WO2015119144A1 - ビニル化合物の懸濁重合用分散剤 - Google Patents

ビニル化合物の懸濁重合用分散剤 Download PDF

Info

Publication number
WO2015119144A1
WO2015119144A1 PCT/JP2015/053083 JP2015053083W WO2015119144A1 WO 2015119144 A1 WO2015119144 A1 WO 2015119144A1 JP 2015053083 W JP2015053083 W JP 2015053083W WO 2015119144 A1 WO2015119144 A1 WO 2015119144A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
pva
polymerization
suspension polymerization
dispersant
Prior art date
Application number
PCT/JP2015/053083
Other languages
English (en)
French (fr)
Inventor
熊木 洋介
楠藤 健
俊輔 藤岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53777948&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015119144(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020167024364A priority Critical patent/KR102301275B1/ko
Priority to CN201580018196.XA priority patent/CN106459252B/zh
Priority to EP15746650.9A priority patent/EP3103821A4/en
Priority to JP2015561003A priority patent/JP6010833B2/ja
Priority to US15/116,748 priority patent/US9914791B2/en
Publication of WO2015119144A1 publication Critical patent/WO2015119144A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F116/04Acyclic compounds
    • C08F116/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/38Alcohols, e.g. oxidation products of paraffins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups

Definitions

  • the present invention relates to a dispersant for suspension polymerization of a vinyl compound comprising polyvinyl alcohol and a method for producing a vinyl polymer using the same.
  • PVA Polyvinyl alcohol
  • PVA is known as a water-soluble synthetic polymer.
  • PVA is particularly excellent in strength characteristics and film-forming properties compared to other synthetic polymers. Therefore, PVA is used as a raw material for films and fibers, an additive for paper processing and fiber processing, an adhesive, a stabilizer for emulsion polymerization and suspension polymerization, an inorganic binder, and the like. Thus, PVA is heavily used in various applications.
  • PVA is generally used as a dispersant for suspension polymerization of vinyl chloride.
  • a vinyl compound dispersed in an aqueous medium is polymerized using an oil-soluble catalyst to obtain a particulate vinyl polymer.
  • a dispersant is added to the aqueous medium for the purpose of improving the quality of the obtained polymer.
  • Factors governing the quality of vinyl polymers obtained by suspension polymerization of vinyl compounds include polymerization rate, ratio of water to vinyl compound (monomer), polymerization temperature, type and amount of oil-soluble catalyst, polymerization
  • the type of container the stirring speed of the contents in the polymerization container, and the type of dispersant. Among these, the type of the dispersant greatly affects the quality of the vinyl polymer.
  • Dispersants used for suspension polymerization of vinyl compounds include: (1) a vinyl polymer having a small amount of coarse particles formed during polymerization and a sharp particle size distribution; It is required to obtain a vinyl polymer having a high city and high plasticizer absorbability.
  • cellulose derivatives such as methyl cellulose and carboxymethyl cellulose, and partially saponified PVA are used alone or in combination as a dispersant.
  • Non-Patent Document 1 (Polymer Publishing Co., Ltd., 1984 “Poval” pages 369-373 and 411-415) has a polymerization degree of 2000 and a saponification degree of 80 mol as a dispersant used for suspension polymerization of vinyl chloride. % PVA and PVA with a degree of polymerization of 700-800 and a degree of saponification of 70 mol% are disclosed. However, these dispersants cannot sufficiently realize the above (1) and (2).
  • Patent Document 1 Japanese Patent Publication No. 5-88251 discloses that the average degree of polymerization is 500 or more, the ratio of the weight average degree of polymerization Pw to the number average degree of polymerization Pn (Pw / Pn) is 3.0 or less, Having a structure [—CO— (CH ⁇ CH—) 2 ] containing a group and a vinylene group adjacent thereto, the absorbance at a wavelength of 280 nm and 320 nm of a 0.1% aqueous solution is 0.3 or more and 0.
  • Dispersants comprising PVA having a ratio (b) / (a) of not less than 15 and an absorbance (b) at a wavelength of 320 nm to an absorbance (a) at a wavelength of 280 nm of 0.30 or more are disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-105702
  • the saponification degree is 75 to 85 mol%
  • the absorbance at a wavelength of 280 nm of a 0.1 wt% aqueous solution is 0.1 or more
  • the carboxyl group content is 0.01.
  • Dispersants comprising PVA having a cloud point of 50 ° C. or higher in an aqueous solution of 0.15 mol% and 0.1 wt% are disclosed.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-208724 has the structure [—CO— (CH ⁇ CH—) 2 ] in the molecule, and the absorbance at a wavelength of 280 nm of a 1 wt% aqueous solution is 2.5 or more.
  • the average polymerization degree is 500 or more
  • the saponification degree is 60 to 90 mol%
  • the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn) is 2.5 or less
  • the block character relating to the saponification degree is 0.45 or less
  • the dispersing agent for suspension polymerization which consists of PVA whose methanol soluble part is 10 weight% or less is disclosed.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2007-063369
  • a maleic acid derivative and a vinyl ester monomer are copolymerized and then saponified to obtain a carboxyl group-containing PVA, followed by washing and drying.
  • a dispersant for suspension polymerization comprising PVA obtained by randomly introducing an ethylenic double bond starting from a carboxyl group into the main chain is disclosed.
  • Patent Document 5 International Publication No. 2008/96727 describes an enone structure in a molecular main chain obtained by saponification after copolymerization of carbon monoxide and a vinyl ester monomer, followed by washing and drying. Dispersants for suspension polymerization consisting of introduced PVA are disclosed.
  • Patent Documents 1 to 5 may not fully realize the above (1) and (2).
  • PVA having strong ultraviolet light absorption is easily colored by heating, which may adversely affect the hue of the vinyl polymer after molding.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the above-described problem is suspension polymerization of a vinyl compound composed of polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) having a saponification degree of 65 to 90 mol% and satisfying the following formulas (1) to (3):
  • PVA polyvinyl alcohol
  • This is solved by providing a dispersant for the use. 0.4 ⁇ (Mw UV / Mw RI ) ⁇ 0.95 (1) 3 ⁇ (Mw UV / Mn UV ) ⁇ 12 (2) 0.1 ⁇ A 220 ⁇ 0.8 (3)
  • Mw UV weight average molecular weight of the PVA determined by an absorptiometric detector (measurement wavelength: 220 nm) in gel permeation chromatography (hereinafter sometimes abbreviated as “GPC”)
  • Mw RI in GPC measurement
  • Mn UV Number average molecular weight of the PVA determined by an absorptiometric detector (measurement wavelength 220 nm) in GPC measurement
  • a 220 0.1 of the PVA Absorbance of mass% aqueous solution (optical path length 10 mm, measurement wavelength 220 nm)
  • the above object is to obtain the PVA by polymerizing a vinyl ester in the presence of an aldehyde or a halogen compound having two or more halogen atoms in the molecule to obtain a polyvinyl ester, and then saponifying the polyvinyl ester. It is also solved by providing a method for producing a dispersant for suspension polymerization.
  • a preferred embodiment of the present invention is a method for producing a vinyl polymer in which a vinyl compound is suspension-polymerized in an aqueous medium in the presence of the dispersant.
  • the mass ratio of the aqueous medium to the vinyl compound is preferably 0.9 to 1.2.
  • the dispersant of the present invention When the dispersant of the present invention is used, a vinyl polymer having a smaller amount of coarse particles formed during polymerization than that of the prior art, a sharp particle size distribution, and a high plasticizer absorbability can be obtained.
  • the vinyl compound suspension polymerization dispersant of the present invention is made of PVA having a saponification degree of 65 mol% to 90 mol% and satisfying the following formulas (1) to (3). 0.4 ⁇ (Mw UV / Mw RI ) ⁇ 0.95 (1) 3 ⁇ (Mw UV / Mn UV ) ⁇ 12 (2) 0.1 ⁇ A 220 ⁇ 0.8 (3)
  • Mw UV Weight average molecular weight of the PVA determined by an absorptiometric detector (measurement wavelength 220 nm) in GPC measurement
  • Mw RI Weight average molecular weight of the PVA determined by a differential refractive index detector in GPC measurement
  • Mn UV Number average molecular weight of the PVA determined by an absorptiometric detector (measurement wavelength 220 nm) in GPC measurement
  • a 220 Absorbance of 0.1 mass% aqueous solution of the PVA (optical path length 10 mm, measurement wavelength 220 nm)
  • hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP) is used as a mobile phase.
  • Mw UV , Mw RI and Mn UV are molecular weights in terms of polymethyl methacrylate (hereinafter sometimes abbreviated as “PMMA”).
  • PMMA polymethyl methacrylate
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used.
  • the absorptiometric detector needs to be capable of measuring absorbance at a wavelength of 220 nm.
  • the PVA subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the concentration of each molecular weight component is measured with a differential refractive index detector, and the absorbance (measurement wavelength 220 nm) of each molecular weight component is measured with an absorptiometric detector.
  • the GPC measurement of the present invention several types of monodispersed PMMA having different molecular weights as a standard are measured, and a calibration curve is created from the GPC elution capacity and the molecular weight of the standard PMMA. Using the obtained calibration curve, the molecular weight in terms of PMMA of the PVA is determined from the elution volume of PVA.
  • a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector.
  • the concentration of each molecular weight component is measured by the differential refractive index detector, and the absorbance (measurement wavelength 220 nm) of each molecular weight component is measured by the absorptiometric detector.
  • the absorptiometric detector may be a detector that measures absorption of ultraviolet light having a specific wavelength or a detector that measures absorption of ultraviolet light having a specific range of wavelengths.
  • HFIP is used as a solvent and a mobile phase used for sample dissolution in the GPC measurement.
  • HFIP can dissolve PVA and PMMA.
  • a salt such as sodium trifluoroacetate may be added to HFIP in order to suppress the adsorption of the sample to the GPC column filler.
  • the concentration of the salt is not particularly limited as long as the PVA can be normally separated, but is usually 1 to 100 mmol / liter, preferably 5 to 50 mmol / liter.
  • the sample (PVA) concentration in the GPC measurement is usually 1.00 mg / ml and the injection volume is 100 ⁇ l.
  • the weight average molecular weight Mw UV and the number average molecular weight Mn UV of the PVA are obtained by plotting values measured by an absorptiometric detector (measurement wavelength 220 nm) against the molecular weight of the PVA converted from the GPC elution capacity. It is obtained from the obtained chromatogram.
  • the weight average molecular weight Mw RI of the PVA is obtained from a chromatogram obtained by plotting a value measured by a differential refractive index detector against the molecular weight of the PVA converted from the GPC elution capacity.
  • Mw UV , Mw RI and Mn UV are values in terms of PMMA.
  • the PVA needs to satisfy the following formula (1). 0.4 ⁇ (Mw UV / Mw RI ) ⁇ 0.95 (1)
  • Mw RI corresponds to the weight average molecular weight of the whole PVA
  • Mw Uv represents the weight average molecular weight of the component having a structure (double bond in the molecular chain) that absorbs ultraviolet light having a wavelength of 220 nm, contained in the PVA. Equivalent to.
  • (Mw UV / Mw RI ) being 0.95 or less indicates that a double bond is selectively introduced with respect to a low molecular weight component in PVA.
  • the amount of coarse particles formed may increase because the stability of low molecular weight components in the PVA is poor.
  • the stability is improved by introducing a double bond into the molecular chain of the low molecular weight component in the PVA. Therefore, when (Mw UV / Mw RI ) is 0.95 or less, high polymerization stability is exhibited.
  • PVA satisfying the above formula (1) can be obtained, for example, by adopting a method described later as a drying method performed after saponification at the time of production of PVA.
  • the PVA preferably satisfies the following formula (1 ′), more preferably satisfies the following formula (1 ′′), and particularly preferably satisfies the following formula (1 ′ ′′).
  • the PVA needs to satisfy the following formula (2). 3 ⁇ (Mw UV / Mn UV ) ⁇ 12 (2)
  • (Mw UV / Mn UV ) is less than 3
  • (Mw UV / Mn UV ) exceeds 12
  • the PVA preferably satisfies the following formula (2 ′), more preferably satisfies the following formula (2 ′′), and particularly preferably satisfies the following formula (2 ′ ′′).
  • a cell having an optical path length of 10 mm is used for the measurement of the absorbance A 220 .
