WO2015111607A1 - ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ - Google Patents

ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ Download PDF

Info

Publication number
WO2015111607A1
WO2015111607A1 PCT/JP2015/051490 JP2015051490W WO2015111607A1 WO 2015111607 A1 WO2015111607 A1 WO 2015111607A1 JP 2015051490 W JP2015051490 W JP 2015051490W WO 2015111607 A1 WO2015111607 A1 WO 2015111607A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin composition
photosensitive resin
compound
Prior art date
Application number
PCT/JP2015/051490
Other languages
English (en)
French (fr)
Inventor
飯森弘和
日比野利保
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG11201606071WA priority Critical patent/SG11201606071WA/en
Priority to JP2015504792A priority patent/JP6572769B2/ja
Priority to EP15740612.5A priority patent/EP3098653B1/en
Priority to KR1020167021968A priority patent/KR102300782B1/ko
Priority to US15/113,119 priority patent/US9977329B2/en
Priority to CN201580005547.3A priority patent/CN106415393B/zh
Publication of WO2015111607A1 publication Critical patent/WO2015111607A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention is exposed to ultraviolet-visible light, which is suitable for a pixel material formed between a condensing microlens formed on a solid-state imaging device or the like that requires high transparency and a high refractive index, and an optical sensor unit.
  • the present invention relates to a negative photosensitive resin composition in which a part is dissolved in an alkaline aqueous solution.
  • the pixel and the partition wall there are a method of processing an inorganic film formed by a CVD method or the like by dry etching, and a method of applying and processing a resin.
  • the former method is currently attracting attention because it is difficult to obtain a refractive index of 1.65 to 2.00 which is optimal for lenses or optical waveguides.
  • a photosensitive siloxane composition containing a polysiloxane compound, a quinonediazide compound, a solvent and a thermally crosslinkable compound see, for example, Patent Document 1
  • a carboxyl group and / or a phenolic hydroxyl group, and an ethylenically unsaturated group A negative photosensitive resin composition containing a polymer having a double bond group, a radical photopolymerization initiator, and a compound having 3 or more groups containing an unsaturated carboxylic acid ester structure having a hydroxyl group in one molecule (for example, And Patent Document 2) and high refractive index materials containing a siloxane compound having an aromatic hydrocarbon group (for example, see Patent Document 3) have been proposed).
  • a positive photosensitive resin composition for example, Patent Document 4
  • Patent Document 5 a positive photosensitive resin composition containing a polyamic acid, a compound having a phenolic hydroxyl group, a quinonediazide compound and inorganic particles, a silsesquioxane having a phenol unit and a condensed polycyclic hydrocarbon
  • Patent Document 5 A silicone copolymer having a group (see, for example, Patent Document 5) has been proposed.
  • it is colored with polyamic acid or phenolic hydroxyl group at the time of curing there is a problem that transparency is lowered.
  • Examples of the material having a high refractive index and transparency include coating compositions containing organosilane, siloxane oligomer and metal oxide fine particles and / or sol (see, for example, Patent Document 6), metal oxide particles and alkoxysilane.
  • a siloxane-based resin composition (for example, see Patent Document 7) is disclosed. Since these materials are mainly non-photosensitive, patterns are usually processed by a wet etching method using a chemical solution or a dry etching method using plasma.
  • a siloxane-based resin composition having a high refractive index and transparency due to positive photosensitivity has been proposed.
  • low temperature curing at 200 to 220 ° C. has no solvent resistance for the cured film, and a high curing temperature is essential.
  • materials having high refractive index and transparency due to negative photosensitivity include silica-coated titanium oxide particles and compounds having two or more acryloyl groups, photopolymerization initiator compositions (for example, see Patent Document 9) and inorganic oxidation.
  • the object of the present invention is to have a high refractive index, high transparency without adding a post-exposure process, high sensitivity in exposure, and excellent resolution and solvent resistance after pattern formation. It is to develop a negative photosensitive resin composition that can obtain a rectangular cross-sectional pattern suitable for pixel formation and barrier rib formation.
  • a negative photosensitive resin composition containing the following (a) to (d): (A) metal compound particles (b) polysiloxane compound (c) a compound having one or more groups containing an ⁇ , ⁇ -unsaturated carboxylic acid ester structure (d) a photopolymerization initiator further (e) a compound having a maleimide group It is a negative photosensitive composition characterized by containing.
  • the photosensitive composition of the present invention has a high refractive index, high transparency without adding a post-exposure process, has high sensitivity in exposure even after long-term storage at room temperature, and forms a pattern. It is possible to provide a negative photosensitive resin composition that is excellent in later resolution and solvent resistance and that can obtain a rectangular cross-sectional pattern suitable for pixel formation and partition wall formation. Further, according to the present invention, since pattern formation by an etching method is not required, the work process can be simplified, and deterioration of the wiring portion due to chemicals or plasma during etching can be avoided. *
  • the negative photosensitive resin composition of the present invention is a negative photosensitive resin composition containing the following (a) to (d), (A) metal compound particles, (B) a polysiloxane compound, (C) a compound having one or more groups containing an ⁇ , ⁇ -unsaturated carboxylic acid ester structure, (D) Photopolymerization initiator Further, (e) A negative photosensitive composition characterized by containing a compound having a maleimide group.
  • the (a) metal compound particles used in the negative photosensitive resin composition of the present invention are not particularly limited, but one or more metal compound particles selected from aluminum compound particles, tin compound particles, titanium compound particles and zirconium compound particles or Use of composite particles of at least one metal compound selected from an aluminum compound, a tin compound, a titanium compound, and a zirconium compound and a silicon compound is preferable in that the refractive index is improved and the light condensing rate can be further increased.
  • the number average particle diameter of the metal compound particles is preferably 1 nm to 400 nm.
  • the number average particle diameter of the metal compound particles is 1 nm or more, the occurrence of cracks during the formation of a thick film can be further suppressed, and from this viewpoint, it is more preferably 5 nm or more.
  • the transparency of the cured film with respect to visible light can be further improved by the number average particle diameter of the metal compound particles being 400 nm or less, and from this viewpoint, it is more preferably 70 nm or less.
  • the number average particle diameter of the metal compound particles is determined by, for example, a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method in which the particle diameter is directly measured by a transmission electron microscope or a scanning electron microscope. In the present invention, it refers to a value measured by a dynamic light scattering method.
  • the instrument used for the measurement is not particularly limited, and examples thereof include a dynamic light scattering altimeter DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • metal compound particles examples include “Op-Trake TR-502” and “Op-Trake TR-504” of tin oxide-titanium oxide composite particles, and “Op-trake TR-503” of silicon oxide-titanium oxide composite particles.
  • the polysiloxane compound (b) used in the present invention is not particularly limited as long as the main skeleton is a siloxane, that is, a polymer having a Si—O bond, but the alkali solubility is improved and the developer solubility of the non-patterned portion is improved. From the point of making it easier to form a pattern (hereinafter, forming a pattern by dissolving a non-pattern part in a developing solution may be referred to as patterning) by improving, and maintaining a higher sensitivity in exposure,
  • the main skeleton preferably contains a structural unit represented by the general formula (1) and / or (2).
  • R 1 is an organic group having a carboxyl group and / or dicarboxylic anhydride structure
  • R 2 is hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an allyl group having 6 to 16 carbon atoms.
  • R 1 includes 3-succinic anhydride propyl group, 3-succinic anhydride propyl group, propionic acid group, 3-maleic acid propyl group, 3-phthalic acid propyl group, 3-naphthalic acid propyl group, 3 -(P-benzoic acid) propyl group, 3- (m-benzoic acid) propyl group, 3- (o-benzoic acid) propyl group, and the like.
  • R 2 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms or an aryl group having 6 to 16 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, n -Butyl group and the like, acyl group includes acetyl group, propionyl group, acryloyl group and the like, and aryl group includes phenyl group, naphthyl group and the like.
  • R 1 of the compound of the general formula (1) and / or (2) is preferably an organic group having a dicarboxylic acid anhydride represented by any of the following general formulas (11) to (13).
  • R 15 , R 16 and R 17 are a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or a cyclic aliphatic group having 3 to 16 carbon atoms. Represents a hydrocarbon group, an alkylcarbonyloxy group having 2 to 6 carbon atoms, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any of these.
  • the hydrogen atoms of these groups are alkyl groups having 1 to 10 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 6 to 16 carbon atoms, alkylcarbonyloxy groups having 2 to 6 carbon atoms, hydroxy groups, amino groups And may be substituted with a group, a carboxyl group or a thiol group, r, s, t and u represent an integer of 0 to 3.)
  • a single bond means that R 15 , R 16 or R 17 does not exist as a bonding group, and a Si atom is directly bonded to a position where R 15 , R 16 or R 17 can be bonded. Indicates.
  • the ratio of the number of moles of Si atoms in the structural unit represented by the general formula (1) and / or (2) is 5 mol% or more, patterning can be more reliably performed with an alkaline developer during development, and 30 mol%. From the point that the heat and humidity resistance is further improved when it is a cured film, the general formula (1) and / or (2) constituting the polysiloxane compound with respect to the number of moles of Si atoms of the polysiloxane compound is as follows.
  • the ratio of the number of moles of Si atoms in the structural unit shown is preferably 5 mol% or more and 30 mol% or less.
  • R 3 is an organic group
  • R 4 is hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms having an alkenyl group having 2 to 10 carbon atoms Represents an organic group or an aryl group having 6 to 16 carbon atoms.
  • R 4 a group selected from the groups described as R 2 in the above general formula (1) can be used.
  • R 2 in the general formula (1) and R 4 in the general formula (3) may be the same group or different groups.
  • R 3 is a vinyl group, an allyl group, a styryl group, a ⁇ -acryloylpropyl group, a methacryloyl group, an acryloyl group (a methacryloyl group and an acryloyl group may be collectively referred to as “(meth) acryloyl group”). And acryloylpropylmethyl, glycidoxy group, and the like. Two or more of these may be used in combination. Among these, an allyl group, a vinyl group, a (meth) acryloyl group, or a styryl group is preferable in terms of high reactivity, higher sensitivity, and increased crosslinking density.
  • silane monomers represented by the following general formula (14) and / or (15) are used.
  • Examples include structural units obtained by polycondensation.
  • R 18 represents any one of an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. R 18 may be the same or different from each other.
  • “plural R 18 ” indicates a case where n is 2 or 3.
  • These alkyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • alkyl group and its substituent include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group 3,3,3-trifluoropropyl group, 3-glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, [(3-ethyl-3-oxetanyl) methoxy] propyl group, 3- Aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, 1- (p-hydroxyphenyl) ethyl group, 2- (p-hydroxyphenyl) ethyl group, 4-hydroxy-5- (p-hydroxyphenylcarbonyl) And oxy) pentyl group.
  • aryl group and substituted products thereof include phenyl group
  • R 19 in the general formula (14) represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 19 are the same But it can be different.
  • “plural R 19 ” indicates a case where 4-n is 2 to 4.
  • These alkyl groups, acyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Specific examples of the acyl group include an acetyl group.
  • Specific examples of the aryl group include a phenyl group.
  • N in the general formula (14) represents an integer of 0 to 3.
  • organosilane represented by the general formula (14) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyl.
  • R 20 to R 23 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 to 15 carbon atoms.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Specific examples of the acyl group include an acetyl group.
  • Specific examples of the aryl group include a phenyl group.
  • v is an integer of 2 to 8, and v may have a distribution.
  • organosilane represented by the general formula (15) By using the organosilane represented by the general formula (15), a positive photosensitive composition excellent in sensitivity and resolution can be obtained while maintaining high heat resistance and transparency.
