WO2015111187A1 - 電気デバイス - Google Patents

電気デバイス Download PDF

Info

Publication number
WO2015111187A1
WO2015111187A1 PCT/JP2014/051526 JP2014051526W WO2015111187A1 WO 2015111187 A1 WO2015111187 A1 WO 2015111187A1 JP 2014051526 W JP2014051526 W JP 2014051526W WO 2015111187 A1 WO2015111187 A1 WO 2015111187A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
negative electrode
positive electrode
material layer
Prior art date
Application number
PCT/JP2014/051526
Other languages
English (en)
French (fr)
Inventor
荻原 航
山本 伸司
田中 秀明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020167019128A priority Critical patent/KR20160100348A/ko
Priority to JP2015558664A priority patent/JP6187602B2/ja
Priority to US15/113,250 priority patent/US10476101B2/en
Priority to EP14879986.9A priority patent/EP3098892B1/en
Priority to CN201480073896.4A priority patent/CN105934847B/zh
Priority to PCT/JP2014/051526 priority patent/WO2015111187A1/ja
Publication of WO2015111187A1 publication Critical patent/WO2015111187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrical device.
  • the electric device according to the present invention is used, for example, as a secondary battery, a capacitor or the like as a driving power source or auxiliary power source for motors of vehicles such as electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
  • Motor drive secondary batteries are required to have extremely high output characteristics and high energy compared to consumer lithium ion secondary batteries used in mobile phones and notebook computers. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
  • a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder
  • a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder.
  • it has the structure connected through an electrolyte layer and accommodated in a battery case.
  • a battery using a silicon-containing negative electrode active material such as a SiO x (0 ⁇ x ⁇ 2) material that forms a compound with Li is improved in energy density as compared with a conventional carbon / graphite negative electrode material. It is expected as a negative electrode material for vehicle use.
  • a silicon oxide having a chemical composition represented by SiO x when viewed microscopically, Si (single crystal nanoparticles) and amorphous SiO 2 exist in phase separation.
  • Silicon oxide has a tetrahedral structure as a unit structure, and silicon oxides (intermediate oxides) other than SiO 2 correspond to the number of oxygen at the apex of the tetrahedron, 1, 2 and 3, respectively. Although they can be expressed as 2 O, SiO and Si 2 O 3 , these intermediate oxides are thermodynamically unstable and are extremely difficult to exist as single crystals. Therefore, SiO x is composed of an amorphous structure in which unit structures are irregularly arranged, and this amorphous structure is an amorphous structure in which a plurality of amorphous compounds are formed without forming an interface. The structure is mainly composed of a homogeneous amorphous structure portion. Therefore, SiO x has a structure in which Si nanoparticles are dispersed in amorphous SiO 2 .
  • Li y SiO x such as Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 2 Si 3 O 8 , Li 6 Si 4 O 11, etc. (0 ⁇ y, 0 ⁇ x ⁇ 2)
  • Li y SiO x has extremely low electron conductivity, and furthermore, since SiO 2 does not have electron conductivity, the resistance of the negative electrode increases. There is. As a result, it is extremely difficult to desorb and insert lithium ions into the negative electrode active material.
  • a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large expansion and contraction in the negative electrode during charge and discharge.
  • the volume expansion when lithium ions are occluded is about 1.2 times in graphite materials, whereas in Si materials, when Si and Li are alloyed, the amorphous state transitions to the crystalline state, resulting in a large volume change. (Approximately 4 times), there was a problem of reducing the cycle life of the electrode.
  • the Si negative electrode active material the battery capacity and the cycle durability are in a trade-off relationship, and there is a problem that it is difficult to improve the high cycle durability while exhibiting a high capacity.
  • Patent Document 1 a negative electrode for a lithium ion secondary battery containing SiO x and a graphite material has been proposed (see, for example, Patent Document 1).
  • paragraph “0018” describes that, by minimizing the content of SiO x , good cycle life is exhibited in addition to high capacity.
  • the lithium ion secondary battery using a negative electrode containing SiO x and a carbon material described in Patent Document 1 is said to be able to exhibit good cycle characteristics.
  • An object of the present invention is to provide means capable of further improving cycle durability in an electric device such as a lithium ion secondary battery having a negative electrode containing a silicon-containing negative electrode active material.
  • the present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above problem can be solved by taking good care of the ratio of the area of the positive electrode active material layer and the area of the negative electrode active material layer constituting the single battery layer of the electric device to a value within a predetermined range.
  • the present invention has been completed.
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material layer containing a silicon-containing negative electrode active material on the surface of the negative electrode current collector are formed.
  • the present invention relates to an electric device having a power generation element including a single battery layer including a negative electrode and a separator.
  • the area of the negative electrode active material layer is set to A [m 2 ] and the area of the positive electrode active material layer is set to C [m 2 ] in at least one of the single cell layers constituting the power generation element. 2 ] is characterized in that the expression (1): 0.91 ⁇ C / A ⁇ 1 is satisfied.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of the electrical device according to the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of an electric device according to the present invention.
  • a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode active material containing a silicon-containing negative electrode active material on the surface of the negative electrode current collector
  • a lithium ion secondary battery will be described as an example of an electric device.
  • the lithium ion secondary battery using the electric device according to the present invention the voltage of the cell (single cell layer) is large, and high energy density and high output density can be achieved. Therefore, the lithium ion secondary battery of the present embodiment is excellent as a vehicle driving power source or an auxiliary power source. As a result, it can be suitably used as a lithium ion secondary battery for a vehicle driving power source or the like. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for portable devices such as mobile phones.
  • the lithium ion secondary battery When the lithium ion secondary battery is distinguished by its form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is. By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
  • FIG. 1 schematically shows the overall structure of a flat (stacked) lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”), which is a typical embodiment of the electrical device of the present invention.
  • stacked battery a flat (stacked) lithium ion secondary battery
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body.
  • the positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, the electrolyte layer 17, and the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a configuration in which a negative electrode is laminated. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode current collector 13 on the outermost layer located on both outermost layers of the power generating element 21 is provided with the positive electrode active material layer 13 only on one side, but the active material layer may be provided on both sides. . That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and one side of the outermost negative electrode current collector or A negative electrode active material layer may be disposed on both sides.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode via a positive electrode lead and a negative electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery according to this embodiment is characterized by the configuration of the positive electrode and the negative electrode.
  • main components of the battery including the positive electrode and the negative electrode will be described.
  • the active material layers (13, 15) contain an active material, and further contain other additives as necessary.
  • the positive electrode active material layer 13 includes a positive electrode active material.
  • a positive electrode active material There is no restriction
  • the positive electrode active material preferably includes a positive electrode active material made of a solid solution material (also referred to as “solid solution positive electrode active material” in the present specification) as a positive electrode active material capable of achieving a high electric capacity and energy density.
  • Li ⁇ Co-based composite oxide such as LiCoO 2
  • Li ⁇ Ni-based composite oxide such as LiNiO 2
  • Li ⁇ Mn-based composite oxide such as spinel LiMn 2 O 4
  • LiFeO 2 Li / Fe-based composite oxides such as can be used.
  • transition metal and lithium phosphate compounds and sulfate compounds such as LiFePO 4
  • transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 , PbO 2 , AgO, NiOOH or the like can be used.
  • the solid solution positive electrode active material which is a preferable positive electrode active material is demonstrated in detail.
  • Solid solution positive electrode active material has a composition represented by the following formula (3) as a basic structure.
  • the solid solution positive electrode active material has the composition represented by the formula (3) as a basic structure
  • the active material itself having the composition represented by the formula (3) is used as the solid solution positive electrode active material.
  • the latter form for example, the following three forms (A) to (C) are exemplified.
  • (A) 1 selected from the group consisting of Al, Zr, Ti, Nb, B, S, Sn, W, Mo and V on the particle surface of the solid solution positive electrode active material having the composition represented by formula (3)
  • the form in which the element M exists is not particularly limited, and in addition to the form of the oxide, a form of a compound with Li can be assumed, but the form of the oxide is preferable.
  • the average particle diameter of the material (such as oxide) containing the element M is preferably 5 to 50 nm.
  • the oxide is scattered on the particle surface of the solid solution positive electrode active material.
  • the average particle diameter of the oxides scattered in this manner is preferably 5 to 50 nm, but may be aggregated on the particle surface of the solid solution positive electrode active material to form secondary particles.
  • the average particle diameter of such secondary particles is preferably 0.1 ⁇ m (100 nm) to 1 ⁇ m (1000 nm).
  • the oxide itself containing the element M to be doped or a sol of the oxide is defined as the active material.
  • a method may be used in which the mixture is mixed at a temperature of about 100 to 150 ° C. for about 5 to 20 hours and further processed at a temperature of about 200 to 300 ° C. for about 3 to 10 hours.
  • a coating layer made of a metal oxide or composite oxide selected from the group consisting of Al, Zr and Ti is formed on the particle surface of the solid solution positive electrode active material having the composition represented by formula (3).
  • the content of the oxide or composite oxide in the solid solution positive electrode active material after coating is 0.1 to 3.0% by weight in terms of oxide
  • the specific configuration of the metal oxide present on the particle surface of the solid solution positive electrode active material is not particularly limited, and any of the theoretically possible oxides or composite oxides containing the metal elements described above is used. Can be.
  • Al 2 O 3 , ZrO 2 or TiO 2 is used.
  • a (composite) oxide containing one or more elements selected from the group consisting of Nb, Sn, W, Mo, and V may be further included in the coating layer.
  • the solid solution positive electrode active material after substitution is 20-23 °, 35-40 ° (101), 42-45 ° (104) and 64-65 (108) in X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • ) / 65-66 (110) preferably has a diffraction peak indicating a rock salt type layered structure. At this time, in order to surely obtain the effect of improving the cycle characteristics, those having substantially no peak attributed to other than the diffraction peak of the rock salt type layered structure are preferable. More preferably, one having three diffraction peaks at 35-40 ° (101) and one diffraction peak at 42-45 ° (104) is suitable.
  • the X-ray diffraction measurement shall employ the measurement method described in the examples described later.
  • the notation of 64-65 (108) / 65-66 (110) has two peaks close to 64-65 and 65-66.
  • one peak is broadly separated without being clearly separated. It is meant to include.
  • the solid solution positive electrode active material after substitution in the form (C) has a plurality of specific diffraction peaks in the X-ray diffraction (XRD) measurement.
  • the solid solution positive electrode active material having the above composition formula is a solid solution system of Li 2 MnO 3 and LiMnO 2.
  • the diffraction peak at 20-23 ° is characteristic of Li 2 MnO 3 .
  • the diffraction peaks of 36.5-37.5 ° (101), 44-45 ° (104) and 64-65 (108) / 65-66 (110) are usually in the rock salt type layered structure of LiMnO 2. It is characteristic.
  • the solid solution positive electrode active material of the present embodiment does not include those having a peak other than a diffraction peak showing a rock salt type layered structure, for example, other peaks derived from impurities or the like, in these angular ranges.
  • a structure other than the rock salt type layered structure is included in the positive electrode active material. If the structure other than the rock salt type layered structure is not included, the effect of improving the cycle characteristics can be surely obtained.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer 13 is not particularly limited, but is preferably 1 to 30 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of increasing the output.
  • the “particle diameter” refers to the outline of the active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle diameter” is the value of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of the particle diameter shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the positive electrode active material layer preferably contains a solid solution positive electrode active material, and preferably contains a positive electrode active material (solid solution positive electrode active material) represented by the following formula (2).
  • e represents the weight% of each component in the positive electrode active material layer, and 80 ⁇ e ⁇ 98.
  • the content of the solid solution positive electrode active material in the positive electrode active material layer is essential to be 80 to 98% by weight, preferably 84 to 98% by weight. It is.
  • the positive electrode active material layer preferably contains a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
  • a binder and a conductive aid in addition to the solid solution positive electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion-conductive polymer, electrolyte solution, etc.) and a lithium salt for increasing the ion conductivity.
  • Binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (P
  • the binder content in the positive electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight.
  • the conductive assistant refers to an additive that is blended in order to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • Examples of the conductive assistant include carbon black such as ketjen black and acetylene black.
  • the content of the conductive auxiliary in the positive electrode active material layer is preferably 1 to 10% by weight, more preferably 1 to 8% by weight.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the positive electrode (positive electrode active material layer) can be applied by any one of a kneading method, a sputtering method, a vapor deposition method, a CVD method, a PVD method, an ion plating method, and a thermal spraying method in addition to a method of applying (coating) a normal slurry. Can be formed.