  • the measurement wavelength is 220 nm.
  • the PVA is dissolved in distilled water to prepare a 0.1% by mass aqueous solution and used for measurement.
  • the PVA needs to satisfy the following formula (3). 0.1 ⁇ A 220 ⁇ 0.8 (3)
  • the absorbance A 220 of the 0.1% by mass aqueous solution of PVA is less than 0.1, the amount of coarse particles formed may increase when suspension polymerization is performed using the resulting dispersant.
  • the porosity of the obtained vinyl polymer particles may be low, and the plasticizer absorbability may be insufficient or the hue of the obtained vinyl polymer may be adversely affected.
  • the degree of saponification of the PVA is 65 to 90 mol%, more preferably 68% to 85%, and particularly preferably 68 to 80 mol%. If the degree of saponification is less than 65 mol%, PVA may become insoluble in water. On the other hand, when the degree of saponification exceeds 90 mol%, a large amount of coarse particles may be formed when suspension polymerization is performed using the resulting dispersant. Moreover, the porosity of the vinyl polymer particle obtained may be low, and plasticizer absorptivity may not be enough.
  • the saponification degree is measured by the saponification degree measuring method described in JIS-K6726. At this time, units other than the vinyl alcohol unit and the vinyl acetate unit are ignored because they are a small amount even if they are included.
  • the viscosity average polymerization degree of the PVA is preferably 200 to 3000, more preferably 400 to 2000, and particularly preferably 500 to 1000. If the viscosity average degree of polymerization is less than 200, industrial production may be difficult. Moreover, when suspension polymerization of a vinyl compound is performed using the resulting dispersant, the polymerization stability may be reduced. On the other hand, when the viscosity average polymerization degree exceeds 3000, when the polymerization is carried out using the resulting dispersant, the resulting vinyl polymer particles may have low porosity and insufficient plasticizer absorbability.
  • the method for producing the PVA is not particularly limited, but a method of saponifying after polymerizing the vinyl ester is suitable.
  • the vinyl ester include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, and among these, vinyl acetate is preferable.
  • a vinyl ester is obtained by polymerizing a vinyl ester in the presence of an aldehyde or a halogen compound having two or more halogen atoms in the molecule.
  • a method of obtaining the PVA by saponification is preferred.
  • the aldehyde or halogen compound is considered to generate a low molecular weight polyvinyl ester by acting as a chain transfer agent, and to generate a chemical structure that absorbs ultraviolet light having a wavelength of 220 nm in the subsequent saponification and drying process. Therefore, the molecular weight distribution of the above-mentioned PVA can be adjusted by changing these addition amounts.
  • aldehyde used for the polymerization of vinyl ester examples include monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and acrolein, and dialdehydes such as glyoxal and glutaraldehyde. Among them, acetaldehyde and propionaldehyde are preferably used. It is done.
  • the amount of the aldehyde to be added is preferably 1.0 to 8 mol%, more preferably 1.2 to 7 mol%, more preferably 1.5 to 6 mol% based on the total number of moles of the vinyl ester and the aldehyde. % Is particularly preferred.
  • the amount of aldehyde is less than 1.0 mol%, the Mw UV / Mw RI of the formula (1) exceeds 0.95, the Mw UV / Mn UV of the formula (2) falls below 3, A 220 of (3) may be less than 0.1. In the case of more than 8 mol%, or below Mw UV / Mw RI 0.4 of the formula (1), A 220 of formula (3) in some cases exceeds 0.8.
  • halogen compound having two or more halogen atoms in the molecule used for polymerization of vinyl ester examples include dichloromethane, trichloromethane, tetrachloromethane, dibromomethane, tribromomethane, tetrabromomethane, diiodomethane, triiodomethane, and tetraiodo.
  • Halomethane such as methane and bromochloromethane, haloethane such as dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, dibromoethane, tribromoethane, tetrabromoethane, pentabromoethane, hexabromoethane, etc.
  • Trichloromethane, tetrachloromethane, tribromomethane, and tetrabromomethane are preferably used.
  • the amount of the halogen compound to be added is preferably 0.05 to 0.7 mol%, more preferably 0.07 to 0.6 mol%, based on the total number of moles of the vinyl ester and the halogen compound, 0.1 to 0.5 mol% is particularly preferred.
  • the amount of the halogen compound is less than 0.05 mol%, the Mw UV / Mw RI of the formula (1) is more than 0.95, the Mw UV / Mn UV of the formula (2) is less than 3, A 220 of formula (3) may be less than 0.1. In the case of more than 0.7 mol%, or below Mw UV / Mw RI 0.4 of the formula (1), A 220 of formula (3) in some cases exceeds 0.8.
  • any polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be employed.
  • the polymerization can be carried out without solvent or in the presence of an alcohol solvent.
  • a solvent-free bulk polymerization method and a solution polymerization method using an alcohol solvent are preferably employed.
  • the alcohol solvent is not particularly limited, and for example, methanol, ethanol, propanol and the like can be used alone or in admixture of two or more.
  • the polymerization method is not particularly limited, and any of batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous polymerization may be used.
  • batch polymerization is preferable. If present, it is preferable to perform polymerization by continuously connecting two or more reactors.
  • the polymerization rate of the vinyl ester during the polymerization is not particularly limited, but is preferably 50% or more, more preferably 55% or more, and particularly preferably 60% or more from the viewpoint of easily obtaining the PVA having the molecular weight distribution.
  • Mw UV / Mn UV in formula (2) may be less than 3.
  • the temperature at the time of polymerizing the vinyl ester is not particularly limited.
  • the polymerization temperature is preferably 0 to 200 ° C, more preferably 30 to 140 ° C. When the temperature is lower than 0 ° C., a sufficient polymerization rate may not be obtained. When the said temperature is higher than 200 degreeC, there exists a concern about decomposition
  • the method for controlling the polymerization temperature of the vinyl ester is not particularly limited.
  • Examples of the control method include a method of balancing the heat generated by the polymerization and the heat radiation from the surface of the polymerization container by controlling the polymerization rate.
  • the method of controlling by the external jacket using a suitable heat medium is also mentioned. The latter method is preferable from the viewpoint of safety.
  • the polymerization initiator used when polymerizing the vinyl ester may be selected from known initiators (for example, azo initiators, peroxide initiators, redox initiators, etc.) depending on the polymerization method.
  • azo initiators include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile).
  • peroxide-based initiator examples include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ -Perester compounds such as cumylperoxyneodecanate and t-butylperoxydecanate; acetylcyclohexylsulfonyl peroxide; 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and the like.
  • These initiators may be combined with potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like as an initiator.
  • the redox initiator examples include an initiator in which the above peroxide is combined with a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
  • a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
  • an antioxidant such as tartaric acid may be added to the polymerization system in an amount of about 1 to 100 ppm based on the vinyl ester for the purpose of preventing decomposition.
  • other monomers may be copolymerized within a range that does not impair the gist of the present invention.
  • examples of such other monomers include ⁇ -olefins such as ethylene and propylene; (meth) acrylic acid and salts thereof; methyl (meth) acrylate, ethyl (meth) acrylate, n- (meth) acrylate Propyl, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) (Meth) acrylic esters such as dodecyl acrylate and octadecyl (meth) acrylate; (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide
  • the saponification method of the obtained polyvinyl ester is not particularly limited, and a known saponification method can be adopted.
  • a basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxide or an acidic catalyst such as p-toluenesulfonic acid
  • the solvent that can be used in this reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone methyl ethyl ketone: aromatic hydrocarbons such as benzene and toluene. These solvents can be used alone or in combination of two or more.
  • saponification using methanol or a methanol / methyl acetate mixed solution as a solvent and a basic catalyst such as sodium hydroxide is simple and preferable.
  • the amount of the basic catalyst used is preferably 0.002 to 0.2, particularly 0.004 to 0.1, based on the molar ratio based on the vinyl ester unit in the obtained polyvinyl ester. preferable.
  • the saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction and the rest may be added during the saponification reaction.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the saponification reaction can be carried out by either a batch method or a continuous method.
  • the remaining saponification catalyst may be neutralized as necessary, and examples of usable neutralizers include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate. Can do.
  • Alkaline substances consisting of alkali metals added during the saponification reaction are usually neutralized with an organic acid such as methyl acetate or acetic acid added after the saponification reaction, by the progress of the saponification reaction. It becomes an alkali metal salt.
  • content of the alkali metal salt of the organic acid in PVA of this invention is not specifically limited, Usually, it is 2.5 mass% or less.
  • the obtained PVA may be washed with a washing liquid.
  • the cleaning liquid include methanol, acetone, methyl acetate, ethyl acetate, hexane, and water. These may be used alone or as a mixed solution. Among these, methanol, methyl acetate, and water are preferable.
  • the remaining cleaning solution is removed from the PVA thus obtained and dried.
  • the method for removing and drying the cleaning liquid is not particularly limited, and a known method can be applied. From the viewpoint of easy adjustment of the molecular weight distribution, the oxygen concentration in the dryer is less than 10%, It is preferable to dry for 2 to 6 hours with the temperature controlled at 90 to 120 ° C.
  • Mw UV / Mn UV of formula (2) may be less than 3, or A 220 of formula (3) may be less than 0.1.
  • Mw UV / Mw RI of formula (1) exceeds 0.95
  • Mw UV / Mn UV of formula (2) exceeds 12, or A 220 of formula (3) May exceed 0.8.
  • Mw UV / Mn UV of formula (2) may be less than 3, or A 220 of formula (3) may be less than 0.1.
  • Mw UV / Mw RI of the formula (1) exceeds 0.95
  • Mw UV / Mn UV of the formula (2) exceeds 12
  • a 220 of the formula (3) May exceed 0.8.
  • the PVA thus obtained is useful as a dispersant for suspension polymerization of vinyl compounds.
  • additives such as preservatives, antifungal agents, antiblocking agents, antifoaming agents and the like that are usually used in suspension polymerization can be blended with the dispersant of the present invention.
  • the content of such additives is usually 1.0% by mass or less.
  • Vinyl compounds used as raw material monomers include vinyl halides such as vinyl chloride; vinyl ester monomers such as vinyl acetate and vinyl propionate; (meth) acrylic acid esters and salts thereof; maleic acid, fumarate Examples include acids, esters thereof and anhydrides; styrene, acrylonitrile, vinylidene chloride, vinyl ether and the like. Of these, it is preferable to carry out suspension polymerization of vinyl chloride alone or together with a monomer capable of copolymerizing with vinyl chloride.
  • Monomers that can be copolymerized with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene, ⁇ -olefins such as propylene; unsaturated dicarboxylic acids such as maleic anhydride and itaconic acid; acrylonitrile, styrene, vinylidene chloride, vinyl ether and the like.
  • vinyl esters such as vinyl acetate and vinyl propionate
  • (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate
  • ethylene, ⁇ -olefins such as propylene
  • unsaturated dicarboxylic acids such as maleic anhydride and itaconic acid
  • acrylonitrile, styrene, vinylidene chloride, vinyl ether and the like
  • An aqueous medium is preferable as the medium used for the suspension polymerization.
  • the aqueous medium include water or one containing water and an organic solvent.
  • the amount of water in the aqueous medium is preferably 90% by mass or more.
  • the amount of the dispersant used in the suspension polymerization is not particularly limited, but is usually 1 part by mass or less, preferably 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the vinyl compound.
