphalan
- nitrosoureas e.g. carmustine (BCNU) and lomustine (CCNU)
- alkylsulphonates e.g. busulfan and treosulfan
- triazenes e.g. dacarbazine, temozolomide
- platinum containing compounds e.g.
- paclitaxel or a paclitaxel equivalent such as nanoparticle albumin-bound paclitaxel (ABRAXANE), docosahexaenoic acid bound-paclitaxel (DHA-paclitaxel, Taxoprexin), polyglutamate bound-paclitaxel (PG-paclitaxel, paclitaxel poliglumex, CT-2103, XYOTAX), the tumor-activated prodrug (TAP) ANG1005 (Angiopep-2 bound to three molecules of paclitaxel), paclitaxel-EC-1 (paclitaxel bound to the erbB2- recognizing peptide EC-1), and glucose-conjugated paclitaxel, e.g., 2'-paclitaxel methyl 2-
- etoposide etoposide phosphate, teniposide, topotecan, 9-aminocamptothecin, camptoirinotecan, irinotecan, crisnatol, mytomycin C
- anti-metabolites DHFR inhibitors (e.g. methotrexate, dichloromethotrexate, trimetrexate, edatrexate), IMP dehydrogenase inhibitors (e.g. mycophenolic acid, tiazofurin, ribavirin, and EICAR), ribonuclotide reductase inhibitors (e.g. hydroxyurea and deferoxamine), uracil analogs (e.g.
- 5-fluorouracil 5-fluorouracil
- floxuridine doxifluridine, ratitrexed, tegafur-uracil, capecitabine
- cytosine analogs e.g. cytarabine (ara C), cytosine arabinoside, and fludarabine
- purine analogs e.g. mercaptopurine and Thioguanine
- Vitamin D3 analogs e.g. EB 1089, CB 1093, and KH 1060
- isoprenylation inhibitors e.g. lovastatin
- dopaminergic neurotoxins e.g. 1 -methyl-4-phenylpyridinium ion
- cell cycle inhibitors e.g.
- actinomycin e.g. actinomycin D, dactinomycin
- bleomycin e.g. bleomycin A2, bleomycin B2, peplomycin
- anthracycline e.g. daunorubicin, doxorubicin, pegylated liposomal doxorubicin, idarubicin, epirubicin, pirarubicin, zorubicin, mitoxantrone
- MDR inhibitors e.g. verapamil
- Ca 2+ ATPase inhibitors e.g.
- thapsigargin imatinib, thalidomide, lenalidomide, tyrosine kinase inhibitors (e.g., axitinib (AG013736), bosutinib (SKI-606), cediranib (RECENTINTM, AZD2171), dasatinib (SPRYCEL ® , BMS-354825), erlotinib (TARCEVA ® ), gefitinib (IRESSA ® ), imatinib (Gleevec ® , CGP57148B, STI-571), lapatinib (TYKERB ® , TYVERB ® ), lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA ® ), semaxanib (semaxinib, SU5416), sunitinib (SUTENT , SUl 1248), to
- glycoantibodies described herein are useful for treating a autoimmune and/or inflammatory diseases.
- the present disclosure features a method for treating a autoimmune or inflammatory disease in a human subject in need thereof, comprising
- autoimmune or inflammatory diseases include, but not limited to, including, but not limited to, rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic
- thrombocytopenic purpura INP
- thrombotic thrombocytopenic purpura TTP
- autoimmune thrombocytopenia multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Crohn's diasease, ulcerative colitis, gastritis, Hashimoto's thyroiditis, ankylosing spondylitis, hepatitis C- associated cryoglobulinemic vasculitis, chronic focal encephalitis, bullous pemphigoid, hemophilia A, membranoproliferative glomerulnephritis, adult and juvenile dermatomyositis, adult polymyositis, chronic urticaria, primary biliary cirrhosis, neuromyelitis optica, Graves' dysthyroid disease, bullous pemphigoi
- the present disclosure features a method for treating a autoimmune or inflammatory disease in a human subject in need thereof, comprising
- glycoantibodies described herein are useful for treating a infectious diseases caused by bacterial or vial infections.
- infectious diseases include, but not limited to, Human Immunodeficiency Virus (HIV), Respiratory syncytial virus (RSV), Cytomegalovirus (CMV), Ebola virus,
- SARS virus measles virus; mumps virus; rubella virus; rabies virus; papillomavirus; vaccinia virus; varicella-zoster virus; variola virus; polio virus; rhino virus; respiratory syncytial virus;
- Streptococcus pyogenes Streptococcus pyogenes; Staphylococcus aureus; Bacillus anthracis; Moraxella catarrhalis;
- Chlaymdia trachomatis Chlamydia pneumoniae; Yersinia pestis; Francisella tularensis; Salmonella species; Vibrio cholerae; toxic E.coli; a human endogenous retrovirus; other microbial pathogens; other microbial toxins, allergens, tumor antigens, autoantigens and alloantigens, chemicals or toxins.
- the infectious disease is caused by HIV, HCV, or a combination thereof.
- the present disclosure features a method for treating a viral disease in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of FI6 glycoantibodies and a pharmaceutically acceptable carrier.
- the viral disease may be caused by HIV (Human Immunodeficiency Virus), RSV (Respiratory syncytial virus), CMV (Cytomegalovirus), Ebola virus, Hepatitis A virus, Hepatitis B virus, Heptatitis C virus, Epstein-Barr virus, varicella zos-ter virus (VZV), Hantaan virus, influenza virus, Herpes simplex virus (HSV), Human herpes virus 6 (HHV-6), human herpes virus 8 (HHV-8), Human papilloma virus, or Parvovirus.
- the viral disease is caused by HIV or by Hepatitis C virus.
- the present disclosure features a method for treating a viral disease in a human subject in need thereof, comprising (a) administering to the subject a first compound that blocks an inhibitory receptor of an NK cell, and (b) administering to the subject a therapeutically effective amount of the pharmaceutical composition described herein.
- Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic or preventative measures; wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
- Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
- a subject or mammal is successfully "treated" for an infection if, after receiving a therapeutic amount of an antibody according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of infected cells or absence of the infected cells; reduction in the percent of total cells that are infected; and/or relief to some extent, one or more of the symptoms associated with the specific infection; reduced morbidity and mortality, and improvement in quality of life issues.
- the above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician.
- terapéuticaally effective amount refers to an amount of an antibody or a drug effective to "treat” a disease or disorder in a subject or mammal See preceding definition of “treating.”
- Administration "in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
- Carriers as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers that are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or
- immunoglobulins include hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM polyethylene glycol (PEG), and PLURONICSTM.
- hydrophilic polymers such as polyvinylpyrrolidone
- amino acids such as glycine, glutamine, asparagine, arginine or lysine
- monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins include chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium;
- N-iodosuccinimide (MS, 1.7-2.2 eq.) and trimethylsilyl trifluoromethanesulfonate (TMSOTf, 0.1 eq.) were added to the solution on -78°C, and then the solution was stirred at -20 °C. Reaction was monitored by thin-layer chromatography (TLC) analysis, which was carried out on glass-backed silica gel plates (Merck DC Kieselgel 6OF254) and visualized by UV light (254 nm) and acidic eerie ammonium molybdate. After the acceptor was consumed completely, the reaction was quenched with sat.
- TLC thin-layer chromatography
- the goal of this study is to prepare homogenous antibodies with optimized activities in both anti-cancer and anti-inflammatory functions. Therefore, the commercially available Rituximab IgGl is selected as a model because it has been used for the treatment of both cancer and autoimmune diseases.
- the strategy of glycoprotein remodeling was used to first obtain the homogeneous antibody with mono-GlcNAc at the Fc region, then a pure synthetic glycan was ligated with the mono-GlcNAc antibody to obtain the homogeneous antibody for activity assay (Figure la).
- the fucosidase BfFucH from E. Coli was used in combination with an
- ADCC is also a key issue in considering cytotoxicity relevant to antibody. Defucosylation of IgGl was reported to effectively raise the ADCC effect via increasing the interaction between the afucosylated Fc-glycan and FcyRIIIa (5, 33).
- PBMC mediated ADCC assay was induced by the non-treated Rituximab and treated mAb, 2,3-NSCT- and 2,6-NSCT-Rituximab on flow cytometry using three different CFSE-labled B lymphoma cells, Raji, Ramos and SKW6.4.
- the antibody with bisected glycan, G9 showed a slight but not significant increase in affinity towards FcyRIIIa in both Rituximab and Herceptin when it is compared with the non- bisected analogue, G4.
- the 2,6-NSCT-Herceptin indeed also showed a superb FcyRIIIa binding affinity among these afucosylated analogous in the SPR analysis.
- hemagglutinins of various subtypes of influenza and its neutralizing activity was linked to ADCC (38).
- the Fc glycan of FI6 antibody was modified to the homogeneous 2,6-NSCT glycan and mixed with human HEK293T cells, which express HA on cell surface to mimic influenza- infected cells; then, the ADCC effects were measured by both the PBMC-mediated killing in target cells and the activation of ADCC signaling nuclear factor of activated T-cell (NFAT) pathway of the effector cells.
- NFAT ADCC signaling nuclear factor of activated T-cell
- the 2,6-NSCT-Rituximab showed a similar CDC activity to the non- treated antibody, but the results of the 2,3-NSCT-Rituximab showed a reduced CDC efficacy with higher value of EC50.
- C Fresh PBMC mediated ADCC assay. Assay experiments were conducted with 3 different B cells, Raji, Ramos and SKW6.4. The results showed that the activity measured by the EC50 value was significantly increased from the unmodified
- Analyzed antibodies were captured by the F(ab')2 fragment of goat anti-human F(ab')2 and detected by the single cycle kinetic method with double referencing. Data shown are represents of 2 replicates.