  • the negative electrode active material layer 15 includes a silicon-containing negative electrode active material.
  • a silicon-containing negative electrode active material There is no restriction
  • two or more negative electrode active materials may be used in combination.
  • the silicon-containing negative electrode active material preferably contains, as a negative electrode active material capable of achieving a high electric capacity and energy density, SiO x or a Si-containing alloy (also collectively referred to as “Si material”). More preferably, the material includes a carbon material.
  • Si material that is a preferable silicon-containing negative electrode active material and the carbon material that is preferably used in combination will be described in more detail.
  • the Si material means SiO x (x represents the number of oxygen satisfying the valence of Si) and Si-containing alloy which are a mixture of amorphous SiO 2 particles and Si particles. Only 1 type of these may be used as Si material, and 2 or more types may be used together. Hereinafter, these Si materials will be described in detail.
  • SiO x is a mixture of amorphous SiO 2 particles and Si particles, and x represents the number of oxygen satisfying the valence of Si. There is no restriction
  • the SiO x may be an electrically conductive SiO x particles the surface of the SiO x particulate is coated with a conductive material by mechanical surface fusion treatment.
  • Si in the SiO x particles can easily desorb and insert lithium ions, and the reaction in the active material can proceed more smoothly.
  • the content of the conductive substance in the conductive SiO x particles is preferably 1 to 30% by weight, and more preferably 2 to 20% by weight.
  • the average particle diameter of the SiO x is not particularly limited as long as it is approximately the same as the average particle diameter of the negative electrode active material contained in the existing negative electrode active material layer 15. From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m. However, it is not limited at all to the above range, and it goes without saying that it may be outside the above range as long as the effects of the present embodiment can be effectively expressed.
  • the shape of SiO x is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, flaky, indefinite, or the like.
  • SiO x in accordance with the manufacturing method according to this embodiment of SiO x is not particularly limited, it can be produced by utilizing the production of conventionally known various. That is, since there is almost no difference in the amorphous state / characteristics depending on the manufacturing method, various manufacturing methods can be applied.
  • Si powder and SiO 2 powder are blended at a predetermined ratio as raw materials, and mixed, granulated and dried mixed granulated raw materials are heated in an inert gas atmosphere (830 ° C. or higher) or heated in vacuum (1 , 100 ° C. or higher and 1,600 ° C. or lower) to generate (sublimate) SiO.
  • Gaseous SiO generated by sublimation is vapor-deposited on the deposition substrate (substrate temperature is 450 ° C. or more and 800 ° C. or less) to deposit SiO precipitates.
  • the SiO x powder is obtained by removing the SiO deposit from the deposition substrate and pulverizing it using a ball mill or the like.
  • X value can be determined by X-ray fluorescence analysis. For example, it can be obtained by using a fundamental parameter method in fluorescent X-ray analysis using O-K ⁇ rays.
  • RIX3000 manufactured by Rigaku Corporation
  • conditions for the fluorescent X-ray analysis for example, rhodium (Rh) may be used as a target, the tube voltage may be 50 kV, and the tube current may be 50 mA. Since the x value obtained here is calculated from the intensity of the O-K ⁇ ray detected in the measurement region on the substrate, it becomes an average value in the measurement region.
  • Si-containing alloy is not particularly limited as long as it is an alloy with another metal containing Si, and conventionally known knowledge can be appropriately referred to.
  • Si-containing alloy Si x Ti y Ge z A a , Si x Ti y Zn z A a , Si x Ti y Sn z A a , Si x Sn y Al z A a , and Si x Sn y V z A a , Si x Sn y C z A a , Si x Zn y V z A a , Si x Zn y Sn z A a , Si x Zn y Al z A a , Si x Zn y C zA a, Si x Al y C z a a and Si x Al y Nb z a a ( wherein, a is unavoidable impurities.
  • the carbon material that can be used in the present invention is not particularly limited, but graphite (graphite), which is a highly crystalline carbon such as natural graphite or artificial graphite; low crystalline carbon such as soft carbon or hard carbon; ketjen black, acetylene Carbon black such as black, channel black, lamp black, oil furnace black, and thermal black; and carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril. Of these, graphite is preferably used.
  • the use of the Si material or the carbon material as the negative electrode active material and further the combined use of these materials, while exhibiting higher cycle durability and high initial capacity and well-balanced characteristics. Can be shown.
  • SiO x may not be uniformly arranged in the negative electrode active material layer.
  • the potential and capacity that each SiO x develops are different.
  • SiO x of the negative electrode active material layer includes a SiO x that react excessively lithium ion, SiO x is produced that does not react with lithium ions. That is, non-uniformity of the reaction between SiO x and lithium ions in the negative electrode active material layer occurs.
  • SiO x that reacts with lithium ions excessively acts among the alloys described above, and the decomposition of the electrolytic solution due to a significant reaction with the electrolytic solution or the destruction of the structure of SiO x due to excessive expansion may occur.
  • the cycle characteristics can be deteriorated as a negative electrode for an electric device.
  • the SiO x when the SiO x is mixed with a carbon material, the above problem can be solved. More specifically, by mixing SiO x with a carbon material, it may be possible to uniformly dispose SiO x in the negative electrode active material layer. As a result, it is considered that any SiO x in the negative electrode active material layer exhibits the same reactivity and can prevent deterioration of cycle characteristics.
  • the initial capacity can be reduced by reducing the content of SiO x in the negative electrode active material layer.
  • the carbon material itself has reactivity with lithium ions, the degree of decrease in the initial capacity is relatively small. That is, the negative electrode active material according to the present embodiment has a large effect of improving the cycle characteristics as compared with the effect of reducing the initial capacity.
  • the carbon material is unlikely to undergo a volume change when reacting with lithium ions as compared with SiO x . Therefore, even when the volume change of SiO x is large, when the negative electrode active material is taken as a whole, the influence of the volume change of the negative electrode active material associated with the lithium reaction can be made relatively minor. Such an effect can also be understood from the results of Examples in which the cycle characteristics increase as the carbon material content rate increases (the SiO x content rate decreases).
  • the amount of electricity consumed (Wh) can be improved by containing a carbon material. More specifically, the carbon material has a relatively low potential compared with SiO x . As a result, the relatively high potential of SiO x can be reduced. Then, since the electric potential of the whole negative electrode falls, power consumption (Wh) can be improved. Such an action is particularly advantageous when used in, for example, a vehicle application among electric devices.
  • the shape of the carbon material is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal, scaly, indefinite, or the like.
  • the average particle diameter of the carbon material is not particularly limited, but is preferably 5 to 25 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • the average particle diameter of the carbon material may be the same as or different from the average particle diameter of SiO x , but is preferably different. .
  • the average particle diameter of the SiO x is more preferably smaller than the average particle diameter of the carbon material.
  • the ratio of the average particle diameter of the carbon material to the average particle diameter of SiO x is preferably 1/250 to less than 1, More preferably, it is 100 to 1/4.
  • negative electrode active materials other than the two types of negative electrode active materials (Si material and carbon material) described above may be used in combination.
  • examples of the negative electrode active material that can be used in combination include lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Of course, other negative electrode active materials may be used.
  • the negative electrode active material layer preferably contains both a Si material and a carbon material, and preferably contains a negative electrode active material represented by the following formula (4).
  • the Si material is selected from the group consisting of SiO x (x represents the number of oxygen satisfying the valence of Si), which is a mixture of amorphous SiO 2 particles and Si particles, and a Si-containing alloy.
  • ⁇ and ⁇ represent the weight percentage of each component in the negative electrode active material layer, and 80 ⁇ ⁇ + ⁇ ⁇ 98, 3 ⁇ ⁇ ⁇ 40, and 40 ⁇ ⁇ ⁇ 95.
  • the content of the Si material as the negative electrode active material in the negative electrode active material layer is 3 to 40% by weight.
  • the content of the carbon material negative electrode active material is 40 to 95% by weight. Furthermore, the total content thereof is 80 to 98% by weight.
  • the mixing ratio of the Si material and the carbon material of the negative electrode active material is not particularly limited as long as the above-described content specification is satisfied, and can be appropriately selected according to a desired application.
  • the content of the Si material in the negative electrode active material is preferably 3 to 40% by weight.
  • the content ratio of the Si material in the negative electrode active material is more preferably 4 to 30% by weight.
  • the Si material content in the negative electrode active material is more preferably 5 to 20% by weight.
  • the content of the Si material is 3% by weight or more because a high initial capacity can be obtained.
  • the content of the Si material is 40% by weight or less because high cycle characteristics can be obtained.
  • the negative electrode active material layer preferably contains a binder and a conductive additive in addition to the negative electrode active material described above. Further, if necessary, it further contains other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) and a lithium salt for increasing the ion conductivity.
  • an electrolyte polymer matrix, ion conductive polymer, electrolytic solution, etc.
  • a lithium salt for increasing the ion conductivity.
  • each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the current collectors (11, 12) are made of a conductive material.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (such as an expanded grid) can be used.
  • the negative electrode active material is formed directly on the negative electrode current collector 12 by sputtering or the like, it is preferable to use a current collector foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it has a conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals It is preferable to contain an alloy or metal oxide containing.
  • it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
  • the area of the negative electrode active material layer is A [m 2 ] and the area of the positive electrode active material layer is C [m 2]. ]
  • the formula (1) 0.91 ⁇ C / A ⁇ 1 is satisfied, and preferably 0.95 ⁇ C / A ⁇ 0.99.
  • the size of the negative electrode active material layer is improved in order to improve the device performance by suppressing defects such as generation of lithium dendrite in the negative electrode and facing deviation between the positive and negative electrodes. Is designed to be one size larger. According to the study by the present inventors, according to the design conventionally performed in this manner, the size of the negative electrode active material layer is relatively large compared to the positive electrode active material layer, so that the silicon-containing negative electrode active material is used. It was found that the cycle durability was reduced when This is because the irreversible capacity of the silicon-containing negative electrode active material is large.
  • Such irreversible means that Li is consumed by the irreversible capacity in the positive electrode non-facing region that should not originally contribute to the charge / discharge capacity. For this reason, it has been found that even if a silicon-containing negative electrode active material having a potentially large electric capacity is used, the battery capacity that can be finally taken out decreases.
  • the single battery layer that satisfies the above-described formula (1) that defines the C / A ratio is composed of a combination having a relatively large irreversible capacity for both positive and negative electrodes. It has also been found. That is, the irreversible capacity in the negative electrode active material is overwhelmingly larger than that of the positive electrode, but the negative electrode has a large irreversible capacity (for example, a solid solution positive electrode active material).
  • the irreversible capacity per unit area of the active material layer and I a, the irreversible capacity per unit area of the positive electrode active material layer is taken as I C, defined as when "a I C / I a ⁇ 0.40" can do.
  • the C / A ratio described above preferably satisfies 0.91 ⁇ C / A ⁇ 0.99, and more preferably satisfies 0.95 ⁇ C / A ⁇ 0.99. .
  • the cycle durability can be further improved by setting the upper limit value of C / A to a smaller value.
  • the separator has a function of holding an electrolytic solution (liquid electrolyte) to ensure lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolytic solution (liquid electrolyte).
  • the liquid electrolyte has a function as a lithium ion carrier and has a form in which a lithium salt is dissolved in an organic solvent.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • a compound that can be added to the active material layer of the electrode can be similarly employed.
  • the electrolytic solution (liquid electrolyte) preferably contains an additive.
  • the electrolytic solution preferably contains 1,5,2,4-dioxadithian-2,2,4,4-tetraoxide (DDTO) and lithium difluorophosphate (LiPO 2 F 2 ).
  • the concentration of the DDTO and LiPO 2 F 2 in the electrolytic solution is not particularly limited.
  • the concentration of DDTO in the electrolytic solution is preferably 0.5 to 2.5% by weight, more preferably 1.0 to 2.0% by weight.
  • the concentration of LiPO 2 F 2 in the electrolytic solution is preferably 1.8 to 3.0% by weight, more preferably 1.8 to 2.5% by weight.
  • the electrolytic solution may further contain additives other than the components described above.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • these additives only 1 type may be used independently and 2 or more types may be used together.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer.
  • the heat resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as the binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat-resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat-resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gap between the inorganic particles is appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • a current collector plate (tab) electrically connected to a current collector is taken out of a laminate film as an exterior material for the purpose of taking out current outside the battery.