  • the mass ratio A / B of the aqueous medium (A) and the vinyl compound (B) during suspension polymerization of the vinyl compound is usually 0.9 to 2.0. From the viewpoint of improving productivity, A / B is preferably 0.9 to 1.2. Conventionally, there has been a problem that the polymerization becomes unstable when the proportion of the vinyl compound is increased. On the other hand, when the dispersant of the present invention is used, even when the proportion of the vinyl compound is high, excellent polymerization stability is exhibited and the amount of coarse particles formed is small. Moreover, a vinyl polymer having higher porosity and higher plasticizer absorbability can be obtained.
  • oil-soluble or water-soluble polymerization initiators conventionally used for polymerization of vinyl chloride monomers and the like can be used.
  • oil-soluble polymerization initiators include perisopropyl compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, t-butyl Perester compounds such as peroxypivalate, t-hexylperoxypivalate, ⁇ -cumylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate, 3 , 5,5-trimethylhexanoyl peroxide, lauroyl peroxide, and other peroxides; azo compounds such as azobis-2,4-di
  • water-soluble polymerization initiator examples include potassium persulfate, ammonium persulfate, hydrogen peroxide, cumene hydroperoxide and the like. These oil-soluble or water-soluble polymerization initiators can be used alone or in combination of two or more.
  • additives include polymerization regulators such as aldehydes, halogenated hydrocarbons and mercaptans, and polymerization inhibitors such as phenol compounds, sulfur compounds and N-oxide compounds.
  • polymerization regulators such as aldehydes, halogenated hydrocarbons and mercaptans
  • polymerization inhibitors such as phenol compounds, sulfur compounds and N-oxide compounds.
  • a pH adjuster, a crosslinking agent, etc. can also be added arbitrarily.
  • the polymerization temperature is not particularly limited, and can be adjusted to a high temperature exceeding 90 ° C. as well as a low temperature of about 20 ° C.
  • the dispersant of the present invention may be used alone, but water-soluble cellulose ethers such as methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose; water-soluble polymers such as polyvinyl alcohol and gelatin; Oil-soluble emulsifier such as sorbitan monolaurate, sorbitan trioleate, glycerin tristearate, ethylene oxide propylene oxide block copolymer; water-soluble emulsifier such as polyoxyethylene sorbitan monolaurate, polyoxyethylene glycerin oleate, sodium laurate, etc. It can also be used.
  • water-soluble cellulose ethers such as methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose
  • water-soluble polymers such as polyvinyl alcohol and gelatin
  • Oil-soluble emulsifier such as sorbitan monolaurate, sorbitan trioleate, glycerin triste
  • the dispersant of the present invention and a water-soluble or water-dispersible dispersion aid can be used in combination.
  • the dispersion aid partially saponified PVA with a saponification degree of less than 65 mol% and a polymerization degree of 50 to 750, preferably partially saponified PVA with a saponification degree of 30 to 60 mol% and a polymerization degree of 180 to 650 is used.
  • the dispersion aid may be provided with self-emulsifying properties by introducing an ionic group such as carboxylic acid or sulfonic acid.
  • the mass ratio (dispersant / dispersion aid) of the addition amount of the dispersant and the dispersion aid when used in combination with the dispersion aid is not particularly limited, but is preferably 20/80 to 95/5, preferably 30/70 to 90. / 10 is more preferable.
  • the dispersant and the dispersion aid may be charged all at the beginning of the polymerization, or may be charged separately during the polymerization.
  • Example 1 [Production of PVA] A reactor was charged with 2850 g of vinyl acetate, 150 g of methanol, and 75 g of acetaldehyde, and the inside of the reactor was purged with nitrogen by bubbling nitrogen gas. Separately, 5.7 g of 2,2′-azobisisobutyronitrile was dissolved in methanol to prepare an initiator solution, which was purged with nitrogen by bubbling nitrogen gas. The temperature of the reactor was started to rise, and when the internal temperature reached 60 ° C., the above initiator solution was added to the reactor to initiate polymerization. The polymerization temperature was maintained at 60 ° C. during the polymerization. After 7 hours from the start of polymerization, the vessel was cooled to stop the polymerization. The polymerization rate at this time was 90%. Subsequently, unreacted vinyl acetate was removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration 50%).
  • polyvinyl acetate having a concentration of 50% as described above, water, methanol, and methyl acetate are added so that polyvinyl acetate is 30%, water is 1%, methyl acetate is 30%, and the alkali molar ratio is 0.010.
  • Polyvinyl acetate was saponified by adding a methanol solution of sodium hydroxide at a concentration of 10%. After about 3 minutes after the addition of the alkali, the gelled material was pulverized by a pulverizer and allowed to stand at 40 ° C. for 1 hour to allow saponification to proceed, followed by centrifugal drainage.
  • the PVA was dried for 4 hours in a hot air dryer (set temperature: 100 ° C.) in which the oxygen concentration was controlled to be less than 10% by blowing nitrogen.
  • the degree of saponification of the dried PVA was measured according to JIS K6726 and found to be 70 mol%.
  • GPC measurement (measuring device) GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
  • the weight average molecular weight Mw RI was determined from the chromatogram obtained by plotting the values measured by the differential refractive index detector against the molecular weight of the PVA converted from the GPC elution capacity. (Mw UV / Mw RI ) determined from these values was 0.55, and (Mw UV / Mn UV ) was 8.6.
  • Absorbance measurement Absorbance was measured using an absorptiometer “UV2100” manufactured by Shimadzu Corporation. The obtained PVA was dissolved in water to prepare a 0.1% by mass aqueous solution. And the said aqueous solution was put into the cell (optical path length 10mm), and the light absorbency in wavelength 220nm was measured. Absorbance was 0.30.
  • the mass ratio A / B of water (A) and vinyl chloride (B) used for the polymerization was approximately 1.1.
  • the pressure in the autoclave at the start of polymerization was 0.83 MPa. Seven hours after the start of polymerization, the polymerization was stopped when the pressure in the autoclave reached 0.44 MPa, and unreacted vinyl chloride was removed. Thereafter, the polymerization slurry was taken out and dried overnight at 65 ° C. to obtain vinyl chloride polymer particles.
  • Examples 2 to 9 As shown in Table 1, PVA was obtained in the same manner as in Example 1 except that the amounts of vinyl acetate and methanol, the type and amount of chain transfer agent, washing after saponification, and drying conditions were changed.
  • the washing liquid used was 5 times the mass of polyvinyl acetate used for saponification.
  • the obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA was used as a dispersant, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2.
  • Comparative Examples 1 and 2 As shown in Table 1, PVA was carried out in the same manner as in Example 1 except that the amounts of vinyl acetate and methanol, the polymerization conditions were changed, the chain transfer agent was not used, and the washing conditions after saponification were changed. Got. The obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA was used as a dispersant, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2. The suspension polymerization of the vinyl chloride monomer was very unstable, and particles aggregated during the polymerization to form blocks.
  • Comparative Examples 3 and 4 PVA was obtained in the same manner as in Example 1 except that the washing conditions after saponification and the drying conditions were changed as shown in Table 1.
  • the obtained PVA was evaluated in the same manner as in Example 1.
  • suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated.
  • the results are shown in Tables 1 and 2. It is thought that the amount of double bonds produced increased by changing the washing conditions after the saponification reaction and making the drying conditions stricter.
  • the obtained vinyl chloride polymer particles had low plasticizer absorbability and deteriorated hue.
  • Comparative Examples 5 and 6 As shown in Table 1, PVA was obtained in the same manner as in Example 1 except that the amounts of vinyl acetate and methanol, the amount of chain transfer agent, polymerization conditions, and washing conditions after saponification were changed. The obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA was used as a dispersant, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2. Comparative Examples 5 and 6 are examples in which the amount of chain transfer agent (acetaldehyde) used in the synthesis of PVA is small and large. In any case, the amount of coarse particles in the obtained vinyl chloride polymer was large. When the amount of the chain transfer agent was large (Comparative Example 6), the hue of the sheet produced using the vinyl chloride polymer was deteriorated.
  • the amount of chain transfer agent acetaldehyde
  • Comparative Example 7 PVA was obtained in the same manner as in Example 8 except that the drying conditions of the obtained PVA were changed as shown in Table 1.
  • the obtained PVA was evaluated in the same manner as in Example 1.
  • suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated.
  • the results are shown in Tables 1 and 2. As a result of stricter drying conditions after the saponification reaction, it is considered that the amount of double bonds produced has increased.
  • the obtained vinyl chloride polymer particles had low plasticizer absorbability and deteriorated hue.
  • Comparative Examples 8 and 9 As shown in Table 1, PVA was obtained in the same manner as in Example 8 except that the amounts of vinyl acetate and methanol, the amount of chain transfer agent, and the polymerization conditions were changed. The obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA was used as a dispersant, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2. Comparative Examples 8 and 9 are examples in which the amount of chain transfer agent (tetrachloromethane) used in the PVA synthesis is small and large.
  • chain transfer agent tetrachloromethane
  • Comparative Example 10 Manufacture of PVA 1800 g of vinyl acetate, 1200 g of methanol, and 5 g of maleic anhydride were charged into the reactor, and the inside of the reactor was purged with nitrogen by bubbling nitrogen gas. Separately, 2.0 g of 2,2′-azobisisobutyronitrile was dissolved in methanol to prepare an initiator solution, which was purged with nitrogen by bubbling nitrogen gas. The temperature of the reactor was started to rise, and when the internal temperature reached 60 ° C., the above initiator solution was added to the reactor to initiate polymerization. The polymerization temperature was maintained at 60 ° C. during the polymerization.
  • Comparative Example 11 As shown in Table 1, PVA was obtained in the same manner as in Comparative Example 10 except that the amounts of vinyl acetate, methanol and maleic anhydride added, the amount of maleic anhydride added later and the time were changed. The obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA (dispersing agent) was used, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2.
  • Comparative Examples 10 and 11 show the evaluation results of PVA obtained by copolymerizing vinyl acetate and maleic anhydride, as described in Patent Document 4, and having an enone structure in the molecular chain. In any case, the amount of coarse particles in the obtained vinyl chloride polymer was large. Moreover, the hue of the sheet produced using the vinyl chloride polymer deteriorated.
  • Comparative Example 12 In the same manner as in Comparative Example 3, polymerization of vinyl acetate, saponification, washing of the obtained PVA, and centrifugal effluent were performed. This PVA was dried for 4 hours in a hot air dryer (set temperature: 150 ° C.) under air without blowing nitrogen and controlling the oxygen concentration. The obtained PVA was evaluated in the same manner as in Example 1. Then, except that the obtained PVA was used as a dispersion, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1, and the obtained vinyl chloride polymer particles were evaluated. The results are shown in Tables 1 and 2. It is considered that the amount of double bonds produced was further increased by drying the obtained PVA under air without adjusting the oxygen concentration. The obtained vinyl chloride polymer particles had low plasticizer absorbability, and the hue was greatly deteriorated.
  • the suspension polymerization of vinyl chloride was very stable when the dispersant of the present invention was used. Further, vinyl chloride polymer particles having a small amount of coarse particles and high plasticizer absorbability were obtained. Further, coloring of the molded product produced using the obtained vinyl chloride polymer was suppressed. Thus, the dispersant of the present invention is very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 けん化度が65~90モル%であり、かつ下記式(1)~(3)を満たすポリビニルアルコールからなるビニル化合物の懸濁重合用分散剤とする。これにより、重合時の粗大粒子の形成量が低減し、粒径分布がシャープでありかつ可塑剤の吸収性が高いビニル重合体を得ることができる。 0.4≦(MwUV/MwRI)≦0.95 (1) 3≦(MwUV/MnUV)≦12 (2) 0.1≦A220≦0.8 (3)