  • Specific examples of the organosilane represented by the general formula (15) include methyl silicate 51 (manufactured by Fuso Chemical Industry Co., Ltd.), M silicate 51, silicate 40, silicate 45 (manufactured by Tama Chemical Industry Co., Ltd.), and methyl silicate 51. , Methyl silicate 53A, ethyl silicate 40, ethyl silicate 48 (manufactured by Colcoat Co., Ltd.), and the like.
  • the metal compound particles are 10 parts by weight or more with respect to 100 parts by weight of the (b) polysiloxane compound, the refractive index becomes higher when the cured film is formed, and the light condensing efficiency is further improved. Since the formation of an air layer when forming a cured film can be further suppressed when the amount is less than or equal to parts, and a decrease in refractive index can be further suppressed, (a) metal compound particles are added to (b) 100 parts by weight of a polysiloxane compound. On the other hand, it is preferably 10 parts by weight or more and 500 parts by weight or less.
  • the negative photosensitive composition of the present invention contains (c) a compound having at least one group containing an ⁇ , ⁇ -unsaturated carboxylic acid ester structure.
  • Compounds having one group containing an ⁇ , ⁇ -unsaturated carboxylic acid ester structure include ethoxylated o-phenylphenol acrylate, methoxypolyethylene glycol # 400 acrylate, methoxypolyethylene glycol # 550 acrylate, phenoxypolyethylene glycol acrylate, 2 -Acryloyloxyethyl succinate, isostearyl acrylate, 2-methacryloyloxyethyl phthalate, methoxypolyethylene glycol # 400 methacrylate, methoxypolyethylene glycol # 1000 methacrylate, phenoxyethylene glycol methacrylate, stearyl methacrylate, 2-methacryloyloxyethyl succinate , Isoamyl acrylate, lauryl acrylate, stearyl acrylate , Ethoxy-diethylene glycol acrylate, methoxy-triethylene glycol acrylate, 2-ethylhexyl-
  • phenol ethylene oxide modified acrylate hereinafter “ethylene oxide modified” may be abbreviated as “EO modified”), o-phenylphenol EO modified acrylate, paracumylphenol EO modified acrylate, nonylphenol propylene oxide modified acrylate (hereinafter “propylene”).
  • EO modified ethylene oxide modified
  • propylene nonylphenol propylene oxide modified acrylate
  • PO-modified nonylphenol EO-modified acrylate
  • 2-ethylhexyl EO-modified acrylate 2-ethylhexyl EO-modified acrylate
  • Compounds having two alkenyl groups include ethylene glycol dimethyl ether dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, ethoxylated bisphenol A dimethacrylate, 1,10-decanediol dimethacrylate, 1,6- Hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, neopentyl glycol dimethacrylate, glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxy Bisphenol A diacrylate, propoxylated bisphenol A diacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate,
  • the compound (c) having at least one group containing an ⁇ , ⁇ -unsaturated carboxylic acid ester structure is not particularly limited, but has a rigid organic group in the skeleton and is superior in resolution from the following general formula. It is preferably 1 or more selected from (5) to (10).
  • R 5 represents a single bond, a chain aliphatic group having 1 to 10 carbon atoms and 1 to 3 oxygen atoms, or a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms.
  • the single bond, R 5 is not present as a bonding group, R 5 is, at a position capable of binding, (The same applies to the subsequent) indicating that the O atom is directly bonded.
  • Examples of the compound represented by the general formula (5) include dimethylol tricyclodecane acrylate, dimethylol tricyclodecane diacrylate, and tricyclodecane dimethanol dimethacrylate.
  • R 7 represents a single bond, a chain aliphatic group having 1 to 10 carbon atoms and 1 to 3 oxygen atoms, or a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms.
  • good .R 8 be the same or different and each is 7 represents hydrogen or a methyl group, the plurality of R 8 may .k be in the same or different and each represents an integer of 1-2.
  • Examples of the compound represented by the general formula (6) include 1-naphthyl acrylate, 1-naphthyl methacrylate, 2-naphthyl acrylate, 2-naphthyl methacrylate, 1,4-naphthyl diacrylate, 9,9-bis [4- (2 -Acryloyloxyethoxy) phenyl] fluorene, 1,4-ethylene oxide dimethacrylate naphthalene.
  • R 9 represents a single bond, a chain aliphatic group having 1 to 10 carbon atoms and 1 to 3 oxygen atoms, or a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms.
  • 9 may be the same or different
  • R 10 represents hydrogen or a methyl group
  • a plurality of R 10 may be the same or different
  • R 11 is hydrogen or 1 to 10 carbon atoms and 1 to 3 oxygen atoms
  • Examples of the compound represented by the compound (7) include 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-methacryloyloxyethoxy) phenyl] fluor
  • R 12 represents a single bond, a chain aliphatic group having 1 to 10 carbon atoms and 1 to 3 oxygen atoms, or a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms. 12 may be the same or different, and o represents an integer of 1 to 2.
  • Examples of the compound represented by the general formula (8) include norbornene monoacrylate, norbornene diacrylate, norbornene ethylene oxide acrylate, and norbornene oxide diacrylate.
  • R 13 represents a single bond, a chain aliphatic group having 1 to 10 carbon atoms and 1 to 3 oxygen atoms, or a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms. 13 may be the same or different, and p represents an integer of 1 to 2.
  • Examples of the compound represented by the general formula (9) include adamantane monoacrylate, adamantane diacrylate, adamantane ethylene oxide acrylate, and adamantane ethylene oxide diacrylate.
  • q represents an integer of 0 to 3
  • R 14 represents a chain aliphatic having 1 to 10 carbon atoms and 1 to 3 oxygen atoms
  • Examples of the compound represented by the general formula (10) include N-acryloyloxyethyl hexahydrophthalimide.
  • the negative photosensitive siloxane composition of the present invention contains (d) a photopolymerization initiator.
  • the photopolymerization initiator refers to a compound that decomposes and / or reacts with light (including ultraviolet rays and electron beams) to generate radicals.
  • photopolymerization initiator examples include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- ( 4-morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,4,6-trimethylbenzoylphenylphosphine oxide Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide, 1-phenyl-1,2-propane Dione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (o Benzoyloxime)], 1-phenyl-1
  • ⁇ -aminoalkylphenone compounds In order to further increase the hardness of the cured film, ⁇ -aminoalkylphenone compounds, acylphosphine oxide compounds, oxime ester compounds, benzophenone compounds having amino groups, or benzoic acid ester compounds having amino groups are preferred.
  • Examples of the ⁇ -aminoalkylphenone compound include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- ( 4-morpholin-4-yl-phenyl) -butan-1-one or 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, or bis (2,6-dimethoxybenzoyl)-(2, 4,4-Trimethylpentyl) -phosphine oxide.
  • Examples of the oxime ester compound include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (o -Benzoyloxime)], 1-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime or ethanone, 1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime).
  • benzophenone compound having an amino group examples include 4,4-bis (dimethylamino) benzophenone and 4,4-bis (diethylamino) benzophenone.
  • benzoic acid ester compound having an amino group examples include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, and ethyl p-diethylaminobenzoate.
  • the negative photosensitive resin composition of the present invention contains (e) a compound having a maleimide group.
  • a maleimide compound is a compound having a maleimide group and is known to cause not only radical reaction but also photodimerization reaction that does not suffer from oxygen damage at the time of exposure prior to patterning. Since the reaction proceeds, the surface that has been difficult to react only by the conventional radical reaction easily undergoes a photoreaction. Furthermore, since the surface becomes more difficult to dissolve in the alkaline aqueous solution due to its high hydrophobicity, the cross-sectional shape of the pattern tends to be more rectangular.
  • maleimide compounds N-phenylmaleimide (Nippon Shokubai "Imirex-P" (registered trademark)), N- (4-aminophenyl) maleimide, N- [4- (2-benzimidazolyl) phenyl] maleimide 1,4-bis (maleimido) butane, 1,2-bis (maleimido) ethane, 4,4′-bismaleimide diphenylmethane, 1,2-bis (maleimido) ethane, 1,6-bis (maleimido) hexane, Nt-butylmaleimide, N-dichloromaleimide, N-ethylmaleimide, fluorescein-5-maleimide, 4-maleimidobutanoic acid, 6-maleimidohexanoic acid, 3-maleimidopropionic acid, N-methoxycarbonylmaleimide, phenylmethane Maleimide, m-phenylene bismaleimide
  • a compound having two or more maleimide groups is more preferable.
  • the content includes (a) metal compound particles, (b) a polysiloxane compound, and (c) an ⁇ , ⁇ -unsaturated carboxylic acid ester structure from the viewpoint that chemical resistance is further improved by the photocuring reaction.
  • the molecular weight of the maleimide compound is preferably 2000 or less, more preferably 800 or less, from the viewpoint that (b) the compatibility with the polysiloxane compound is good and the photoreaction occurs during photocuring.
  • the negative photosensitive resin composition of the present invention preferably contains (f) a solvent.
  • the solvent is not particularly limited, but it is preferable to use a compound having an alcoholic hydroxyl group as the solvent (hereinafter, the solvent when a compound having an alcoholic hydroxyl group is used as the solvent is abbreviated as “solvent having an alcoholic hydroxyl group”. To do).
  • solvent having an alcoholic hydroxyl group the solvent when a compound having an alcoholic hydroxyl group is used as the solvent is abbreviated as “solvent having an alcoholic hydroxyl group”. To do).
  • solvent having an alcoholic hydroxyl group the stability of the polysiloxane compound (b) can be improved, and the transparency of the coating film obtained from the negative photosensitive resin composition can be further improved.
  • the solvent having an alcoholic hydroxyl group is not particularly limited, but a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is preferable (hereinafter, “boiling point under atmospheric pressure” is abbreviated as “boiling point”).
  • boiling point a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure
  • drying during the formation of the coating film proceeds moderately, and a coating film with a good surface appearance can be easily obtained.
  • the boiling point is 250 ° C. or lower, the solvent can be easily removed.
  • solvent having an alcoholic hydroxyl group examples include acetol (boiling point: 147 ° C.), 3-hydroxy-3-methyl-2-butanone (boiling point: 140 ° C.), 4-hydroxy-3-methyl-2-butanone ( Boiling point: 73 ° C), 5-hydroxy-2-pentanone (boiling point: 144 ° C), 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol) (boiling point: 166 ° C), ethyl lactate (boiling point: 151 ° C) ), Butyl lactate (boiling point: 186 ° C.), propylene glycol monomethyl ether (boiling point: 118 ° C.), propylene glycol monoethyl ether (boiling point: 132 ° C.), propylene glycol mono n-propyl ether (boiling point: about 150 ° C.), propylene Glycol mono
  • solvents may be contained together with the solvent having an alcoholic hydroxyl group or in place of the solvent.
  • Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, ethers such as diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether and diethylene glycol dimethyl ether ⁇ -butyrolactone, ⁇ -valerolactone,
  • the negative photosensitive resin composition of the present invention contains (f) a solvent
  • the content of (f) the solvent is not particularly limited, but the total of (a) metal compound particles and (b) polysiloxane compound.
  • the amount is preferably in the range of 100 to 2,000 parts by weight with respect to the amount.
  • the negative photosensitive resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability during coating.
  • various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability during coating.
  • type of surfactant for example, “Megafac (registered trademark)” F142D, F172, F173, F183, F445, F470, F475, F477 (above, Dainippon Ink Chemicals, Inc.) Kogyo Co., Ltd.), NBX-15, FTX-218, DFX-18 (manufactured by Neos Co., Ltd.) and other fluorosurfactants, BYK-333, BYK-301, BYK-331, BYK-345, BYK Silicone surfactants such as ⁇ 307 (manufactured by BYK Japan), polyalkylene oxide surfactants, poly (meth)
  • the negative photosensitive resin composition of the present invention includes a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a sensitizer, a thermal radical generator, a dissolution accelerator, a dissolution inhibitor, and a stabilizer as necessary. Further, additives such as an antifoaming agent can be contained.
  • the cured film of the present invention is obtained by curing the negative photosensitive resin composition of the present invention. Moreover, the cured film of this invention can be obtained with the manufacturing method which apply
  • the negative photosensitive resin composition of the present invention is coated on a substrate by a known method such as spin coating or slit coating, and heated (prebaked) using a heating device such as a hot plate or oven, and the solvent in the composition Evaporate.
  • the prebaking is preferably performed at a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • UV-visible exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc.
  • MPA mirror projection mask aligner
  • PLA parallel light mask aligner
  • the exposed area is crosslinked to reduce the solubility in the developer or to make it insoluble.
  • the unexposed part is dissolved and removed by development to obtain a negative pattern.
  • the resolution of the pattern is preferably 8 ⁇ m or less.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as shower, dipping or paddle.
  • a known alkali developer can be used.