  • the material constituting the current collector plate is not particularly limited, and a known highly conductive material conventionally used as a current collector plate for a lithium ion secondary battery can be used.
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the same material may be used for the positive electrode current collector plate (positive electrode tab) and the negative electrode current collector plate (negative electrode tab), or different materials may be used.
  • the tabs 58 and 59 shown in FIG. 2 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the seal portion is a member unique to the serially stacked battery and has a function of preventing leakage of the electrolyte layer. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode.
  • the constituent material of the seal part is not particularly limited, but polyolefin resin such as polyethylene and polypropylene, epoxy resin, rubber, polyimide and the like can be used. Among these, it is preferable to use a polyolefin resin from the viewpoints of corrosion resistance, chemical resistance, film-forming property, economy, and the like.
  • ⁇ Positive terminal lead and negative terminal lead> As a material for the negative electrode and the positive electrode terminal lead, a lead used in a known laminated secondary battery can be used.
  • the parts removed from the battery exterior material should be heat-insulating so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a heat shrinkable tube or the like.
  • Laminate film A conventionally known metal can case can be used as the exterior material.
  • the power generation element 17 may be packed using a laminate film 22 as shown in FIG.
  • the laminate film can be configured as a three-layer structure in which, for example, polypropylene, aluminum, and nylon are laminated in this order.
  • the manufacturing method in particular of a lithium ion secondary battery is not restrict
  • a lithium ion secondary battery is not limited to this.
  • the electrode (positive electrode and negative electrode) is prepared, for example, by preparing an active material slurry (positive electrode active material slurry or negative electrode active material slurry) and applying the active material slurry onto a current collector. It can be made by drying, then pressing.
  • the active material slurry includes the above-described active material (positive electrode active material or negative electrode active material), a binder, a conductive additive, and a solvent.
  • the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • the method for applying the active material slurry to the current collector is not particularly limited, and examples thereof include a screen printing method, a spray coating method, an electrostatic spray coating method, an ink jet method, and a doctor blade method.
  • the method for drying the coating film formed on the surface of the current collector is not particularly limited as long as at least a part of the solvent in the coating film is removed.
  • An example of the drying method is heating. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the volatilization rate of the solvent contained in the applied active material slurry, the coating amount of the active material slurry, and the like. A part of the solvent may remain. The remaining solvent can be removed by a press process described later.
  • the pressing means is not particularly limited, and for example, a calendar roll, a flat plate press, or the like can be used.
  • the single cell layer can be produced by laminating the electrodes (positive electrode and negative electrode) produced in (1) via an electrolyte layer.
  • the power generation element can be produced by laminating the single cell layers in consideration of the output and capacity of the single cell layer, the output and capacity required for the battery, and the like.
  • the structure of the battery various shapes such as a square, a paper, a laminated, a cylindrical, and a coin can be adopted.
  • the current collector and insulating plate of the component parts are not particularly limited, and may be selected according to the above shape.
  • a stacked battery is preferable.
  • a lead is joined to the current collector of the power generation element obtained above, and the positive electrode lead or the negative electrode lead is joined to the positive electrode tab or the negative electrode tab.
  • a power generation element is placed in a laminate sheet so that the positive electrode tab and the negative electrode tab are exposed to the outside of the battery, and an electrolytic solution is injected with a liquid injector and then sealed in a vacuum to produce a stacked battery. sell.
  • the initial charge treatment, gas removal treatment and activation treatment are further performed under the following conditions.
  • it is done (see Example 1).
  • the three sides of the laminate sheet (exterior material) are completely sealed in a rectangular shape by thermocompression when sealing in the production of the laminated battery of (4) so that the gas removal treatment can be performed. Stop (main sealing), and the remaining one side is temporarily sealed by thermocompression bonding.
  • the remaining one side may be freely opened and closed by, for example, clip fastening, but from the viewpoint of mass production (production efficiency), it is preferable to temporarily seal the side by thermocompression bonding.
  • thermocompression it is only necessary to adjust the temperature and pressure for pressure bonding.
  • it can be opened by lightly applying force, and after degassing, it may be sealed again by thermocompression, or finally completely sealed by thermocompression ( Main sealing).
  • the battery aging treatment is preferably performed as follows. At 25 ° C., a constant current charging method is used for 0.05 C and charging for 4 hours (SOC about 20%), and the state is maintained for about 1 day. Next, after charging to 4.45 V at a 0.1 C rate at 25 ° C., the charging is stopped, and the state (SOC about 70%) is maintained for about 1 day, and then discharged to 2.0 V at 0.1 C. After being left in that state for 1 hour, it is discharged to 2.0 V at 0.05C.
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform temporary sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • activation process when using a solid solution positive electrode active material, as an activation treatment method, for example, the following electrochemical pretreatment method is performed.
  • the constant current charging method is used as the activation processing method, and the electrochemical pretreatment method when the voltage is set as the termination condition is described as an example, but the charging method is a constant current constant voltage charging method. You may use. Further, as the termination condition, a charge amount or time may be used in addition to the voltage.
  • thermocompression bonding Next, the following process is performed as the first (first) gas removal process. First, one side temporarily sealed by thermocompression bonding is opened, gas is removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding is performed again to perform main sealing. Further, pressurization with a roller (surface pressure 0.5 ⁇ 0.1 MPa) is performed, and the electrode and the separator are sufficiently adhered.
  • the performance and durability of the obtained battery can be improved by performing the initial charging process, the gas removal process, and the activation process described above.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the electric device of the present invention including the lithium ion secondary battery according to the present embodiment maintains a discharge capacity even when used for a long time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the lithium ion secondary battery (electric device) can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • the dried powder was pulverized in a mortar and then calcined at 500 ° C. for 5 hours.
  • Lithium hydroxide monohydrate (molecular weight 41.96 g / mol) 10.67 g was mixed with the calcined powder and pulverized and mixed for 30 minutes.
  • This powder was calcined at 500 ° C. for 2 hours and then calcined at 900 ° C. for 12 hours to obtain a solid solution positive electrode active material C1.
  • composition of the solid solution positive electrode active material C1 thus obtained was as follows.
  • composition C1 Li 1.5 [Ni 0.45 Mn 0.85 [Li] 0.20 ] O 3
  • composition of slurry for positive electrode had the following composition.
  • Positive electrode active material solid solution positive electrode active material C1 obtained above 9.4 parts by weight
  • Conductive aid flake graphite 0.15 parts by weight
  • Acetylene black 0.15 parts by weight
  • Binder polyvinylidene fluoride (PVDF) 0.3 Part by weight
  • Solvent 8.2 parts by weight of N-methyl-2-pyrrolidone (NMP).
  • a positive electrode slurry having the above composition was prepared as follows. First, 4.0 parts by weight of a solvent (NMP) is added to 2.0 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP) into a 50 ml disposable cup, and a stirring defoaming machine (spinning revolving mixer: Awatori) A binder diluted solution was prepared by stirring for 1 minute with Rentaro AR-100).
  • NMP solvent
  • NMP spinning revolving mixer
  • the positive electrode slurry was applied to one side of an aluminum current collector with a thickness of 20 ⁇ m using an automatic coating apparatus (Doctor blade manufactured by Tester Sangyo: PI-1210 automatic coating apparatus). Subsequently, the current collector coated with the positive electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the positive electrode active material layer was 0.02 wt%.
  • a sheet-like positive electrode was formed as follows.
  • the sheet-like positive electrode was compression-molded by applying a roller press and cut to produce a positive electrode having a density of 2.65 g / cm 3 .
  • composition of slurry for negative electrode had the following composition.
  • a negative electrode slurry having the above composition was prepared as follows. First, 5 parts by weight of a solvent (NMP) was added to 1.75 parts by weight of a 20% binder solution obtained by dissolving a binder in a solvent (NMP), and the mixture was stirred for 1 minute with a stirring deaerator to prepare a binder diluted solution. To this binder diluted solution, 0.2 parts by weight of conductive auxiliary agent, 9.45 parts by weight of negative electrode active material powder, and 3.6 parts by weight of solvent (NMP) are added, and the mixture is stirred for 3 minutes with a stirring defoaming machine. A slurry (solid content concentration 50 wt%) was obtained.
  • NMP solvent
  • the negative electrode slurry was applied to one side of a 10 ⁇ m thick electrolytic copper current collector using an automatic coating apparatus. Subsequently, the current collector coated with the negative electrode slurry was dried on a hot plate (100 ° C. to 110 ° C., drying time 30 minutes), and the amount of NMP remaining in the negative electrode active material layer was 0.02 wt% or less. A sheet-like negative electrode was formed.
  • the obtained sheet-like negative electrode was compression-molded by a roller press and cut to prepare a negative electrode having a weight of about 8.54 mg / cm 2 and a density of 1.45 g / cm 3 of the negative electrode active material layer on one side. When the surface of this negative electrode was observed, no cracks were observed.
  • the positive electrode C1 obtained above was cut out so as to have an active material layer area of 2.5 cm in length and 2.0 cm in width, and the two current collectors faced each other, so that the uncoated surface (aluminum current collector)
  • the current collector portion was spot welded together with the surface not coated with the foil slurry.
  • an aluminum positive electrode tab positive electrode current collector plate
  • the negative electrode A1 obtained above was cut out so as to have an active material layer area of 2.7 cm in length and 2.2 cm in width, and then a negative electrode tab of electrolytic copper was further welded to the current collector portion to form a negative electrode A11.
  • the negative electrode A11 has a structure in which a negative electrode active material layer is formed on one surface of a current collector.
  • a porous polypropylene separator (S) (length 3.0 cm ⁇ width 2.5 cm, thickness 25 ⁇ m, porosity 55%) is sandwiched between the negative electrode A11 to which these tabs are welded and the positive electrode C11.
  • a laminated power generation element was produced.
  • the structure of the stacked type power generation element is the structure of negative electrode (single side) / separator / positive electrode (both sides) / separator / negative electrode (single side), that is, A11- (S) -C11- (S) -A11. The configuration.
  • both sides of the power generation element were sandwiched with an aluminum laminate film exterior material (length 3.5 cm ⁇ width 3.5 cm), and the above power generation element was accommodated by thermocompression sealing at three sides.
  • the electrolyte After injecting 0.8 cm 3 of the electrolyte into this power generation element (in the case of the above five-layer configuration, the two-cell configuration is used and the amount of liquid injection per cell is 0.4 cm 3 ), the remaining one side is temporarily bonded by thermocompression bonding. Sealed to produce a laminate type battery. In order to sufficiently infiltrate the electrolyte into the electrode pores, the electrolyte was held at 25 ° C. for 24 hours while being pressurized at a surface pressure of 0.5 Mpa.
  • LiPF 6 electrolyte
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • fluoro lithium phosphate those lithium difluorophosphate the (LiPO 2 F 2) was dissolved at a concentration of 1.8 wt% was used as the electrolyte.
  • Comparative Example 2 A battery was prepared in the same manner as in Comparative Example 1 except that the active material layer area of the negative electrode A1 was 2.65 cm long and 2.2 cm wide.
  • Example 1 A battery was fabricated in the same manner as Comparative Example 1 described above except that the active material layer area of the negative electrode A1 was 2.6 cm long and 2.1 cm wide.
  • Example 2 A battery was fabricated in the same manner as Comparative Example 1 described above except that the active material layer area of the negative electrode A1 was 2.55 cm long and 2.05 cm wide.
  • Example 3 A battery was fabricated in the same manner as Comparative Example 1 described above except that the area of the active material layer of the negative electrode A1 was 2.525 cm long and 2.02 cm wide.
  • Comparative Example 3 A battery was fabricated in the same manner as in Comparative Example 1 except that the active material layer area of the negative electrode A1 was 2.5 cm long and 2.0 cm wide.
  • Comparative Example 4 A battery was fabricated in the same manner as Comparative Example 1 described above, except that Si 42 Ti 7 Sn 51 , which is a Si-containing alloy, was used instead of SiO x as the Si material used for the preparation of the negative electrode slurry.
  • the negative electrode created in this comparative example be negative electrode A2.
  • the Si-containing alloy was produced by a mechanical alloy method. Specifically, using a planetary ball mill device P-6 manufactured by Fricht, Germany, zirconia pulverized balls and alloy raw material powders were charged into a zirconia pulverized pot and alloyed at 600 rpm for 48 hours.