Description

ビニル化合物の懸濁重合用分散剤
 本発明は、ポリビニルアルコールからなるビニル化合物の懸濁重合用分散剤、およびそれを用いたビニル重合体の製造方法に関する。
 ポリビニルアルコール(以下、「PVA」と略記することがある)は水溶性の合成高分子として知られている。PVAは他の合成高分子と比べて強度特性および造膜性が特に優れている。そのため、PVAは、フィルムおよび繊維の原料、紙加工および繊維加工用の添加剤、接着剤、乳化重合および懸濁重合用の安定剤、無機物のバインダー等として用いられている。このように、PVAは、種々の用途において重用されている。
 PVAは塩化ビニルの懸濁重合用の分散剤として一般的に用いられている。懸濁重合では、水性媒体中に分散させたビニル化合物を油溶性の触媒を用いて重合させることにより、粒子状のビニル重合体が得られる。その際、得られる重合体の品質向上を目的として、分散剤が水性媒体に添加される。ビニル化合物を懸濁重合して得られるビニル重合体の品質を支配する因子には、重合率、水とビニル化合物(単量体)との比、重合温度、油溶性触媒の種類および量、重合容器の型式、重合容器における内容物の攪拌速度、ならびに分散剤の種類などがある。なかでも分散剤の種類が、ビニル重合体の品質に大きな影響を与える。
 ビニル化合物の懸濁重合に用いられる分散剤には、(1)重合時に粗大粒子の形成量が少なく、かつ粒径分布がシャープであるビニル重合体が得られること、ならびに(2)粒子のポロシティーが高く、可塑剤の吸収性が高いビニル重合体が得られることが求められる。従来、メチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体、および部分けん化PVAが、単独でまたは組み合わされて、分散剤として使用されている。しかし、これらの分散剤では、上記(1)および(2)の実現が困難であった。
 非特許文献1(高分子刊行会1984年発行「ポバール」369~373ページおよび411~415ページ)には、塩化ビニルの懸濁重合に用いる分散剤として、重合度が2000、けん化度が80モル%のPVAならびに重合度が700~800、けん化度が70モル%のPVAが開示されている。しかし、これらの分散剤では、上記(1)、(2)を十分に実現できなかった。
 特許文献1(特公平5-88251号公報)には、平均重合度が500以上、重量平均重合度Pwと数平均重合度Pnとの比(Pw/Pn)が3.0 以下であり、カルボニル基とこれに隣接するビニレン基とを含む構造[-CO-(CH=CH-)2]を有し、0.1%水溶液の波長280nmおよび320nmでの吸光度が各々0.3以上および0.15以上であり、かつ波長280nmでの吸光度(a)に対する波長320nmでの吸光度(b)の比(b)/(a)が0.30以上のPVAからなる分散剤が開示されている。
 特許文献2(特開平5-105702号公報)には、けん化度が75~85モル%、0.1重量%水溶液の波長280nmにおける吸光度が0.1以上、カルボキシル基の含有量が0.01~0.15モル%、かつ0.1重量%水溶液の曇点が50℃以上のPVAからなる分散剤が開示されている。
 特許文献3(特開平8-208724号公報)には、分子内に上記構造[-CO-(CH=CH-)2]を有し、1重量%水溶液の波長280nmにおける吸光度が2.5以上、平均重合度が500以上、けん化度が60~90モル%、数平均分子量Mnに対する重量平均分子量Mwの比(Mw/Mn)が2.5以下、けん化度に関するブロックキャラクターが0.45以下、かつメタノール可溶分が10重量%以下のPVAからなる懸濁重合用分散剤が開示されている。
 特許文献4(特開2007-063369号公報)には、マレイン酸誘導体とビニルエステル単量体を共重合させた後にけん化してカルボキシル基含有PVAを得た後、洗浄、乾燥を行って、当該カルボキシル基を起点とするエチレン性二重結合を、主鎖にランダムに導入することによって得られるPVAからなる懸濁重合用分散剤が開示されている。
 特許文献5(国際公開第2008/96727号)には、一酸化炭素とビニルエステル単量体を共重合させた後にけん化した後、洗浄、乾燥を行って得られる、分子主鎖にエノン構造を導入したPVAからなる懸濁重合用分散剤が開示されている。
 しかし、特許文献1~5に開示の分散剤では、上記(1)、(2)を十分に実現できない場合があった。また強い紫外光吸収を持つPVAは、加熱により容易に着色する為、成形後のビニル重合体の色相に悪影響を与える場合があった。
特公平5-88251号公報 特開平5-105702号公報 特開平8-208724号公報 特開2007-063369号公報 国際公開第2008/96727号
「ポバール」高分子刊行会、1984年発行、369-373および411-415頁
 本発明は、上記課題を解決するためになされたものであり、従来よりも重合時の粗大粒子の形成量が少なく、粒径分布がシャープでありかつ可塑剤の吸収性が高いビニル重合体を得ることができる懸濁重合用分散剤を提供することを目的とする。
 上記課題は、けん化度が65~90モル%であり、かつ下記式(1)~(3)を満たすポリビニルアルコール(以下、「PVA」と略記することがある)からなるビニル化合物の懸濁重合用分散剤を提供することによって解決される。
 0.4≦(MwUV/MwRI)≦0.95  (1)
 3≦(MwUV/MnUV)≦12  (2)
 0.1≦A220≦0.8  (3)
 MwUV:ゲルパーミエーションクロマトグラフィー(以下、「GPC」と略記することがある)測定における、吸光光度検出器(測定波長220nm)によって求められる、前記PVAの重量平均分子量
 MwRI:GPC測定における、示差屈折率検出器によって求められる、前記PVAの重量平均分子量
 MnUV:GPC測定における、吸光光度検出器(測定波長220nm)によって求められる、前記PVAの数平均分子量
 A220:前記PVAの0.1質量%水溶液の吸光度(光路長10mm、測定波長220nm)
 上記課題は、アルデヒド、または分子中に2つ以上のハロゲン原子を有するハロゲン化合物の存在下でビニルエステルを重合させてポリビニルエステルを得た後、該ポリビニルエステルをけん化することにより前記PVAを得る前記懸濁重合用分散剤の製造方法を提供することによっても解決される。
 前記分散剤の存在下、水性媒体中でビニル化合物を懸濁重合するビニル重合体の製造方法が本発明の好適な実施態様である。このとき、水性媒体とビニル化合物との質量比(水性媒体/ビニル化合物)が0.9~1.2であることが好ましい。
 本発明の分散剤を用いた場合、従来よりも重合時の粗大粒子の形成量が少なく、粒径分布がシャープでありかつ可塑剤吸収性の高いビニル重合体が得られる。
 本発明のビニル化合物の懸濁重合用分散剤は、けん化度が65モル%~90モル%であり、かつ下記式(1)~(3)を満たすPVAからなるものである。
 0.4≦(MwUV/MwRI)≦0.95  (1)
 3≦(MwUV/MnUV)≦12  (2)
 0.1≦A220≦0.8  (3)
 MwUV:GPC測定における、吸光光度検出器(測定波長220nm)によって求められる、前記PVAの重量平均分子量
 MwRI:GPC測定における、示差屈折率検出器によって求められる、前記PVAの重量平均分子量
 MnUV:GPC測定における、吸光光度検出器(測定波長220nm)によって求められる、前記PVAの数平均分子量
 A220:前記PVAの0.1質量%水溶液の吸光度(光路長10mm、測定波長220nm)
 但し、前記GPC測定において、移動相としてヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)を用いる。MwUV、MwRIおよびMnUVはポリメタクリル酸メチル(以下、「PMMA」と略記することがある)換算の分子量である。なお、前記PVAにおける波長220nmの紫外光の吸収は[-CO-(CH=CH-)]の構造に由来するものである。
 本発明のGPC測定では、示差屈折率検出器および吸光光度検出器を有し、これらの検出器による測定を同時に行うことのできるGPC装置が用いられる。吸光光度検出器としては、波長220nmにおける吸光度を測定できるものである必要がある。測定に供されたPVAは、GPCカラムによって各分子量成分に分離される。各分子量成分の濃度は示差屈折率検出器にて測定され、各分子量成分の吸光度(測定波長220nm)は吸光光度検出器にて測定される。本発明のGPC測定においては、標品となる分子量の異なる単分散のPMMAを数種類測定し、GPC溶出容量と標品のPMMAの分子量から検量線を作成する。得られた検量線を用いて、PVAの溶出容量から当該PVAのPMMA換算の分子量を求める。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器を用いて作成した検量線を使用する。こうして、示差屈折率検出器により、各分子量成分の濃度が測定され、吸光光度検出器により、各分子量成分の吸光度(測定波長220nm)が測定される。
 吸光光度検出器としては、特定波長の紫外光の吸収を測定する検出器でも、特定範囲の波長の紫外光の吸収を分光測定する検出器でもよい。
 上記GPC測定においてサンプル溶解に用いる溶媒および移動相として、HFIPが用いられる。HFIPは、PVAおよびPMMAを溶解可能である。また、試料のGPCカラム充填剤への吸着を抑制するために、HFIPに対してトリフルオロ酢酸ナトリウムなどの塩を添加しても良い。塩の濃度は、前記PVAを正常に分離できる範囲であれば特に制限はないが、通常、1~100ミリモル/リットル、好ましくは5~50ミリモル/リットルである。
 上記GPC測定における試料(PVA)濃度は、通常1.00mg/mlとし、注入量は100μlとする。
 前記PVAの重量平均分子量MwUV、および数平均分子量MnUVは、GPC溶出容量から換算された当該PVAの分子量に対して、吸光光度検出器(測定波長220nm)で測定された値をプロットして得たクロマトグラムから求められる。前記PVAの重量平均分子量MwRIは、GPC溶出容量から換算された当該PVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。本発明において、MwUV、MwRIおよびMnUVは、PMMA換算の値である。
 前記PVAは、下記式(1)を満たす必要がある。
 0.4≦(MwUV/MwRI)≦0.95  (1)
 上記式(1)に示されるとおりMwRIがMwUVよりも大きいのは、特に低分子量成分が波長220nmの紫外光を吸収することに起因すると考えられる。MwRIは前記PVA全体の重量平均分子量に相当し、MwUvは、前記PVA中に含まれる、波長220nmの紫外線を吸収する構造(分子鎖中の二重結合)を有する成分の重量平均分子量に相当する。したがって、(MwUV/MwRI)が0.95以下であることは、二重結合が、PVA中の低分子量成分に対して選択的に導入されていることを表している。通常、分散剤としてPVAを用いて懸濁重合を行った場合、当該PVA中の低分子量成分の安定性が乏しいため、粗大粒子の形成量が多くなることがある。それに対して、上記のように、前記PVA中の低分子量成分の分子鎖中に二重結合が導入されることにより、安定性が向上する。したがって、(MwUV/MwRI)が0.95以下である場合は高い重合安定性が発現する。上記式(1)を満たすPVAは、例えば、PVAの製造時における、けん化後に行う乾燥方法として、後述する方法を採用することによって得ることができる。
 一方、(MwUV/MwRI)が0.4未満の場合は、二重結合の導入量が多すぎて、重合中に粗大粒子が発生したり、得られるビニル重合体の色相に悪影響が及んだりする場合がある。また、前記PVAが上記式(1)を満たさない場合には、得られる分散剤を使用して重合を行った場合に、多量の粗大粒子が形成され、得られるビニル重合体の粒径分布が広くなり品質が低下する場合がある。前記PVAが下記式(1’)を満たすことが好ましく、下記式(1’’)を満たすことがより好ましく、下記式(1’’’)を満たすことが特に好ましい。