- the fold number was calculated with the KD value of the commercial Rituximab divided by the
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Urology & Nephrology (AREA)
- Pulmonology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
Priority Applications (23)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK15799981.4T DK3149045T3 (da) | 2014-05-27 | 2015-05-27 | Sammensætninger og fremgangsmåder vedrørende universelle glycoformer til forbedret antistofeffekt |
| KR1020237006450A KR102821413B1 (ko) | 2014-05-27 | 2015-05-27 | 증진된 항체 효능을 위한 범용 당형태에 관한 조성물 및 방법 |
| FIEP15799981.4T FI3149045T3 (fi) | 2014-05-27 | 2015-05-27 | Koostumuksia ja menetelmiä, jotka liittyvät yleisglykoformeihin vasta-aineiden parannettua tehokkuutta varten |
| AU2015267052A AU2015267052A1 (en) | 2014-05-27 | 2015-05-27 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| KR1020167036488A KR20170005142A (ko) | 2014-05-27 | 2015-05-27 | 증진된 항체 효능을 위한 범용 당형태에 관한 조성물 및 방법 |
| CN201580027960.XA CN107074945B (zh) | 2014-05-27 | 2015-05-27 | 增进抗体功效的通用糖型的组合物及方法 |
| EP15799981.4A EP3149045B1 (en) | 2014-05-27 | 2015-05-27 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| CA2950423A CA2950423A1 (en) | 2014-05-27 | 2015-05-27 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| JP2016569735A JP6894239B2 (ja) | 2014-05-27 | 2015-05-27 | 増強された抗体の有効性のための普遍的グリコフォームに関する組成物および方法 |
| CA2972067A CA2972067A1 (en) | 2014-01-16 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
| EP15878250.8A EP3245225B1 (en) | 2014-05-27 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
| KR1020177022487A KR20170098954A (ko) | 2014-05-27 | 2015-07-13 | 암의 치료 및 검출을 위한 조성물 및 방법 |
| AU2015377230A AU2015377230A1 (en) | 2014-01-16 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
| CN201580073451.0A CN107406495B (zh) | 2014-05-27 | 2015-07-13 | 治疗及检测癌症的组合物及方法 |
| JP2017537359A JP2018509385A (ja) | 2014-05-27 | 2015-07-13 | がんの処置および検出のための組成物および方法 |
| DK15878250.8T DK3245225T3 (da) | 2014-05-27 | 2015-07-13 | Sammensætninger og fremgangsmåder til behandling og detektering af cancere |
| PCT/US2015/040199 WO2016114819A1 (en) | 2015-01-16 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
| US14/798,312 US10150818B2 (en) | 2014-01-16 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
| ES15878250T ES2902032T3 (es) | 2014-01-16 | 2015-07-13 | Composiciones y procedimientos para el tratamiento y detección de cánceres |
| IL249195A IL249195B (en) | 2014-05-27 | 2016-11-24 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| IL253162A IL253162A0 (en) | 2014-01-16 | 2017-06-25 | Devices and methods for the treatment of cancers and discoveries |
| US16/184,203 US20190177435A1 (en) | 2014-01-16 | 2018-11-08 | Compositions and methods for treatment and detection of cancers |
| AU2021200644A AU2021200644B2 (en) | 2014-05-27 | 2021-02-02 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
Applications Claiming Priority (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462003104P | 2014-05-27 | 2014-05-27 | |
| US201462003136P | 2014-05-27 | 2014-05-27 | |
| US62/003,136 | 2014-05-27 | ||
| US62/003,104 | 2014-05-27 | ||
| US201462003908P | 2014-05-28 | 2014-05-28 | |
| US62/003,908 | 2014-05-28 | ||
| US201462020199P | 2014-07-02 | 2014-07-02 | |
| US62/020,199 | 2014-07-02 | ||
| US201562110338P | 2015-01-30 | 2015-01-30 | |
| US62/110,338 | 2015-01-30 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/723,297 Continuation-In-Part US10023892B2 (en) | 2014-01-16 | 2015-05-27 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/599,174 Continuation-In-Part US9982041B2 (en) | 2014-01-16 | 2015-01-16 | Compositions and methods for treatment and detection of cancers |
| US14/798,312 Continuation-In-Part US10150818B2 (en) | 2014-01-16 | 2015-07-13 | Compositions and methods for treatment and detection of cancers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015184009A1 true WO2015184009A1 (en) | 2015-12-03 |
Family
ID=54699741
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/032744 Ceased WO2015184008A1 (en) | 2014-05-27 | 2015-05-27 | Fucosidase from bacteroides and methods using the same |
| PCT/US2015/032745 Ceased WO2015184009A1 (en) | 2014-01-16 | 2015-05-27 | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/032744 Ceased WO2015184008A1 (en) | 2014-05-27 | 2015-05-27 | Fucosidase from bacteroides and methods using the same |
Country Status (12)
| Country | Link |
|---|---|
| US (4) | US11319567B2 (enExample) |
| EP (4) | EP3904388A1 (enExample) |
| JP (5) | JP7093612B2 (enExample) |
| KR (5) | KR20170005142A (enExample) |
| CN (3) | CN107074945B (enExample) |
| AU (3) | AU2015267051B2 (enExample) |
| CA (2) | CA2950577A1 (enExample) |
| DK (2) | DK3149045T3 (enExample) |
| FI (1) | FI3149045T3 (enExample) |
| IL (2) | IL249195B (enExample) |
| TW (2) | TWI654202B (enExample) |
| WO (2) | WO2015184008A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016123593A1 (en) | 2015-01-30 | 2016-08-04 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| US11970724B2 (en) | 2013-03-15 | 2024-04-30 | Regeneron Pharmaceuticals, Inc. | Serum-free cell culture medium |
| US12297451B1 (en) | 2019-10-25 | 2025-05-13 | Regeneron Pharmaceuticals, Inc. | Cell culture medium |
Families Citing this family (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7960139B2 (en) | 2007-03-23 | 2011-06-14 | Academia Sinica | Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells |
| EP2318832B1 (en) | 2008-07-15 | 2013-10-09 | Academia Sinica | Glycan arrays on ptfe-like aluminum coated glass slides and related methods |
| US11377485B2 (en) * | 2009-12-02 | 2022-07-05 | Academia Sinica | Methods for modifying human antibodies by glycan engineering |
| US10087236B2 (en) | 2009-12-02 | 2018-10-02 | Academia Sinica | Methods for modifying human antibodies by glycan engineering |
| WO2011130332A1 (en) | 2010-04-12 | 2011-10-20 | Academia Sinica | Glycan arrays for high throughput screening of viruses |
| GB201201314D0 (en) * | 2012-01-26 | 2012-03-07 | Isis Innovation | Composition |
| US10130714B2 (en) | 2012-04-14 | 2018-11-20 | Academia Sinica | Enhanced anti-influenza agents conjugated with anti-inflammatory activity |
| EP2885311B1 (en) | 2012-08-18 | 2020-01-01 | Academia Sinica | Cell-permeable probes for identification and imaging of sialidases |
| RU2666730C2 (ru) | 2012-12-07 | 2018-09-12 | Кемосентрикс, Инк. | Диазольные лактамы |
| US10086054B2 (en) | 2013-06-26 | 2018-10-02 | Academia Sinica | RM2 antigens and use thereof |
| US9981030B2 (en) | 2013-06-27 | 2018-05-29 | Academia Sinica | Glycan conjugates and use thereof |
| WO2015035337A1 (en) | 2013-09-06 | 2015-03-12 | Academia Sinica | HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS |
| US9982041B2 (en) | 2014-01-16 | 2018-05-29 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| US10150818B2 (en) | 2014-01-16 | 2018-12-11 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| EP3129767B1 (en) | 2014-03-27 | 2021-09-01 | Academia Sinica | Reactive labelling compounds and uses thereof |
| CA2950440A1 (en) | 2014-05-27 | 2015-12-03 | Academia Sinica | Anti-her2 glycoantibodies and uses thereof |
| US10118969B2 (en) | 2014-05-27 | 2018-11-06 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| CN106573971A (zh) * | 2014-05-27 | 2017-04-19 | 中央研究院 | 抗cd20醣抗体及其用途 |
| AU2015267051B2 (en) | 2014-05-27 | 2022-03-17 | Academia Sinica | Fucosidase from bacteroides and methods using the same |
| CN106714829A (zh) | 2014-05-28 | 2017-05-24 | 中央研究院 | 抗TNF‑α醣抗体及其用途 |
| US9879042B2 (en) | 2014-09-08 | 2018-01-30 | Academia Sinica | Human iNKT cell activation using glycolipids |
| US10495645B2 (en) | 2015-01-16 | 2019-12-03 | Academia Sinica | Cancer markers and methods of use thereof |
| US9975965B2 (en) | 2015-01-16 | 2018-05-22 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| CA2972731A1 (en) * | 2015-01-24 | 2016-07-28 | Chi-Huey Wong | Cancer markers and methods of use thereof |
| AU2015378564A1 (en) | 2015-01-24 | 2017-07-13 | Academia Sinica | Novel glycan conjugates and methods of use thereof |
| US10654943B2 (en) * | 2015-06-02 | 2020-05-19 | The Rockefeller University | Tri-specific antibodies for HIV therapy |
| KR20180114210A (ko) | 2016-03-08 | 2018-10-17 | 아카데미아 시니카 | N-글리칸의 모듈 합성 방법 및 그의 어레이 |
| BR112018070361A2 (pt) * | 2016-04-07 | 2019-01-29 | Chemocentryx Inc | redução da carga tumoral através da administração de antagonistas do ccr1 em combinação com inibidores de pd-1 ou inibidores de pd-l1 |
| US10538592B2 (en) | 2016-08-22 | 2020-01-21 | Cho Pharma, Inc. | Antibodies, binding fragments, and methods of use |
| EP3288086A1 (en) | 2016-08-26 | 2018-02-28 | LG Electronics Inc. | Solar cell module and method for manufacturing the same |
| CN110121365A (zh) * | 2016-12-29 | 2019-08-13 | 财团法人生物技术开发中心 | 制备糖蛋白-药物偶联物的方法 |
| US20180325931A1 (en) | 2017-01-21 | 2018-11-15 | Ningbo Zhiming Biotechnology Co., Ltd. | Use of paeoniflorin-6'-o-benzenesulfonate in treatment of sjögren's syndrome |
| US10260056B2 (en) | 2017-03-17 | 2019-04-16 | New England Biolabs, Inc. | Cleavage of fucose in N-glycans |