  • Si-containing alloy prepared in the above Si 42 Ti 7 Sn 51
  • other alloys that may be used in the present invention Si x Ti y Ge z A a, Si x Ti y Zn z A a, and Si of x Ti y Sn z a, Si 42 Ti 7 Sn 51 except one
  • Si x Ti y Ge z A a, Si x Ti y Zn z A a, and Si of x Ti y Sn z a, Si 42 Ti 7 Sn 51 except one also, since those having the same characteristics as Si 42 Ti 7 Sn 51, experiments with Si 42 Ti 7 Sn 51 Results that are identical or similar to the examples are obtained.
  • Example 4 A battery was fabricated in the same manner as Comparative Example 4 described above except that the area of the active material layer of the negative electrode A2 was 2.55 cm long and 2.05 cm wide.
  • Comparative Example 5 A battery was obtained in the same manner as in Comparative Example 4 except that Si 34 Sn 21 C 45 was used instead of Si 42 Ti 7 Sn 51 as the Si material (Si-containing alloy) used for the preparation of the slurry for the negative electrode. Was made. Here, let the negative electrode created in this comparative example be negative electrode A3.
  • Si 34 Sn 21 C 45 a Si-containing alloy prepared above, other alloys that may be used in the present invention (Si x Sn y Al z A a, Si x Sn y V z A a, and Si of x Sn y C z a, Si 34 Sn 21 C 45 other things) also, since those having the same characteristics as Si 34 Sn 21 C 45, experiments with Si 34 Sn 21 C 45 Results that are identical or similar to the examples are obtained.
  • Example 5 A battery was fabricated in the same manner as Comparative Example 5 described above except that the area of the active material layer of the negative electrode A3 was 2.55 cm long and 2.05 cm wide.
  • Comparative Example 6 A battery was fabricated in the same manner as Comparative Example 1 described above except that LiCoO 2 was used in place of the solid solution positive electrode active material C1 as the positive electrode active material used for the preparation of the positive electrode slurry.
  • the positive electrode prepared in this comparative example is defined as a positive electrode C2.
  • Example 6 A battery was fabricated in the same manner as in Comparative Example 6 described above except that the area of the active material layer of the negative electrode A1 was 2.6 cm long and 2.1 cm wide.
  • Example 7 A battery was fabricated in the same manner as Comparative Example 6 described above except that the area of the active material layer of the negative electrode A1 was 2.55 cm long and 2.05 cm wide.
  • Example 8 A battery was fabricated in the same manner as in Comparative Example 6 described above except that the area of the active material layer of the negative electrode A1 was 2.525 cm long and 2.02 cm wide.
  • Comparative Example 7 A battery was fabricated in the same manner as Comparative Example 6 described above except that the area of the active material layer of the negative electrode A1 was 2.5 cm long and 2.0 cm wide.
  • the power generation element of each battery obtained above was set on an evaluation cell mounting jig, and a positive electrode lead and a negative electrode lead were attached to each tab end of the power generation element, and a test was performed.
  • the battery aging treatment was performed as follows. At 25 ° C., 0.05 C charging for 4 hours (SOC about 20%) was performed by a constant current charging method, and the state was maintained for about 1 day. Subsequently, after charging to 4.45V at a 0.1C rate at 25 ° C., the charging was stopped, and the state (SOC about 70%) was maintained for about 1 day, and then discharged to 2.0V at 0.1C. After being left in that state for 1 hour, it was discharged to 2.0 V at 0.05C.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • Capacity maintenance rate (%) 100th cycle discharge capacity / first cycle discharge capacity ⁇ 100 [Evaluation of battery characteristics 2]
  • the batteries of Comparative Examples 6 to 7 and Examples 6 to 8 using the positive electrode C2 containing LiCoO 2 as the positive electrode active material were subjected to initial charge treatment and activation treatment under the following conditions, Battery capacity confirmation and cycle durability evaluation were performed.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform temporary sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • thermocompression bonding One side temporarily sealed by thermocompression bonding was opened, gas was removed at 10 ⁇ 3 hPa for 5 minutes, and then thermocompression bonding was performed again to perform main sealing. Furthermore, pressure (surface pressure 0.5 ⁇ 0.1 MPa) was shaped with a roller, and the electrode and the separator were sufficiently adhered.
  • Capacity retention rate (%) 100th cycle discharge capacity / 1st cycle discharge capacity ⁇ 100
  • the lithium ion secondary batteries of Examples 1 to 9 which are electrical devices according to the present invention, have excellent cycle durability (100th cycle) as compared with Comparative Examples 1 to 6. Capacity retention rate).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】ケイ素含有負極活物質を含む負極を有するリチウムイオン二次電池等の電気デバイスにおいて、サイクル耐久性をよりいっそう向上させうる手段を提供する。 【解決手段】正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面にケイ素含有負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む単電池層を含む発電要素を有する電気デバイスにおいて、発電要素を構成する単電池層の少なくとも1つが、負極活物質層の面積をA[m]とし、正極活物質層の面積をC[m]としたときに、式(1):0.91≦C/A<1を満足するように構成する。

Description

電気デバイス
 本発明は、電気デバイスに関する。本発明に係る電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
 モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、および高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
 リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
 これに対し、Liと化合物を形成するSiO(0<x<2)材料などのケイ素含有負極活物質を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、SiOで表される化学組成を有するケイ素酸化物は、微視的にみると、Si(単結晶のナノ粒子)と非晶質(アモルファス)SiOとが相分離して存在する。
 ケイ素酸化物は、四面体構造を単位構造として有し、SiO以外のケイ素酸化物(中間酸化物)は、四面体の頂点の酸素数1個、2個及び3個に対応して、SiO、SiOおよびSiと表すことができるが、これらの中間酸化物は熱力学的に不安定で単結晶として存在することは極めて難しい。よって、SiOは、単位構造が不規則に配列した非晶質構造で構成され、さらに、この非晶質構造は、複数の非晶質化合物が界面を形成せずに構成される非晶質構造であり、主として均質な非晶質構造部分で構成されている。したがって、SiOでは、Siナノ粒子が非晶質のSiOに分散した構造を有している。
 このSiOの場合、充放電に関与できるのはSiのみであり、SiOは充放電に関与しない。したがって、SiOは、これらの平均組成を表すものである。SiOでは、Siが反応式(A)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si(=Li4.4Si)という理論容量4200mAh/gの可逆容量成分を生成する一方で、SiOが反応式(B)のように1molあたり4.3molのリチウムイオンを吸蔵放出し、初回のLi吸蔵時にLi4.4Siとともに不可逆容量を生じる原因となるLiSiOを生成する点が大きな問題である。
Figure JPOXMLDOC01-appb-C000004
 ところで、Liを含有するリチウムシリケート化合物として、例えば、LiSiO、LiSiO、LiSi、LiSi、LiSi11などの、LiSiO(0<y、0<x<2)が挙げられるが、これらLiSiOは電子伝導性が極めて小さく、さらに、SiOが電子伝導性を有しないため、負極の抵抗が上昇するという問題がある。その結果、リチウムイオンを負極活物質に脱離および挿入させることが、極めて困難になる。
 とは言え、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、リチウムイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、電池の容量とサイクル耐久性とはトレードオフの関係にあり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
 こうした問題を解決すべく、SiOと黒鉛材料とを含む、リチウムイオン二次電池用の負極が提案されている(例えば、特許文献1を参照)。かかる特許文献1に記載の発明では、段落「0018」にSiOの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
特表2009-517850号公報
 上記特許文献1に記載のSiOと炭素材料とを含む負極を用いたリチウムイオン二次電池は、良好なサイクル特性を示すことができるとされている。しかしながら、本発明者らの検討によれば、このようなケイ素含有負極活物質を含む負極を用いた場合であっても、必ずしも十分なサイクル耐久性を達成することが難しい場合があることが判明した。
 本発明は、ケイ素含有負極活物質を含む負極を有するリチウムイオン二次電池等の電気デバイスにおいて、サイクル耐久性をよりいっそう向上させうる手段を提供することを目的とする。
 本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、電気デバイスの単電池層を構成する正極活物質層の面積と負極活物質層の面積との比を所定の範囲内の値に誠意御することによって上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面にケイ素含有負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む単電池層を含む発電要素を有する電気デバイスに関するものである。
 そして、本発明に係る電気デバイスは、前記発電要素を構成する前記単電池層の少なくとも1つにおいて、負極活物質層の面積をA[m]とし、正極活物質層の面積をC[m]としたときに、式(1):0.91≦C/A<1を満足する点に特徴がある。
 本発明によれば、充電の際に負極活物質層に吸蔵されたLiが負極活物質層の正極対向領域から正極非対向領域へと移動することによる不可逆化が抑制される。その結果、充放電サイクルの進行に伴う電池容量の低下が防止され、サイクル耐久性に優れた電気デバイスが提供される。