 0.43≦(MwUV/MwRI)≦0.90  (1’)
 0.46≦(MwUV/MwRI)≦0.85  (1’’)
 0.50≦(MwUV/MwRI)≦0.80  (1’’’)
 前記PVAは、下記式(2)を満たす必要がある。
 3≦(MwUV/MnUV)≦12  (2)
 (MwUV/MnUV)が3未満の場合には、得られる分散剤を用いて懸濁重合を行った場合に、粗大粒子の形成量が多くなる場合がある。一方、(MwUV/MnUV)が12を超える場合も多量の粗大粒子が形成され、得られるビニル重合体の粒径分布が広くなり品質が低下する場合がある。前記PVAが下記式(2’)を満たすことが好ましく、下記式(2’’)を満たすことがより好ましく、下記式(2’’’)を満たすことが特に好ましい。
 3.2≦(MwUV/MnUV)≦11.0  (2’)
 3.4≦(MwUV/MnUV)≦10.0  (2’’)
 3.5≦(MwUV/MnUV)≦9.0  (2’’’)
 前記吸光度A220の測定には、光路長が10mmのセルを用いる。測定波長は220nmとする。前記PVAを蒸留水に溶解して0.1質量%水溶液を調製し、測定に供する。
 前記PVAは、下記式(3)を満たす必要がある。
 0.1≦A220≦0.8  (3)
 前記PVAの0.1質量%水溶液の吸光度A220が0.1未満の場合には、得られる分散剤を用いて懸濁重合を行った場合に、粗大粒子の形成量が多くなる場合がある。一方、0.80を超える場合は、得られるビニル重合体粒子のポロシティーが低く、可塑剤吸収性が十分でない場合や、得られるビニル重合体の色相に悪影響を及ぼす場合がある。
 前記PVAのけん化度は65~90モル%であり、68%~85%がより好ましく、68~80モル%が特に好ましい。けん化度が65モル%未満では、PVAが水に不溶となる場合がある。一方、けん化度が90モル%を超えると、得られる分散剤を用いて懸濁重合を行った場合に、多量の粗大粒子が形成される場合がある。また得られるビニル重合体粒子のポロシティーが低く、可塑剤吸収性が十分でない場合がある。
 上記けん化度は、JIS-K6726に記載されているけん化度の測定方法により測定される。このとき、ビニルアルコール単位、酢酸ビニル単位以外の単位については、仮に含まれているとしても少量であるので無視する。
 前記PVAの粘度平均重合度は200~3000が好ましく、400~2000がより好ましく、500~1000が特に好ましい。粘度平均重合度が200未満では、工業的生産が難しくなるおそれがある。また、得られる分散剤を使用してビニル化合物の懸濁重合を行った場合に、重合安定性が低下する場合がある。一方、粘度平均重合度が3000を超えると、得られる分散剤を使用して重合を行った場合に、得られるビニル重合体粒子のポロシティーが低く、可塑剤吸収性が十分でない場合がある。
 上記粘度平均重合度は、JIS-K6726に準じて測定される。具体的には、PVAを再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:リットル/g)から、以下の式により算出できる。
   重合度=([η]×10000/8.29)(1/0.62)
 前記PVAの製造方法は、特に限定されないが、ビニルエステルを重合した後に、けん化する方法が好適である。前記ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニル等を挙げることができ、これらの中でも酢酸ビニルが好ましい。
 上述したPVAの分子量分布を調整し易い観点から、アルデヒド、または分子中に2つ以上のハロゲン原子を有するハロゲン化合物の存在下でビニルエステルを重合させてポリビニルエステルを得た後、該ポリビニルエステルをけん化することにより前記PVAを得る方法が好適である。前記アルデヒドやハロゲン化合物は、連鎖移動剤として作用することにより低分子量のポリビニルエステルを生成させるとともに、その後のけん化、乾燥の過程で波長220nmの紫外光を吸収する化学構造を生成させると考えられる。したがって、これらの添加量を変えることにより、上述したPVAの分子量分布を調整できる。
 ビニルエステルの重合に用いる前記アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、アクロレイン等のモノアルデヒド、グリオキザール、グルタルアルデヒド等のジアルデヒドが挙げられるが、なかでもアセトアルデヒド、プロピオンアルデヒドが好適に用いられる。
 上記製造方法において、添加する前記アルデヒドの量はビニルエステルとアルデヒドの合計モル数に対して1.0~8モル%が好ましく、1.2~7モル%がより好ましく、1.5~6モル%が特に好ましい。アルデヒドの量が1.0モル%未満の場合には、式(1)のMwUV/MwRIが0.95を上回ったり、式(2)のMwUV/MnUVが3を下回ったり、式(3)のA220が0.1を下回る場合がある。また8モル%を超える場合には、式(1)のMwUV/MwRIが0.4を下回ったり、式(3)のA220が0.8を上回る場合がある。
 ビニルエステルの重合に用いる分子中に2つ以上のハロゲン原子を有するハロゲン化合物としては、ジクロロメタン、トリクロロメタン、テトラクロロメタン、ジブロモメタン、トリブロモメタン、テトラブロモメタン、ジヨードメタン、トリヨードメタン、テトラヨードメタン、ブロモクロロメタン等のハロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ジブロモエタン、トリブロモエタン、テトラブロモエタン、ペンタブロモエタン、ヘキサブロモエタン等のハロエタンが挙げられるが、なかでもトリクロロメタン、テトラクロロメタン、トリブロモメタン、テトラブロモメタンが好適に用いられる。
 上記製造方法において、添加する前記ハロゲン化合物の量はビニルエステルとハロゲン化合物の合計モル数に対して0.05~0.7モル%が好ましく、0.07~0.6モル%がより好ましく、0.1~0.5モル%が特に好ましい。ハロゲン化合物の量が0.05モル%未満の場合には、式(1)のMwUV/MwRIが0.95を上回ったり、式(2)のMwUV/MnUVが3を下回ったり、式(3)のA220が0.1を下回る場合がある。また0.7モル%を超える場合には、式(1)のMwUV/MwRIが0.4を下回ったり、式(3)のA220が0.8を上回る場合がある。
 ビニルエステルの重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法など任意の重合方法を採用することができる。また重合は、無溶媒またはアルコール系溶媒の存在下で行うことができる。その中でも、無溶媒の塊状重合法およびアルコール系溶媒を用いた溶液重合法が好適に採用される。アルコール系溶媒は特に限定されないが、例えば、メタノール、エタノール、プロパノールなどを単独で、あるいは2種以上混合して用いることができる。
 重合の方式は特に限定されず、回分重合、半回分重合、連続重合、半連続重合のいずれでもよいが、特定の分子量分布範囲のPVAを得る為には、回分重合が好ましく、また連続重合であれば2つ以上の反応器を連続的に接続して重合を行うことが好ましい。
 重合の際のビニルエステルの重合率は特に限定されないが、上記分子量分布を有するPVAを得易い観点から、50%以上が好ましく、55%以上がより好ましく、60%以上が特に好ましい。重合率が50%未満の場合には式(2)のMwUV/MnUVが3を下回る場合がある。
 ビニルエステルを重合する際の温度(重合温度)は特に限定されない。重合温度は、0~200℃が好ましく、30~140℃がより好ましい。当該温度が0℃より低い場合、十分な重合速度が得られないことがある。当該温度が200℃より高い場合、使用するビニルエステルの分解が懸念される。
 ビニルエステルの重合温度の制御方法は特に限定されない。当該制御方法としては、例えば、重合速度の制御により、重合により生成する熱と、重合容器表面からの放熱とのバランスをとる方法が挙げられる。また、適当な熱媒を用いた外部ジャケットにより制御する方法も挙げられる。安全性の面からは、後者の方法が好ましい。
 ビニルエステルを重合する際に使用される重合開始剤は、重合方法に応じて、公知の開始剤(例えばアゾ系開始剤、過酸化物系開始剤、レドックス系開始剤など)から選択すればよい。アゾ系開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などが挙げられる。過酸化物系開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネートなどのパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシデカネートなどのパーエステル化合物; アセチルシクロヘキシルスルホニルパーオキシド;2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテートなどが挙げられる。これらの開始剤に、過硫酸カリウム、過硫酸アンモニウム、過酸化水素などを組み合わせて開始剤としてもよい。レドックス系開始剤としては、例えば、上記過酸化物と、亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリットなどの還元剤とを組み合わせた開始剤が挙げられる。重合を高温で行った場合に、ビニルエステルの分解が起こる事がある。その場合、分解の防止を目的として、酒石酸のような酸化防止剤を、ビニルエステルに対して1~100ppm程度、重合系に添加することはなんら差し支えない。
 ビニルエステルの重合に際して、本発明の主旨を損なわない範囲で、他の単量体を共重合してもよい。当該他の単量体としては例えば、エチレン、プロピレンなどのα-オレフィン類;(メタ)アクリル酸およびその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシルなどの(メタ)アクリル酸エステル類;(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸およびその塩、(メタ)アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロール(メタ)アクリルアミドおよびその誘導体などの(メタ)アクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのニトリル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類; 酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。このような他の単量体の共重合量は、通常5モル%以下である。
 得られたポリビニルエステルのけん化方法は特に限定されず公知のけん化方法を採用できる。例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシドなどの塩基性触媒やp-トルエンスルホン酸などの酸性触媒を用いた、加アルコール分解反応または加水分解反応が挙げられる。この反応に使用しうる溶媒としては、例えば、メタノール、エタノールなどのアルコール;酢酸メチル、酢酸エチルなどのエステル;アセトンメチルエチルケトンなどのケトン:ベンゼン、トルエンなどの芳香族炭化水素などが挙げられる。これらの溶媒は単独で、または2種以上を組み合わせて用いることができる。なかでも、メタノールまたはメタノール/酢酸メチル混合溶液を溶媒とし、水酸化ナトリウム等の塩基性触媒を用いてけん化することが簡便であり好ましい。
 塩基性触媒の使用量は、得られたポリビニルエステル中のビニルエステル単位を基準にしたモル比で0.002~0.2であることが好ましく、0.004~0.1であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加しても良い。