  • an alkali alkali such as an alkali metal hydroxide, carbonate, phosphate, silicate, borate, 2-diethylaminoethanol, mono Examples include amines such as ethanolamine and diethanolamine, and aqueous solutions of quaternary ammonium salts such as tetramethylammonium hydroxide (TMAH) and choline. Two or more of these may be used.
  • TMAH tetramethylammonium hydroxide
  • two or more of these may be used.
  • dehydration drying baking may be performed in a temperature range of 50 to 150 ° C. with a heating device such as a hot plate or
  • the film developed in this manner is heated (soft bake) for 30 seconds to 30 minutes in a temperature range of 50 to 250 ° C. with a heating device such as a hot plate or oven as necessary, and then the hot plate or oven or the like.
  • a cured film is obtained by heating (curing) in a temperature range of 150 to 450 ° C. for about 30 seconds to 2 hours.
  • Negative photosensitive resin composition of the present invention from the viewpoint of productivity in the pattern formation, it is preferable that the sensitivity at the time of exposure is 1500 J / m 2 or less, more preferably 1000 J / m 2 or less.
  • Such high sensitivity can be more easily obtained by using a negative photosensitive resin composition containing a polysiloxane compound using an organosilane having a carboxyl group and / or a dicarboxylic anhydride structure.
  • the sensitivity at the time of exposure is obtained by the following method.
  • a negative photosensitive resin composition is spin-coated on a silicon wafer at an arbitrary rotation number using a spin coater, and prebaked at 120 ° C. for 3 minutes using a hot plate to prepare a prebaked film having a thickness of 1 ⁇ m.
  • PLA PLA-501F manufactured by Canon Inc.
  • the pre-baked film is exposed through a gray scale mask having a line and space pattern of 1 to 10 ⁇ m for sensitivity measurement with an ultra-high pressure mercury lamp, and then automatically developed.
  • a square pattern having a design dimension of 100 ⁇ m is not peeled off after development, and an exposure amount formed on the substrate (hereinafter referred to as an optimum exposure amount) is defined as a photosensitive sensitivity.
  • thermosetting process a cured film is prepared by curing at 220 ° C. for 5 minutes using a hot plate, and the minimum pattern dimension in the photosensitive sensitivity is obtained as the post-curing resolution.
  • the cured film obtained by curing the negative photosensitive resin composition of the present invention preferably has a light transmittance of 90% or more per film thickness of 1 ⁇ m at a wavelength of 400 nm, more preferably 92% or more.
  • “transmittance” is used as an index of transparency.
  • Such a high transmittance can be easily obtained by, for example, a negative photosensitive resin composition using a highly transparent polysiloxane compound as a resin component.
  • “light transmittance per 1 ⁇ m of film thickness” means that when the measured value of the film thickness at the time of measurement is 1 ⁇ m, the light transmittance at that film thickness is the actual measured value of the film thickness at the time of measurement. When the value is not 1 ⁇ m, it means the light transmittance converted when the film thickness is 1 ⁇ m.
  • the transmittance per 1 ⁇ m of film thickness at a wavelength of 400 nm of the cured film is determined by the following method.
  • the negative photosensitive resin composition is spin-coated on a Tempax glass plate at an arbitrary rotation number using a spin coater, and prebaked at 100 ° C. for 3 minutes using a hot plate.
  • a cured film having a thickness of 1 ⁇ m is prepared by heat curing at 220 ° C. for 5 minutes in the air using a hot plate.
  • the ultraviolet-visible absorption spectrum of the obtained cured film is measured using MultiSpec-1500 manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm is determined.
  • the extinction coefficient k and the film thickness t of each target cured film by each wavelength ⁇ are measured with a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd., and can be obtained by the following formula.
  • Transmittance exp ( ⁇ 4 ⁇ kt / ⁇ )
  • the film thickness of the produced cured film deviates from 1 ⁇ m, it can be calculated by the following formula.
  • k represents an extinction coefficient
  • t represents a film thickness
  • represents a measurement wavelength.
  • the negative photosensitive resin composition and the cured film of the present invention are preferably used for optical devices such as an image sensor (solid-state imaging device), an optical filter, a display, and LED illumination.
  • LED illumination is particularly preferable.
  • the LED illumination is illumination using a light emitting diode (Light Emitting Diode).
  • a light-emitting diode is a type of EL (Electro Luminescence) element that converts electrical energy into light energy using the characteristics of a compound semiconductor, and a device using a Group 3-5 compound semiconductor has been put into practical use.
  • the Group 3-5 compound semiconductor is a direct transition type semiconductor, and can operate stably at a higher temperature than an element using another semiconductor.
  • Group 3-5 compound semiconductors are widely used in various lighting devices, illuminations, electronic devices and the like because of their high energy conversion efficiency and long lifetime.
  • LED lighting with less power consumption can be achieved. realizable.
  • optical device comprising the cured film of the present invention
  • an image sensor More specifically, a condensing microlens or an optical waveguide formed on a solid-state imaging device such as an image sensor, an antireflection film installed as an optical filter, and the like can be given.
  • a condensing microlens or an optical waveguide formed on a solid-state imaging device such as an image sensor, an antireflection film installed as an optical filter, and the like
  • it is particularly suitably used as a condensing microlens formed on a solid-state image sensor, or an optical waveguide connecting the condensing microlens and the optical sensor unit.
  • the image sensor having the cured film of the present invention is a back-illuminated CMOS image sensor having at least a photoelectric conversion layer, a color filter, and a planarization layer in order, and the color filter is a negative photosensitive film of the present invention.
  • the colored pixel is divided by the pattern obtained from the conductive resin composition, and the refractive index of the planarizing layer is preferably smaller than the refractive index of the pattern. Since the negative composition of the present invention can form a shape with a high taper angle, it can be used as a transparent partition material for colored pixels of an image sensor, and the colored pixels are divided and further flat at a lower refractive index on the upper side. This is because the formation efficiency can improve the light collection efficiency due to the difference in refractive index and the high transparent partition.
  • the optical device including the cured film of the present invention include a flattening material for a TFT substrate for display, a color filter such as a liquid crystal display, a protective film thereof, a phase shifter, and the like. Further, it can be used as a buffer coat, an interlayer insulating film, and various protective films of a semiconductor device. Since the negative photosensitive resin composition of the present invention does not require pattern formation by an etching method, the operation can be simplified, and deterioration of the wiring portion due to an etching chemical or plasma can be avoided.
  • the flask was immersed in a 40 ° C. oil bath and stirred for 60 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.).
  • a solution of a polysiloxane compound was obtained. The resulting solution was diluted with DAA so that the solid content concentration was 35% by weight.
  • PS-01 metal compound particles and (b) polysiloxane compounds contained in the solution obtained in Preparation Example 1 are collectively referred to as “PS-01”. That is, the parts by weight of PS-01 are the total number of (a) metal compound particles and (b) polysiloxane compound contained in the solution, and do not include solvents or other components (hereinafter referred to as PS-02 to PS-02). The same applies to PS-09).
  • Phosphoric acid aqueous solution prepared by dissolving phosphoric acid 0.157g was added over 10 minutes .4G. Thereafter, the mixture was heated and stirred in the same manner as in Preparation Example 1 to obtain a solution of (b) polysiloxane compound in which titanium oxide particles were dispersed as (a) metal compound particles. The resulting solution was diluted with DAA so that the solid content concentration was 35% by weight.
  • (a) metal compound particles and (b) polysiloxane compounds contained in the solution obtained in Preparation Example 2 are collectively referred to as “PS-02”.
  • Phosphoric acid aqueous solution prepared by dissolving the g was added over 10 minutes. Thereafter, the mixture was heated and stirred in the same manner as in Preparation Example 1 to obtain a solution of (a) a polysiloxane compound in which titanium oxide-silicon oxide composite particles were dispersed as metal compound particles. The resulting solution was diluted with DAA so that the solid content concentration was 35% by weight.
  • (a) metal compound particles and (b) polysiloxane compounds contained in the solution obtained in Preparation Example 3 are collectively referred to as “PS-03”.
  • the number average particle size is 20 nm. 149.86 g (with a particle content of 150 parts by weight with respect to 100 parts by weight of the organosilane fully condensed (20.6 g)), 75.89 g of DAA were charged, and water 5.
  • the resulting solution was diluted with DAA so that the solid content concentration was 35% by weight.
  • PS-06 polysiloxane compounds contained in the solution obtained in Preparation Example 6 are collectively referred to as “PS-06”.
  • Preparation Example 8 (a) Preparation of (b) polysiloxane compound solution in which metal compound particles are dispersed 5.45 g (0.04 mol) of methyltrimethoxysilane, 3-trimethoxysilylpropyl in a 500 ml three-necked flask “OPTRAIQUE” which is a methanol dispersion of 5.25 g (0.02 mol) of succinic acid, 9.93 g (0.04 mol) of 1-naphthyltrimethoxysilane and 20.6 wt% titanium oxide-silicon oxide composite particles.
  • OPTRAIQUE is a methanol dispersion of 5.25 g (0.02 mol) of succinic acid, 9.93 g (0.04 mol) of 1-naphthyltrimethoxysilane and 20.6 wt% titanium oxide-silicon oxide composite particles.
  • Phosphoric acid aqueous solution prepared by dissolving phosphoric acid 0.157g was added over 10 minutes. Thereafter, the mixture was heated and stirred in the same manner as in Preparation Example 1 to obtain a solution of (b) polysiloxane compound in which titanium oxide particles were dispersed as (a) metal compound particles. The resulting solution was diluted with DAA so that the solid content concentration was 35% by weight.
  • (a) metal compound particles and (b) polysiloxane compounds contained in the solution obtained in Preparation Example 10 are collectively referred to as “PS-09”.
  • Residual film ratio (%) film thickness of exposed film after development / film thickness of pre-baked film ⁇ 100 (3) Calculation of Photosensitivity Using the obtained pre-baked film with PLA (PLA-501F manufactured by Canon Inc.), a gray scale mask for sensitivity measurement using an ultra-high pressure mercury lamp (Multi-Density Resolution Mask manufactured by Opto-Line) The pattern was exposed through. A square pattern having a design dimension of 100 ⁇ m was not peeled off after development, and the minimum exposure amount that was formed was defined as the photosensitive sensitivity.
  • Example 1 After preparing the composition 1 ratio shown in Table 1 and adding 30 ppm of DFX-18 (manufactured by Neos Co., Ltd.) as a fluorosurfactant, mixing and stirring under a yellow light to obtain a uniform solution
  • the composition 1 was prepared by filtration through a 0.20 ⁇ m filter.
  • composition 1 spin coating was performed on an 8-inch silicon wafer using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.), and then using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). A pre-baked film having a thickness of 1.0 ⁇ m was produced by heating at 100 ° C. for 3 minutes. Using the obtained pre-baked film, (1) film thickness measurement and (3) photosensitivity calculation were performed.
  • the obtained pre-baked film was exposed at intervals of 50 msec from 100 msec to 1000 msec using an i-line stepper (i9C manufactured by Nikon Corporation). After the exposure, the film was developed by showering with a 2.38 wt% TMAH aqueous solution for 90 seconds using an automatic developing apparatus (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.) and then rinsing with water for 30 seconds. Got. Then, the cured film 1 was produced by curing at 220 ° C. for 5 minutes using a hot plate. The obtained post-development film 1 and cured film 1 were used to evaluate (4) resolution and (8) taper angle.
  • the obtained pre-baked film was exposed to 1500 J / m 2 with an ultra-high pressure mercury lamp using PLA (PLA-501F manufactured by Canon Inc.). After the exposure, using an automatic developing apparatus (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), the shower development is performed with a 2.38 wt% TMAH aqueous solution for 90 seconds, followed by rinsing with water for 30 seconds. Got. Then, the cured film 2 was produced by curing at 220 ° C. for 5 minutes using a hot plate.
  • AD-2000 automatic developing apparatus manufactured by Takizawa Sangyo Co., Ltd.
  • Examples 2 to 14 Comparative Examples 1 to 21
  • Compositions 2 to 35 were prepared in the same manner as in Example 1 except that the components of the composition were changed as shown in Tables 1 to 6.
  • a prebaked film, a post-development film, and a cured film were prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 7-9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 高屈折率、後露光プロセスを追加せずに高透明性の特性を有しており、露光において高い感度を有し、パターン形成後の解像性、耐溶剤性に優れ、ピクセル形成、隔壁形成に適した矩形断面のパターンを得られる、ネガ型感光性樹脂組成物を開発することを課題とする。 以下の(a)~(d)を含有するネガ型感光性樹脂組成物であって、 (a)金属化合物粒子 (b)ポリシロキサン化合物 (c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物 (d)光重合開始剤 さらに(e)マレイミド基を有する化合物を含有することを特徴とするネガ型感光性組成物により、上記課題が解決される。