| AU2018298039B2 (en) * | 2017-07-06 | 2023-02-02 | Regeneron Pharmaceuticals, Inc. | Cell culture process for making a glycoprotein |
| US12077792B2 (en) * | 2018-05-15 | 2024-09-03 | The Board Of Trustees Of The University Of Illinois | Engineered microorganisms for production of 2′fucosyllactose and l-fucose |
| CN110760492A (zh) * | 2018-07-25 | 2020-02-07 | 复旦大学 | 一种岩藻糖苷酶及其在制备孟买型红细胞中的应用 |
| CN114026229B (zh) * | 2019-08-05 | 2025-03-25 | 醣基生医股份有限公司 | 用于重塑抗体醣型之融合蛋白 |
| JP7523789B2 (ja) * | 2019-09-04 | 2024-07-29 | 独立行政法人国立病院機構 | 抗炎症性非フコシル化免疫グロブリン製剤及びその製造方法 |
| TW202216771A (zh) * | 2020-06-26 | 2022-05-01 | 德商拜耳廠股份有限公司 | 用於治療應用之ccr8抗體 |
| WO2022099307A1 (en) * | 2020-11-06 | 2022-05-12 | Cho Pharma, Inc. | Immune composition comprising antigen and glycoengineered antibody thereof |
| TW202317614A (zh) * | 2021-06-07 | 2023-05-01 | 美商安進公司 | 使用岩藻糖苷酶控制糖基化蛋白的去岩藻糖基化水平 |
| CN113960232B (zh) * | 2021-10-28 | 2024-02-20 | 苏州大学 | 一种基于唾液特异性岩藻糖基化结构糖谱及其检测方法和应用 |
| CN116903738A (zh) * | 2022-08-02 | 2023-10-20 | 北京绿竹生物技术股份有限公司 | 一种低甘露糖型抗人肿瘤坏死因子-α单抗及其用途 |
| CN116554330B (zh) * | 2023-07-04 | 2023-09-01 | 天津旷博同生生物技术有限公司 | 一种抗人cd24工程抗体及应用 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013011347A1 (en) * | 2011-07-18 | 2013-01-24 | Institute For Research In Biomedicine | Neutralizing anti-influenza a virus antibodies and uses thereof |
| WO2013120066A1 (en) * | 2012-02-10 | 2013-08-15 | University Of Maryland, Baltimore | Chemoenzymatic glycoengineering of antibodies and fc fragments thereof |
| US20140086916A1 (en) * | 2011-05-25 | 2014-03-27 | Dongxing Zha | METHOD FOR PREPARING Fc CONTAINING POLYPEPTIDES HAVING IMPROVED PROPERTIES |
Family Cites Families (398)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US3896111A (en) | 1973-02-20 | 1975-07-22 | Research Corp | Ansa macrolides |
| US4151042A (en) | 1977-03-31 | 1979-04-24 | Takeda Chemical Industries, Ltd. | Method for producing maytansinol and its derivatives |
| US4137230A (en) | 1977-11-14 | 1979-01-30 | Takeda Chemical Industries, Ltd. | Method for the production of maytansinoids |
| USRE30985E (en) | 1978-01-01 | 1982-06-29 | Serum-free cell culture media | |
| US4307016A (en) | 1978-03-24 | 1981-12-22 | Takeda Chemical Industries, Ltd. | Demethyl maytansinoids |
| US4265814A (en) | 1978-03-24 | 1981-05-05 | Takeda Chemical Industries | Matansinol 3-n-hexadecanoate |
| JPS5562090A (en) | 1978-10-27 | 1980-05-10 | Takeda Chem Ind Ltd | Novel maytansinoid compound and its preparation |
| US4256746A (en) | 1978-11-14 | 1981-03-17 | Takeda Chemical Industries | Dechloromaytansinoids, their pharmaceutical compositions and method of use |
| JPS55164687A (en) | 1979-06-11 | 1980-12-22 | Takeda Chem Ind Ltd | Novel maytansinoid compound and its preparation |
| JPS5566585A (en) | 1978-11-14 | 1980-05-20 | Takeda Chem Ind Ltd | Novel maytansinoid compound and its preparation |
| JPS55102583A (en) | 1979-01-31 | 1980-08-05 | Takeda Chem Ind Ltd | 20-acyloxy-20-demethylmaytansinoid compound |
| JPS55162791A (en) | 1979-06-05 | 1980-12-18 | Takeda Chem Ind Ltd | Antibiotic c-15003pnd and its preparation |
| JPS55164685A (en) | 1979-06-08 | 1980-12-22 | Takeda Chem Ind Ltd | Novel maytansinoid compound and its preparation |
| JPS55164686A (en) | 1979-06-11 | 1980-12-22 | Takeda Chem Ind Ltd | Novel maytansinoid compound and its preparation |
| US4309428A (en) | 1979-07-30 | 1982-01-05 | Takeda Chemical Industries, Ltd. | Maytansinoids |
| JPS5645483A (en) | 1979-09-19 | 1981-04-25 | Takeda Chem Ind Ltd | C-15003phm and its preparation |
| JPS5645485A (en) | 1979-09-21 | 1981-04-25 | Takeda Chem Ind Ltd | Production of c-15003pnd |
| EP0028683A1 (en) | 1979-09-21 | 1981-05-20 | Takeda Chemical Industries, Ltd. | Antibiotic C-15003 PHO and production thereof |
| US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
| US4376110A (en) | 1980-08-04 | 1983-03-08 | Hybritech, Incorporated | Immunometric assays using monoclonal antibodies |
| WO1982001188A1 (en) | 1980-10-08 | 1982-04-15 | Takeda Chemical Industries Ltd | 4,5-deoxymaytansinoide compounds and process for preparing same |
| US4450254A (en) | 1980-11-03 | 1984-05-22 | Standard Oil Company | Impact improvement of high nitrile resins |
| US4419446A (en) | 1980-12-31 | 1983-12-06 | The United States Of America As Represented By The Department Of Health And Human Services | Recombinant DNA process utilizing a papilloma virus DNA as a vector |
| US4315929A (en) | 1981-01-27 | 1982-02-16 | The United States Of America As Represented By The Secretary Of Agriculture | Method of controlling the European corn borer with trewiasine |
| US4313946A (en) | 1981-01-27 | 1982-02-02 | The United States Of America As Represented By The Secretary Of Agriculture | Chemotherapeutically active maytansinoids from Trewia nudiflora |
| JPS57192389A (en) | 1981-05-20 | 1982-11-26 | Takeda Chem Ind Ltd | Novel maytansinoid |
| US4596792A (en) | 1981-09-04 | 1986-06-24 | The Regents Of The University Of California | Safe vaccine for hepatitis containing polymerized serum albumin |
| US4741900A (en) | 1982-11-16 | 1988-05-03 | Cytogen Corporation | Antibody-metal ion complexes |
| US4601978A (en) | 1982-11-24 | 1986-07-22 | The Regents Of The University Of California | Mammalian metallothionein promoter system |
| US4560655A (en) | 1982-12-16 | 1985-12-24 | Immunex Corporation | Serum-free cell culture medium and process for making same |
| US4657866A (en) | 1982-12-21 | 1987-04-14 | Sudhir Kumar | Serum-free, synthetic, completely chemically defined tissue culture media |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4767704A (en) | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
| US4599230A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
| US4599231A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
| US4965199A (en) | 1984-04-20 | 1990-10-23 | Genentech, Inc. | Preparation of functional human factor VIII in mammalian cells using methotrexate based selection |
| US4970198A (en) | 1985-10-17 | 1990-11-13 | American Cyanamid Company | Antitumor antibiotics (LL-E33288 complex) |
| US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
| US4601903A (en) | 1985-05-01 | 1986-07-22 | The United States Of America As Represented By The Department Of Health And Human Services | Vaccine against Neisseria meningitidis Group B serotype 2 invasive disease |
| GB8516415D0 (en) | 1985-06-28 | 1985-07-31 | Celltech Ltd | Culture of animal cells |
| US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
| US4927762A (en) | 1986-04-01 | 1990-05-22 | Cell Enterprises, Inc. | Cell culture medium with antioxidant |
| US5567610A (en) | 1986-09-04 | 1996-10-22 | Bioinvent International Ab | Method of producing human monoclonal antibodies and kit therefor |
| US5075109A (en) | 1986-10-24 | 1991-12-24 | Southern Research Institute | Method of potentiating an immune response |
| US5811128A (en) | 1986-10-24 | 1998-09-22 | Southern Research Institute | Method for oral or rectal delivery of microencapsulated vaccines and compositions therefor |
| US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
| IL85035A0 (en) | 1987-01-08 | 1988-06-30 | Int Genetic Eng | Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same |
| US5079233A (en) | 1987-01-30 | 1992-01-07 | American Cyanamid Company | N-acyl derivatives of the LL-E33288 antitumor antibiotics, composition and methods for using the same |
| GB8704027D0 (en) | 1987-02-20 | 1987-03-25 | Owen Mumford Ltd | Syringe needle combination |
| EP0307434B2 (en) | 1987-03-18 | 1998-07-29 | Scotgen Biopharmaceuticals, Inc. | Altered antibodies |
| US4849222A (en) | 1987-03-24 | 1989-07-18 | The Procter & Gamble Company | Mixtures for treating hypercholesterolemia |
| US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
| US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
| US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
| US4975278A (en) | 1988-02-26 | 1990-12-04 | Bristol-Myers Company | Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells |
| US5004697A (en) | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
| US5770701A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Process for preparing targeted forms of methyltrithio antitumor agents |
| US5053394A (en) | 1988-09-21 | 1991-10-01 | American Cyanamid Company | Targeted forms of methyltrithio antitumor agents |
| US5606040A (en) | 1987-10-30 | 1997-02-25 | American Cyanamid Company | Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group |
| JP2670680B2 (ja) | 1988-02-24 | 1997-10-29 | 株式会社ビーエムジー | 生理活性物質含有ポリ乳酸系微小球およびその製造法 |
| US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
| JPH01287029A (ja) | 1988-05-13 | 1989-11-17 | Mect Corp | 新規抗ウィルス剤 |
| EP0435911B1 (en) | 1988-09-23 | 1996-03-13 | Cetus Oncology Corporation | Cell culture medium for enhanced cell growth, culture longevity and product expression |
| GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
| FR2638359A1 (fr) | 1988-11-03 | 1990-05-04 | Tino Dalto | Guide de seringue avec reglage de la profondeur de penetration de l'aiguille dans la peau |