本発明に係る電気デバイスの一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 本発明に係る電気デバイスの代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 本発明の一形態によれば、正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、負極集電体の表面にケイ素含有負極活物質を含む負極活物質層が形成されてなる負極と、セパレータとを含む単電池層を含む発電要素を有する電気デバイスであって、前記発電要素を構成する前記単電池層の少なくとも1つにおいて、前記負極活物質層の面積をA[m]とし、前記正極活物質層の面積をC[m]としたときに、式(1):0.91≦C/A<1を満足する、電気デバイスが提供される。
 以下、本発明に係る電気デバイスの基本的な構成を説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。
 まず、本発明に係る電気デバイスを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池は、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
 上記リチウムイオン二次電池を形態・構造で区別した場合には、例えば、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用しうるものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用しうるものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 したがって、以下の説明では、本実施形態のリチウムイオン二次電池の例として、非双極型(内部並列接続タイプ)リチウムイオン二次電池について図面を用いてごく簡単に説明する。ただし、本発明に係る電気デバイスおよび本実施形態に係るリチウムイオン二次電池の技術的範囲が、これらに制限されるべきではない。
 <電池の全体構造>
 図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
 図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
 これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 本実施形態に係るリチウムイオン二次電池は、正極および負極の構成に特徴を有する。以下、当該正極および負極を含めた電池の主要な構成部材について説明する。
 <活物質層>
 活物質層(13、15)は活物質を含み、必要に応じてその他の添加剤をさらに含む。
 [正極活物質層]
 正極活物質層13は、正極活物質を含む。正極活物質の種類について特に制限はなく、従来公知の知見が適宜参照されうる。また、場合によっては、二種以上の正極活物質を併用してもよい。正極活物質としては、高い電気容量およびエネルギー密度を達成可能な正極活物質として、固溶体材料からなる正極活物質(本明細書中、「固溶体正極活物質」とも称する)を含むことが好ましい。また、その他の正極活物質として、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物などを用いることができる。この他、LiFePOなどの遷移金属とリチウムのリン酸化合物や硫酸化合物、V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物、PbO、AgO、NiOOHなどを用いることができる。以下では、好ましい正極活物質である固溶体正極活物質について、より詳細に説明する。
 (固溶体正極活物質)
 固溶体正極活物質は、下記式(3)で表される組成を基本構造として有する。
Figure JPOXMLDOC01-appb-M000005
 式(3)において、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である。
 ここで、「固溶体正極活物質が式(3)で表される組成を基本構造として有する」とは、固溶体正極活物質として式(3)で表される組成を有する活物質それ自体が用いられる場合のほか、固溶体正極活物質として式(3)で表される組成を有する活物質が、当該組成を有する活物質を由来とするものであることが確認できる程度に適宜改変されてなる活物質が用いられる場合をも包含する概念である。ここで、後者の形態として、例えば以下の(A)~(C)の3つの形態が例示される。
 (A)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、Zr、Ti、Nb、B、S、Sn、W、MoおよびVからなる群から選択される1種または2種以上の元素Mが、当該元素Mの存在量を[M]としたときに0.002≦[M]/[a+b+c]≦0.05を満たす量で存在する形態。
 形態(A)において、元素Mが存在する形態には特に制限はなく、酸化物の形態のほか、Liとの化合物の形態などが想定されうるが、酸化物の形態であることが好ましい。また、元素Mを含む材料(酸化物など)の粒子の平均粒子径は5~50nmであることが好ましい。なお、元素Mが酸化物の形態で存在する場合、当該酸化物は、固溶体正極活物質の粒子表面に点在することになる。このように点在する酸化物の平均粒子径は上述したように5~50nmであることが好ましいが、固溶体正極活物質の粒子表面で凝集して二次粒子を形成していてもよい。かような二次粒子の平均粒子径は、0.1μm(100nm)~1μm(1000nm)であることが好ましい。
 ここで、形態(A)のように元素Mを固溶体正極活物質の粒子表面にドープさせるには、例えば、ドープさせたい元素Mを含有する酸化物自体や当該酸化物のゾルを活物質と所定の割合で混合し、必要に応じて100~150℃程度の温度で5~20時間程度処理し、さらに200~300℃程度の温度で3~10時間程度処理するという方法が用いられうる。
 (B)式(3)で表される組成を有する固溶体正極活物質の粒子表面に、Al、ZrおよびTiからなる群から選択される金属の酸化物または複合酸化物からなる被覆層が形成される形態(この際、被覆後の固溶体正極活物質における前記酸化物または複合酸化物の含有量は酸化物換算で0.1~3.0重量%である);並びに、
 形態(B)において、固溶体正極活物質の粒子表面に存在する金属酸化物の具体的な構成は特に制限されず、上述した金属元素を含む理論上可能な酸化物または複合酸化物のいずれも用いられうる。好ましくは、Al、ZrOまたはTiOが用いられる。なお、Nb、Sn、W、MoおよびVからなる群から選択される1種または2種以上のような他の元素を含む(複合)酸化物が被覆層にさらに含まれていてもよい。
 (C)式(3)で表される組成を有する固溶体正極活物質に含まれるMn原子がTi、ZrおよびNbからなる群から選択される少なくとも1種によって置換されてなる結果、固溶体正極活物質がLi1.5[NiMnCo[Li][X]]Oで表される組成を有する形態(前記式中、Xは、Ti、ZrおよびNbからなる群から選択される少なくとも1種であり、0.01≦e≦0.4、a+b+c+d+e=1.5、0.1≦d≦0.4、1.1≦[a+b+c+e]≦1.4であり、zは、原子価を満足する酸素数を表す)。
 形態(C)において、置換後の固溶体正極活物質は、X線回折(XRD)測定において、20-23°、35-40°(101)、42-45°(104)および64-65(108)/65-66(110)に、岩塩型層状構造を示す回折ピークを有するものであることが好ましい。この際、サイクル特性向上の効果を確実に得るためには、岩塩型層状構造の回折ピーク以外に帰属されるピークを実質的に有していないものが好ましい。より好ましくは、35-40°(101)に3つの回折ピークを有し、42-45°(104)に1つの回折ピークを有するものが好適である。しかしながら、岩塩型層状構造の回折ピークに帰属されるものであれば、必ずしもそれぞれが3つおよび1つのピークに数えられなくてもよい。X線回折測定は、後述する実施例で記載する測定方法を採用するものとする。なお、64-65(108)/65-66(110)の表記は、64-65と65-66に近接する2つのピークがあり、組成によっては明確に分離されずにブロードに一つのピークとなる場合も含むことを意味する。
 また、形態(C)における置換後の固溶体正極活物質は、X線回折(XRD)測定において、特定の複数の回折ピークを有していることが好ましい。上記組成式の固溶体正極活物質は、LiMnOとLiMnOの固溶体系であり、上記で特定した複数の回折ピークのうち、20-23°の回折ピークは、LiMnOに特徴的な超格子回折ピークである。また、通常、36.5-37.5°(101)、44-45°(104)および64-65(108)/65-66(110)の回折ピークは、LiMnOの岩塩型層状構造に特徴的なものである。また、本実施形態では、岩塩型層状構造を示す回折ピークの一部として、35-40°(101)に3つ、42-45°(104)に1つの回折ピークを有することが好ましい。本実施形態の固溶体正極活物質には、これらの角度範囲に、岩塩型層状構造を示す回折ピーク以外のピーク、例えば不純物等に由来する他のピークが存在するものは含まれないことが好ましい。このような他のピークが存在する場合には、岩塩型層状構造以外の構造が正極活物質に含まれることを意味している。岩塩型層状構造以外の構造は含まれない方が、サイクル特性向上の効果を確実に得られる。
 正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~30μmであり、より好ましくは5~20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
 上述したように、正極活物質層は、固溶体正極活物質を含むことが好ましく、下記式(2)で表される正極活物質(固溶体正極活物質)を含有することが好ましい。
Figure JPOXMLDOC01-appb-M000006
 式(2)において、eは正極活物質層における各成分の重量%を表し、80≦e≦98である。
 式(2)から明らかなように、本実施形態において、正極活物質層における固溶体正極活物質の含有量は、80~98重量%であることが必須であるが、好ましくは84~98重量%である。
 また、正極活物質層は上述した固溶体正極活物質のほか、バインダおよび導電助剤を含むことが好ましい。さらに、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 (バインダ)
 正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。
 正極活物質層におけるバインダの含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。
 (導電助剤)
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラックが挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 正極活物質層における導電助剤の含有量は、好ましくは1~10重量%であり、より好ましくは1~8重量%である。導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。すなわち、電極反応を阻害することなく、電子伝導性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができるのである。
 (その他の成分)
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
 [負極活物質層]
 負極活物質層15は、ケイ素含有負極活物質を含む。ケイ素含有負極活物質の種類について特に制限はなく、従来公知の知見が適宜参照されうる。また、場合によっては、二種以上の負極活物質を併用してもよい。ケイ素含有負極活物質としては、高い電気容量およびエネルギー密度を達成可能な負極活物質として、SiOまたはSi含有合金(これらをまとめて「Si材料」とも称する)を必須に含むことが好ましく、Si材料を炭素材料とともに含むことがより好ましい。以下では、好ましいケイ素含有負極活物質であるSi材料と、好ましく併用される炭素材料について、より詳細に説明する。
 本明細書中、Si材料とは、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金を意味する。これらのうちの1種のみがSi材料として用いられてもよいし、2種以上が併用されてもよい。以下、これらのSi材料について詳細に説明する。
 (SiO
 SiOは、アモルファスSiO粒子とSi粒子との混合体であり、xはSiの原子価を満足する酸素数を表す。xの具体的な値について特に制限はなく、適宜設定されうる。
 また、上記SiOは、機械的表面融合処理によってSiO粒子の表面が導電性物質で被覆されてなる導電性SiO粒子であってもよい。かような構成とすることにより、SiO粒子内のSiがリチウムイオンの脱離および挿入をしやすくなり、活物質における反応がよりスムーズに進行することができるようになる。この場合、導電性SiO粒子における導電性物質の含有量は1~30重量%であることが好ましく、2~20重量%であることがより好ましい。
 上記SiOの平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、SiOの形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 SiOの製造方法
 本形態に係るSiOの製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。すなわち、作製方法によるアモルファス状態・特性の違いはほとんどないため、ありとあらゆる作製方法が適用できる。
 SiOを調製する手法としては、以下の方法が挙げられる。まず、原料としてSi粉末とSiO粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を、不活性ガス雰囲気で加熱(830℃以上)または真空中で加熱(1,100℃以上1,600℃以下)してSiOを生成(昇華)させる。昇華により発生した気体状のSiOを析出基体上(基体の温度は450℃以上800℃以下)に蒸着させ、SiO析出物を析出させる。その後、析出基体からSiO析出物を取り外し、ボールミル等を使用して粉砕することによりSiO粉末が得られる。
 xの値は蛍光X線分析により求めることができる。例えば、O-Kα線を用いた蛍光X線分析でのファンダメンタルパラメータ法を用いて求めることができる。蛍光X線分析には、例えば、理学電機工業(株)製RIX3000を用いることができる。蛍光X線分析の条件としては、例えば、ターゲットにロジウム(Rh)を用い、管電圧50kV、管電流50mAとすればよい。ここで得られるx値は、基板上の測定領域で検出されるO-Kα線の強度から算出されるため、測定領域の平均値となる。
 (Si含有合金)
 Si含有合金は、Siを含有する他の金属との合金であれば特に制限されず、従来公知の知見が適宜参照されうる。ここでは、Si含有合金の好ましい実施形態として、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)が挙げられる。これらのSi含有合金を負極活物質として用いることで、所定の第1添加元素および所定の第2添加元素を適切に選択することによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
 (炭素材料)
 本発明に用いられうる炭素材料は、特に制限されないが、天然黒鉛、人造黒鉛等の高結晶性カーボンである黒鉛(グラファイト);ソフトカーボン、ハードカーボン等の低結晶性カーボン;ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等のカーボンブラック;フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリル等の炭素材料が挙げられる。これらのうち、黒鉛を用いることが好ましい。
 本実施形態では、負極活物質として、上記Si材料または炭素材料が用いられることにより、さらにはこれらが併用されることにより、より高いサイクル耐久性を示しつつ、かつ、初期容量も高くバランスよい特性を示すことができる。
 特に、SiOは、負極活物質層内において、均一に配置されない場合がある。このような場合、それぞれのSiOが発現する電位や容量は個別に異なる。その結果、負極活物質層内のSiOの中には、過度にリチウムイオンと反応するSiOと、リチウムイオンと反応しないSiOが生じる。すなわち、負極活物質層内のSiOのリチウムイオンとの反応の不均一性が発生する。そうすると、上記合金のうち、過度にリチウムイオンと反応するSiOが過度に作用することによって、電解液との著しい反応による電解液の分解や過剰な膨張によるSiOの構造の破壊が生じうる。その結果として、優れた特性を有するSiOを使用した場合であっても、均一にSiOが配置されていない等の場合には、電気デバイス用負極としてサイクル特性が低下しうる。
 しかしながら、当該SiOを炭素材料と混合すると、上記問題が解決されうる。より詳細には、SiOを炭素材料と混合することにより、負極活物質層内にSiOを均一に配置することが可能となりうる。その結果、負極活物質層内におけるSiOはいずれも同等の反応性を示し、サイクル特性の低下を防止することができると考えられるのである。
 なお、炭素材料が混合される結果、負極活物質層内におけるSiOの含有量が低下することによって、初期容量は低下しうる。しかしながら、炭素材料自体はリチウムイオンとの反応性を有するため、初期容量の低下の度合いは相対的に小さくなる。すなわち、本形態に係る負極活物質は、初期容量の低下の作用と比べて、サイクル特性の向上効果が大きいのである。