Description

ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型CMOSイメージセンサ
 本発明は、高透明性と高屈折率が要求される固体撮像素子等に形成される集光用マイクロレンズと光センサー部間に作成されるピクセル材料に適した、紫外-可視光線で露光した部分がアルカリ水溶液に溶解するネガ型感光性樹脂組成物に関する。
 近年、デジタルカメラやカメラ付携帯電話等の急速な発展に伴って、固体撮像素子の小型化、高画素化が要求されている。固体撮像素子は光センサー部と集光レンズ間にカラーレジスト材料を配置して、目的の波長の光のみを光センサー部まで導いている。一方で固体撮像素子を小型化、高画素化すると集光効率、感度が低下してしまうという問題がある。このためカラーレジスト材料と同じ層に高屈折率の透明ピクセルや隔壁を形成することにより光を効率的に集光し、デバイス感度の低下を防いでいる。このピクセルや隔壁については一般的な作製方法としては、CVD法などにより形成した無機膜をドライエッチングで加工する方法や、樹脂を塗布し加工する方法が挙げられる。前者の方法は、レンズ、あるいは光導波路に最適な1.65~2.00の屈折率を得ることが難しいことから、現在後者の方法が注目されている。
 これまでに、例えば、ポリシロキサン化合物、キノンジアジド化合物、溶剤および熱架橋性化合物を含有する感光性シロキサン組成物(例えば、特許文献1参照)、カルボキシル基および/またはフェノール性水酸基と、エチレン性不飽和二重結合基を有する重合体、光ラジカル重合開始剤、および水酸基を有する不飽和カルボン酸エステル構造を含む基を1分子中に3個以上有する化合物を含有するネガ型感光性樹脂組成物(例えば、特許文献2参照)や、芳香族炭化水素基を有するシロキサン化合物を含む高屈折率材料(例えば、特許文献3参照)が提案されている)。しかしながら、これらの材料ではCMOSイメージセンサ用のレンズ材料等に求められる高い屈折率を有する硬化膜を得ることは困難であった。このためCMOSイメージセンサー用の透明レンズ材料には屈折率を向上させることを目的に酸化チタンや酸化ジルコニウムといった金属化合物粒子を用いることが一般的となっている。たとえばポリアミド酸、フェノール性水酸基を持つ化合物、キノンジアジド化合物および無機粒子を含有するポジ型感光性樹脂組成物(例えば、特許文献4)や、フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシリコーン共重合体(例えば、特許文献5参照)が提案されている。しかしながら、硬化時にポリアミド酸、あるいはフェノール性水酸基により着色するため、透明性が低下するという課題があった。
 高い屈折率と透明性を有する材料としては、オルガノシラン、シロキサンオリゴマーおよび金属酸化物の微粒子および/またはゾルを含有するコーティング組成物(例えば、特許文献6参照)や、金属酸化物粒子とアルコキシシランとを共重合したシロキサン系樹脂組成物(例えば、特許文献7参照)が開示されている。これらの材料は非感光性であるものが主のため、パターンを形成する際には、通常、薬液を用いたウェットエッチング法、あるいはプラズマを用いるドライエッチング法により加工される。
 またポジ型感光性による高い屈折率と透明性を有するシロキサン系樹脂組成物(例えば、特許文献8参照)が提案されている。しかしながら、200~220℃の低温キュアでは硬化膜の耐溶剤性が無く、高いキュア温度が必須であった。一方でネガ型感光性による高い屈折率と透明性を有する材料としてはシリカ被覆酸化チタン粒子とアクリルロイル基を2個以上有する化合物、光重合開始剤組成物(例えば特許文献9参照)や無機酸化物微粒子とアルコキシシラン化合物の反応物、無機酸化物微粒子、光重合開始剤組成物(例えば、特許文献10参照)が提案されているものの、ピクセル形成、隔壁形成に用いると所望の高いテーパー角度を有する、市松形状や矩形形状が形成できないという課題があり、これらの特性を両立する材料が求められていた。
特開2006-293337号公報 特開2010-160300号公報 特開2008-24832号公報 特開2003-75997号公報 特開2006-312717号公報 特開2001-81404号公報 特開2007-246877号公報 国際公開2011/040248号 特開2009-179678号公報 特開2014-84360号公報
 従来の高屈折率と高透明性を両立した材料は、非感光性の場合はエッチング法によるパターン形成が必須であるため、作業工程が煩雑である上、エッチング時の薬液やプラズマにより配線部が劣化するという問題があった。また感光性のものについては、室温における長期保管後にも露光における感度、解像度を高く保つことはできず、生産性に問題があった。さらにポジ型感光性のものについては透明性に問題があり、透明性を高めるために現像後に後露光プロセスを追加する必要があった。
 本発明の目的は、高屈折率、後露光プロセスを追加せずに高透明性の特性を有しており、露光において高い感度を有し、パターン形成後の解像性、耐溶剤性に優れ、ピクセル形成、隔壁形成に適した矩形断面のパターンを得られる、ネガ型感光性樹脂組成物を開発することである。
 上記課題を解決するため、本発明は以下の構成を有する。すなわち、
以下の(a)~(d)を含有するネガ型感光性樹脂組成物であって、
 (a)金属化合物粒子
 (b)ポリシロキサン化合物
 (c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物
 (d)光重合開始剤
 さらに(e)マレイミド基を有する化合物を含有することを特徴とするネガ型感光性組成物である。
 本発明の感光性組成物によれば、高屈折率、後露光プロセスを追加せずに高透明性の特性を有しており、室温における長期保管後も露光において高い感度を有し、パターン形成後の解像性、耐溶剤性に優れ、ピクセル形成、隔壁形成に適した矩形断面のパターンを得られるネガ型感光性樹脂組成物を提供することが出来る。また本発明によれば、エッチング法によるパターン形成が不要であるため、作業工程の簡素化が可能であり、かつエッチング時の薬液やプラズマによる配線部の劣化を回避することができる。 
 本発明のネガ型感光性樹脂組成物は、以下の(a)~(d)を含有するネガ型感光性樹脂組成物であって、
 (a)金属化合物粒子、
 (b)ポリシロキサン化合物、
 (c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物、
 (d)光重合開始剤
 さらに(e)マレイミド基を有する化合物を含有することを特徴とするネガ型感光性組成物である。
 本発明のネガ型感光性樹脂組成物で用いられる(a)金属化合物粒子は特に限定されないが、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子から選ばれる1以上の金属化合物粒子またはアルミニウム化合物、スズ化合物、チタン化合物およびジルコニウム化合物から選ばれる1以上の金属化合物とケイ素化合物との複合粒子を用いると屈折率が向上し、光集光率をさらに上げることができる点で好ましい。
 さらに(a)金属化合物粒子の数平均粒子径が1nm~400nmであることが好ましい。(a)金属化合物粒子の数平均粒子径が1nm以上であることにより厚膜形成時のクラック発生をより抑制することができ、かかる観点から5nm以上であることがより好ましい。
 また(a)金属化合物粒子の数平均粒子径が400nm以下であることにより硬化膜の可視光に対する透明性をより向上させることができ、かかる観点から70nm以下であることがより好ましい。ここで、(a)金属化合物粒子の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により粒子径を直接測定する方法などにより測定することができるが、本発明においては、動的光散乱法により測定した値を指す。測定に用いる機器は特に限定されないが、ダイナミック光散乱高度計DLS-8000(大塚電子(株)製)などを挙げることができる。
 (a)金属化合物粒子の例としては、酸化スズ-酸化チタン複合粒子の“オプトレイクTR-502”、“オプトレイクTR-504”、酸化ケイ素-酸化チタン複合粒子の“オプトレイクTR-503”、“オプトレイクTR-513”、“オプトレイクTR-520”、“オプトレイクTR-527”、“オプトレイクTR-528”、“オプトレイクTR-529”、“オプトレイクTR-543”、“オプトレイクTR-544”、“オプトレイクTR-550”、酸化チタン粒子の“オプトレイクTR-505”(以上、“オプトレイク”は登録商標、触媒化成工業(株)製)、NOD-7771GTB(商品名、ナガセケムテックス(株)製)、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(触媒化成工業(株)製)、酸化スズ粒子((株)高純度化学研究所製)、“バイラール”(登録商標)Zr-C20(酸化チタン粒子;平均粒径=20nm;多木化学(株)製)、ZSL-10A(酸化チタン粒子;平均粒径=60-100nm;第一稀元素株式会社製)、“ナノユース”(登録商標)OZ-30M(酸化チタン粒子;平均粒径=7nm;日産化学工業(株)製)、SZR-M若しくはSZR-K(以上酸化ジルコニウム粒子;いずれも堺化学(株)製)、HXU-120JC(酸化ジルコニア粒子;住友大阪セメント(株)製)、ZR-010(酸化ジルコニア粒子;株式会社ソーラー)又はZRPMA(ジルコニア粒子;シーアイ化成株式会社)が挙げられる。
 本発明のネガ型感光性組成物で用いられる、(b)ポリシロキサン化合物について説明する。
 本発明に用いる(b)ポリシロキサン化合物は、主骨格がシロキサン、つまりSi-O結合を有するポリマーであれば特に限定はされないが、アルカリ溶解性を向上させ、非パーターン部の現像液溶解性を向上させることによりパターン形成(以後非パターン部を現像液へ溶解させることによりパターンを形成することをパターニングと記すこともある)がより容易になり、また露光における感度をより高く保つという点から、主骨格中に一般式(1)および/または(2)で示される構造単位が含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(Rはカルボキシル基および/またはジカルボン酸無水物構造を有する有機基、Rは、水素、炭素1~6のアルキル基、炭素数2~6のアシル基または炭素数6~16のアリル基を表す。)
 Rとしては、3-コハク酸無水物プロピル基、3-コハク酸無水物プロピル基、プロピオン酸基、3-マレイン酸プロピル基、3-フタル酸プロピル基、3-無水ナフタル酸プロピル基、3-(p-安息香酸)プロピル基、3-(m-安息香酸)プロピル基、3-(o-安息香酸)プロピル基、などが挙げられる。
 Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基または炭素数6~16のアリール基を表し、アルキル基としてはメチル基、エチル基、n-プロピル基、n-ブチル基などがあげられ、アシル基としてはアセチル基、プロピオニル基、アクリロイル基などがあげられ、アリール基としてはフェニル基、ナフチル基、などがあげられる。
 前記一般式(1)および/または(2)の化合物のRが下記一般式(11)~(13)のいずれかで表されるジカルボン酸無水物を有する有機基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
(上記一般式(11)~(13)中、R15、R16およびR17は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子が炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。r、s、tおよびuは0~3の整数を表す。)
 なお、単結合とは、R15、R16またはR17が、結合基としては存在せず、R15、R16またはR17が、結合しうる位置に、Si原子が直接結合していることを示す。
 また一般式(1)および/または(2)で示される構造単位中のSi原子モル数の比が、5モル%以上であると現像時にアルカリ現像液でパターニングがより確実にでき、30モル%以下であると硬化膜にした際に耐湿熱性ががより向上するという点から、ポリシロキサン化合物のSi原子モル数に対する、当該ポリシロキサン化合物を構成する一般式(1)および/または(2)で示される構造単位中のSi原子モル数の比が、5モル%以上30モル%以下であることが好ましい。
 (b)ポリシロキサン化合物が、一般式(1)および/または(2)で示される構造単位に加えて、さらに一般式(3)および/または(4)で示される構造単位を含むと、露光時にポリマーが光架橋することにより硬化膜の架橋密度が上がり、耐薬品性がより向上したり、パターンの断面形状がより矩形になるという点でより好ましい。
Figure JPOXMLDOC01-appb-C000012
(Rは炭素数2~10のアルケニル基を有する有機基、Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数2~10のアルケニル基を有する有機基または炭素数6~16のアリール基を表す。)
 Rとしては、前述の一般式(1)におけるRとに記載した基から選ばれる基を用いることができる。このとき、一般式(1)におけるRと一般式(3)におけるRとは、同じ基であってもよいし、異なる基であってもよい。
 Rとしてはビニル基、アリル基、スチリル基、γ-アクリロイルプロピル基、メタクリロイル基、アクリロイル基(メタクリロイル基とアクリロイル基を総称して、「(メタ)アクリロイル基」と記すこともある。:以降も同様)、アクリロイルプロピルメチル、グリシドキ基、などが挙げられる。これらを2種以上組み合わせて使用してもよい。これらの中でも、反応性が高くより感度が高く、架橋密度が上がるという点でアリル基、ビニル基、(メタ)アクリロイル基またはスチリル基であることが好ましい。
 本発明のネガ型感光性組成物で用いられる、(b)ポリシロキサン化合物に適用し得る、その他の構造単位は特に限定されないが、下記一般式(14)および/または(15)のシランモノマーを重縮合して得られる構造単位があげられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(14)で表されるオルガノシランにおいて、R18は炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~15のアリール基のいずれかを表し、複数のR18はそれぞれ同じでも異なっていてもよい。ここで、「複数のR18」とは、nが2または3である場合について示したものである。また、これらのアルキル基、アリール基はいずれも無置換体、置換体のいずれでもよく、組成物の特性に応じて選択できる。アルキル基およびその置換体の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-デシル基、トリフルオロメチル基、3,3,3-トリフルオロプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、〔(3-エチル-3-オキセタニル)メトキシ〕プロピル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基、1-(p-ヒドロキシフェニル)エチル基、2-(p-ヒドロキシフェニル)エチル基、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチル基などが挙げられる。アリール基およびその置換体の具体例としては、フェニル基、トリル基、p-ヒドロキシフェニル基、ナフチル基などが挙げられる。
 一般式(14)のR19は水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表し、複数のR19はそれぞれ同じでも異なっていてもよい。ここで、「複数のR19」とは、4-nが2~4である場合について示したものである。また、これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。
 一般式(14)のnは0から3の整数を表す。n=0の場合は4官能性シラン、n=1の場合は3官能性シラン、n=2の場合は2官能性シラン、n=3の場合は1官能性シランである。
 一般式(14)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-ヒドロキシフェニルトリメトキシシラン、1-(p-ヒドロキシフェニル)エチルトリメトキシシラン、2-(p-ヒドロキシフェニル)エチルトリメトキシシラン、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリ-n-プロポキシシラン、2-ナフチルトリメトキシシラン、1-アントラセニルトリメトキシシラン、9-アントラセニルトリメトキシシラン、9-フェナントレニルトリメトキシシラン、9-フルオレニルトリメトキシシラン、2-フルオレニルトリメトキシシラン、2-フルオレノンイルトリメトシキシラン、1-ピレニルトリメトキシシラン、2-インデニルトリメトキシシラン、5-アセナフテニルトリメトキシシランなどの3官能シラン、ジメチルジメトキシシラン、ジメチルジエトキシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、(3-グリシドキシプロピル)メチルジエトキシシランなどの2官能シラン、トリメチルメトキシシラン、トリn-ブチルエトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン、(3-グリシドキシプロピル)ジメチルエトキシシランなどの1官能シランが挙げられる。なお、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。これらのオルガノシランの中でも、硬化膜の耐クラック性や硬度の点から3官能シランが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000014
 一般式(15)で表されるオルガノシランにおいて、式中、R20からR23はそれぞれ独立に水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。一般式(15)のvは2から8の整数であり、vは分布を有してもよい。
 一般式(15)で表されるオルガノシランを用いることで、高い耐熱性や透明性を維持しつつ、感度と解像度により優れたポジ型感光性組成物が得られる。一般式(15)で表されるオルガノシランの具体例としては、メチルシリケート51(扶桑化学工業株式会社製)、Mシリケート51、シリケート40、シリケート45(多摩化学工業株式会社製)、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48(コルコート株式会社製)などが挙げられる。
 (b)ポリシロキサン化合物を合成する際に、前記(a)金属化合物粒子と混合した状態で合成することにより、(a)金属化合物粒子と(b)ポリシロキサン化合物とを部分結合させることができる。本発明のネガ型感光性樹脂組成物において、(a)金属化合物粒子と(b)ポリシロキサン化合物が部分結合していることにより(a)金属化合物粒子の分散性が向上するため保存安定性がより向上する点で好ましい。
 また(a)金属化合物粒子が(b)ポリシロキサン化合物100重量部に対して10重量部以上であると硬化膜にした際により屈折率が高くなり光集光効率がより向上し、また500重量部以下であると硬化膜にする際の空気層の形成をより抑制することができ、屈折率の低下をより抑制できることから(a)金属化合物粒子が、(b)ポリシロキサン化合物100重量部に対して、10重量部以上500重量部以下であることが好ましい。
 本発明のネガ型感光性組成物は(c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物を含有する。
 α,β-不飽和カルボン酸エステル構造を含む基を1つ有する化合物としては、エトキシ化o-フェニルフェノールアクリレート、メトキシポリエチレングリコール#400アクリレート、メトキシポリエチレングリコール#550アクリレート、フェノキシポリエテレングリコールアクリレート、2-アクリロイルオキシエチルスクシネート、イソステアリルアクリレート、2-メタクリロイルオキシエチルフタル酸、メトキシポリエチレングリコール#400メタクリレート、メトキシポリエチレングリコール#1000メタクリレート、フェノキシエチレングリコールメタクリレート、ステアリルメタクリレート、2-メタクリロイルオキシエチルスクシネート、イソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、エトキシ-ジエチレングリコールアクリレート、メトキシ-トリエチレングリコールアクリレート、2-エチルヘキシル-ジグリコールアクリレート、メトキシ-ポリエチレングリコールアクリレート、メトキシプロピレングリコールアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシ-ポリエチレングリコールアクリレート、ノニルフェノールEO付加物アクリレート、テトラヒドロフルフリルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、2-アクリロイルオキシエチル-コハク酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、2-アクリロイルオキシエチル-フタル酸、2-アクリロイルオキシエチル-2-ヒドロキシエチル-フタル酸、ネオペンチルグリコール-アクリル酸-安息香酸エステル、2-アクリロイルオキシエチルアシッドホスフェートなどが挙げられる。