| US5175384A (en) | 1988-12-05 | 1992-12-29 | Genpharm International | Transgenic mice depleted in mature t-cells and methods for making transgenic mice |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| DE3920358A1 (de) | 1989-06-22 | 1991-01-17 | Behringwerke Ag | Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung |
| DE69029036T2 (de) | 1989-06-29 | 1997-05-22 | Medarex Inc | Bispezifische reagenzien für die aids-therapie |
| US5690938A (en) | 1989-07-07 | 1997-11-25 | Oravax, Inc. | Oral immunization with multiple particulate antigen delivery system |
| US5518725A (en) | 1989-09-25 | 1996-05-21 | University Of Utah Research Foundation | Vaccine compositions and method for induction of mucosal immune response via systemic vaccination |
| CA2026147C (en) | 1989-10-25 | 2006-02-07 | Ravi J. Chari | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5238843A (en) | 1989-10-27 | 1993-08-24 | Genencor International, Inc. | Method for cleaning a surface on which is bound a glycoside-containing substance |
| US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
| US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
| EP1690935A3 (en) | 1990-01-12 | 2008-07-30 | Abgenix, Inc. | Generation of xenogeneic antibodies |
| US5061620A (en) | 1990-03-30 | 1991-10-29 | Systemix, Inc. | Human hematopoietic stem cell |
| US5112596A (en) | 1990-04-23 | 1992-05-12 | Alkermes, Inc. | Method for increasing blood-brain barrier permeability by administering a bradykinin agonist of blood-brain barrier permeability |
| US5268164A (en) | 1990-04-23 | 1993-12-07 | Alkermes, Inc. | Increasing blood-brain barrier permeability with permeabilizer peptides |
| AP249A (en) | 1990-04-24 | 1993-03-17 | Biota Scient Management Pty Ltd | Anti-viral compounds. |
| CA2080477A1 (en) | 1990-04-24 | 1991-10-25 | Flustat Pty. Ltd. | Oral vaccine comprising antigen surface-associated with red blood cells |
| US5229275A (en) | 1990-04-26 | 1993-07-20 | Akzo N.V. | In-vitro method for producing antigen-specific human monoclonal antibodies |
| US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
| EP0547065B1 (en) | 1990-06-29 | 2001-08-29 | Large Scale Biology Corporation | Melanin production by transformed microorganisms |
| US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
| US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
| JP2938569B2 (ja) | 1990-08-29 | 1999-08-23 | ジェンファーム インターナショナル,インコーポレイティド | 異種免疫グロブリンを作る方法及びトランスジェニックマウス |
| US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
| US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
| US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| US5714374A (en) | 1990-09-12 | 1998-02-03 | Rutgers University | Chimeric rhinoviruses |
| US5122469A (en) | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
| WO1992006691A1 (en) | 1990-10-19 | 1992-04-30 | Biota Scientific Management Pty. Ltd. | Anti-viral compounds that bind the active site of influenza neuramidase and display in vivo activity against orthomyxovirus and paramyxovirus |
| US5264365A (en) | 1990-11-09 | 1993-11-23 | Board Of Regents, The University Of Texas System | Protease-deficient bacterial strains for production of proteolytically sensitive polypeptides |
| US5508192A (en) | 1990-11-09 | 1996-04-16 | Board Of Regents, The University Of Texas System | Bacterial host strains for producing proteolytically sensitive polypeptides |
| WO1992009690A2 (en) | 1990-12-03 | 1992-06-11 | Genentech, Inc. | Enrichment method for variant proteins with altered binding properties |
| US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
| US5571894A (en) | 1991-02-05 | 1996-11-05 | Ciba-Geigy Corporation | Recombinant antibodies specific for a growth factor receptor |
| DE69222303T2 (de) | 1991-04-30 | 1998-01-22 | Eukarion Inc | Kationisierte antikörper gegen intrazelluläre eiweisse |
| CA2103059C (en) | 1991-06-14 | 2005-03-22 | Paul J. Carter | Method for making humanized antibodies |
| GB9114948D0 (en) | 1991-07-11 | 1991-08-28 | Pfizer Ltd | Process for preparing sertraline intermediates |
| GB9118204D0 (en) | 1991-08-23 | 1991-10-09 | Weston Terence E | Needle-less injector |
| SE9102652D0 (sv) | 1991-09-13 | 1991-09-13 | Kabi Pharmacia Ab | Injection needle arrangement |
| JP3951062B2 (ja) | 1991-09-19 | 2007-08-01 | ジェネンテック・インコーポレーテッド | 少なくとも遊離のチオールとして存在するシステインを有する抗体フラグメントの大腸菌での発現、2官能性F(ab’)2抗体の産生のための使用 |
| EP0605522B1 (en) | 1991-09-23 | 1999-06-23 | Medical Research Council | Methods for the production of humanized antibodies |
| US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
| US5362852A (en) | 1991-09-27 | 1994-11-08 | Pfizer Inc. | Modified peptide derivatives conjugated at 2-hydroxyethylamine moieties |
| FI941572L (fi) | 1991-10-07 | 1994-05-27 | Oncologix Inc | Anti-erbB-2-monoklonaalisten vasta-aineiden yhdistelmä ja käyttömenetelmä |
| US5288502A (en) | 1991-10-16 | 1994-02-22 | The University Of Texas System | Preparation and uses of multi-phase microspheres |
| WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
| JPH08508007A (ja) | 1991-11-19 | 1996-08-27 | センター フォー イノベイティブ テクノロジー | ウィルス抑止性抗両受体によるかぜの複合治療法 |
| JPH0826057B2 (ja) | 1992-01-16 | 1996-03-13 | 株式会社ディ・ディ・エス研究所 | シアル酸オリゴ糖誘導体及び微粒子キャリヤー |
| US5667988A (en) | 1992-01-27 | 1997-09-16 | The Scripps Research Institute | Methods for producing antibody libraries using universal or randomized immunoglobulin light chains |
| EP1997894B1 (en) | 1992-02-06 | 2011-03-30 | Novartis Vaccines and Diagnostics, Inc. | Biosynthetic binding protein for cancer marker |
| US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
| US5733743A (en) | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| US5326856A (en) | 1992-04-09 | 1994-07-05 | Cytogen Corporation | Bifunctional isothiocyanate derived thiocarbonyls as ligands for metal binding |
| ZA932522B (en) | 1992-04-10 | 1993-12-20 | Res Dev Foundation | Immunotoxins directed against c-erbB-2(HER/neu) related surface antigens |
| JP2904647B2 (ja) | 1992-06-12 | 1999-06-14 | 株式会社蛋白工学研究所 | 5−ブロム−4−クロロインド−3−イル−2−シアル酸の製造方法 |
| PT651805E (pt) | 1992-07-17 | 2007-02-28 | Dana Farber Cancer Inst Inc | Método de ligação intracelular de moléculas-alvo |
| US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
| AU677216B2 (en) | 1992-07-27 | 1997-04-17 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Targeting of liposomes to the blood-brain barrier |
| CA2140280A1 (en) | 1992-08-17 | 1994-03-03 | Avi J. Ashkenazi | Bispecific immunoadhesins |
| US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
| EP0666268B1 (en) | 1992-10-22 | 2000-04-19 | Kirin Beer Kabushiki Kaisha | Novel sphingoglycolipid and use thereof |
| US5807722A (en) | 1992-10-30 | 1998-09-15 | Bioengineering Resources, Inc. | Biological production of acetic acid from waste gases with Clostridium ljungdahlii |
| US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
| PT752248E (pt) | 1992-11-13 | 2001-01-31 | Idec Pharma Corp | Aplicacao terapeutica de anticorpos quimericos e marcados radioactivamente contra antigenios de diferenciacao restrita de linfocitos b humanos para o tratamento do linfoma de celulas b |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
| JP3523285B2 (ja) | 1993-01-22 | 2004-04-26 | 雪印乳業株式会社 | 糖分解酵素の製造法 |
| US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
| US5374541A (en) | 1993-05-04 | 1994-12-20 | The Scripps Research Institute | Combined use of β-galactosidase and sialyltransferase coupled with in situ regeneration of CMP-sialic acid for one pot synthesis of oligosaccharides |
| US20020037517A1 (en) | 1993-05-28 | 2002-03-28 | Hutchens T. William | Methods for sequencing biopolymers |
| WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
| EP0724432B1 (en) | 1993-10-22 | 2002-09-18 | Genentech, Inc. | Methods and compositions for microencapsulation of antigens for use as vaccines |
| US5369017A (en) | 1994-02-04 | 1994-11-29 | The Scripps Research Institute | Process for solid phase glycopeptide synthesis |
| EP0746564B1 (en) | 1994-02-25 | 1998-12-02 | E.I. Du Pont De Nemours And Company | 4-n-substituted sialic acids and their sialosides |
| WO1995024176A1 (en) | 1994-03-07 | 1995-09-14 | Bioject, Inc. | Ampule filling device |
| US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
| US5773001A (en) | 1994-06-03 | 1998-06-30 | American Cyanamid Company | Conjugates of methyltrithio antitumor agents and intermediates for their synthesis |
| US5622701A (en) | 1994-06-14 | 1997-04-22 | Protein Design Labs, Inc. | Cross-reacting monoclonal antibodies specific for E- and P-selectin |
| DE69534530T2 (de) | 1994-08-12 | 2006-07-06 | Immunomedics, Inc. | Für b-zell-lymphom und leukämiezellen spezifische immunkonjugate und humane antikörper |
| US5639635A (en) | 1994-11-03 | 1997-06-17 | Genentech, Inc. | Process for bacterial production of polypeptides |
| WO1996016673A1 (en) | 1994-12-02 | 1996-06-06 | Chiron Corporation | Method of promoting an immune response with a bispecific antibody |
| US5663149A (en) | 1994-12-13 | 1997-09-02 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides |
| US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