 また、炭素材料は、SiOと対比すると、リチウムイオンと反応する際の体積変化が生じにくい。そのため、SiOの体積変化が大きい場合であっても、負極活物質を全体としてみると、リチウム反応に伴う負極活物質の体積変化の影響を相対的に軽微なものとすることができる。なお、このような効果は、炭素材料の含有率が大きいほど(SiOの含有率が小さいほど)、サイクル特性が高くなる実施例の結果からも理解することができる。
 また、炭素材料を含有することによって、消費電気量(Wh)を向上させることができる。より詳細には、炭素材料は、SiOと対比して相対的に電位が低い。その結果、SiOが有する相対的に高い電位を低減することができる。そうすると、負極全体の電位が低下するため、消費電力量(Wh)を向上させることができるのである。このような作用は、電気デバイスの中でも、例えば、車両の用途に使用する際に特に有利である。
 炭素材料の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
 また、炭素材料の平均粒子径としては、特に制限されないが、5~25μmであることが好ましく、5~10μmであることがより好ましい。この際、上述のSiOとの平均粒子径との対比については、炭素材料の平均粒子径は、SiOの平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記SiOの平均粒子径が、前記炭素材料の平均粒子径よりも小さいことがより好ましい。炭素材料の平均粒子径がSiOの平均粒子径よりも相対的に大きいと、均一に炭素材料の粒子が配置され、当該炭素材料の粒子間にSiOが配置した構成を有するため、負極活物質層内においてSiOが均一に配置されうる。
 炭素材料の平均粒子径とSiOの平均粒子径との粒子径の比(SiOの平均粒子径/炭素材料の平均粒子径)は、1/250~1未満であることが好ましく、1/100~1/4であることがより好ましい。
 場合によっては、上述した2種の負極活物質(Si材料および炭素材料)以外の負極活物質が併用されてもよい。併用可能な負極活物質としては、例えば、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。これ以外の負極活物質が用いられてもよいことは勿論である。
 上述したように、負極活物質層は、Si材料および炭素材料をともに含むことが好ましく、下記式(4)で表される負極活物質を含有することが好ましい。
Figure JPOXMLDOC01-appb-M000007
 式(4)において、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、また、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である。
 式(4)から明らかなように、本実施形態において、負極活物質層における負極活物質としてのSi材料の含有量は3~40重量%である。また、炭素材料負極活物質の含有量は40~95重量%である。さらに、これらの合計含有量は80~98重量%である。
 なお、負極活物質のSi材料および炭素材料の混合比は、上記の含有量の規定を満足する限り特に制限はなく、所望の用途等に応じて適宜選択できる。なかでも、前記負極活物質中のSi材料の含有率は、3~40重量%であることが好ましい。一実施形態において、前記負極活物質中のSi材料の含有率は、4~30重量%であることがより好ましい。また、別の一実施形態においては、前記負極活物質中のSi材料の含有率は、5~20重量%であることがより好ましい。
 前記Si材料の含有率が3重量%以上であると、高い初期容量が得られうることから好ましい。一方、前記Si材料の含有量が40重量%以下であると、高いサイクル特性が得られうることから好ましい。
 本実施形態において、負極活物質層は上述した負極活物質のほか、バインダおよび導電助剤を含むことが好ましい。また、必要に応じて、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。これらの具体的な種類や負極活物質層における好ましい含有量については、正極活物質層の説明の欄において上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
 各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
 <集電体>
 集電体(11、12)は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
 集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いることが好ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35重量%程度である。
 (活物質層の面積比)
 本実施形態に係る電気デバイスでは、上述した発電要素を構成する単電池層の少なくとも1つにおいて、負極活物質層の面積をA[m]とし、正極活物質層の面積をC[m]としたときに、式(1):0.91≦C/A<1を満足することが必須であり、好ましくは0.95≦C/A≦0.99である。
 従来、一般に、リチウムイオン二次電池等の電気デバイスでは、負極におけるリチウムデンドライトの生成や正負極間での対向ずれといった不具合を抑制してデバイスの性能を向上させる目的で、負極活物質層のサイズを一回り大きく設計することが行われている。本発明者らの検討では、従来このように行われている設計によると、負極活物質層のサイズが正極活物質層に比して相対的に大き過ぎることで、ケイ素含有負極活物質を用いた場合にサイクル耐久性が低下することが判明した。これは、ケイ素含有負極活物質の有する不可逆容量が大きいことに起因するものである。具体的には、不可逆容量の大きいケイ素含有負極活物質を用いて充放電を行うと、充電時において、負極活物質層の正極活物質層と対向した領域(正極対向領域)に吸蔵されたLiが正極活物質層と対向していない領域(正極非対向領域)へと拡散して不可逆化することがある。このような不可逆化は、充放電容量に本来は寄与しないはずの正極非対向領域における不可逆容量によってLiが消費されることを意味する。このため、せっかく潜在的に大きな電気容量を有するケイ素含有負極活物質を用いても、最終的に取り出せる電池容量は低下してしまうことが判明したのである。
 これに対し、本実施形態のようにC/Aの値を制御すると、充電の際に負極活物質層に吸蔵されたLiが負極活物質層の正極対向領域から正極非対向領域へと移動することによる不可逆化が抑制される。その結果、充放電サイクルの進行に伴う電池容量の低下が防止され、サイクル耐久性に優れた電気デバイスが提供される。なお、このような不可逆化の抑制によりサイクル耐久性の向上効果は、不可逆容量の大きい負極活物質を用いる場合に特に顕著に奏されることから、本願発明では不可逆容量の大きいケイ素含有負極活物質を必須に用いることとしたものである。
 また、より好ましい実施形態として、上述したC/A比を規定する式(1)を満足する単電池層が、正負極ともに比較的大きな不可逆容量を有する組み合わせからなる場合における好適な要件が存在することも判明している。すなわち、もともとは負極活物質における不可逆容量の方が正極のそれと比べて圧倒的に大きいが、正極活物質としても不可逆容量の大きいもの(例えば、固溶体正極活物質など)を用いた場合として、負極活物質層の単位面積当たりの不可逆容量をIとし、正極活物質層の単位面積当たりの不可逆容量をIとしたときに、「I/I≧0.40である」場合と規定することができる。そしてこのような場合には、上述したC/A比が、0.91≦C/A<0.99を満たすことが好ましく、0.95≦C/A<0.99を満たすことがより好ましい。このように、正極活物質として比較的不可逆容量の大きい材料を用いる場合には、C/Aの上限値をより小さい値に設定することで、サイクル耐久性のよりいっそうの向上が図られうるという利点もあるのである。これは、電析や対向ずれによる電池不具合をより効果的に抑制することができることによるものと考えられる。
 <セパレータ(電解質層)>
 本実施形態において、セパレータは、電解液(液体電解質)を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、電解液(液体電解質)を含む。液体電解質は、リチウムイオンのキャリヤーとしての機能を有し、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。
 本実施形態において、電解液(液体電解質)は、添加剤を含有することが好ましい。具体的には、電解液は、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド(DDTO)およびジフルオロリン酸リチウム(LiPO)を含有することが好ましい。なお、電解液における上記DDTOおよびLiPOの濃度は特に制限されない。ただし、電解液におけるDDTOの濃度は、好ましくは0.5~2.5重量%であり、より好ましくは1.0~2.0重量%である。また、電解液におけるLiPOの濃度は、好ましくは1.8~3.0重量%であり、より好ましくは1.8~2.5重量%である。
 なお、電解液(液体電解質)は、上述した成分以外の添加剤をさらに含んでもよい。かような添加剤の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの添加剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 <集電板(タブ)>
 リチウムイオン二次電池においては、電池外部に電流を取り出す目的で、集電体に電気的に接続された集電板(タブ)が外装材であるラミネートフィルムの外部に取り出されている。
 集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板(正極タブ)と負極集電板(負極タブ)とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 <シール部>
 シール部は、直列積層型電池に特有の部材であり、電解質層の漏れを防止する機能を有する。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。
 シール部の構成材料としては、特に制限されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミド等が用いられうる。これらのうち、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂を用いることが好ましい。
 <正極端子リードおよび負極端子リード>
 負極および正極端子リードの材料は、公知の積層型二次電池で用いられるリードを用いることができる。なお、電池外装材から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
 <外装材;ラミネートフィルム>
 外装材としては、従来公知の金属缶ケースを用いることができる。そのほか、図1に示すようなラミネートフィルム22を外装材として用いて、発電要素17をパックしてもよい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
 <リチウムイオン二次電池の製造方法>
 リチウムイオン二次電池の製造方法は特に制限されず、公知の方法により製造されうる。具体的には、(1)電極の作製、(2)単電池層の作製、(3)発電要素の作製、および(4)積層型電池の製造を含む。以下、リチウムイオン二次電池の製造方法について一例を挙げて説明するが、これに限定されるものではない。
 (1)電極(正極および負極)の作製
 電極(正極または負極)は、例えば、活物質スラリー(正極活物質スラリーまたは負極活物質スラリー)を調製し、当該活物質スラリーを集電体上に塗布、乾燥し、次いでプレスすることにより作製されうる。前記活物質スラリーは、上述した活物質(正極活物質または負極活物質)、バインダ、導電助剤および溶媒を含む。
 前記溶媒としては、特に制限されず、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられうる。
 活物質スラリーの集電体への塗布方法としては、特に制限されず、スクリーン印刷法、スプレーコート法、静電スプレーコート法、インクジェット法、ドクターブレード法等が挙げられる。
 集電体の表面に形成された塗膜の乾燥方法としては、特に制限されず、塗膜中の溶媒の少なくとも一部が除去されればよい。当該乾燥方法としては、加熱が挙げられる。乾燥条件(乾燥時間、乾燥温度など)は、適用する活物質スラリーに含有される溶媒の揮発速度、活物質スラリーの塗布量等に応じて適宜設定されうる。なお、溶媒は一部が残存していてもよい。残存した溶媒は、後述のプレス工程等で除去されうる。
 プレス手段としては、特に限定されず、例えば、カレンダーロール、平板プレス等が用いられうる。
 (2)単電池層の作製
 単電池層は、(1)で作製した電極(正極および負極)を、電解質層を介して積層させることにより作製されうる。
 (3)発電要素の作製
 発電要素は、単電池層の出力および容量、電池として必要とする出力および容量等を適宜考慮し、前記単電池層を積層して作製されうる。
 (4)積層型電池の製造
 電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型等、種々の形状を採用することができる。また構成部品の集電体や絶縁板等は特に限定されるものではなく、上記の形状に応じて選定すればよい。しかし、本実施形態では積層型電池が好ましい。積層型電池は、上記で得られた発電要素の集電体にリードを接合し、これらの正極リードまたは負極リードを、正極タブまたは負極タブに接合する。そして、正極タブおよび負極タブが電池外部に露出するように、発電要素をラミネートシート中に入れ、注液機により電解液を注液してから真空に封止することにより積層型電池が製造されうる。
 (5)活性化処理など
 さらに、本実施形態では、上記により得られた積層型電池の性能および耐久性を高める観点から、さらに、以下の条件で初充電処理、ガス除去処理および活性化処理を行うことが好ましい(実施例1参照)。この場合には、ガス除去処理ができるように、上記(4)の積層型電池の製造において、封止する際に、矩形形状にラミネートシート(外装材)の3辺を熱圧着により完全に封止(本封止)し、残る1辺は、熱圧着で仮封止しておく。残る1辺は、例えば、クリップ留め等により開閉自在にしてもよいが、量産化(生産効率)の観点からは、熱圧着で仮封止するのがよい。この場合には、圧着する温度、圧力を調整するだけでよいためである。熱圧着で仮封止した場合には、軽く力を加えることで開封でき、ガス抜き後、再度、熱圧着で仮封止してもよいし、最後的には熱圧着で完全に封止(本封止)すればよい。
 (初充電処理)
 例えば、固溶体正極活物質を用いる場合、電池のエージング処理は、以下のように実施することが好ましい。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持する。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電する。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電する。
 (最初(1回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した1辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って仮封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 (活性化処理)
 次に、固溶体正極活物質を用いる場合には、活性化処理法として、例えば以下の電気化学前処理法を行う。
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行う。
 なお、ここでは、活性化処理法として、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理法を例として記載しているが、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
 (最後(2回目)のガス除去処理)
 次に、最初(1回目)のガス除去処理として、以下の処理を行う。まず、熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行って本封止を行う。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させる。
 本実施形態では、上記した初充電処理、ガス除去処理及び活性化処理を行うことにより、得られた電池の性能および耐久性を高めることができる。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 [車両]
 本実施形態に係るリチウムイオン二次電池をはじめとした本発明の電気デバイスは、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記リチウムイオン二次電池(電気デバイス)は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
 [比較例1]
 (固溶体正極活物質C1の調製)
 1.硫酸マンガン・1水和物(分子量223.06g/mol)28.61g、
   硫酸ニッケル・6水和物(分子量262.85g/mol)17.74g、
   を純水200gに加え、攪拌溶解し、混合溶液を調製した。
 2.次に、この混合溶液にアンモニア水をpH7になるまで滴下して、さらに、NaCO溶液を滴下して、複合炭酸塩を沈殿させた(NaCO溶液を滴下している間、アンモニア水でpH7を保持する)。
 3.その後、沈殿物を吸引濾過し、さらに、十分に水洗した後、乾燥オーブンにて120℃、5時間乾燥した。