 またフェノールエチレンオキシド変性アクリレート(以降、「エチレンオキシド変性」を「EO変性」と略記することもある)、o-フェニルフェノールEO変性アクリレート、パラクミルフェノールEO変性アクリレート、ノニルフェノールプロピレンオキシド変性アクリレート(以降、「プロピレンオキシド変性」を「PO変性」と略記することもある)、ノニルフェノールEO変性アクリレート、2-エチルヘキシルEO変性アクリレートなども挙げることができる。
 アルケニル基を2つ有する化合物としてはエチレングリコールジメチルエーテルジメタクリレート、ジエチレングリコールジメメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、エトキシ化ビスフェノールAジメタクリレート、1,10-デカンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジアクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ビスフェノールFのEO変性ジアクリレート、ビスフェノールAのEO変性ジアクリレート、イソシアヌル酸EO変性ジアクリレート、などが挙げられる。
 前記(c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物は特に制限されないが、骨格に剛直な有機基を有し、より解像度に優れるという点から、下記一般式(5)~(10)から選ばれる1以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(一般式(5)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素またはメチル基を表し、複数のRはそれぞれ同じでも異なっていてもよい。hは0~3の整数を表し、i、jは0~2の整数を表し、i+j=1~2である。)
 なお、単結合とは、Rが、結合基としては存在せず、Rが、結合しうる位置に、O原子が直接結合していることを示す(以降についても同様である)。また、「複数のR」および「複数のR」とあるのは、上記においてi+j=2である場合について示したものである(以降についても同様である)。
 一般式(5)で表される化合物としては、ジメチロールトリシクロデカンアクリレート、ジメチロールトリシクロデカンジアクリレート、トリシクロデカンジメタノールジメタクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000016
(一般式(6)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素またはメチル基を表し、複数のRはそれぞれ同じでも異なっていてもよい。kは1~2の整数を表す。)
 一般式(6)で表される化合物としては1-ナフチルアクリレート、1-ナフチルメタクリレート、2-ナフチルアクリレート、2-ナフチルメタクリレート、1,4-ナフチルジアクリレート、9,9-ビス [4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、1,4-エチレンオキシドジメタクリレートナフタレンが挙げられる。
Figure JPOXMLDOC01-appb-C000017
(一般式(7)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なってもよい。R10は水素またはメチル基を表し、複数のR10はそれぞれ同じでも異なっていてもよい。R11は水素または炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR11はそれぞれ同じでも異なっていてもよい。l、mは0~2の整数を表し、l+m=1~2である。)
 化合物(7)で表される化合物としては、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレンが挙げられる。なお、一般式(7)では、2つあるフェニレン基にそれぞれ1つのR11が、記されているが、1つのフェニレン基に複数のR11が、結合していてもよい。
Figure JPOXMLDOC01-appb-C000018
(一般式(8)中、R12は単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR12はそれぞれ同じでも異なっていてもよい。oは1~2の整数を表す。)
 一般式(8)で表される化合物としてはノルボルネンモノアクリレート、ノルボルネンジアクリレート、ノルボルネンエチレンオキシドアクリレート、ノルボルネンオキシドジアクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000019
(一般式(9)中、R13は単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR13はそれぞれ同じでも異なっていてもよい。pは1~2の整数を表す。)
 一般式(9)で表される化合物としてはアダマンタンモノアクリレート、アダマンタンジアクリレート、アダマンタンエチレンオキシドアクリレート、アダマンタンエチレンオキシドジアクリレートが挙げられる。
Figure JPOXMLDOC01-appb-C000020
(一般式(10)中、qは0~3の整数を表し、R14は炭素数1~10かつ酸素数1~3の鎖状脂肪族を表す)
 一般式(10)で表される化合物としては、N-アクリロイルオキシエチルヘキサヒドロフタルイミドが挙げられる。
 本発明のネガ型感光性シロキサン組成物は、(d)光重合開始剤を含有する。ここで光重合開始剤とは、光(紫外線および電子線を含む)により分解および/又は反応し、ラジカルを発生させる化合物をいう。
 光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキシド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチル、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタンアミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロリド、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル-9,10-フェナントレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロホスフェート(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、ナフタレンスルホニルクロリド、キノリンスルホニルクロリド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイル若しくはエオシン又はメチレンブルーなどの光還元性の色素とアスコルビン酸若しくはトリエタノールアミンなどの還元剤との組み合わせが挙げられる。
 硬化膜の硬度をより高くするためには、α-アミノアルキルフェノン化合物、アシルホスフィンオキシド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物又はアミノ基を有する安息香酸エステル化合物が好ましい。
 α-アミノアルキルフェノン化合物としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン又は2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1が挙げられる。
 アシルホスフィンオキシド化合物としては、例えば、2,4,6-トリメチルベンゾイルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド又はビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキシドが挙げられる。
 オキシムエステル化合物のとしては、例えば、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム又はエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)が挙げられる。
 アミノ基を有するベンゾフェノン化合物としては、例えば、4,4-ビス(ジメチルアミノ)ベンゾフェノン又は4,4-ビス(ジエチルアミノ)ベンゾフェノンなどが挙げられる。
 アミノ基を有する安息香酸エステル化合物としては、例えば、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート又はp-ジエチルアミノ安息香酸エチルが挙げられる。
 本発明のネガ型感光性樹脂組成物は(e)マレイミド基を有する化合物を含有する。マレイミド化合物とはマレイミド基を有する化合物であり、パターニングに先立つ露光時にラジカル反応だけではなく、酸素障害を受けない光二量化反応を起こすことが知られており、パターンの酸素に触れる表面でも光2量化反応が進行するため従来ラジカル反応だけでは反応しにくい表面が光反応しやすくなる。さらにその高い疎水性からアルカリ水溶液にさらに表面が溶解しにくくなることから、パターンの断面形状がより矩形になりやすい。
 (e)マレイミド化合物としては、N-フェニルマレイミド(日本触媒 “イミレックス-P”(登録商標))、N-(4-アミノフェニル)マレイミド、N-[4-(2-ベンシイミダゾリル)フェニル]マレイミド、1,4-ビス(マレイミド)ブタン、1,2-ビス(マレイミド)エタン、4,4’-ビスマレイミドジフェニルメタン、1,2-ビス(マレイミド)エタン、1,6-ビス(マレイミド)ヘキサン、N-t-ブチルマレイミド、N-ジクロヘキシルマレイミド、N-エチルマレイミド、フルオレセシン-5-マレイミド、4-マレイミドブタン酸、6-マレイミドヘキサン酸、3-マレイミドプロピオン酸、N-メトキシカルボニルマレイミド、フェニルメタンマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、1,3-ビス(3-マレイミドフェノキキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン(大和化成工業(株))4,4’-ジフェニルメタンビスマレイミド(BMI)、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70)、2、2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成株式会社)、などがあげられる。光二量化反応により分子量がより増大するため、マレイミド基を2個以上有する化合物がより好ましい。添加量としては光硬化反応により耐薬品性がより向上するという点から含有量は(a)金属化合物粒子、(b)ポリシロキサン化合物、(c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物の合計を100重量部とした時に4重量部以上が好ましい。また(b)ポリシロキサン化合物との相溶性が良く光硬化時により光反応するという点からマレイミド化合物の分子量は2000以下が好ましく、さらに800以下がより好ましい。
 本発明のネガ型感光性樹脂組成物は、(f)溶剤を含有することが好ましい。溶剤は特に制限はないが、アルコール性水酸基を有する化合物を溶剤に用いることが好ましい(以降、アルコール性水酸基を有する化合物を溶剤に用いた場合の溶剤を、「アルコール性水酸基を有する溶剤」と略記する)。アルコール性水酸基を有する溶剤を用いると、(b)ポリシロキサン化合物の安定性を向上させ、ネガ型感光性樹脂組成物から得られる塗布膜の透明性をより向上させることができる。
 アルコール性水酸基を有する溶剤は特に制限されないが、大気圧下の沸点が110~250℃である化合物が好ましい(以降、「大気圧下の沸点」を、「沸点」と略記する)。沸点が110℃以上であれば、塗布膜形成時の乾燥が適度に進み、表面外観の良好な塗布膜を容易に得ることができる。一方、沸点が250℃以下であれば、溶剤の除去が容易である。
 アルコール性水酸基を有する溶剤の具体例としては、アセトール(沸点:147℃)、3-ヒドロキシ-3-メチル-2-ブタノン(沸点:140℃)、4-ヒドロキシ-3-メチル-2-ブタノン(沸点:73℃)、5-ヒドロキシ-2-ペンタノン(沸点:144℃)、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)(沸点:166℃)、乳酸エチル(沸点:151℃)、乳酸ブチル(沸点:186℃)、プロピレングリコールモノメチルエーテル(沸点:118℃)、プロピレングリコールモノエチルエーテル(沸点:132℃)、プロピレングリコールモノn-プロピルエーテル(沸点:約150℃)、プロピレングリコールモノn-ブチルエーテル(沸点:170℃)、ジエチレングリコールモノメチルエーテル(沸点:194℃)、ジエチレングリコールモノエチルエーテル(沸点:202℃)、ジプロピレングリコールモノメチルエーテル(沸点:約190℃)、3-メトキシ-1-ブタノール(沸点:161℃)、3-メチル-3-メトキシ-1-ブタノール(沸点:174℃)などが挙げられる。これらを2種以上含有してもよい。
 また、上記アルコール性水酸基を有する溶剤とともに、または上記溶剤にかえて、その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチルなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。
 本発明のネガ型感光性樹脂組成物が(f)溶剤を含有する場合における(f)溶剤の含有量に特に制限はないが、(a)金属化合物粒子と(b)ポリシロキサン化合物との合計量に対して100~2,000重量部の範囲であることが好ましい。
 本発明のネガ型感光性樹脂組成物は、塗布時のフロー性向上のために、各種のフッ素系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、“メガファック(登録商標)”F142D、同F172、同F173、同F183、同F445、同F470、同F475、同F477(以上、大日本インキ化学工業(株)製)、NBX-15、FTX-218、DFX-18((株)ネオス製)などのフッ素系界面活性剤、BYK-333、BYK-301、BYK-331、BYK-345、BYK-307(ビックケミージャパン(株)製)などのシリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらを2種以上用いてもよい。
 さらに、本発明のネガ型感光性樹脂組成物は、必要に応じて、シランカップリング剤、架橋剤、架橋促進剤、増感剤、熱ラジカル発生剤、溶解促進剤、溶解抑止剤、安定剤、消泡剤などの添加剤を含有することもできる。
 本発明の硬化膜は、本発明のネガ型感光性樹脂組成物を硬化させてなる。また本発明の硬化膜は、本発明のネガ型感光性樹脂組成物を基板上に塗布し、露光した後に現像し、次いで熱硬化させる製造方法により得ることができる。以下に具体的な例を挙げて説明するが、同等の効果を有する範囲であれば、本発明の硬化膜は、これらの例に記載の条件により得られるものに限定されるものではない。
 本発明のネガ型感光性樹脂組成物を、スピン塗布やスリット塗布などの公知の方法によって基板上に塗布し、ホットプレート、オーブンなどの加熱装置を用いて加熱(プリベーク)し組成物中の溶媒を蒸発させる。プリベークは、50~150℃の温度範囲で30秒~30分間行うことが好ましい。プリベーク後の膜厚は0.1~15μmが好ましい。
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの紫外可視露光機を用い、所望のマスクを介して10~4000J/m程度(波長365nm露光量換算)露光を行い、露光部を架橋させ現像液への溶解性を減少させるかまたは不溶性とする。
 露光後、現像により未露光部を溶解除去し、ネガパターンを得る。パターンの解像度は、好ましくは8μm以下である。現像方法としては、シャワー、ディップ、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができ、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、水酸化テトラメチルアンモニウム(TMAH)、コリンなどの4級アンモニウム塩の水溶液などが挙げられる。これらを2種以上用いてもよい。また、現像後は水でリンスすることが好ましく、必要であればホットプレート、オーブンなどの加熱装置で50~150℃の温度範囲で脱水乾燥ベークを行ってもよい。
 この様にして現像された膜を、必要に応じホットプレート、オーブンなどの加熱装置で50~250℃の温度範囲で30秒~30分間加熱(ソフトベーク)を行った後、ホットプレート、オーブンなどの加熱装置で150~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得る。
 本発明のネガ型感光性樹脂組成物は、パターン形成における生産性の観点から、露光時の感度が1500J/m以下であることが好ましく、1000J/m以下であることがより好ましい。このような高い感度は、カルボキシル基および/またはジカルボン酸無水物構造を有するオルガノシランを用いたポリシロキサン化合物を含有するネガ型感光性樹脂組成物を用いるとより容易に得ることができる。
 露光時の感度は、以下の方法により求められる。ネガ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて任意の回転数でスピン塗布し、ホットプレートを用いて120℃で3分間プリベークし、膜厚1μmのプリベーク膜を作製する。PLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により感度測定用の1~10μmのライン・アンド・スペースパターンを有するグレースケールマスクを介してプリベーク膜を露光した後、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38重量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスする。形成されたパターンにおいて、設計寸法100μmの正方形パターンが現像後に剥がれず、基板上に残って形成される露光量(以下、これを最適露光量という)を感光感度とする。
 その後、熱硬化工程として、ホットプレートを用いて220℃で5分間キュアして硬化膜を作製し、前記感光感度における最小パターン寸法をキュア後解像度として求める。
 本発明のネガ型感光性樹脂組成物を硬化させてなる硬化膜は、波長400nmにおける膜厚1μmあたりの光透過率が90%以上であることが好ましく、さらに好ましくは92%以上である。なお、本発明において「透過率」は、透明性の指標として用いている。このような高い透過率は、例えば透明性の高いポリシロキサン化合物を樹脂成分として用いたネガ型感光性樹脂組成物により容易に得ることができる。なお、ここでの「膜厚1μmあたりの光透過率」とは、測定時の膜厚の実測値が1μmである場合にはその膜厚での光透過率を、測定時の膜厚の実測値が1μmでない場合には、膜厚が1μmである場合に換算した光透過率をいうものとする。
 硬化膜の波長400nmにおける膜厚1μmあたりの透過率は、以下の方法により求められる。ネガ型感光性樹脂組成物をテンパックスガラス板にスピンコーターを用いて任意の回転数でスピンコートし、ホットプレートを用いて100℃で3分間プリベークする。ホットプレートを用いて大気中220℃で5分間熱硬化して膜厚1μmの硬化膜を作製する。得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製MultiSpec-1500を用いて測定し、波長400nmでの透過率を求める。別の方法としては、対象硬化膜の各波長λによる消衰係数k、膜厚tを大塚電子(株)製分光エリプソメータFE5000により測定し、下記式により求めることができる。
透過率=exp(-4πkt/λ)
なお、作製した硬化膜の膜厚が1μmからはずれた際には、以下の式にて計算できる。
膜厚が1μmあたりの透過率={(透過率/100)^ (1/t)}*100にて計算できる。