| US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
| US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
| US6673533B1 (en) | 1995-03-10 | 2004-01-06 | Meso Scale Technologies, Llc. | Multi-array multi-specific electrochemiluminescence testing |
| US5641870A (en) | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
| US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
| JPH11511238A (ja) | 1995-04-25 | 1999-09-28 | イロリ | 遠隔プログラム可能なメモリ付きマトリックス及びその使用 |
| DE69637481T2 (de) | 1995-04-27 | 2009-04-09 | Amgen Fremont Inc. | Aus immunisierten Xenomäusen stammende menschliche Antikörper gegen IL-8 |
| EP0823941A4 (en) | 1995-04-28 | 2001-09-19 | Abgenix Inc | HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENO MOUSES |
| US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
| US5837234A (en) | 1995-06-07 | 1998-11-17 | Cytotherapeutics, Inc. | Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane |
| US5714586A (en) | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
| US6265150B1 (en) | 1995-06-07 | 2001-07-24 | Becton Dickinson & Company | Phage antibodies |
| US5712374A (en) | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
| AU6505796A (en) | 1995-07-26 | 1997-02-26 | Maxim Pharmaceuticals | Mucosal delivery of polynucleotides |
| DE19544393A1 (de) | 1995-11-15 | 1997-05-22 | Hoechst Schering Agrevo Gmbh | Synergistische herbizide Mischungen |
| US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
| US6027888A (en) | 1996-04-05 | 2000-02-22 | Board Of Regents, The University Of Texas System | Methods for producing soluble, biologically-active disulfide-bond containing eukaryotic proteins in bacterial cells |
| GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
| US5922845A (en) | 1996-07-11 | 1999-07-13 | Medarex, Inc. | Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies |
| US6340702B1 (en) | 1996-07-22 | 2002-01-22 | Sankyo Company, Limited | Neuraminic acid derivatives, their preparation and their medical use |
| US6506564B1 (en) | 1996-07-29 | 2003-01-14 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
| KR20000068986A (ko) | 1996-11-14 | 2000-11-25 | 리차드웨드레이 | 신규 용도 화합물 및 그 제조방법 |
| ES2301183T3 (es) | 1996-12-03 | 2008-06-16 | Amgen Fremont Inc. | Anticuerpo completamente humano que se une al receptor del egfr. |
| TW555562B (en) | 1996-12-27 | 2003-10-01 | Kirin Brewery | Method for activation of human antigen-presenting cells, activated human antigen-presenting cells and use thereof |
| CA2284729A1 (en) | 1997-04-18 | 1998-10-29 | Novartis Ag | Neoglycoproteins |
| US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
| US6083715A (en) | 1997-06-09 | 2000-07-04 | Board Of Regents, The University Of Texas System | Methods for producing heterologous disulfide bond-containing polypeptides in bacterial cells |
| JPH1135593A (ja) | 1997-07-18 | 1999-02-09 | Daikin Ind Ltd | 2−フルオロフコシル−n−アロイルグルコサミン誘導体及びその中間物、並びにそれらの製造方法 |
| TW477783B (en) | 1997-12-12 | 2002-03-01 | Gilead Sciences Inc | Novel compounds useful as neuraminidase inhibitors and pharmaceutical compositions containing same |
| IT1298087B1 (it) | 1998-01-08 | 1999-12-20 | Fiderm S R L | Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni |
| DE69938293T2 (de) | 1998-03-27 | 2009-03-12 | Bruce J. Beverly Hills Bryan | Luciferase, gfp fluoreszenzproteine, kodierende nukleinsaüre und ihre verwendung in der diagnose |
| DK1068241T3 (da) | 1998-04-02 | 2008-02-04 | Genentech Inc | Antistofvarianter og fragmenter deraf |
| PT1071700E (pt) | 1998-04-20 | 2010-04-23 | Glycart Biotechnology Ag | Modificação por glicosilação de anticorpos para melhorar a citotoxicidade celular dependente de anticorpos |
| US6455571B1 (en) | 1998-04-23 | 2002-09-24 | Abbott Laboratories | Inhibitors of neuraminidases |
| KR100960211B1 (ko) | 1998-05-06 | 2010-05-27 | 제넨테크, 인크. | 이온 교환 크로마토그래피에 의한 단백질 정제 방법 |
| US6528286B1 (en) | 1998-05-29 | 2003-03-04 | Genentech, Inc. | Mammalian cell culture process for producing glycoproteins |
| JP3773153B2 (ja) | 1998-05-29 | 2006-05-10 | 独立行政法人理化学研究所 | シアル酸誘導体 |
| GB2342651B (en) | 1998-09-18 | 2001-10-17 | Massachusetts Inst Technology | Biological applications of semiconductor nanocrystals |
| FR2783523B1 (fr) | 1998-09-21 | 2006-01-20 | Goemar Lab Sa | Fuco-oligosaccharides, enzyme pour leur preparation a partir des fucanes, bacterie productrice de l'enzyme et applications des fuco-oligosaccharides a la protection des plantes |
| US6994966B2 (en) | 2000-02-17 | 2006-02-07 | Glycominds Ltd. | Combinatorial complex carbohydrate libraries and methods for the manufacture and uses thereof |
| US6696304B1 (en) | 1999-02-24 | 2004-02-24 | Luminex Corporation | Particulate solid phase immobilized protein quantitation |
| AUPP913999A0 (en) | 1999-03-12 | 1999-04-01 | Biota Scientific Management Pty Ltd | Novel chemical compounds and their use |
| US7090973B1 (en) | 1999-04-09 | 2006-08-15 | Oscient Pharmaceuticals Corporation | Nucleic acid sequences relating to Bacteroides fragilis for diagnostics and therapeutics |
| US7854934B2 (en) | 1999-08-20 | 2010-12-21 | Sloan-Kettering Institute For Cancer Research | Glycoconjugates, glycoamino acids, intermediates thereto, and uses thereof |
| US6824780B1 (en) | 1999-10-29 | 2004-11-30 | Genentech, Inc. | Anti-tumor antibody compositions and methods of use |
| AUPQ422399A0 (en) | 1999-11-24 | 1999-12-16 | University Of New South Wales, The | Method of screening transformed or transfected cells |
| US6727356B1 (en) | 1999-12-08 | 2004-04-27 | Epoch Pharmaceuticals, Inc. | Fluorescent quenching detection reagents and methods |
| US7019129B1 (en) | 2000-05-09 | 2006-03-28 | Biosearch Technologies, Inc. | Dark quenchers for donor-acceptor energy transfer |
| US7863020B2 (en) | 2000-06-28 | 2011-01-04 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
| US6514221B2 (en) | 2000-07-27 | 2003-02-04 | Brigham And Women's Hospital, Inc. | Blood-brain barrier opening |
| AU2001286930A1 (en) | 2000-08-30 | 2002-03-13 | The Board Of Trustees Of The Leland Stanford Junior University | Glucocorticoid blocking agents for increasing blood-brain barrier permeability |
| AUPR001000A0 (en) | 2000-09-08 | 2000-10-05 | Biota Scientific Management Pty Ltd | Novel chemical compounds and their use |
| US7034036B2 (en) | 2000-10-30 | 2006-04-25 | Pain Therapeutics, Inc. | Inhibitors of ABC drug transporters at the blood-brain barrier |
| US20030083299A1 (en) | 2000-11-04 | 2003-05-01 | Ferguson Ian A. | Non-invasive delivery of polypeptides through the blood-brain barrier |
| JP2002153272A (ja) | 2000-11-24 | 2002-05-28 | Inst Of Physical & Chemical Res | 生体分子マイクロアレイ |
| US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
| WO2002086096A2 (en) | 2001-01-23 | 2002-10-31 | University Of Rochester Medical Center | Methods of producing or identifying intrabodies in eukaryotic cells |
| US6884869B2 (en) | 2001-04-30 | 2005-04-26 | Seattle Genetics, Inc. | Pentapeptide compounds and uses related thereto |
| DE10121982B4 (de) | 2001-05-05 | 2008-01-24 | Lts Lohmann Therapie-Systeme Ag | Nanopartikel aus Protein mit gekoppeltem Apolipoprotein E zur Überwindung der Blut-Hirn-Schranke und Verfahren zu ihrer Herstellung |
| JP2002371087A (ja) | 2001-06-15 | 2002-12-26 | Mitsubishi Chemicals Corp | 有機ホスホン酸 |
| JP2005500336A (ja) | 2001-07-25 | 2005-01-06 | ニューヨーク・ユニバーシティ | 感染および癌に対するワクチンのためのアジュバントとしてのグリコシルセラミドの使用 |
| US20030129186A1 (en) | 2001-07-25 | 2003-07-10 | Biomarin Pharmaceutical Inc. | Compositions and methods for modulating blood-brain barrier transport |
| JP4317010B2 (ja) | 2001-07-25 | 2009-08-19 | ピーディーエル バイオファーマ,インコーポレイティド | IgG抗体の安定な凍結乾燥医薬製剤 |
| CA2838062C (en) | 2001-08-03 | 2015-12-22 | Roche Glycart Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
| CA2462930C (en) | 2001-10-10 | 2012-07-10 | Shawn De Frees | Remodeling and glycoconjugation of peptides |
| KR20040077655A (ko) | 2001-10-19 | 2004-09-06 | 슈페리어 마이크로파우더스 엘엘씨 | 전자 형상 증착용 테잎 조성물 |
| AUPR879601A0 (en) | 2001-11-09 | 2001-12-06 | Biota Scientific Management Pty Ltd | Novel chemical compounds and their use |
| US20040019430A1 (en) | 2001-11-21 | 2004-01-29 | Patrick Hurban | Methods and systems for analyzing complex biological systems |
| KR101033196B1 (ko) | 2002-02-14 | 2011-05-09 | 이뮤노메딕스, 인코오포레이티드 | 항-cd20 항체 및 그 융합 단백질 및 이들의 이용방법 |
| US20030162695A1 (en) | 2002-02-27 | 2003-08-28 | Schatzberg Alan F. | Glucocorticoid blocking agents for increasing blood-brain barrier permeability |
| US7317091B2 (en) | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
| WO2003077945A1 (en) | 2002-03-14 | 2003-09-25 | Medical Research Council | Intracellular antibodies |
| DE60328481D1 (de) | 2002-05-14 | 2009-09-03 | Novartis Vaccines & Diagnostic | Schleimhautapplizierter impfstoff, der das adjuvanz chitosan und menigokokkenantigene enthält |
| ATE429441T1 (de) | 2002-07-08 | 2009-05-15 | Glaxosmithkline Zagreb | Hybridmoleküle von makroliden mit steroidalen/nicht-steroidalen antientzündlich aktiven molekülen |
| US20080070324A1 (en) | 2002-07-15 | 2008-03-20 | Floyd Alton D | Quantity control device for microscope slide staining assays |