 4.乾燥した粉末を乳鉢で粉砕した後、500℃、5時間仮焼成を行った。
 5.仮焼成した粉末に、水酸化リチウム・1水和物(分子量41.96g/mol)10.67gを混合し、30分間粉砕混合した。
 6.この粉末を500℃で2時間仮焼成した後、900℃で12時間焼成して固溶体正極活物質C1を得た。
 こうして得られた固溶体正極活物質C1の組成は以下の通りであった。
 組成:C1 Li1.5[Ni0.45Mn0.85[Li]0.20]O
 固溶体正極活物質C1の組成を式(3)に当てはめると、a+b+c+d=1.5、d=0.20、a+b+c=1.3、z;原子価を満足する酸素数となり、式(3)の要件を満足する。
 (集電体の片面に正極活物質層を形成した正極C1の作製)
 (正極用スラリーの組成)
 正極用スラリーは下記組成とした。
 正極活物質:上記で得られた固溶体正極活物質C1 9.4重量部
 導電助剤: 燐片状黒鉛 0.15重量部
       アセチレンブラック 0.15重量部
 バインダ: ポリフッ化ビニリデン(PVDF) 0.3重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 8.2重量部。
 この組成を式(2)に当てはめると、e=94となり、式(2)の要件を満足する。
 (正極用スラリーの製造)
 上記組成の正極用スラリーを次のように調製した。まず、50mlのディスポカップに、溶媒(NMP)にバインダを溶解した20%バインダ溶液2.0重量部に溶媒(NMP)4.0重量部を加え、攪拌脱泡機(自転公転ミキサー:あわとり錬太郎AR-100)で1分間攪拌してバインダ希釈溶液を作製した。次に、このバインダ希釈液に、導電助剤0.4重量部と固溶体正極活物質C1 9.2重量部、および溶媒(NMP)2.6重量部を加え、攪拌脱泡機で3分間攪拌して正極用スラリー(固形分濃度55重量%)とした。
 (正極用スラリーの塗布・乾燥)
 20μm厚のアルミニウム集電体の片面に、上記正極用スラリーを自動塗工装置(テスター産業製ドクターブレード:PI-1210自動塗工装置)により塗布した。続いて、この正極用スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、正極活物質層に残留するNMP量を0.02重量%以下として、シート状正極を形成した。
 (正極のプレス)
 上記シート状正極を、ローラープレスをかけて圧縮成形し、切断して、密度2.65g/cmの正極を作製した。
 (正極の乾燥)
 次に、上記手順で作製した正極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極C1を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極表面の水分を除去した正極C1を得た。
 (集電箔の片面に活物質層を形成した負極A1の作製)
 (負極用スラリーの組成)
 負極用スラリーは下記組成とした。
 負極活物質:SiOx (日下レアメタル製、x=1) 1.00重量部
       炭素材料(日立化成製、黒鉛) 8.45重量部
 導電助剤: SuperP 0.20重量部
 バインダ: ポリフッ化ビニリデン(PVDF) 0.35重量部
 溶媒:   N-メチル-2-ピロリドン(NMP) 10.0重量部。
 この組成を式(4)に当てはめると、α+β=94.5、α=10、β=84.5となり、式(4)の要件を満足する。なお、炭素材料の平均粒子径は24μmであり、SiOの平均粒子径は0.5μmであった。
 (負極用スラリーの製造)
 上記組成の負極用スラリーを次のように調製した。まず、溶媒(NMP)にバインダを溶解した20%バインダ溶液1.75重量部に溶媒(NMP)5重量部を加えて、攪拌脱泡機1分間攪拌してバインダ希釈溶液を作製した。このバインダ希釈液に、導電助剤0.2重量部、負極活物質粉末9.45重量部、および溶媒(NMP)3.6重量部を加え、攪拌脱泡機で3分間攪拌して負極用スラリー(固形分濃度50重量%)とした。
 (負極用スラリーの塗布・乾燥)
 10μm厚の電解銅集電体の片面に、上記負極用スラリーを自動塗工装置により塗布した。続いて、この負極スラリーを塗布した集電体について、ホットプレートにて乾燥(100℃~110℃、乾燥時間30分)を行い、負極活物質層に残留するNMP量を0.02重量%以下として、シート状負極を形成した。
 (負極のプレス)
 得られたシート状負極を、ローラープレスをかけて圧縮成形し、切断して、片面の負極活物質層の重量約8.54mg/cm、密度1.45g/cmの負極を作製した。この負極の表面を観察したところ、クラックの発生は見られなかった。
 (電極の乾燥)
 次に、上記手順で作製した負極を用い真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し乾燥炉内の空気を除去した。続いて、窒素ガスを流通(100cm/分)しながら、10℃/分で135℃まで昇温し、135℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして負極表面の水分を除去して、負極A1を得た。
 [ラミネートセルの作製]
 上記で得られた正極C1を、活物質層面積;縦2.5cm×横2.0cmになるように切り出し、これら2枚を集電体同士が向き合うようにして、未塗工面(アルミニウム集電箔のスラリーを塗工していない面)を合わせて集電体部分をスポット溶接した。これにより、外周部をスポット溶接により一体化された2枚重ねの集電箔の両面に正極活物質層を有する正極を形成した。その後、さらに集電体部分にアルミニウムの正極タブ(正極集電板)を溶接して正極C11を形成した。すなわち、正極C11は、集電箔の両面に正極活物質層が形成された構成である。
 一方、上記で得られた負極A1を、活物質層面積;縦2.7cm×横2.2cmになるように切り出し、その後、さらに集電体部分に電解銅の負極タブを溶接して負極A11を形成した。すなわち、負極A11は、集電体の片面に負極活物質層が形成された構成である。
 これらタブを溶接した負極A11と、正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦3.0cm×横2.5cm、厚さ25μm、空孔率55%)を挟んで5層からなる積層型の発電要素を作製した。積層型の発電要素の構成は、負極(片面)/セパレータ/正極(両面)/セパレータ/負極(片面)の構成、すなわち、A11-(S)-C11-(S)-A11の順に積層された構成とした。次いで、アルミラミネートフィルム製外装材(縦3.5cm×横3.5cm)で発電要素の両側を挟み込み、3辺を熱圧着封止して上記発電要素を収納した。この発電要素に、電解液0.8cm(上記5層構成の場合、2セル構成となり、1セル当たりの注液量0.4cm)を注入した後、残りの1辺を熱圧着で仮封止し、ラミネート型電池を作製した。電解液を電極細孔内に十分に浸透させるため、面圧0.5Mpaで加圧しながら、25℃にて24時間保持した。
 なお、電解液の調製では、まず、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0MのLiPF(電解質)を溶解した。その後、添加剤として作用するフルオロリン酸リチウムとして、ジフルオロリン酸リチウム(LiPO)を1.8重量%の濃度で溶解したものを、電解液として用いた。
 [比較例2]
 負極A1の活物質層面積;縦2.65cm×横2.2cmとしたこと以外は、上述した比較例1と同様にして、電池を作成した。
 [実施例1]
 負極A1の活物質層面積;縦2.6cm×横2.1cmとしたこと以外は、上述した比較例1と同様にして、電池を作成した。
 [実施例2]
 負極A1の活物質層面積;縦2.55cm×横2.05cmとしたこと以外は、上述した比較例1と同様にして、電池を作成した。
 [実施例3]
 負極A1の活物質層面積;縦2.525cm×横2.02cmとしたこと以外は、上述した比較例1と同様にして、電池を作成した。
 [比較例3]
 負極A1の活物質層面積;縦2.5cm×横2.0cmとしたこと以外は、上述した比較例1と同様にして、電池を作成した。
 [比較例4]
 負極用スラリーの調製に用いたSi材料として、SiOに代えてSi含有合金であるSi42TiSn51を用いたこと以外は、上述した比較例1と同様にして、電池を作製した。ここで、本比較例において作成された負極を負極A2とする。なお、上記Si含有合金は、メカニカルアロイ法により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールおよび合金の各原料粉末を投入し、600rpmで48時間かけて合金化させた。
 また、上記で調製したSi含有合金(Si42TiSn51)と、それ以外の本発明に用いられうる合金(SiTiGe、SiTiZn、およびSiTiSnAのうち、Si42TiSn51以外のもの)もまた、Si42TiSn51と同様の特性を有するものであることから、Si42TiSn51を用いた実験例と同一または類似する結果が得られる。
 [実施例4]
 負極A2の活物質層面積;縦2.55cm×横2.05cmとしたこと以外は、上述した比較例4と同様にして、電池を作成した。
 [比較例5]
 負極用スラリーの調製に用いたSi材料(Si含有合金)として、Si42TiSn51に代えてSi34Sn2145を用いたこと以外は、上述した比較例4と同様にして、電池を作製した。ここで、本比較例において作成された負極を負極A3とする。
 また、上記で調製したSi含有合金(Si34Sn2145)と、それ以外の本発明に用いられうる合金(SiSnAl、SiSn、およびSiSnAのうち、Si34Sn2145以外のもの)もまた、Si34Sn2145と同様の特性を有するものであることから、Si34Sn2145を用いた実験例と同一または類似する結果が得られる。
 [実施例5]
 負極A3の活物質層面積;縦2.55cm×横2.05cmとしたこと以外は、上述した比較例5と同様にして、電池を作成した。
 [比較例6]
 正極用スラリーの調製に用いた正極活物質として、固溶体正極活物質C1に代えてLiCoOを用いたこと以外は、上述した比較例1と同様にして、電池を作製した。ここで、本比較例において作成された正極を正極C2とする。
 [実施例6]
 負極A1の活物質層面積;縦2.6cm×横2.1cmとしたこと以外は、上述した比較例6と同様にして、電池を作成した。
 [実施例7]
 負極A1の活物質層面積;縦2.55cm×横2.05cmとしたこと以外は、上述した比較例6と同様にして、電池を作成した。
 [実施例8]
 負極A1の活物質層面積;縦2.525cm×横2.02cmとしたこと以外は、上述した比較例6と同様にして、電池を作成した。
 [比較例7]
 負極A1の活物質層面積;縦2.5cm×横2.0cmとしたこと以外は、上述した比較例6と同様にして、電池を作成した。
 その後、上記で得られた各電池の発電要素を評価セル取り付け冶具にセットし、正極リードと負極リードを発電要素の各タブ端部に取り付け、試験を行った。
 [電池特性の評価1]
 上記で作製したラミネート型電池について、性能を評価した。この際、固溶体正極活物質を含む正極C1を用いた比較例1~5および実施例1~5の電池に対しては、以下の条件で、初充電処理および活性化処理を行ったのち、電池容量確認およびサイクル耐久性評価を行った。
 [初充電処理]
 電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持した。次いで、25℃にて0.1Cレートで4.45Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.0Vまで放電した。その状態のまま1時間放置したのち、0.05Cにて、2.0Vまで放電した。
 [ガス除去処理1]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [活性化処理]
 25℃にて、定電流充電法で0.1Cで電圧が4.45Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、25℃にて、定電流充電法で0.1Cで4.55Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。同様に、0.1Cで4.65Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。更に、25℃にて、定電流充電法で、0.1Cで4.75Vとなるまで充電した後した後、その状態で1日間放置したのち、0.1Cで2.0Vまで放電したのち、1時間放置して、0.05Cで2.0Vまで放電するサイクルを1回行った。
 [ガス除去処理2]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [電池容量確認]
 各電池について充放電試験を行い、電池容量について調査した。すなわち、30℃の雰囲気下、定電流定電圧充電方式にて、電流密度0.1C相当、上限電圧4.45Vとして充電し、1分間休止させた後、定電流放電方式にて電流密度0.1C相当にて2Vまで放電した。この充放電サイクルを3回繰り返し、3サイクル目の放電容量を電池容量と規定した。結果を下記の表1に示す。なお、表1に示す「電池容量」の値は、比較例1~3および実施例1~3については比較例3の電池容量を100%としたときの相対値であり、比較例4および実施例4については実施例4の電池容量を100%としたときの相対値であり、比較例5および実施例5については実施例5の電池容量を100%としたときの相対値である。
 [サイクル耐久性試験]
 各電池について充放電サイクル試験を行い、放電容量保持率について調査した。すなわち、30℃の雰囲気下、定電流定電圧充電方式にて、電流密度1C相当、上限電圧4.45Vとして充電し、1分間休止させた後、定電流放電方式にて電流密度1C相当にて2Vまで放電した。この充放電サイクルを100回繰り返した。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を「容量維持率(%)」として評価した。結果を下記の表1に示す。
 容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
 [電池特性の評価2]
 一方、正極活物質としてLiCoOを含む正極C2を用いた比較例6~7および実施例6~8の電池に対しては、以下の条件で、初充電処理および活性化処理を行ったのち、電池容量確認およびサイクル耐久性評価を行った。
 [初充電処理1]
 電池のエージング処理は、以下のように実施した。25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行い、その状態で約1日間保持した。次いで、25℃にて0.1Cレートで4.2Vまで充電した後、充電を止め、その状態(SOC約70%)で約1日間保持したのち、0.1Cで2.5Vまで放電した。その状態のまま1時間放置したのち、0.05Cにて、2.5Vまで放電した。
 [ガス除去処理1]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い仮封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [活性化処理]
 25℃にて、定電流充電法で0.1Cで電圧が4.2Vとなるまで充電した後、その状態で1日間放置したのち、0.1Cで2.5Vまで放電したのち、1時間放置して、0.05Cで2.5Vまで放電するサイクルを1回行った。
 [ガス除去処理2]
 熱圧着で仮封止した一辺を開封し、10±3hPaで5分間ガス除去を行った後、再度、熱圧着を行い本封止を行った。さらに、ローラーで加圧(面圧0.5±0.1MPa)整形し電極とセパレータとを十分に密着させた。
 [電池容量確認]
 各電池について充放電試験を行い、電池容量について調査した。すなわち、30℃の雰囲気下、定電流定電圧充電方式にて、電流密度0.1C相当、上限電圧4.2Vとして充電し、1分間休止させた後、定電流放電方式にて電流密度0.1C相当にて2.5Vまで放電した。この充放電サイクルを3回繰り返し、3サイクル目の放電容量を電池容量と規定した。結果を下記の表1に示す。なお、表1に示す「電池容量」の値は、比較例6~7および実施例6~8については比較例7の電池容量を100%としたときの相対値である。
 [サイクル耐久性試験]
 各電池について充放電サイクル試験を行い、放電容量保持率について調査した。すなわち、30℃の雰囲気下、定電流定電圧充電方式にて、電流密度1C相当、上限電圧4.2Vとして充電し、1分間休止させた後、定電流放電方式にて電流密度1C相当にて2.5Vまで放電した。この充放電サイクルを100回繰り返した。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を「容量維持率(%)」として評価した。結果を下記の表1に示す。
 容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
Figure JPOXMLDOC01-appb-T000008
 表1に示す結果から明らかなように、本発明に係る電気デバイスである実施例1~9のリチウムイオン二次電池では、比較例1~6と比べて、優れたサイクル耐久性(100サイクル目の容量維持率)を示した。
 具体的に、比較例1~3および実施例1~3の結果から、C/Aを大きくすることで電池容量が改善する一方で、C/Aが1または0.91未満ではサイクル耐久性に劣ることがわかる。
 また、比較例4~5および実施例4~5の結果から、負極の種類が異なっても、上記と同様の好適なC/Aの範囲が維持されることがわかる。
 さらに、比較例6~7および実施例6~8の結果から、正極活物質として不可逆容量が小さいものを使用した場合においても、固溶体正極活物質のような不可逆容量が大きい正極活物質を用いた場合と同様の好適なC/Aの範囲が維持されることがわかる。ただし、かような場合に電池容量を大きくするためには、その範囲は、不可逆容量が大きな固溶体正極活物質を用いた場合よりも広くする必要がある。