ただし、kは消衰係数、tは膜厚、λは測定波長、を表す。
 本発明のネガ型感光性樹脂組成物および硬化膜は、イメージセンサ(固体撮像素子)、光学フィルター、ディスプレイ、LED照明、などの光学デバイスに好ましく用いられる。本発明の硬化膜を具備する光学デバイスとして、中でもLED照明が好ましいものとして挙げられる。LED照明とは、発光ダイオード(Light Emitting Diode)を用いた照明である。発光ダイオードは、化合物半導体の特性を用いて、電気エネルギーを光エネルギーに変換するEL(Electro Luminescence)素子の一種であり、3-5族化合物半導体を利用したものが実用化されている。その3-5族化合物半導体は直接遷移型半導体であり、他の半導体を用いた素子より高温で安定した動作が可能である。更に3-5族化合物半導体は、エネルギー変換効率が良いことや長寿命であることから種々の照明デバイスやイルミネーション、電子機器などに多く使われている。このような発光ダイオードの光を多く取り出すために本発明のネガ型感光性樹脂組成物を用いて高屈折率の膜、もしくは高屈折率パターンを用いることで、消費電力が少なくより明るいLED照明が実現できる。
 また、本発明の硬化膜を具備する光学デバイスの別の好ましい例として、イメージセンサが挙げられる。より具体的には、イメージセンサなどの固体撮像素子に形成される集光用マイクロレンズや光導波路、光学フィルターとして設置される反射防止膜、などが挙げられる。これらの中でも、高い透明性と高い屈折率を両立できることから、固体撮像素子上に形成される集光用マイクロレンズや、集光用マイクロレンズと光センサー部を繋ぐ光導波路として特に好適に用いられる。
 また、本発明の硬化膜を具備するイメージセンサとして、少なくとも、光電変換層、カラーフィルターおよび平坦化層を順に有する裏面照射型CMOSイメージセンサであって、前記カラーフィルターが、本発明のネガ型感光性樹脂組成物から得られるパターンによって着色画素が区分されており、前記平坦化層の屈折率が前記パターンの屈折率よりも小さいものが好ましい。本発明のネガ型組成物はテーパー角の高い形状を形成できるためイメージセンサの着色画素の透明隔壁材料と使用することができ、着色画素を区分し、さらに上部にそれよりも屈折率の低い平坦化層を形成することにより、屈折率差や、高透明隔壁により、集光効率を向上させることができるためである。
 これらの他にも、ディスプレイ用TFT基板の平坦化材、液晶ディスプレイなどのカラーフィルターおよびその保護膜、位相シフターなどが本発明の硬化膜を具備する光学デバイスの別の好ましい例として、挙げられる。また、半導体装置のバッファコート、層間絶縁膜や、各種保護膜として用いることもできる。本発明のネガ型感光性樹脂組成物は、エッチング法によるパターン形成が不要であるため作業の簡略化が可能であり、エッチング薬液やプラズマによる配線部の劣化を回避することができる。
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
 ポリシロキサン化合物の溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン化合物の溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分を秤量して、ポリシロキサン化合物の溶液の固形分濃度を求めた。
 (合成例1) カルボキシル基含有シラン化合物(A)の合成
 300mlのナスフラスコにp-アミノ安息香酸を23.23g、PGMEAを209.05g仕込み、室温にて30分間撹拌してp-アミノ安息香酸を溶解させた。得られた溶液に、イソシアネートプロピルトリエトキシシランを46.53g、ジラウリン酸ジブチルスズを1.19g仕込み、70℃のオイルバスで1時間撹拌した。その後室温まで放冷し、析出した固体をガラスフィルターにて濾取、乾燥させ、カルボキシル基含有シラン化合物(A)を得た。収量は46.7gだった。
 (合成例2) カルボキシル基含有シラン化合物(B)の合成
 300mlのナスフラスコにp-ヒドロキシ安息香酸を23.39g、PGMEAを210.5g仕込み、室温にて30分間撹拌してp-ヒドロキシ安息香酸を溶解させた。得られた溶液に、イソシアネートプロピルトリエトキシシランを46.53g、ジラウリン酸ジブチルスズを1.19g仕込み、40℃のオイルバスで3時間撹拌した。その後室温まで放冷し、析出した固体をガラスフィルターにて濾取、乾燥させ、カルボキシル基含有シラン化合物(B)を得た。収量は42.4gだった。
 (調製例1) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製(ポリシロキサン化合物の合成ステップを含む:以降の調製例も同様)
 500mlの三口フラスコに3-アクリロキシプロピルトリメトキシシランを7.03g(0.03mol)、カルボキシル基含有シラン化合物(A)を15.37g(0.04mol)、1-ナフチルトリメトキシシラン7.45g(0.03mol)、酸化チタン-酸化ケイ素複合粒子のメタノール分散液(20.6重量%)である“オプトレイク” (登録商標)TR-527(商品名、日揮触媒化成(株)製、数平均粒子径は15nm)を156g(オルガノシランが完全縮合した場合の重量(22.3g)100重量部に対して、粒子含有量150重量部)、DAAを83.84g仕込み、室温で撹拌しながら水5.4gにリン酸0.217gを溶かしたリン酸水溶液を10分間かけて添加した。なお前記数平均粒子径はダイナミック光散乱高度計DLS-8000(大塚電子(株)製)を用いて、動的光散乱法により測定した。
 その後、フラスコを40℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、(a)金属化合物粒子として酸化チタン-酸化ケイ素複合粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例1にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-01」と記す。すなわちPS-01の重量部は、溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物との合計の部数であって、溶媒やその他の成分は含まない(以降のPS-02~PS-09についても同様)。
 (調製例2) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコに3-アクリロキシプロピルトリメトキシシランを5.86g(0.025mol)、カルボキシル基含有シラン化合物(B)を19.26g(0.05mol)、1-ナフチルトリメトキシシラン6.21g(0.025mol)、酸化チタン粒子のプロピレングリコールモノメチルエーテルアセテート分散液(20.2重量%)(登録商標)NOD-7771GTB(商品名、ナガセケムテックス(株)製、数平均粒子径は25nm)を181.4g(オルガノシランが完全縮合した場合の重量(24.4g)100重量部に対して、粒子含有量150重量部)、DAAを89.12g仕込み、室温で撹拌しながら水5.4gにリン酸0.157gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例2にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-02」と記す。
 (調製例3) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコにp-スチリルトリメトキシシラン5.61g(0.025mol)、カルボキシル基含有シラン化合物(B)を19.21g(0.05mol)、1-アントラセニルトリメトキシシラン7.45g(0.025mol)、酸化チタン-酸化ケイ素複合粒子のメタノール分散液(20.6重量%)である(登録商標)“オプトレイク”TR-550(商品名、日揮触媒化成(株)製、数平均粒子径は20nm)を175.7g(オルガノシランが完全縮合した場合の重量(24.1g)100重量部に対して、粒子含有量150重量部)、DAAを88.03g仕込み、室温で撹拌しながら水5.4gにリン酸0.155gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン-酸化ケイ素複合粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例3にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-03」と記す。
 (調製例4) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコにp-スチリルトリメトキシシラン11.22g(0.05mol)、3-トリメトキシシリルプロピルコハク酸を6.56g(0.025mol)、1-ナフチルシランを6.21g(0.025mol)、23.4%の酸化チタン分散液である“ナノユース”(登録商標)OZ-30M(酸化チタン粒子、日産化学工業(株)製、数平均粒子径は7nm)112.38g(オルガノシランが完全縮合した場合の重量(17.5g)100重量部に対して、粒子含有量150重量部)、DAAを64.63g仕込み、室温で撹拌しながら水5.85gにリン酸0.120gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例4にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-04」と記す。
 (調製例5) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコにp-スチリルトリメトキシシラン11.22g(0.05mol)、3-トリメトキシシリルプロピルコハク酸を6.56g(0.025mol)、1-ナフチルシランを6.21g(0.025mol)、23.4%の酸化チタン分散液である“ナノユース”(登録商標)OZ-30M(酸化チタン粒子、日産化学工業(株)製、数平均粒子径は7nm)112.38g(オルガノシランが完全縮合した場合の重量(18.9g)100重量部に対して、粒子含有量150重量部)、DAAを64.63g仕込み、室温で撹拌しながら水5.85gにリン酸0.120gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例5にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-05」と記す。
 (調製例6) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製 
 3-メタクリロキシプロピリトリメトキシシラン13.02g(0.05モル)、3-トリメトキシシリルプロピルコハク酸を6.56g(0.025mol)、1-アントラセニルトリメトキシシランを7.45g(0.025mol)、20.6重量%の酸化チタン-酸化ケイ素複合粒子メタノール分散液である“オプトレイク” (登録商標)TR-550(商品名、日揮触媒化成(株)製、数平均粒子径は20nm)を149.86g(オルガノシランが完全縮合した場合の重量(20.6g)100重量部に対して、粒子含有量150重量部)、DAAを75.89g仕込み、室温で撹拌しながら水5.85gにリン酸0.135gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン-酸化ケイ素複合粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例6にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-06」と記す。
 (調製例7) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製 
 500mlの三口フラスコにメチルトリメトキシシランを5.45g(0.04mol)、フェニルトリメトキシシランを9.9g(0.05mol)、3-トリメトキシシリルプロピルコハク酸を2.6g(0.01mol)、22.0重量%の酸化チタン-酸化ケイ素複合粒子メタノール分散液である“オプトレイク” (登録商標)TR-527(商品名、日揮触媒化成(株)製、数平均粒子径は20nm)を76.9g(オルガノシランが完全縮合した場合の重量(20.5g)100重量部に対して、粒子含有量150重量部)、DAAを40.7g仕込み、室温で撹拌しながら水5.6gにリン酸0.09gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン-酸化ケイ素複合粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例7にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-07」と記す。
 (調製例8) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコにメチルトリメトキシシランを5.45g(0.04mol)、3-トリメトキシシリルプロピルコハク酸を5.25g(0.02mol)、1-ナフチルトリメトキシシランを9.93g(0.04mol)、20.6重量%の酸化チタン-酸化ケイ素複合粒子メタノール分散液である“オプトレイク” (登録商標)TR-550(商品名、日揮触媒化成(株)製、数平均粒子径は20nm)を102.6g(オルガノシランが完全縮合した場合の重量(14.1g)100重量部に対して、粒子含有量150重量部)、DAAを52.3g仕込み、室温で撹拌しながら水5.76gにリン酸0.103g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン-酸化ケイ素複合粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例8にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-08」と記す。
 (調製例9) (a)金属化合物粒子が分散した、(b)ポリシロキサン化合物の溶液の調製
 500mlの三口フラスコに3-アクリロキシプロピルトリメトキシシランを5.86g(0.025mol)、カルボキシル基含有シラン化合物(B)を19.26g(0.05mol)、フェニルトリメトキシシラン4.96g(0.025g)、酸化チタン粒子のプロピレングリコールモノメチルエーテルアセテート分散液(20.2重量%)(登録商標)NOD-7771GTB(商品名、ナガセケムテックス(株)製、数平均粒子径は25nm)を172.1g(オルガノシランが完全縮合した場合の重量(23.2g)100重量部に対して、粒子含有量150重量部)、DAAを89.12g仕込み、室温で撹拌しながら水5.4gにリン酸0.157gを溶かしたリン酸水溶液を10分間かけて添加した。その後、調製例1と同様に加熱撹拌して(a)金属化合物粒子として酸化チタン粒子が分散した(b)ポリシロキサン化合物の溶液を得た。得られた溶液の固形分濃度を35重量%になるようにDAAにて希釈した。なお、実施例での組成において、本調製例10にて得た溶液に含まれる(a)金属化合物粒子と(b)ポリシロキサン化合物とを総称して「PS-09」と記す。
 また得られたネガ型感光性樹脂組成物の各評価は、以下の方法で行った。なお各評価はn=2で行い、その平均値を表8~10に記載した。
 (1)膜厚
 ラムダエースSTM-602(商品名、大日本スクリーン製)を用いて、屈折率1.70でプリベーク膜の膜厚、現像後膜の露光部膜厚および硬化膜の膜厚を測定した。
 (2)残膜率
 残膜率は以下の式に従って算出した。
残膜率(%)=現像後膜の露光部膜厚÷プリベーク膜の膜厚×100
 (3)感光感度の算出
 得られたプリベーク膜をPLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により、感度測定用のグレースケールマスク(Opto-Line製 Multi density Resolution Mask)を介してパターン露光した。設計寸法100μmの正方形パターンが現像後に剥がれず、残って形成される最小露光量を感光感度とした。
 (4)解像度
 得られた現像後膜について、全ての露光量での正方形パターンを観察し、最小パターン寸法を現像後解像度とした。同様に得られた硬化膜について、全ての正方形パターンを観察し、最小パターン寸法をキュア後解像度として観察を行った。
 (5)屈折率
 得られた硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での550nmにおける屈折率を測定した。
 (6)光透過率(400nm波長、1μm換算)
 得られた硬化膜の400nm波長による消衰係数を大塚電子(株)製分光エリプソメータFE5000により測定し、下記式により400nm波長における膜厚1μm換算での光透過率(%)を求めた。
光透過率=exp(-4πkt/λ)
ただし、kは消衰係数、tは膜厚(μm)、λは測定波長(nm)を表す。なお、作製した硬化膜の膜厚が1μmからはずれた際には、以下の式にて計算した。
膜厚が1μmあたりの透過率={(透過率/100)^ (1/t)}*100。
 (7)耐溶剤性
 得られた硬化膜について、PGMEA溶剤に25℃2分間浸漬し、その前後での残膜率が99%以上のときにきわめて良好(A)、95%以上であるとき良好(B)、95%未満であるとき不良(D)であると判定した。なお残膜率は以下の式に従って算出した。
残膜率(%)=PGMEA溶剤浸漬後膜厚÷PGMEA溶剤浸漬前膜厚×100
 膜厚については、上記(1)膜厚測定に記載の方法で測定した。
 (8)テーパー角
 1.5μm角の市松模様のマスクを用いて露光後、パタ。ーニングして得られた硬化膜についてそれぞれの露光量での断面SEM写真からパターンの断面のテーパー角度を求めた。すべての露光量にて1.5μmのパターンが解像していない場合はD、すべての露光量のうちで一番高いテーパー角度が45°~60°の場合をC、60°~75°をB、75°~90°をAと表記した。
 (実施例1)
 表1の組成物1の比率となるよう調合し、フッ素系界面活性剤として、DFX-18((株)ネオス製)を30ppm添加し、黄色灯下で混合、撹拌して均一溶液とした後、0.20μmのフィルターで濾過して組成物1を調製した。
 組成物1を調製直後に8インチシリコンウェハーにスピンコーター(ミカサ(株)製1H-360S)を用いてスピン塗布した後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて100℃で3分間加熱し、膜厚1.0μmのプリベーク膜を作製した。得られたプリベーク膜を用いて、(1)膜厚測定、(3)感光感度の算出を行った。
 得られたプリベーク膜をi-線ステッパー(ニコン(株)製i9C)を用いて、100msec~1000msecまで50msec刻みで露光を行った。露光を行った後に、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38重量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスして、現像後膜1を得た。その後、ホットプレートを用いて220℃で5分間キュアして硬化膜1を作製した。得られた現像後膜1、硬化膜1を用いて、(4)解像度、(8)テーパー角度の評価を行った。
 また得られたプリベーク膜をPLA(キヤノン(株)製PLA-501F)を用いて、超高圧水銀灯により1500J/m露光を膜全面に対して行った。露光を行った後に、自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38重量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスして、現像後膜2を得た。その後、ホットプレートを用いて220℃で5分間キュアして硬化膜2を作製した。
 得られた現像後膜2、硬化膜2を用いて(1)膜厚の測定を行った。また上記のプリベーク膜の膜厚の測定値と本現像後膜2の膜厚の測定値を用いて、(2)残膜率の算出を行った。またさらに得られた硬化膜2を用いて、(5)屈折率の算出、(6)光透過率の測定、(7)耐溶剤性評価を行った。これらの結果を表7に示す。
 (実施例2~14、比較例1~21)
 組成物の成分を表1~6に示すとおりに変更したほかは実施例1と同様にして組成物2~35を調製した。得られた各組成物を用いて、実施例1と同様にしてプリベーク膜、現像後膜、硬化膜を作製し、評価を行った。評価結果を表7~9に示す。
 なお(5)屈折率の算出、(6)光透過率の測定、(7)耐溶剤性評価において、現像にて膜が全部溶解して評価が出来なかった場合は、現像を行わない以外は実施例1と同様にして硬化膜を作製し評価を行った。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 