| EP1391213A1 (en) | 2002-08-21 | 2004-02-25 | Boehringer Ingelheim International GmbH | Compositions and methods for treating cancer using maytansinoid CD44 antibody immunoconjugates and chemotherapeutic agents |
| US20040062682A1 (en) | 2002-09-30 | 2004-04-01 | Rakow Neal Anthony | Colorimetric sensor |
| PT1558648E (pt) | 2002-10-17 | 2012-04-23 | Genmab As | Anticorpos monoclonais humanos contra cd20 |
| CA2791165C (en) | 2002-12-03 | 2015-02-24 | Blanchette Rockefeller Neurosciences Institute | A conjugate comprising cholesterol linked to tetracycline |
| AR042485A1 (es) | 2002-12-16 | 2005-06-22 | Genentech Inc | Anticuerpo humanizado que se une al cd20 humano |
| JP2006524039A (ja) | 2003-01-09 | 2006-10-26 | マクロジェニクス,インコーポレーテッド | 変異型Fc領域を含む抗体の同定および作製ならびにその利用法 |
| PL222220B1 (pl) * | 2003-01-22 | 2016-07-29 | Glycart Biotechnology Ag | Komórka gospodarza i sposób wytwarzania polipeptydu w komórce gospodarza |
| US8088387B2 (en) | 2003-10-10 | 2012-01-03 | Immunogen Inc. | Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates |
| AR044388A1 (es) | 2003-05-20 | 2005-09-07 | Applied Molecular Evolution | Moleculas de union a cd20 |
| US20040259142A1 (en) | 2003-06-04 | 2004-12-23 | Imperial College Innovations Limited | Products and methods |
| JP2007516693A (ja) | 2003-06-09 | 2007-06-28 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン | 癌の治療および診断のための組成物および方法 |
| JP4148844B2 (ja) | 2003-06-11 | 2008-09-10 | ソニー・エリクソン・モバイルコミュニケーションズ株式会社 | 情報端末装置及び音声付画像ファイルの出力方法 |
| US7803376B2 (en) * | 2003-07-24 | 2010-09-28 | Innate Pharma S.A. | Methods and compositions for increasing the efficiency of therapeutic antibodies using NK cell potentiating compounds |
| EP1654004A2 (en) * | 2003-08-08 | 2006-05-10 | Novo Nordisk A/S | Synthesis and application of new structural well defined branched polymers as conjugating agents for peptides |
| JP2007505142A (ja) | 2003-09-10 | 2007-03-08 | セダーズ−シナイ メディカル センター | 血液脳関門を通過する薬剤のカリウムチャネル媒介性送達 |
| US20060286140A1 (en) | 2003-09-15 | 2006-12-21 | Eric Wickstrom | Implants with attached silylated therapeutic agents |
| EP1689439A2 (en) | 2003-09-22 | 2006-08-16 | Acidophil LLC | Small molecule compositions and methods for increasing drug efficiency using compositions thereof |
| WO2005033663A2 (en) | 2003-09-30 | 2005-04-14 | Sequenom, Inc. | Methods of making substrates for mass spectrometry analysis and related devices |
| US20050221337A1 (en) | 2003-10-02 | 2005-10-06 | Massachusetts Institute Of Technology | Microarrays and microspheres comprising oligosaccharides, complex carbohydrates or glycoproteins |
| TR201809892T4 (tr) | 2003-11-05 | 2018-07-23 | Roche Glycart Ag | Fc reseptörüne bağlanma afinitesi ve artırılmış efektör fonksiyonu bulunan antijen bağlayan moleküller. |
| CN104998273A (zh) | 2003-11-06 | 2015-10-28 | 西雅图基因公司 | 能够与配体偶联的单甲基缬氨酸化合物 |
| WO2005050224A2 (en) | 2003-11-13 | 2005-06-02 | Epitome Biosystems Inc. | Small molecule and peptide arrays and uses thereof |
| JP2007527539A (ja) | 2004-03-05 | 2007-09-27 | ザ スクリプス リサーチ インスティテュート | ハイスループットグリカンマイクロアレイ |
| US20050221397A1 (en) | 2004-03-30 | 2005-10-06 | Northern Advancement Center For Science & Technology | RM2 antigen (beta1,4-GalNAc-disialyl-Lc4) as prostate cancer-associated antigen |
| US7850962B2 (en) | 2004-04-20 | 2010-12-14 | Genmab A/S | Human monoclonal antibodies against CD20 |
| ITMI20040928A1 (it) | 2004-05-07 | 2004-08-07 | Uni Di Bologna Dipartiment O D | Procedura per la preparazione di coniugati della doxorubicina con l'albumina umana lattosaminata |
| CA2571431A1 (en) | 2004-06-24 | 2006-01-05 | The Scripps Research Institute | Arrays with cleavable linkers |
| RS53594B1 (sr) | 2004-07-22 | 2015-02-27 | Genentech, Inc. | Preparat her2 antitela |
| US8022043B2 (en) | 2004-08-27 | 2011-09-20 | Albert Einstein College Of Medicine Of Yeshiva University | Ceramide derivatives as modulators of immunity and autoimmunity |
| WO2006060171A2 (en) | 2004-11-16 | 2006-06-08 | Board Of Regents, The University Of Texas System | Methods and compositions related to phage-nanoparticle assemblies |
| WO2006055925A2 (en) | 2004-11-19 | 2006-05-26 | Swiss Federal Institute Of Technology | Microarrays for analyte detection |
| WO2006064983A1 (en) | 2004-12-14 | 2006-06-22 | Korea Research Institute Of Bioscience And Biotechnology | Monoclonal antibody specific human embryonic stem cell |
| AU2005322027B2 (en) | 2004-12-28 | 2013-09-12 | The Rockefeller University | Glycolipids and analogues thereof as antigens for NK Tcells |
| US7923013B2 (en) | 2004-12-28 | 2011-04-12 | The Rockefeller University | Glycolipids and analogues thereof as antigens for NKT cells |
| JP5154949B2 (ja) | 2005-01-06 | 2013-02-27 | ノヴォ ノルディスク アー/エス | ウイルス感染を治療するための組成物および方法 |
| US7837990B2 (en) | 2005-03-28 | 2010-11-23 | The Rockefeller University | In vivo expanded NKT cells and methods of use thereof |
| DE602006019565D1 (de) | 2005-03-31 | 2011-02-24 | Biomedics Inc | Monoklonaler anti-cd20-antikörper |
| JP2009508467A (ja) | 2005-05-24 | 2009-03-05 | アベスタゲン リミテッド | B細胞リンパ腫の治療のためのcd20に対するモノクローナル抗体を生成する方法 |
| ZA200710496B (en) | 2005-06-02 | 2009-04-29 | Astrazeneca Ab | Antibodies directed to CD20 and used thereof |
| DK1896071T3 (en) * | 2005-06-30 | 2015-05-26 | Janssen Biotech Inc | Methods and compositions with increased therapeutic activity |
| JP2007036104A (ja) | 2005-07-29 | 2007-02-08 | Nec Electronics Corp | 半導体装置およびその製造方法 |
| JP2009508476A (ja) * | 2005-08-31 | 2009-03-05 | セントカー・インコーポレーテツド | 高められたエフェクター機能をもつ抗体定常領域の製造用の宿主細胞株 |
| AU2006308847C1 (en) | 2005-10-31 | 2012-05-10 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| MY149159A (en) * | 2005-11-15 | 2013-07-31 | Hoffmann La Roche | Method for treating joint damage |
| US7781203B2 (en) | 2005-12-29 | 2010-08-24 | Corning Incorporated | Supports for assaying analytes and methods of making and using thereof |
| US20090060921A1 (en) * | 2006-01-17 | 2009-03-05 | Biolex Therapeutics, Inc. | Glycan-optimized anti-cd20 antibodies |
| CA2647632C (en) | 2006-03-27 | 2017-06-27 | University Of Maryland Biotechnology Institute | Glycoprotein synthesis and remodeling by enzymatic transglycosylation |
| KR20090031362A (ko) | 2006-05-18 | 2009-03-25 | 페터리내르메디찌니쉐 우니버지태트 빈 | 인플루엔자 바이러스의 검출 방법 |
| US20100173323A1 (en) | 2006-06-09 | 2010-07-08 | University Of Maryland, Baltimore | Glycosylation engineered antibody therapy |
| US8445288B2 (en) | 2006-07-12 | 2013-05-21 | Merck Patent Gmbh | Solid-phase detection of terminal monosaccharides cleaved from glycosylated substrates |
| JP2008025989A (ja) | 2006-07-15 | 2008-02-07 | Keio Gijuku | 局在表面プラズモン共鳴法と質量分析法によるリガンドの分析方法及びそのためのセンサー素子 |
| RU2009109692A (ru) | 2006-08-18 | 2010-09-27 | Онкотерапи Сайенс, Инк. (Jp) | Лечение или предотвращение развития злокачественных опухолей, сверхэкспрессирующих reg4 или kiaa0101 |
| CA2670696A1 (en) | 2006-11-27 | 2008-06-05 | Diadexus, Inc. | Ovr110 antibody compositions and methods of use |
| US8765390B2 (en) | 2006-12-08 | 2014-07-01 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and isolation of squamous carcinoma stem cells |
| US9239329B2 (en) | 2006-12-18 | 2016-01-19 | Japan Science And Technology Agency | Method of measuring interaction between biomaterial and sugar chain, method of evaluating biomaterial in sugar chain selectivity, method of screening biomaterial, method of patterning biomaterials, and kits for performing these methods |
| WO2008087257A1 (en) | 2007-01-18 | 2008-07-24 | Suomen Punainen Risti, Veripalvelu | Novel methods and reagents directed to production of cells |
| JP2010516241A (ja) | 2007-01-18 | 2010-05-20 | スオメン プナイネン リスティ,ヴェリパルベル | 新規の特異的細胞結合剤 |
| KR101523698B1 (ko) | 2007-01-22 | 2015-05-29 | 마크로제닉스 웨스트 인코퍼레이티드 | 사람 암 줄기세포 |
| WO2008103824A1 (en) | 2007-02-23 | 2008-08-28 | Chinese Academy Of Inspection And Quarantine (Caiq) | Sensitivity-enhanced dot-antibody linked immunogold assay for virus detection |
| KR101473028B1 (ko) | 2007-03-07 | 2014-12-15 | 다이이찌 산쿄 가부시키가이샤 | 인플루엔자 치료제 |
| WO2008153615A2 (en) | 2007-03-07 | 2008-12-18 | Ada Technologies, Inc. | Preparing carbohydrate microarrays and conjugated nanoparticles |
| US20100129437A1 (en) | 2007-03-23 | 2010-05-27 | Bbb Holding B.V. | Targeted intracellular delivery of antiviral agents |
| US7943330B2 (en) | 2007-03-23 | 2011-05-17 | Academia Sinica | Tailored glycoproteomic methods for the sequencing, mapping and identification of cellular glycoproteins |
| US7960139B2 (en) | 2007-03-23 | 2011-06-14 | Academia Sinica | Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells |
| TW200911274A (en) | 2007-04-13 | 2009-03-16 | Academia Sinica | Alpha-galatosyl ceramide analogs and their use as immunotherapies |
| JP2010526066A (ja) | 2007-04-23 | 2010-07-29 | シェーリング コーポレイション | 抗mdl−1抗体 |
| US8082480B2 (en) | 2007-06-27 | 2011-12-20 | Presagis | Distributed checksum computation |
| WO2009009086A2 (en) | 2007-07-12 | 2009-01-15 | Sangamo Biosciences, Inc. | Methods and compositions for inactivating alpha 1,6 fucosyltransferase (fut 8) gene expression |
| EP2022848A1 (en) | 2007-08-10 | 2009-02-11 | Hubrecht Institut | A method for identifying, expanding, and removing adult stem cells and cancer stem cells |