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応に必要とされる時間は、好ましくは5分間~10時間、より好ましくは10分間~5時間である。けん化反応は、バッチ法および連続法のいずれの方式にても実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和しても良く、使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などを挙げることができる。
 けん化反応時に添加したアルカリ金属からなるアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルあるいはけん化後に添加された酢酸などの有機酸などにより中和され、酢酸ナトリウムなどの有機酸のアルカリ金属塩となる。本発明のPVA中の有機酸のアルカリ金属塩の含有量は特に限定されないが、通常2.5質量%以下である。このようなPVAを得るために、得られたPVAを洗浄液で洗浄しても良い。洗浄液としては、メタノール、アセトン、酢酸メチル、酢酸エチル、ヘキサン、水などが挙げられる。これらは単独で用いてもよいし、混合液として用いてもよい。これらの中でもメタノール、酢酸メチル、水が好ましい。
 こうして得られたPVAから残留する洗浄液を除去し、乾燥させる。洗浄液の除去及び乾燥の方法は、特に限定されるものではなく、公知の方法を適用することができるが、分子量分布を調整し易い観点から、乾燥機内の酸素濃度を10%未満、粉体の温度を90~120℃に制御した状態で、2~6時間乾燥することが好ましい。粉体の温度が90℃を下回る場合には式(2)のMwUV/MnUVが3を下回ったり、式(3)のA220が0.1を下回る場合がある。また120℃を超える場合には、式(1)のMwUV/MwRIが0.95を上回ったり、式(2)のMwUV/MnUVが12を上回ったり、式(3)のA220が0.8を上回る場合がある。乾燥時間が2時間未満の場合には式(2)のMwUV/MnUVが3を下回ったり、式(3)のA220が0.1を下回る場合がある。また6時間を超える場合には、式(1)のMwUV/MwRIが0.95を上回ったり、式(2)のMwUV/MnUVが12を上回ったり、式(3)のA220が0.8を上回る場合がある。
 こうして得られる前記PVAはビニル化合物の懸濁重合用分散剤として有用である。本発明の分散剤には、必要に応じて、懸濁重合に通常使用される防腐剤、防黴剤、ブロッキング防止剤、消泡剤等の添加剤を配合することができる。このような添加剤の含有量は通常、1.0質量%以下である。
 本発明の分散剤の存在下でビニル化合物を懸濁重合するビニル重合体の製造方法が本発明の好適な実施態様である。原料の単量体として用いられるビニル化合物としては、塩化ビニル等のハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル単量体;(メタ)アクリル酸これらのエステルおよび塩;マレイン酸、フマル酸、これらのエステルおよび無水物;スチレン、アクリロニトリル、塩化ビニリデン、ビニルエーテル等が挙げられる。これらのうち、塩化ビニルを単独で、または塩化ビニルと共重合することが可能な単量体と共に懸濁重合することが好適である。塩化ビニルと共重合することができる単量体としては、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸エステル;エチレン、プロピレンなどのα-オレフィン;無水マレイン酸、イタコン酸などの不飽和ジカルボン酸;アクリロニトリル、スチレン、塩化ビニリデン、ビニルエーテル等が挙げられる。
 前記懸濁重合に使用する媒体として水性媒体が好ましい。当該水性媒体としては、水、または水及び有機溶剤を含有するものが挙げられる。前記水性媒体中の水の量は、90質量%以上が好ましい。
 前記懸濁重合における、前記分散剤の使用量は特に制限はないが、通常ビニル化合物100質量部に対して1質量部以下であり、0.01~0.5質量部が好ましい。
 ビニル化合物を懸濁重合する際の水性媒体(A)とビニル化合物(B)の質量比A/Bは通常0.9~2.0である。生産性がより向上する観点からは、A/Bが0.9~1.2が好ましい。従来、ビニル化合物の割合を高めると重合が不安定化する問題があった。それに対して、本発明の分散剤を用いた場合には、ビニル化合物の割合が高い場合であっても、優れた重合安定性を示し、粗大粒子の形成量が少ない。しかも、ポロシティーがより高く、より可塑剤吸収性が高いビニル重合体が得られる。
 ビニル化合物の懸濁重合には、従来から塩化ビニル単量体等の重合に使用されている、油溶性または水溶性の重合開始剤を用いることができる。油溶性の重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、α-クミルパーオキシネオデカネート等のパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-2,4-ジメチルバレロニトリル)等のアゾ化合物等が挙げられる。水溶性の重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、クメンハイドロパーオキサイド等が挙げられる。これらの油溶性あるいは水溶性の重合開始剤は単独で、または2種類以上を組合せて用いることができる。
 ビニル化合物の懸濁重合に際し、必要に応じて、その他の各種添加剤を使用することができる。添加剤としては、例えば、アルデヒド、ハロゲン化炭化水素、メルカプタンなどの重合調節剤、フェノール化合物、イオウ化合物、N-オキサイド化合物などの重合禁止剤などが挙げられる。また、pH調整剤、架橋剤なども任意に加えることができる。
 ビニル化合物の懸濁重合に際し、重合温度には特に制限はなく、20℃程度の低い温度はもとより、90℃を超える高い温度に調整することもできる。また、重合反応系の除熱効率を高めるために、リフラックスコンデンサー付の重合器を用いることも好ましい実施態様の一つである。
 前記懸濁重合において、本発明の分散剤を単独で使用しても良いが、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどの水溶性セルロースエーテル;ポリビニルアルコール、ゼラチンなどの水溶性ポリマー;ソルビタンモノラウレート、ソルビタントリオレート、グリセリントリステアレート、エチレンオキサイドプロピレンオキサイドブロックコポリマーなどの油溶性乳化剤;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレングリセリンオレート、ラウリン酸ナトリウムなどの水溶性乳化剤等と共に使用することもできる。
 前記懸濁重合において、本発明の分散剤と、水溶性または水分散性の分散助剤とを併用することができる。当該分散助剤としては、けん化度が65モル%未満で重合度50~750の部分けん化PVA 、好ましくはけん化度が30~60モル%で重合度180~650の部分けん化PVAが用いられる。また、分散助剤は、カルボン酸やスルホン酸のようなイオン性基などを導入することにより、自己乳化性が付与されたものであってもよい。分散助剤を併用する場合の分散剤と分散助剤の添加量の質量比(分散剤/分散助剤)は、特に限定されないが、20/80~95/5が好ましく、30/70~90/10がより好ましい。分散剤と分散助剤は、重合の初期に一括して仕込んでもよいし、あるいは重合の途中で分割して仕込んでもよい。
 以下、実施例を用いて本発明を更に具体的に説明する。以下の実施例および比較例において「部」および「%」は特に断りのない限り質量基準を意味する。
実施例1
[PVAの製造]
 酢酸ビニル2850g、メタノール150g、アセトアルデヒド75gを反応器に仕込み、窒素ガスのバブリングにより反応器内を窒素置換した。別途、2,2’-アゾビスイソブチロニトリル5.7gをメタノールに溶解して開始剤溶液を調製し、窒素ガスのバブリングにより窒素置換した。反応器の昇温を開始し、内温が60℃となったところで上記の開始剤溶液を反応器に添加して重合を開始した。重合中は重合温度を60℃に維持した。重合開始から7時間後に容器を冷却して重合を停止した。この時点の重合率は90%であった。続いて30℃減圧下、メタノールを時々添加しながら未反応酢酸ビニルの除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度50%)を得た。
 このポリ酢酸ビニルのメタノール溶液から一部を採取し、アルカリモル比(ポリ酢酸ビニル中の酢酸ビニル単位に対するアルカリ化合物のモル比)が0.5となるように濃度10%の水酸化ナトリウムのメタノール溶液を添加し、60℃で5時間放置してけん化を進行させた。けん化終了後、メタノールによるソックスレー抽出を3日間実施し、次いで80℃で3日間減圧乾燥を行って精製されたPVAを得た。該PVAの重合度をJIS K6726に準じて測定したところ600であった。
 上述した濃度50%のポリ酢酸ビニルのメタノール溶液に、ポリ酢酸ビニルが30%、水が1%、酢酸メチルが30%およびアルカリモル比が0.010となるように、水、メタノール、酢酸メチルおよび濃度10%の水酸化ナトリウムのメタノール溶液を添加して、ポリ酢酸ビニルのけん化を行った。アルカリ添加後約3分でゲル化したものを粉砕機にて粉砕し、40℃で1時間放置してけん化を進行させた後、遠心脱液を実施した。このPVAを、窒素を吹き込むことにより酸素濃度が10%未満に制御された熱風乾燥機(設定温度100℃)内で、4時間乾燥させた。こうして乾燥されたPVAのけん化度をJIS K6726に準じて測定したところ70モル%であった。
[GPC測定]
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
(測定条件)
 PVAを、トリフルオロ酢酸ナトリウム20ミリモル/リットルを含有するHFIPに溶解し、1.00mg/ml溶液を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。移動相は、PVAの溶解に用いたトリフルオロ酢酸ナトリウムを含有するHFIPと同様のものを用い、1.0ml/分の流速とした。サンプル注入量は100μlとし、GPCカラム温度40℃にて測定した。
(検量線の作成)
 標品として、Agilent Technologies製のPMMA(ピークトップ分子量:1944000,790000,467400,271400,144000,79250,35300,13300,7100,1960,1020,690)を測定し、上記解析ソフトにおいて、示差屈折率検出器および紫外可視吸光光度検出器のそれぞれについて、検量線を作成した。得られた検量線を用いて溶出量をPMMA分子量に換算した。
 この装置条件の下で、上記で得られたPVAの測定を行った。GPC溶出容量から換算された前記PVAの分子量に対して、吸光光度検出器(測定波長220nm)で測定された値をプロットして得たクロマトグラムから重量平均分子量MwUV、および数平均分子量MnUVを求めた。GPC溶出容量から換算された前記PVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから重量平均分子量MwRIを求めた。これらの値から求めた(MwUV/MwRI)は0.55であり、(MwUV/MnUV)は8.6であった。
[吸光度測定]
 島津製作所社製の吸光光度計「UV2100」を用いて吸光度測定を行った。得られたPVAを水に溶解して0.1質量%水溶液を調製した。そして、当該水溶液をセル(光路長さ10mm)に入れ、波長220nmにおける吸光度を測定した。吸光度は0.30であった。
[塩化ビニルの懸濁重合]
 上記で得られたPVAを、塩化ビニルに対して1000ppmに相当する量となるように脱イオン水に溶解させ、分散安定剤水溶液1150gを調製した。当該分散安定剤水溶液を、容量5Lのオートクレーブに仕込んだ。次いでオートクレーブにジイソプロピルパーオキシジカーボネートの70%トルエン溶液1.5gを仕込んだ。オートクレーブ内の圧力が0.0067MPaになるまで脱気して酸素を除いた。その後、塩化ビニル1000gを仕込み、オートクレーブ内の内容物を57℃に昇温して、撹拌下に重合を開始した。重合に使用する水(A)と塩化ビニル(B)の質量比A/Bはおよそ1.1であった。重合開始時におけるオートクレーブ内の圧力は0.83MPaであった。重合を開始してから7時間が経過し、オートクレーブ内の圧力が0.44MPaとなった時点で重合を停止し、未反応の塩化ビニルを除去した。その後、重合スラリーを取り出し、65℃にて一晩乾燥を行い、塩化ビニル重合体粒子を得た。