Claims (16)

  1. 以下の(a)~(d)を含有するネガ型感光性樹脂組成物であって、
     (a)金属化合物粒子
     (b)ポリシロキサン化合物
     (c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物
     (d)光重合開始剤
     さらに(e)マレイミド基を有する化合物を含有することを特徴とするネガ型感光性組成物。
  2. (b)ポリシロキサン化合物が、一般式(1)および/または(2)で示される構造単位を含むポリシロキサン化合物である請求項1記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (Rはカルボキシル基および/またはジカルボン酸無水物構造を有する有機基、Rは、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基または炭素数6~16のアリール基を表す。)
  3.  (b)ポリシロキサン化合物が、さらに一般式(3)および/または(4)で示される構造単位を含む請求項2記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (Rは炭素数2~10のアルケニル基を有する有機基、Rは水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、炭素数2~10のアルケニル基を有する有機基または炭素数6~16のアリール基を表す。)
  4.  Rが、アリル基、ビニル基、(メタ)アクリロイル基またはスチリル基である請求項3記載のネガ型感光性樹脂組成物。
  5.  前記(c)α,β-不飽和カルボン酸エステル構造を含む基を1つ以上有する化合物が、下記一般式(5)~(10)から選ばれる化合物である請求項1~4のいずれか記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(5)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素またはメチル基を表し、複数のRはそれぞれ同じでも異なっていてもよい。hは0~3の整数を表し、i、jは0~2の整数を表し、i+j=1~2である。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(6)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素またはメチル基を表し、複数のRはそれぞれ同じでも異なっていてもよい。kは1~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(7)中、Rは単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のRはそれぞれ同じでも異なってもよい。R10は水素またはメチル基を表し、複数のR10はそれぞれ同じでも異なっていてもよい。R11は水素または炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR11はそれぞれ同じでも異なっていてもよい。l、mは0~2の整数を表し、l+m=1~2である。)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(8)中、R12は単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR11はそれぞれ同じでも異なっていてもよい。oは1~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(9)中、R13は単結合、炭素数1~10かつ酸素数1~3の鎖状脂肪族基または炭素数3~16の環状脂肪族炭化水素基を表し、複数のR12はそれぞれ同じでも異なっていてもよい。pは1~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (一般式(10)中、qは0~3の整数を表し、R14は炭素数1~10かつ酸素数1~3の鎖状脂肪族を表す)
  6.  前記(b)ポリシロキサン化合物のRが下記一般式(11)~(13)のいずれかで表されるジカルボン酸無水物を有する有機基である請求項1~5のいずれか記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    (上記一般式(11)~(13)中、R15、R16およびR17は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子が炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。r、s、tおよびuは0~3の整数を表す。)
  7.  (b)ポリシロキサン化合物のSi原子モル数に対する、当該ポリシロキサン化合物を構成する一般式(1)および/または(2)で示される構造単位中のSi原子モルの比が、5モル%以上30モル%以下である請求項1~6のいずれかに記載のネガ型感光性樹脂組成物。
  8.  前記(a)金属化合物粒子がアルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子およびジルコニウム化合物粒子から選ばれる1以上の金属化合物粒子またはアルミニウム化合物、スズ化合物、チタン化合物およびジルコニウム化合物から選ばれる1以上の金属化合物とケイ素化合物との複合粒子である請求項1~7のいずれかに記載のネガ型感光性樹脂組成物。
  9.  前記(a)金属化合物粒子と前記(b)ポリシロキサン化合物が部分結合している請求項1~8のいずれかに記載のネガ型感光性樹脂組成物。
  10.  前記(a)金属化合物粒子の数平均粒子径が、1nm~400nmである請求項1~9のいずれかに記載のネガ型感光性樹脂組成物。
  11.  前記(a)金属化合物粒子が、(b)ポリシロキサン化合物100重量部に対して、10重量部以上500重量部以下である請求項1~10のいずれかに記載のネガ型感光性樹脂組成物。
  12.  請求項1~11のいずれかに記載のネガ型感光性樹脂組成物を硬化させてなる硬化膜。
  13.  請求項1~11のいずれかに記載のネガ型感光性樹脂組成物を基板上に塗布し、露光した後に現像し、次いで熱硬化させる硬化膜の製造方法。
  14.  請求項12に記載の硬化膜を具備するLED照明。
  15.  請求項12に記載の硬化膜を具備するイメージセンサ。
  16.  少なくとも、光電変換層、カラーフィルターおよび平坦化層を順に有する裏面照射型CMOSイメージセンサであって、前記カラーフィルターは、請求項1~11のいずれかに記載のネガ型感光性樹脂組成物から得られるパターンによって着色画素が区分されており、前記平坦化層の屈折率が前記パターンの屈折率よりも小さい、CMOSイメージセンサ。
PCT/JP2015/051490 2014-01-24 2015-01-21 ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ WO2015111607A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201606071WA SG11201606071WA (en) 2014-01-24 2015-01-21 Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated cmos image sensor
JP2015504792A JP6572769B2 (ja) 2014-01-24 2015-01-21 ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ
EP15740612.5A EP3098653B1 (en) 2014-01-24 2015-01-21 Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated cmos image sensor
KR1020167021968A KR102300782B1 (ko) 2014-01-24 2015-01-21 네거티브형 감광성 수지 조성물, 그것을 경화시켜서 이루어지는 경화막과 그 제조 방법 및 그것을 구비하는 광학 디바이스, 그리고 이면 조사형 cmos 이미지 센서
US15/113,119 US9977329B2 (en) 2014-01-24 2015-01-21 Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated CMOS image sensor
CN201580005547.3A CN106415393B (zh) 2014-01-24 2015-01-21 负型感光性树脂组合物、使其固化而成的固化膜及其制造方法、以及具有其的光学设备及背面照射型cmos图像传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014010948 2014-01-24
JP2014-010948 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111607A1 true WO2015111607A1 (ja) 2015-07-30

Family

ID=53681409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051490 WO2015111607A1 (ja) 2014-01-24 2015-01-21 ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ

Country Status (8)