| JP5345059B2 (ja) | 2007-08-24 | 2013-11-20 | Lsipファンド運営合同会社 | 婦人科癌の検出方法 |
| CN101883569B (zh) | 2007-08-31 | 2013-08-21 | 梁启铭 | 具有抗流感活性之含奥司他伟膦酸酯同系物的合成 |
| FR2921387B1 (fr) | 2007-09-26 | 2012-04-20 | Sanofi Pasteur | Procede de production du virus de la grippe |
| US8647626B2 (en) | 2007-10-02 | 2014-02-11 | Avaxia Biologics, Incorporated | Compositions comprising TNF-specific antibodies for oral delivery |
| US20090123439A1 (en) | 2007-11-09 | 2009-05-14 | The Jackson Laboratory | Diagnostic and prognosis methods for cancer stem cells |
| CA2710779C (en) | 2007-12-31 | 2017-06-20 | Bayer Schering Pharma Aktiengesellschaft | Antibodies to tnf.alpha. |
| WO2009117689A1 (en) * | 2008-03-21 | 2009-09-24 | Danisco Us Inc., Genencor Division | Hemicellulase enriched compositions for enhancing hydrolysis of biomass |
| WO2009119692A1 (ja) | 2008-03-25 | 2009-10-01 | 独立行政法人理化学研究所 | 新規糖脂質及びその用途 |
| CN107561270B (zh) | 2008-04-09 | 2019-06-04 | 贝克顿·迪金森公司 | 使用包被的纳米颗粒的灵敏的免疫测定 |
| US8383554B2 (en) | 2008-04-14 | 2013-02-26 | Academia Sinica | Quantitative microarray of intact glycolipid CD1d interaction and correlation with cell-based cytokine production |
| EP2279410B1 (en) * | 2008-04-22 | 2015-11-11 | The Rockefeller University | Methods of identifying anti-inflammatory compounds |
| US8906832B2 (en) | 2008-04-30 | 2014-12-09 | Academia Sinica | Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants |
| CN102036658A (zh) | 2008-05-23 | 2011-04-27 | 香港大学 | 治疗流感的联合疗法 |
| US20110137570A1 (en) | 2008-05-30 | 2011-06-09 | Anthony Lapadula | Methods for structural analysis of glycans |
| AU2009268937A1 (en) | 2008-06-16 | 2010-01-14 | Aj Park | Compositions for inducing immune responses specific to Globo H and SSEA3 and uses thereof in cancer treatment |
| KR101324109B1 (ko) | 2008-06-16 | 2013-10-31 | 아카데미아 시니카 | Globo h 및 그의 절편들에 대한 항체의 양에 따른 암 진단방법 |
| JP2010014691A (ja) | 2008-06-20 | 2010-01-21 | Igaku Seibutsugaku Kenkyusho:Kk | 腹水中のメソテリン及び/又は巨核球増強因子を検出するための方法、キット、試薬及び装置 |
| US20100003674A1 (en) | 2008-07-03 | 2010-01-07 | Cope Frederick O | Adult stem cells, molecular signatures, and applications in the evaluation, diagnosis, and therapy of mammalian conditions |
| US7928077B2 (en) | 2008-07-11 | 2011-04-19 | Academia Sinica | Alpha-galactosyl ceramide analogs and their use as immunotherapies |
| EP2318832B1 (en) | 2008-07-15 | 2013-10-09 | Academia Sinica | Glycan arrays on ptfe-like aluminum coated glass slides and related methods |
| US20100022916A1 (en) | 2008-07-24 | 2010-01-28 | Javanbakhsh Esfandiari | Method and Apparatus for Collecting and Preparing Biological Samples for Testing |
| GB0816679D0 (en) | 2008-09-11 | 2008-10-22 | Univ Bath | Compounds for treating viral infections |
| JP2012503656A (ja) * | 2008-09-26 | 2012-02-09 | エウレカ セラピューティクス,インコーポレイテッド | 変異体グリコシル化パターンを有する細胞株およびタンパク質 |
| WO2010037402A1 (en) * | 2008-10-02 | 2010-04-08 | Dako Denmark A/S | Molecular vaccines for infectious disease |
| US8541544B2 (en) | 2008-10-27 | 2013-09-24 | Dainippon Sumitomo Pharma Co., Ltd. | Molecular marker for cancer stem cell |
| KR20140133588A (ko) * | 2008-11-17 | 2014-11-19 | 제넨테크, 인크. | 생리적 조건하에 거대분자의 응집을 감소시키는 방법 및 제제 |
| EP2546347A3 (en) * | 2009-02-25 | 2013-05-01 | Merck Sharp & Dohme Corp. | Glycoprotein composition from engineered galactose assimilation pathway in Pichia pastoris |
| DK2411528T3 (en) | 2009-03-27 | 2015-12-14 | Academia Sinica | ALFA-SELECTIVE SIALYLPHOSPHATDONORER MAKING SIALOSIDER AND sialoside arrays FOR DETECTION OF INFLUENZA |
| WO2010129469A1 (en) * | 2009-05-04 | 2010-11-11 | Abbott Biotechnology Ltd. | Stable high protein concentration formulations of human anti-tnf-alpha-antibodies |
| WO2011005756A1 (en) * | 2009-07-06 | 2011-01-13 | Puretech Ventures, Llc | Delivery of agents targeted to microbiota niches |
| US8815941B2 (en) | 2009-07-15 | 2014-08-26 | The University Of British Columbia | 2,3-fluorinated glycosides as neuraminidase inhibitors and their use as anti-virals |
| KR20120104158A (ko) | 2009-07-22 | 2012-09-20 | 엔즌 파마슈티칼스, 인코포레이티드 | 7-에틸-10-히드록시캠토테신의 다분지형 중합 컨쥬게이트와 her2 수용체 길항제를 병용하여 her2 양성 암을 치료하는 방법 |
| US20120172329A1 (en) | 2009-09-14 | 2012-07-05 | Thailand Excellence Center For Tissue Engineering | Phytochemical compositions including xanthones for anti-inflammatory, anti-cytokine storm, and other uses |
| US10087236B2 (en) * | 2009-12-02 | 2018-10-02 | Academia Sinica | Methods for modifying human antibodies by glycan engineering |
| JPWO2011074621A1 (ja) | 2009-12-18 | 2013-04-25 | 株式会社医学生物学研究所 | メソセリン(msln)に対する抗体及びその用途 |
| EP2347769A1 (en) | 2010-01-20 | 2011-07-27 | Glycotope GmbH | Cancer stem cell markers and uses thereof |
| KR20130036192A (ko) | 2010-02-11 | 2013-04-11 | 알렉시온 파마슈티칼스, 인코포레이티드 | 항-cd200 항체들을 이용한 치료 및 진단 방법 |
| US8715963B2 (en) | 2010-02-24 | 2014-05-06 | Merck Sharp & Dohme Corp. | Method for increasing N-glycosylation site occupancy on therapeutic glycoproteins produced in Pichia pastoris |
| MY177062A (en) | 2010-03-12 | 2020-09-03 | Debiopharm Int Sa | Cd37-binding molecules and immunoconjugates thereof |
| WO2011130332A1 (en) | 2010-04-12 | 2011-10-20 | Academia Sinica | Glycan arrays for high throughput screening of viruses |
| CA3122219A1 (en) | 2010-04-16 | 2011-10-20 | The Children's Hospital Corporation | Sustained polypeptide expression from synthetic, modified rnas and uses thereof |
| DK2568976T3 (en) | 2010-05-10 | 2016-01-11 | Academia Sinica | Zanamivir-phosphonate congener with the anti-influenza activity, and determining the sensitivity oseltamivir in influenza viruses |
| WO2011145957A1 (en) | 2010-05-20 | 2011-11-24 | Auckland Uniservices Limited | Agents and methods for detection and/or imaging of hypoxia |
| NZ603883A (en) * | 2010-05-27 | 2015-01-30 | Merck Sharp & Dohme | Method for preparing antibodies having improved properties |
| PE20140229A1 (es) * | 2010-08-26 | 2014-03-27 | Abbvie Inc | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| GB201015569D0 (en) | 2010-09-16 | 2010-10-27 | Medical Res Council | Blood assay for prions |
| WO2012082635A1 (en) | 2010-12-13 | 2012-06-21 | Ancora Pharmaceuticals, Inc. | Synthetic oligosaccharide group a streptococcus |
| ES2654382T3 (es) | 2011-01-05 | 2018-02-13 | National Taiwan University | Método para la preparación de glucoesfingolípidos |
| EP2680853A4 (en) | 2011-02-28 | 2014-08-06 | Univ Mcmaster | TREATMENT OF CANCER WITH DOPAMINE RECEPTOR ANTAGONISTS |
| US10851174B2 (en) | 2011-03-03 | 2020-12-01 | University Of Maryland, Baltimore | Core fucosylated glycopeptides and glycoproteins: chemoenzymatic synthesis and uses thereof |
| WO2013012066A1 (ja) | 2011-07-21 | 2013-01-24 | 京セラ株式会社 | 照明装置、イメージセンサヘッドおよびこれを備える読取装置 |
| CN105001226B (zh) | 2011-08-12 | 2017-09-08 | 日产化学工业株式会社 | 三环杂环化合物和jak抑制剂 |
| KR20140097245A (ko) | 2011-10-31 | 2014-08-06 | 머크 샤프 앤드 돔 코포레이션 | 개선된 특성을 갖는 항체의 제조 방법 |
| WO2013074598A1 (en) | 2011-11-18 | 2013-05-23 | Merck Sharp & Dohme Corp. | Fc CONTAINING POLYPEPTIDES HAVING INCREASED ANTI-INFLAMMATORY PROPERTIES AND INCREASED FcRN BINDING |
| EP2604281B1 (en) | 2011-12-14 | 2014-07-30 | Centre National de la Recherche Scientifique (CNRS) | Clicked somatostatin conjugated analogs for biological applications |
| KR102128413B1 (ko) | 2012-01-19 | 2020-07-01 | 더 유니버시티 오브 브리티쉬 콜롬비아 | 3' 적도방향 불소 치환된 뉴라미니다제 저해제 화합물 및 항바이러스제로 사용하기 위한 이의 조성물 및 방법 |
| GB201201314D0 (en) | 2012-01-26 | 2012-03-07 | Isis Innovation | Composition |
| WO2013130603A1 (en) | 2012-02-27 | 2013-09-06 | Board Of Regents, The University Of Texas System | Ganglioside gd2 as a marker and target on cancer stem cells |
| WO2013152034A1 (en) | 2012-04-02 | 2013-10-10 | Merrimack Pharmaceuticals, Inc. | Dosage and administration of monospecific and bispecific anti-igf-1r and anti-erbb3 antibodies |
| WO2013151649A1 (en) | 2012-04-04 | 2013-10-10 | Sialix Inc | Glycan-interacting compounds |
| US10130714B2 (en) | 2012-04-14 | 2018-11-20 | Academia Sinica | Enhanced anti-influenza agents conjugated with anti-inflammatory activity |
| EP2855745A4 (en) | 2012-06-01 | 2016-01-20 | Momenta Pharmaceuticals Inc | METHODS RELATING TO ADALIMUM AB |
| EP2885311B1 (en) | 2012-08-18 | 2020-01-01 | Academia Sinica | Cell-permeable probes for identification and imaging of sialidases |
| TWI573876B (zh) | 2012-08-20 | 2017-03-11 | 中央研究院 | 寡醣之大規模酵素合成 |
| US9547009B2 (en) | 2012-08-21 | 2017-01-17 | Academia Sinica | Benzocyclooctyne compounds and uses thereof |
| IL238323B2 (en) | 2012-10-30 | 2023-11-01 | Esperance Pharmaceuticals Inc | Antibody/drug conjugates and methods of use |
| KR102152481B1 (ko) * | 2012-11-05 | 2020-09-04 | 젠야쿠코교가부시키가이샤 | 항체 또는 항체 조성물의 제조 방법 |
| WO2014078373A1 (en) | 2012-11-13 | 2014-05-22 | Iogenetics, Llc | Antimicrobial compositions |
| CN103045647A (zh) * | 2012-11-29 | 2013-04-17 | 大连大学 | 核心岩藻糖基转移酶基因沉默细胞模型的建立及鉴定方法 |
| GB201305986D0 (en) | 2013-04-03 | 2013-05-15 | Asociaci N Ct De Investigaci N Cooperativa En Biomateriales | Synthesis and use of isotopically-labelled glycans |