(塩化ビニル重合体の評価)
 塩化ビニル重合体について、平均粒子径、粗大粒子量、可塑剤吸収性、および当該塩化ビニル重合体を成形して得られたシートの着色性を以下の方法にしたがって測定した。評価結果を表2に示す。
(1)平均粒子径
 タイラーメッシュ基準の金網を使用して、乾式篩分析により粒度分布を測定し、塩化ビニル重合体粒子の平均粒子径を求めた。
(2)粗大粒子量
 得られた塩化ビニル重合体粒子における、JIS標準篩い42メッシュオンの含有量(質量%)を測定した。数字が小さいほど粗大粒子が少なくて重合安定性に優れていることを示している。
(3)可塑剤吸収性(CPA)
 ASTM-D3367-75に記載された方法より、23℃における得られた塩化ビニル重合体粒子のジオクチルフタレート吸収量を測定した。
(4)着色性
 上記で得られた塩化ビニル重合体粒子を100g、ジブチル錫ビス(マレイン酸モノアラルキルエステル)塩を3g、ピグメントブルー29を0.01g磁性ビーカーに加え混合し、塩化ビニル樹脂組成物を得た。得られたポリ塩化ビニル樹脂組成物をテストロールにより170℃で5分間混練し、厚さ0.4mmのシートを作製した。上記のシートを45×30mmの複数のシート片にカットした。得られたシート片を12~14枚重ね合わせ、195℃で5分間プレスして厚さ5mmの試験片を作製し、カラーメーター(スガ試験機株式会社製の「SM-T-H」)を用いてイエロー・インデックス(YI)を測定した。
実施例2~9
 表1に示すように酢酸ビニルおよびメタノールの仕込み量、連鎖移動剤の種類および仕込み量、けん化後の洗浄、乾燥条件を変更した以外は実施例1と同様にしてPVAを得た。なおけん化後にPVAの洗浄を行った場合は、酢酸メチル/メタノール=7/3(質量比)の洗浄液に乾燥前のPVAチップを30分間室温で浸漬した。洗浄液はけん化に用いたポリ酢酸ビニルの質量の5倍質量を用いた。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。
 表1および表2に示すように、上述した条件を満足する本発明の分散安定剤を用いて塩化ビニルの懸濁重合を行った場合には、粗大粒子の形成が少なく高い重合安定性を示し、平均粒子径が小さい重合体粒子が得られた。また、得られた塩化ビニル重合体粒子は優れた可塑剤吸収性を示した。さらに、得られた塩化ビニル重合体粒子から作製したシートの着色性を評価したところ、着色が抑制されていることもわかった。
比較例1、2
 表1に示すように酢酸ビニルおよびメタノールの仕込み量、重合条件を変えたこと、連鎖移動剤を使用しなかったこと、けん化後の洗浄条件を変更したこと以外は実施例1と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。塩化ビニル単量体の懸濁重合は非常に不安定であり、重合途中に粒子が凝集してブロックが生成した。
比較例3、4
 けん化後の洗浄条件、乾燥条件を表1に示すとおりに変更したこと以外は実施例1と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。けん化反応後の洗浄条件を変更し、さらに乾燥の条件を厳しくしたことにより、二重結合の生成量が多くなったと考えられる。得られた塩化ビニル重合体粒子の可塑剤吸収性が低く、また色相が悪化した。
比較例5、6
 表1に示すように酢酸ビニルおよびメタノールの仕込み量、連鎖移動剤の仕込み量、重合条件、けん化後の洗浄条件を変えたこと以外は実施例1と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。比較例5および6はPVA合成の際に使用する連鎖移動剤(アセトアルデヒド)が少ない場合と、多い場合の例である。いずれの場合も得られた塩化ビニル重合体中の粗大粒子の量が多かった。また連鎖移動剤の量が多い場合(比較例6)には塩化ビニル重合体を用いて製造したシートの色相が悪化した。
比較例7
 得られたPVAの乾燥条件を表1に示すとおりに変更したこと以外は実施例8と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。けん化反応後の乾燥の条件を厳しくした結果、二重結合の生成量が多くなったと考えられる。得られた塩化ビニル重合体粒子の可塑剤吸収性が低く、また色相が悪化した。
比較例8、9
 表1に示すように酢酸ビニルおよびメタノールの仕込み量、連鎖移動剤の仕込み量、重合条件を変えたこと以外は実施例8と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散剤として用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。比較例8および9はPVA合成の際に使用する連鎖移動剤(テトラクロロメタン)が少ない場合と、多い場合の例である。連鎖移動剤の量が少ない場合(比較例8)には得られた塩化ビニル重合体中の粗大粒子の量が多かった。また連鎖移動剤の量が多い場合(比較例9)には塩化ビニル重合体を用いて製造したシートの色相が悪化した。
比較例10
(PVAの製造)
 酢酸ビニル1800g、メタノール1200g、無水マレイン酸5gを反応器に仕込み、窒素ガスのバブリングにより反応器内を窒素置換した。別途、2,2’-アゾビスイソブチロニトリル2.0gをメタノールに溶解して開始剤溶液を調製し、窒素ガスのバブリングにより窒素置換した。反応器の昇温を開始し、内温が60℃となったところで上記の開始剤溶液を反応器に添加して重合を開始した。重合中は重合温度を60℃に維持した。重合開始から4時間かけて無水マレイン酸の20%メタノール溶液を添加した。重合率が60%になったところで容器を冷却して重合を停止した。続いて30℃減圧下にメタノールを時々添加しながら未反応酢酸ビニル単量体の除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度50%)を得た。得られたポリ酢酸ビニルのメタノール溶液を用いて実施例1と同様にして重合度測定を行った。得られたポリ酢酸ビニルを用い、表1に示す条件で洗浄、乾燥したこと以外は実施例1と同様にしてPVAの作製および評価を行った。さらに、得られたPVAを用いたこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。
比較例11
 表1に示すように酢酸ビニル、メタノールおよび無水マレイン酸の仕込み量、後添加する無水マレイン酸の量および時間を変えた以外は比較例10と同様にしてPVAを得た。得られたPVAを実施例1と同様にして評価した。そして、得られたPVA(分散剤)を用いたこと以外は、実施例1と同様にして塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。
 比較例10および11は特許文献4に記載されるように、酢酸ビニルと無水マレイン酸を共重合して得られる、分子鎖中にエノン構造が導入されたPVAの評価結果を示している。いずれの場合も得られた塩化ビニル重合体中の粗大粒子の量が多かった。また塩化ビニル重合体を用いて製造したシートの色相が悪化した。
比較例12
 比較例3と同様に酢酸ビニルの重合、けん化、得られたPVAの洗浄、遠心脱液を行った。このPVAを窒素の吹き込まずに、酸素濃度の制御なしで空気下で熱風乾燥機(設定温度150℃)内で、4時間乾燥させた。得られたPVAを実施例1と同様にして評価した。そして、得られたPVAを分散として用いたこと以外は、実施例1と同様に塩化ビニルの懸濁重合を行い、得られた塩化ビニル重合体粒子の評価を実施した。その結果を表1および表2に示す。得られたPVAの乾燥を酸素濃度を調整せずに空気下で行ったことにより、二重結合の生成量がさらに多くなったと考えられる。得られた塩化ビニル重合体粒子の可塑剤吸収性が低く、また色相が大きく悪化した。
 上記実施例で示されているとおり、本発明の分散剤を用いた場合には、塩化ビニルの懸濁重合は非常に安定であった。また、粗大粒子量が少なく、可塑剤吸収性が高い塩化ビニル重合体粒子が得られた。更に得られた塩化ビニル重合体を用いて製造された成形物の着色が抑制された。このように、本発明の分散剤は非常に有用である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1.  けん化度が65~90モル%であり、かつ下記式(1)~(3)を満たすポリビニルアルコールからなるビニル化合物の懸濁重合用分散剤。
     0.4≦(MwUV/MwRI)≦0.95  (1)
     3≦(MwUV/MnUV)≦12  (2)
     0.1≦A220≦0.8  (3)
     MwUV:ゲルパーミエーションクロマトグラフィー測定における、吸光光度検出器(測定波長220nm)によって求められる、前記ポリビニルアルコールの重量平均分子量
     MwRI:ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアルコールの重量平均分子量
     MnUV:ゲルパーミエーションクロマトグラフィー測定における、吸光光度検出器(測定波長220nm)によって求められる、前記ポリビニルアルコールの数平均分子量
     A220:前記ポリビニルアルコールの0.1質量%水溶液の吸光度(光路長10mm、測定波長220nm)
  2.  アルデヒドの存在下でビニルエステルを重合させてポリビニルエステルを得た後、該ポリビニルエステルをけん化する請求項1に記載の懸濁重合用分散剤の製造方法。
  3.  分子中に2つ以上のハロゲン原子を有するハロゲン化合物の存在下でビニルエステルを重合させてポリビニルエステルを得た後、該ポリビニルエステルをけん化する請求項1に記載の懸濁重合用分散剤の製造方法。
  4.  請求項1に記載の分散剤の存在下、水性媒体中でビニル化合物を懸濁重合するビニル重合体の製造方法。
  5.  水性媒体とビニル化合物との質量比(水性媒体/ビニル化合物)が0.9~1.2である請求項4に記載のビニル重合体の製造方法。
PCT/JP2015/053083 2014-02-05 2015-02-04 ビニル化合物の懸濁重合用分散剤 WO2015119144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167024364A KR102301275B1 (ko) 2014-02-05 2015-02-04 비닐 화합물의 현탁 중합용 분산제
CN201580018196.XA CN106459252B (zh) 2014-02-05 2015-02-04 乙烯基化合物的悬浮聚合用分散剂
EP15746650.9A EP3103821A4 (en) 2014-02-05 2015-02-04 Dispersing agent for suspension polymerization of vinyl compound
JP2015561003A JP6010833B2 (ja) 2014-02-05 2015-02-04 ビニル化合物の懸濁重合用分散剤
US15/116,748 US9914791B2 (en) 2014-02-05 2015-02-04 Dispersing agent for suspension polymerization of vinyl compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020679 2014-02-05
JP2014-020679 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015119144A1 true WO2015119144A1 (ja) 2015-08-13