Country Link
US (1) US9977329B2 (ja)
EP (1) EP3098653B1 (ja)
JP (1) JP6572769B2 (ja)
KR (1) KR102300782B1 (ja)
CN (1) CN106415393B (ja)
SG (1) SG11201606071WA (ja)
TW (1) TWI666511B (ja)
WO (1) WO2015111607A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188047A1 (ja) * 2016-04-25 2017-11-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
JP2018072397A (ja) * 2016-10-24 2018-05-10 東京応化工業株式会社 感光性組成物、感光性組成物の製造方法、光重合開始剤、及び光重合開始剤の調製方法
WO2019189387A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
JP2020052280A (ja) * 2018-09-27 2020-04-02 東京応化工業株式会社 感光性樹脂組成物、パターニングされた硬化膜の製造方法及び硬化膜
WO2020071204A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2019230616A1 (ja) * 2018-06-01 2020-12-17 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
CN114829457A (zh) * 2019-10-23 2022-07-29 胡网加成股份有限公司 聚硅氧烷共聚物、其制备方法和包括其的树脂组合物
TWI778003B (zh) * 2016-12-28 2022-09-21 日商太陽油墨製造股份有限公司 負型光硬化性樹脂組成物、乾薄膜、硬化物及印刷配線板
WO2022211070A1 (ja) * 2021-03-31 2022-10-06 日産化学株式会社 反応性シルセスキオキサン化合物を含有した光導波路用の重合性組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989852B2 (en) * 2013-07-02 2018-06-05 Toray Industries, Inc. Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same
JP6455636B1 (ja) * 2017-05-24 2019-01-23 東レ株式会社 ネガ型感光性樹脂組成物および硬化膜
WO2019064993A1 (ja) * 2017-09-26 2019-04-04 富士フイルム株式会社 構造体、隔壁形成用組成物、固体撮像素子および画像表示装置
CN109722033B (zh) * 2018-12-10 2021-08-06 沈阳化工大学 一种二蒽基二苯醚乙烯基硅橡胶制备方法
US11851557B2 (en) 2019-02-15 2023-12-26 AGC Inc. Curable composition, cured product and laminate
CN113448171B (zh) * 2020-03-27 2024-04-16 赫拉化学科技有限公司 光敏树脂组合物、图案形成方法及基板保护用覆膜的制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081404A (ja) 1999-09-17 2001-03-27 Jsr Corp コーティング組成物および硬化体
JP2003075997A (ja) 2001-06-22 2003-03-12 Toray Ind Inc ポジ型感光性樹脂組成物
JP2005266075A (ja) * 2004-03-17 2005-09-29 Nitto Denko Corp 感光性樹脂組成物とその利用
JP2006293337A (ja) 2005-03-18 2006-10-26 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2006312717A (ja) 2005-04-04 2006-11-16 Toray Fine Chemicals Co Ltd 縮合多環式炭化水素基を有するシリコーン共重合体及びその製造方法
JP2007246877A (ja) 2005-10-03 2007-09-27 Toray Ind Inc シロキサン系樹脂組成物、光学物品およびシロキサン系樹脂組成物の製造方法
JP2008024832A (ja) 2006-07-21 2008-02-07 Tokyo Ohka Kogyo Co Ltd 高屈折率材料
JP2008105999A (ja) * 2006-10-25 2008-05-08 Idemitsu Kosan Co Ltd アダマンタン誘導体、その製造方法、樹脂組成物およびその硬化物
JP2009179678A (ja) 2008-01-30 2009-08-13 Jsr Corp 光硬化性組成物及び、その硬化膜
JP2010160300A (ja) 2009-01-08 2010-07-22 Toray Ind Inc ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP2010204298A (ja) * 2009-03-02 2010-09-16 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性エレメント、ソルダーレジスト及びプリント配線用基板
WO2011040248A1 (ja) 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
JP2011128469A (ja) * 2009-12-18 2011-06-30 Jsr Corp 感放射線性組成物、硬化膜及びこの形成方法
JP2011165396A (ja) * 2010-02-05 2011-08-25 Mitsubishi Chemicals Corp アクティブ駆動型有機電界発光素子の隔壁用感光性組成物およびアクティブ駆動型有機電界発光表示装置
WO2011129210A1 (ja) * 2010-04-14 2011-10-20 東レ株式会社 ネガ型感光性樹脂組成物、それを用いた保護膜およびタッチパネル部材
WO2012008387A1 (ja) * 2010-07-15 2012-01-19 ソニー株式会社 固体撮像素子及び固体撮像素子の製造方法、電子機器
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
JP2012215837A (ja) * 2011-03-31 2012-11-08 Jsr Corp 感放射線性組成物、並びに硬化膜及びその形成方法
JP2014084360A (ja) 2012-10-22 2014-05-12 Toagosei Co Ltd 活性エネルギー線硬化型アンダーコート用組成物及び積層体
JP2014160271A (ja) * 2014-04-16 2014-09-04 Hitachi Chemical Co Ltd 感光性樹脂組成物及び感光性フィルム、永久レジスト
JP2014194508A (ja) * 2013-03-29 2014-10-09 Fujifilm Corp 感光性樹脂組成物、硬化膜、画像形成方法、固体撮像素子、カラーフィルタおよび紫外線吸収剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273894B2 (ja) * 2003-09-18 2009-06-03 日立化成工業株式会社 樹脂組成物
JP2007224877A (ja) 2006-02-27 2007-09-06 Denso Corp 内燃機関の排気管への排気センサ取付け構造
JP2010037425A (ja) * 2008-08-05 2010-02-18 Jsr Corp 樹脂組成物、光学膜及び光学用部材
KR20110040248A (ko) 2009-10-13 2011-04-20 삼성전자주식회사 디지털 영상 처리기에서 소비 전력 저감 장치 및 방법
CN103348289B (zh) 2011-03-22 2016-04-13 Jsr株式会社 感放射线性组成物以及硬化膜及其形成方法
WO2013108716A1 (ja) 2012-01-19 2013-07-25 日産化学工業株式会社 ネガ型感光性樹脂組成物
JP6317253B2 (ja) * 2012-05-17 2018-04-25 太陽インキ製造株式会社 液状現像型のマレイミド組成物、プリント配線板
TWI479269B (zh) * 2012-12-25 2015-04-01 Chi Mei Corp 感光性聚矽氧烷組成物及其應用
JP6417669B2 (ja) 2013-03-05 2018-11-07 東レ株式会社 感光性樹脂組成物、保護膜及び絶縁膜並びにタッチパネルの製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081404A (ja) 1999-09-17 2001-03-27 Jsr Corp コーティング組成物および硬化体
JP2003075997A (ja) 2001-06-22 2003-03-12 Toray Ind Inc ポジ型感光性樹脂組成物
JP2005266075A (ja) * 2004-03-17 2005-09-29 Nitto Denko Corp 感光性樹脂組成物とその利用
JP2006293337A (ja) 2005-03-18 2006-10-26 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2006312717A (ja) 2005-04-04 2006-11-16 Toray Fine Chemicals Co Ltd 縮合多環式炭化水素基を有するシリコーン共重合体及びその製造方法
JP2007246877A (ja) 2005-10-03 2007-09-27 Toray Ind Inc シロキサン系樹脂組成物、光学物品およびシロキサン系樹脂組成物の製造方法
JP2008024832A (ja) 2006-07-21 2008-02-07 Tokyo Ohka Kogyo Co Ltd 高屈折率材料
JP2008105999A (ja) * 2006-10-25 2008-05-08 Idemitsu Kosan Co Ltd アダマンタン誘導体、その製造方法、樹脂組成物およびその硬化物
JP2009179678A (ja) 2008-01-30 2009-08-13 Jsr Corp 光硬化性組成物及び、その硬化膜
JP2010160300A (ja) 2009-01-08 2010-07-22 Toray Ind Inc ネガ型感光性樹脂組成物およびそれを用いたタッチパネル用材料
JP2010204298A (ja) * 2009-03-02 2010-09-16 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性エレメント、ソルダーレジスト及びプリント配線用基板
WO2011040248A1 (ja) 2009-09-29 2011-04-07 東レ株式会社 ポジ型感光性樹脂組成物、それを用いた硬化膜および光学デバイス
JP2011128469A (ja) * 2009-12-18 2011-06-30 Jsr Corp 感放射線性組成物、硬化膜及びこの形成方法
JP2011165396A (ja) * 2010-02-05 2011-08-25 Mitsubishi Chemicals Corp アクティブ駆動型有機電界発光素子の隔壁用感光性組成物およびアクティブ駆動型有機電界発光表示装置
WO2011129210A1 (ja) * 2010-04-14 2011-10-20 東レ株式会社 ネガ型感光性樹脂組成物、それを用いた保護膜およびタッチパネル部材
WO2012008387A1 (ja) * 2010-07-15 2012-01-19 ソニー株式会社 固体撮像素子及び固体撮像素子の製造方法、電子機器
JP2012082393A (ja) * 2010-09-17 2012-04-26 Jsr Corp ポリシロキサン組成物、並びにその硬化膜及びその形成方法
JP2012215837A (ja) * 2011-03-31 2012-11-08 Jsr Corp 感放射線性組成物、並びに硬化膜及びその形成方法
JP2014084360A (ja) 2012-10-22 2014-05-12 Toagosei Co Ltd 活性エネルギー線硬化型アンダーコート用組成物及び積層体
JP2014194508A (ja) * 2013-03-29 2014-10-09 Fujifilm Corp 感光性樹脂組成物、硬化膜、画像形成方法、固体撮像素子、カラーフィルタおよび紫外線吸収剤
JP2014160271A (ja) * 2014-04-16 2014-09-04 Hitachi Chemical Co Ltd 感光性樹脂組成物及び感光性フィルム、永久レジスト

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266587B1 (ko) * 2016-04-25 2021-06-17 도레이 카부시키가이샤 수지 조성물, 그 경화막과 그 제조방법, 및 고체촬상소자
CN109071742A (zh) * 2016-04-25 2018-12-21 东丽株式会社 树脂组合物、其固化膜及其制造方法以及固体摄像器件
KR20180136942A (ko) * 2016-04-25 2018-12-26 도레이 카부시키가이샤 수지 조성물, 그 경화막과 그 제조방법, 및 고체촬상소자
JPWO2017188047A1 (ja) * 2016-04-25 2019-02-28 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
WO2017188047A1 (ja) * 2016-04-25 2017-11-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
JP7027886B2 (ja) 2016-04-25 2022-03-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
CN109071742B (zh) * 2016-04-25 2021-07-09 东丽株式会社 树脂组合物、其固化膜及其制造方法以及固体摄像器件
JP2018072397A (ja) * 2016-10-24 2018-05-10 東京応化工業株式会社 感光性組成物、感光性組成物の製造方法、光重合開始剤、及び光重合開始剤の調製方法
JP7194492B2 (ja) 2016-10-24 2022-12-22 東京応化工業株式会社 感光性組成物、感光性組成物の製造方法、光重合開始剤、及び光重合開始剤の調製方法
TWI778003B (zh) * 2016-12-28 2022-09-21 日商太陽油墨製造股份有限公司 負型光硬化性樹脂組成物、乾薄膜、硬化物及印刷配線板
WO2019189387A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
TWI784152B (zh) * 2018-03-30 2022-11-21 日商東麗股份有限公司 正型感光性樹脂組成物、硬化膜的製造方法、硬化膜以及固體攝像元件
JP6648857B1 (ja) * 2018-03-30 2020-02-14 東レ株式会社 ポジ型感光性樹脂組成物、その硬化膜およびそれを具備する固体撮像素子
US11789363B2 (en) 2018-03-30 2023-10-17 Toray Industries, Inc. Positive photosensitive resin composition, cured film therefrom, and solid state image sensor comprising the same
JPWO2019230616A1 (ja) * 2018-06-01 2020-12-17 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP7240009B2 (ja) 2018-06-01 2023-03-15 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2020052280A (ja) * 2018-09-27 2020-04-02 東京応化工業株式会社 感光性樹脂組成物、パターニングされた硬化膜の製造方法及び硬化膜
WO2020071204A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
CN114829457A (zh) * 2019-10-23 2022-07-29 胡网加成股份有限公司 聚硅氧烷共聚物、其制备方法和包括其的树脂组合物
CN114829457B (zh) * 2019-10-23 2024-05-03 胡网加成股份有限公司 聚硅氧烷共聚物、其制备方法和包括其的树脂组合物
WO2022211070A1 (ja) * 2021-03-31 2022-10-06 日産化学株式会社 反応性シルセスキオキサン化合物を含有した光導波路用の重合性組成物

Also Published As

Publication number Publication date
KR20160113155A (ko) 2016-09-28
EP3098653A1 (en) 2016-11-30
EP3098653A4 (en) 2017-10-04
SG11201606071WA (en) 2016-09-29
KR102300782B1 (ko) 2021-09-13
CN106415393A (zh) 2017-02-15
JP6572769B2 (ja) 2019-09-11
US9977329B2 (en) 2018-05-22
CN106415393B (zh) 2020-04-07
EP3098653B1 (en) 2020-07-29
US20170010532A1 (en) 2017-01-12
TWI666511B (zh) 2019-07-21
TW201533529A (zh) 2015-09-01
JPWO2015111607A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6572769B2 (ja) ネガ型感光性樹脂組成物、それを硬化させてなる硬化膜およびその製造方法ならびにそれを具備する光学デバイスおよび裏面照射型cmosイメージセンサ
CN112368611B (zh) 树脂组合物、遮光膜、遮光膜的制造方法及带隔壁的基板
JP5003081B2 (ja) 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5765235B2 (ja) 感光性組成物、それから形成された硬化膜および硬化膜を有する素子
JP2008208342A (ja) 樹脂組成物、硬化膜、および硬化膜を有するカラーフィルタ
JP7027886B2 (ja) 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
WO2019176785A1 (ja) ネガ型感光性着色組成物、硬化膜、それを用いたタッチパネル
CN105093832B (zh) 感光性组合物、保护膜以及具有保护膜的元件
JP2016072246A (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP2021161401A (ja) 樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板
JP5444704B2 (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2009169343A (ja) 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2010032977A (ja) ポジ型感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP6569211B2 (ja) 感光性樹脂組成物、それを硬化させてなる硬化膜ならびにそれを具備する発光素子および固体撮像素子
JP7115635B2 (ja) 樹脂組成物、遮光膜、および隔壁付き基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015504792

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167021968

Country of ref document: KR

Kind code of ref document: A