| AU2014253040A1 (en) | 2013-04-13 | 2015-11-05 | Universidade De Coimbra | Platform for targeted delivery to stem cells and tumor cells and uses thereof |
| CN104225616A (zh) | 2013-06-08 | 2014-12-24 | 中南大学 | 一种靶向卵巢癌干细胞的抗肿瘤生物制剂 |
| US10086054B2 (en) | 2013-06-26 | 2018-10-02 | Academia Sinica | RM2 antigens and use thereof |
| US9981030B2 (en) | 2013-06-27 | 2018-05-29 | Academia Sinica | Glycan conjugates and use thereof |
| TWI599370B (zh) | 2013-07-26 | 2017-09-21 | 中央研究院 | 靈芝多醣誘發之抗體介導抗腫瘤活性 |
| WO2015032899A1 (en) | 2013-09-05 | 2015-03-12 | Vib Vzw | Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof |
| WO2015035337A1 (en) | 2013-09-06 | 2015-03-12 | Academia Sinica | HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS |
| CA2922958A1 (en) | 2013-09-12 | 2015-03-19 | Teva Pharmaceutical Industries Ltd. | Gene expression biomarkers of laquinimod responsiveness |
| CN103436627B (zh) | 2013-09-13 | 2016-02-03 | 四川大学华西医院 | 一种恶性乳腺癌干细胞的筛查试剂盒 |
| WO2015054039A1 (en) | 2013-10-08 | 2015-04-16 | Merck Sharp & Dohme Corp. | Fc CONTAINING POLYPEPTIDES HAVING INCREASED BINDING TO FcGammaRIIB |
| US10150818B2 (en) | 2014-01-16 | 2018-12-11 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| US9982041B2 (en) * | 2014-01-16 | 2018-05-29 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| TWI682033B (zh) * | 2014-03-17 | 2020-01-11 | 泉盛生物科技股份有限公司 | 製造具有經修飾的糖苷化作用之重組糖蛋白之方法 |
| EP3129767B1 (en) | 2014-03-27 | 2021-09-01 | Academia Sinica | Reactive labelling compounds and uses thereof |
| CN106573971A (zh) | 2014-05-27 | 2017-04-19 | 中央研究院 | 抗cd20醣抗体及其用途 |
| CA2950440A1 (en) * | 2014-05-27 | 2015-12-03 | Academia Sinica | Anti-her2 glycoantibodies and uses thereof |
| US10118969B2 (en) * | 2014-05-27 | 2018-11-06 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| AU2015267051B2 (en) | 2014-05-27 | 2022-03-17 | Academia Sinica | Fucosidase from bacteroides and methods using the same |
| CN106714829A (zh) * | 2014-05-28 | 2017-05-24 | 中央研究院 | 抗TNF‑α醣抗体及其用途 |
| JP6588084B2 (ja) | 2014-08-19 | 2019-10-09 | ミルテニイ バイオテック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Ssea4抗原に特異的なキメラ抗原受容体 |
| CN106573962B (zh) | 2014-08-22 | 2020-06-05 | 中央研究院 | 新颖的聚糖共轭物及其用途 |
| US9879042B2 (en) | 2014-09-08 | 2018-01-30 | Academia Sinica | Human iNKT cell activation using glycolipids |
| JP6730260B2 (ja) | 2014-09-12 | 2020-07-29 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | マクロピノサイトーシスによるヒト抗cd46抗体及び標的とされた癌治療薬 |
| US10495645B2 (en) | 2015-01-16 | 2019-12-03 | Academia Sinica | Cancer markers and methods of use thereof |
| US9975965B2 (en) | 2015-01-16 | 2018-05-22 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
| WO2016118090A1 (en) | 2015-01-23 | 2016-07-28 | Agency For Science, Technology And Research | Cancer specific antigen-binding proteins |
| AU2015378564A1 (en) | 2015-01-24 | 2017-07-13 | Academia Sinica | Novel glycan conjugates and methods of use thereof |
| EP3250590B1 (en) * | 2015-01-30 | 2021-09-15 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced anti-ssea4 antibody efficacy |
| US20170283878A1 (en) | 2015-12-11 | 2017-10-05 | Academia Sinica | Modulation of globoseries glycosphingolipid synthesis and cancer biomarkers |
| KR20180114210A (ko) | 2016-03-08 | 2018-10-17 | 아카데미아 시니카 | N-글리칸의 모듈 합성 방법 및 그의 어레이 |
| US11041017B2 (en) | 2016-03-29 | 2021-06-22 | Obi Pharma, Inc. | Antibodies, pharmaceutical compositions and methods |
| US10538592B2 (en) | 2016-08-22 | 2020-01-21 | Cho Pharma, Inc. | Antibodies, binding fragments, and methods of use |
| TWI727884B (zh) | 2016-08-24 | 2021-05-11 | 醣基生醫股份有限公司 | 利用醣苷內切酶突變體重塑醣蛋白及其使用方法 |
| TWI822055B (zh) | 2016-11-21 | 2023-11-11 | 台灣浩鼎生技股份有限公司 | 共軛生物分子、醫藥組成物及方法 |
| WO2020006176A1 (en) | 2018-06-27 | 2020-01-02 | Obi Pharma, Inc. | Glycosynthase variants for glycoprotein engineering and methods of use |
-
2015
- 2015-05-27 AU AU2015267051A patent/AU2015267051B2/en active Active
- 2015-05-27 KR KR1020167036488A patent/KR20170005142A/ko not_active Ceased
- 2015-05-27 AU AU2015267052A patent/AU2015267052A1/en not_active Abandoned
- 2015-05-27 CN CN201580027960.XA patent/CN107074945B/zh active Active
- 2015-05-27 US US14/722,612 patent/US11319567B2/en active Active
- 2015-05-27 WO PCT/US2015/032744 patent/WO2015184008A1/en not_active Ceased
- 2015-05-27 EP EP21162500.9A patent/EP3904388A1/en active Pending
- 2015-05-27 KR KR1020227043794A patent/KR102576850B1/ko active Active
- 2015-05-27 KR KR1020237006450A patent/KR102821413B1/ko active Active
- 2015-05-27 KR KR1020167036507A patent/KR20170010003A/ko not_active Ceased
- 2015-05-27 DK DK15799981.4T patent/DK3149045T3/da active
- 2015-05-27 TW TW104117111A patent/TWI654202B/zh active
- 2015-05-27 JP JP2016569720A patent/JP7093612B2/ja active Active
- 2015-05-27 EP EP15799981.4A patent/EP3149045B1/en active Active
- 2015-05-27 WO PCT/US2015/032745 patent/WO2015184009A1/en not_active Ceased
- 2015-05-27 US US14/723,297 patent/US10023892B2/en active Active
- 2015-05-27 CA CA2950577A patent/CA2950577A1/en active Pending
- 2015-05-27 CA CA2950423A patent/CA2950423A1/en active Pending
- 2015-05-27 JP JP2016569735A patent/JP6894239B2/ja active Active
- 2015-05-27 CN CN201580027982.6A patent/CN106661562A/zh active Pending
- 2015-05-27 FI FIEP15799981.4T patent/FI3149045T3/fi active
- 2015-05-27 TW TW104117110A patent/TWI717319B/zh active
- 2015-05-27 EP EP15800191.7A patent/EP3149161B1/en active Active
- 2015-07-13 CN CN201580073451.0A patent/CN107406495B/zh active Active
- 2015-07-13 EP EP15878250.8A patent/EP3245225B1/en active Active
- 2015-07-13 DK DK15878250.8T patent/DK3245225T3/da active
- 2015-07-13 KR KR1020177022487A patent/KR20170098954A/ko not_active Withdrawn
- 2015-07-13 JP JP2017537359A patent/JP2018509385A/ja not_active Withdrawn
-
2016
- 2016-11-24 IL IL249195A patent/IL249195B/en unknown
- 2016-11-24 IL IL249183A patent/IL249183B/en active IP Right Grant
-
2018
- 2018-06-26 US US16/018,400 patent/US20190119713A1/en not_active Abandoned
-
2019
- 2019-10-02 US US16/591,229 patent/US20200165649A1/en not_active Abandoned
- 2019-12-23 JP JP2019231775A patent/JP2020041003A/ja active Pending
-
2020
- 2020-07-17 JP JP2020123040A patent/JP2020171320A/ja active Pending
-
2021
- 2021-02-02 AU AU2021200644A patent/AU2021200644B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140086916A1 (en) * | 2011-05-25 | 2014-03-27 | Dongxing Zha | METHOD FOR PREPARING Fc CONTAINING POLYPEPTIDES HAVING IMPROVED PROPERTIES |
| WO2013011347A1 (en) * | 2011-07-18 | 2013-01-24 | Institute For Research In Biomedicine | Neutralizing anti-influenza a virus antibodies and uses thereof |
| WO2013120066A1 (en) * | 2012-02-10 | 2013-08-15 | University Of Maryland, Baltimore | Chemoenzymatic glycoengineering of antibodies and fc fragments thereof |
Non-Patent Citations (4)
| Title |
|---|
| BECK, A.: "Biosimilar, biobetter and next generation therapeutic antibodies", MABS, vol. 3, 1 March 2011 (2011-03-01), pages 107 - 110, XP055189402 * |
| CARTER, P.: "Potent antibody therapeutics by design", NATURE REVIEWS IMMUNOLOGY, vol. 6, 7 April 2006 (2006-04-07), pages 343 - 357, XP007901440 * |
| LIU ET AL.: "Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor- bearing host", BLOOD, vol. 109, no. 10, 15 May 2007 (2007-05-15), pages 4336 - 4342, XP055238984 * |
| SMYTH ET AL.: "CD 4+ CD 25+ T Regulatory Cells Suppress NK Cell -Mediated Immunotherapy of Cancer", THE JOURNAL OF IMMUNOLOGY, vol. 176, 2006, pages 1582 - 1587, XP002452474 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11970724B2 (en) | 2013-03-15 | 2024-04-30 | Regeneron Pharmaceuticals, Inc. | Serum-free cell culture medium |
| WO2016123593A1 (en) | 2015-01-30 | 2016-08-04 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| EP3250590A4 (en) * | 2015-01-30 | 2018-10-31 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
| US12297451B1 (en) | 2019-10-25 | 2025-05-13 | Regeneron Pharmaceuticals, Inc. | Cell culture medium |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2021200644B2 (en) | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy | |
| AU2021200784B2 (en) | Anti-CD20 glycoantibodies and uses thereof | |
| US11377485B2 (en) | Methods for modifying human antibodies by glycan engineering | |
| EP3250590B1 (en) | Compositions and methods relating to universal glycoforms for enhanced anti-ssea4 antibody efficacy | |
| US20150344559A1 (en) | Anti-tnf-alpha glycoantibodies and uses thereof | |
| CA2950440A1 (en) | Anti-her2 glycoantibodies and uses thereof | |
| CA2950433C (en) | Anti-tnf-alpha glycoantibodies and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15799981 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 249195 Country of ref document: IL |
|
| ENP | Entry into the national phase |
Ref document number: 2950423 Country of ref document: CA Ref document number: 2016569735 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015799981 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015799981 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2015267052 Country of ref document: AU Date of ref document: 20150527 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20167036488 Country of ref document: KR Kind code of ref document: A |