Family

ID=53777948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053083 WO2015119144A1 (ja) 2014-02-05 2015-02-04 ビニル化合物の懸濁重合用分散剤

Country Status (7)

Country Link
US (1) US9914791B2 (ja)
EP (1) EP3103821A4 (ja)
JP (1) JP6010833B2 (ja)
KR (1) KR102301275B1 (ja)
CN (1) CN106459252B (ja)
TW (1) TWI655215B (ja)
WO (1) WO2015119144A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2018194122A1 (ja) 2017-04-21 2018-10-25 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系重合体の製造方法
WO2018199158A1 (ja) * 2017-04-27 2018-11-01 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
WO2018225796A1 (ja) 2017-06-09 2018-12-13 デンカ株式会社 変性ビニルアルコール系重合体の製造方法
JP2019112541A (ja) * 2017-12-25 2019-07-11 株式会社クラレ 水性エマルジョン組成物用分散安定剤
WO2019181915A1 (ja) * 2018-03-20 2019-09-26 株式会社クラレ 懸濁重合用分散安定剤
WO2022097572A1 (ja) * 2020-11-04 2022-05-12 株式会社クラレ 懸濁重合用分散剤及びビニル系重合体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902496B (zh) * 2018-03-26 2023-06-06 株式会社可乐丽 涂覆剂、粘接剂和涂覆物
JP2020200460A (ja) * 2019-06-10 2020-12-17 株式会社クラレ ポリビニルアルコール、その製造方法及びその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105702A (ja) * 1991-08-06 1993-04-27 Nippon Synthetic Chem Ind Co Ltd:The 塩化ビニルの懸濁重合用分散安定剤、その製造法及び塩化ビニルの懸濁重合法
JPH08269112A (ja) * 1995-04-03 1996-10-15 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散安定剤
JP2002030104A (ja) * 2000-07-17 2002-01-31 Kuraray Co Ltd 塩化ビニル懸濁重合用分散安定剤
JP4223545B2 (ja) * 2007-02-07 2009-02-12 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤およびビニル化合物重合体の製造方法
JP2010533761A (ja) * 2007-07-19 2010-10-28 株式会社クラレ Pvc用共安定化剤としてのポリビニルアルコール
WO2014014009A1 (ja) * 2012-07-19 2014-01-23 株式会社クラレ 懸濁重合用分散安定剤及びビニル系樹脂の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614684B2 (ja) 1972-05-26 1981-04-06
JPS51115587A (en) 1975-03-24 1976-10-12 Kuraray Co Ltd Method of producing polyvinylchloride resins
JPS61108602A (ja) 1984-11-02 1986-05-27 Nippon Synthetic Chem Ind Co Ltd:The ビニル化合物の懸濁重合用分散安定剤
JPS61111307A (ja) 1984-11-06 1986-05-29 Kanegafuchi Chem Ind Co Ltd 塩化ビニル系樹脂の製造方法
JPH0588251A (ja) 1991-09-26 1993-04-09 Ricoh Co Ltd カメラのリモートコントロール装置
JPH08208724A (ja) * 1995-02-03 1996-08-13 Shin Etsu Chem Co Ltd 懸濁重合用分散剤及びそれを用いた重合体の製造方法
JP4068278B2 (ja) 2000-01-07 2008-03-26 電気化学工業株式会社 ビニルアルコール重合体からなる水系分散剤
EP1300421B1 (en) * 2001-10-05 2005-08-31 Kuraray Co., Ltd. Dispersion stabilizer for suspension polymerization of vinyl compound
EP1433794B1 (en) 2002-12-11 2008-02-20 Kuraray Co., Ltd. Dispersion stabilizer for suspension polymerization of vinyl compound and method of producing the same
TWI256954B (en) 2003-01-30 2006-06-21 Nippon Synthetic Chem Ind Dispersing agent comprising vinyl alcohol polymer having conjugated double bonds in its molecule
JP4319177B2 (ja) 2005-08-30 2009-08-26 電気化学工業株式会社 変性ポリビニルアルコールおよびそれを用いた分散剤
WO2008015739A1 (fr) * 2006-08-01 2008-02-07 The Nippon Synthetic Chemical Industry Co., Ltd. Stabilisant de dispersion pour la polymérisation en suspension de composés vinyliques
JP4933212B2 (ja) 2006-10-12 2012-05-16 株式会社リコー 像担持体保護剤塗布方法、保護層形成装置、画像形成装置及びプロセスカートリッジ
JP5289744B2 (ja) 2007-09-05 2013-09-11 新第一塩ビ株式会社 塩化ビニル系重合体の製造方法
CN103788234B (zh) * 2012-10-26 2016-09-28 中国石油化工集团公司 一种助分散剂及其制备方法
KR101890108B1 (ko) 2014-07-11 2018-08-22 주식회사 쿠라레 에틸렌-비닐알코올 공중합체, 수지 조성물, 및 이들을 사용한 성형체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105702A (ja) * 1991-08-06 1993-04-27 Nippon Synthetic Chem Ind Co Ltd:The 塩化ビニルの懸濁重合用分散安定剤、その製造法及び塩化ビニルの懸濁重合法
JPH08269112A (ja) * 1995-04-03 1996-10-15 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散安定剤
JP2002030104A (ja) * 2000-07-17 2002-01-31 Kuraray Co Ltd 塩化ビニル懸濁重合用分散安定剤
JP4223545B2 (ja) * 2007-02-07 2009-02-12 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤およびビニル化合物重合体の製造方法
JP2010533761A (ja) * 2007-07-19 2010-10-28 株式会社クラレ Pvc用共安定化剤としてのポリビニルアルコール
WO2014014009A1 (ja) * 2012-07-19 2014-01-23 株式会社クラレ 懸濁重合用分散安定剤及びビニル系樹脂の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3103821A1 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018096937A1 (ja) * 2016-11-24 2018-11-29 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
JPWO2018194122A1 (ja) * 2017-04-21 2020-02-27 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系重合体の製造方法
WO2018194122A1 (ja) 2017-04-21 2018-10-25 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系重合体の製造方法
WO2018199158A1 (ja) * 2017-04-27 2018-11-01 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
JP7152391B2 (ja) 2017-04-27 2022-10-12 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
JPWO2018199158A1 (ja) * 2017-04-27 2020-03-12 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
JP6491403B1 (ja) * 2017-06-09 2019-03-27 デンカ株式会社 変性ビニルアルコール系重合体の製造方法
JP2019056128A (ja) * 2017-06-09 2019-04-11 デンカ株式会社 変性ビニルアルコール系重合体の製造方法
EP3623395A4 (en) * 2017-06-09 2020-07-29 Denka Company Limited PROCESS FOR THE PRODUCTION OF A MODIFIED VINYL ALCOHOL POLYMER
WO2018225796A1 (ja) 2017-06-09 2018-12-13 デンカ株式会社 変性ビニルアルコール系重合体の製造方法
JP2019112541A (ja) * 2017-12-25 2019-07-11 株式会社クラレ 水性エマルジョン組成物用分散安定剤
WO2019181915A1 (ja) * 2018-03-20 2019-09-26 株式会社クラレ 懸濁重合用分散安定剤
CN111868103A (zh) * 2018-03-20 2020-10-30 株式会社可乐丽 悬浮聚合用分散稳定剂
JPWO2019181915A1 (ja) * 2018-03-20 2021-03-18 株式会社クラレ 懸濁重合用分散安定剤
CN111868103B (zh) * 2018-03-20 2022-11-01 株式会社可乐丽 悬浮聚合用分散稳定剂
JP7286619B2 (ja) 2018-03-20 2023-06-05 株式会社クラレ 懸濁重合用分散安定剤
WO2022097572A1 (ja) * 2020-11-04 2022-05-12 株式会社クラレ 懸濁重合用分散剤及びビニル系重合体の製造方法
JPWO2022097572A1 (ja) * 2020-11-04 2022-05-12
JP7321394B2 (ja) 2020-11-04 2023-08-04 株式会社クラレ 懸濁重合用分散剤及びビニル系重合体の製造方法

Also Published As

Publication number Publication date
CN106459252B (zh) 2018-10-16
TWI655215B (zh) 2019-04-01
JPWO2015119144A1 (ja) 2017-03-23
KR102301275B1 (ko) 2021-09-14
TW201538533A (zh) 2015-10-16
EP3103821A4 (en) 2017-09-27
KR20160118319A (ko) 2016-10-11
CN106459252A (zh) 2017-02-22
EP3103821A1 (en) 2016-12-14
JP6010833B2 (ja) 2016-10-19
US20160347883A1 (en) 2016-12-01
US9914791B2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
JP6010833B2 (ja) ビニル化合物の懸濁重合用分散剤
CN106414511B (zh) 悬浮聚合用分散稳定剂、乙烯基系聚合物的制造方法及氯乙烯树脂
KR102123789B1 (ko) 비닐알코올계 공중합체 및 이의 제조 방법
KR101017228B1 (ko) 비닐계 화합물의 현탁중합용 분산안정제 및 이의 제조방법
KR101127058B1 (ko) 비닐 화합물의 현탁 중합용 분산 안정제 및 비닐 화합물 중합체의 제조방법
CN105153335B (zh) 一种聚乙烯醇及其制备方法和用途
TWI834601B (zh) 聚乙烯醇系樹脂、分散劑及懸浮聚合用分散劑
WO2016076349A1 (ja) 懸濁重合用分散安定剤及びビニル系樹脂の製造方法
WO2018124242A1 (ja) ビニル系重合体の製造方法
WO2010113569A1 (ja) 懸濁重合用分散安定剤
JP2004189889A (ja) ビニル系化合物の懸濁重合用分散安定剤
JP4619520B2 (ja) ビニル系化合物の懸濁重合用分散安定剤
WO2019198764A1 (ja) ポリビニルアルコール組成物及びその用途、並びにビニル系樹脂の製造方法
JPWO2015005153A1 (ja) ビニルアセタール系重合体
JP6221147B2 (ja) インキ又は塗料用バインダー及びその用途
TWI839330B (zh) 乙烯化合物之懸浮聚合用分散安定劑之製造方法
TW202106724A (zh) 聚乙烯醇、其製造方法及其用途
TW201900755A (zh) 乙烯化合物之懸浮聚合用分散安定劑及其製造方法、以及乙烯系樹脂之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561003

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015746650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167024364

Country of ref document: KR

Kind code of ref document: A