  10、50 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 負極集電板、
  27 正極集電板、
  29、52 電池外装材、
  58  正極タブ、
  59  負極タブ。

Claims (6)

  1.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     負極集電体の表面にケイ素含有負極活物質を含む負極活物質層が形成されてなる負極と、
     セパレータと、
    を含む単電池層を含む発電要素を有する電気デバイスであって、
     前記発電要素を構成する前記単電池層の少なくとも1つにおいて、
     前記負極活物質層の面積をA[m]とし、前記正極活物質層の面積をC[m]としたときに、式(1):0.91≦C/A<1を満足する、電気デバイス。
  2.  前記式(1)を満足する前記単電池層において、
     前記負極活物質層の単位面積当たりの不可逆容量をIとし、前記正極活物質層の単位面積当たりの不可逆容量をIとしたときに、I/I≧0.40であり、かつ、0.91≦C/A<0.99である、請求項1に記載の電気デバイス。
  3.  前記式(1)を満足する前記単電池層において、
     前記正極活物質層が、下記式(2):
    Figure JPOXMLDOC01-appb-M000001
     式中、eは正極活物質層における各成分の重量%を表し、80≦e≦98である、
    で表される正極活物質を含有し、この際、前記固溶体正極活物質は、下記式(3):
    Figure JPOXMLDOC01-appb-M000002
     式中、zは、原子価を満足する酸素数を表し、a+b+c+d=1.5、0.1≦d≦0.4、1.1≦[a+b+c]≦1.4である、
    で表される組成を基本構造として有する、請求項1または2に記載の電気デバイス。
  4.  前記式(1)を満足する前記単電池層において、
     前記負極活物質層が、下記式(4):
    Figure JPOXMLDOC01-appb-M000003
     式中、Si材料は、アモルファスSiO粒子とSi粒子との混合体であるSiO(xはSiの原子価を満足する酸素数を表す)およびSi含有合金からなる群から選択される1種または2種以上であり、αおよびβは負極活物質層における各成分の重量%を表し、80≦α+β≦98、3≦α≦40、40≦β≦95である、
    で表される負極活物質を含有する、請求項1~3のいずれか1項に記載の電気デバイス。
  5.  前記Si含有合金が、SiTiGe、SiTiZn、SiTiSn、SiSnAl、SiSn、SiSn、SiZn、SiZnSn、SiZnAl、SiZn、SiAlおよびSiAlNb(式中、Aは、不可避不純物である。さらに、x、y、z、およびaは、重量%の値を表し、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である)からなる群から選択される1種または2種以上である、請求項4に記載の電気デバイス。
  6.  リチウムイオン二次電池である、請求項1~5のいずれか1項に記載の電気デバイス。
PCT/JP2014/051526 2014-01-24 2014-01-24 電気デバイス WO2015111187A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167019128A KR20160100348A (ko) 2014-01-24 2014-01-24 전기 디바이스
JP2015558664A JP6187602B2 (ja) 2014-01-24 2014-01-24 電気デバイス
US15/113,250 US10476101B2 (en) 2014-01-24 2014-01-24 Electrical device
EP14879986.9A EP3098892B1 (en) 2014-01-24 2014-01-24 Electrical device
CN201480073896.4A CN105934847B (zh) 2014-01-24 2014-01-24 电器件
PCT/JP2014/051526 WO2015111187A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051526 WO2015111187A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Publications (1)

Publication Number Publication Date
WO2015111187A1 true WO2015111187A1 (ja) 2015-07-30

Family

ID=53681016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051526 WO2015111187A1 (ja) 2014-01-24 2014-01-24 電気デバイス

Country Status (6)

Country Link
US (1) US10476101B2 (ja)
EP (1) EP3098892B1 (ja)
JP (1) JP6187602B2 (ja)
KR (1) KR20160100348A (ja)
CN (1) CN105934847B (ja)
WO (1) WO2015111187A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041407A (ja) * 2015-08-21 2017-02-23 日産自動車株式会社 リチウムイオン二次電池
WO2018003843A1 (ja) * 2016-06-30 2018-01-04 三洋電機株式会社 二次電池及びその製造方法
JP2018055901A (ja) * 2016-09-28 2018-04-05 日産自動車株式会社 非水電解質二次電池の製造方法
CN109075377A (zh) * 2016-04-28 2018-12-21 日产自动车株式会社 非水电解质二次电池
EP3451430A4 (en) * 2016-04-28 2019-04-03 Nissan Motor Co., Ltd. NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102026A (ko) 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
JP6187602B2 (ja) 2014-01-24 2017-08-30 日産自動車株式会社 電気デバイス
US20170110725A1 (en) * 2014-04-03 2017-04-20 Sony Corporation Secondary battery, battery pack, electronic device, electrically driven vehicle, storage device, and power system
JP7169763B2 (ja) * 2018-04-09 2022-11-11 日産自動車株式会社 非水電解質二次電池
DE102018003328B4 (de) * 2018-04-24 2020-12-17 Envites Energy Gesellschaft für Umwelttechnik und Energiesysteme mbH Verfahren zur Herstellung einer Batteriezelle, vorzugsweise einer Li-lonen-Bi-Stapelzelle mit Feststoff
JP6846490B1 (ja) * 2019-09-25 2021-03-24 積水化学工業株式会社 蓄電素子及び蓄電素子の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011699A (ja) * 2003-06-19 2005-01-13 Canon Inc リチウム二次電池
JP2008004535A (ja) * 2006-05-23 2008-01-10 Sony Corp 負極および電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2009099328A (ja) * 2007-10-15 2009-05-07 Sony Corp 負極および電池
JP2009158415A (ja) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用正極活物質及びそれを有する非水電解液二次電池
JP2011060471A (ja) * 2009-09-08 2011-03-24 Nec Energy Devices Ltd 非水系電解質二次電池
JP2012142154A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
WO2013094465A1 (ja) * 2011-12-19 2013-06-27 日立マクセル株式会社 リチウム二次電池

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560524A (en) 1983-04-15 1985-12-24 Smuckler Jack H Method of manufacturing a positive temperature coefficient resistive heating element
JPS62134243A (ja) 1985-12-06 1987-06-17 Mitsui Toatsu Chem Inc アイソタクテイクポリスチレン成形体
JPH08250117A (ja) 1995-03-09 1996-09-27 Shin Kobe Electric Mach Co Ltd リチウム二次電池負極用炭素材料及びその製造方法
JP4029235B2 (ja) 1998-10-02 2008-01-09 大阪瓦斯株式会社 リチウム二次電池用負極
JP2000299108A (ja) 1999-04-14 2000-10-24 Sony Corp 非水電解質電池
CA2305837C (en) 1999-04-14 2011-05-31 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
US6685804B1 (en) 1999-10-22 2004-02-03 Sanyo Electric Co., Ltd. Method for fabricating electrode for rechargeable lithium battery
JP2002083594A (ja) 1999-10-22 2002-03-22 Sanyo Electric Co Ltd リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池
WO2001031723A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour accumulateur au lithium et accumulateur au lithium
WO2001029918A1 (fr) 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd Electrode pour accumulateur au lithium et accumulateur au lithium
JP3733071B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
CN1260841C (zh) 1999-10-22 2006-06-21 三洋电机株式会社 锂电池和可再充电锂电池中用的电极
JP2001196052A (ja) 2000-01-12 2001-07-19 Sony Corp 負極及び非水電解質電池
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP3848065B2 (ja) 2000-08-08 2006-11-22 キヤノン株式会社 画像形成装置
CN1278438C (zh) 2000-09-25 2006-10-04 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4225727B2 (ja) 2001-12-28 2009-02-18 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
JP3744462B2 (ja) 2002-05-08 2006-02-08 ソニー株式会社 非水電解質電池
EP1536499B1 (en) 2002-06-26 2012-02-29 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2004119199A (ja) * 2002-09-26 2004-04-15 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2004049473A2 (en) 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
JP4385589B2 (ja) 2002-11-26 2009-12-16 昭和電工株式会社 負極材料及びそれを用いた二次電池
JP3750117B2 (ja) 2002-11-29 2006-03-01 三井金属鉱業株式会社 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
AU2003302519A1 (en) 2002-11-29 2004-06-23 Mitsui Mining And Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
CN100365849C (zh) 2002-11-29 2008-01-30 三井金属矿业株式会社 非水电解液二次电池用负极及其制造方法以及非水电解液二次电池
JP3643108B2 (ja) 2003-07-23 2005-04-27 三井金属鉱業株式会社 非水電解液二次電池用負極及び非水電解液二次電池
JP4046601B2 (ja) 2002-12-03 2008-02-13 大阪瓦斯株式会社 リチウム二次電池用負極材及びそれを用いたリチウム二次電池
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
JP2004296412A (ja) 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極活物質の製造方法
JP4366222B2 (ja) 2003-03-26 2009-11-18 キヤノン株式会社 リチウム二次電池用の電極材料、該電極材料を有する電極構造体、該電極構造体を有する二次電池
US7378041B2 (en) 2003-03-26 2008-05-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP4464173B2 (ja) 2003-03-26 2010-05-19 キヤノン株式会社 リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
JP4366101B2 (ja) 2003-03-31 2009-11-18 キヤノン株式会社 リチウム二次電池
WO2004095612A1 (ja) 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
JP2005011650A (ja) 2003-06-18 2005-01-13 Sony Corp 負極材料およびそれを用いた電池
JP4029291B2 (ja) 2003-09-02 2008-01-09 福田金属箔粉工業株式会社 リチウム二次電池用負極材料及びその製造方法
US7479351B2 (en) 2003-10-09 2009-01-20 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
JP3746501B2 (ja) 2003-10-09 2006-02-15 三星エスディアイ株式会社 リチウム二次電池用電極材料及びリチウム二次電池及びリチウム二次電池用電極材料の製造方法
JP4625672B2 (ja) 2003-10-30 2011-02-02 株式会社東芝 非水電解質二次電池
CN100413122C (zh) 2004-11-03 2008-08-20 深圳市比克电池有限公司 含锰的多元金属氧化物、锂离子二次电池的正极材料及其制备方法
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
CN101103475B (zh) 2005-01-14 2011-08-10 松下电器产业株式会社 用于锂离子二次电池的负极、其制备方法、锂离子二次电池及其制备方法
JP2006216277A (ja) 2005-02-01 2006-08-17 Canon Inc リチウム二次電池用電極材料の製造方法、電極構造体および二次電池
JP4794893B2 (ja) * 2005-04-12 2011-10-19 パナソニック株式会社 非水電解液二次電池
JP5076288B2 (ja) 2005-07-14 2012-11-21 日本電気株式会社 二次電池用負極およびそれを用いた二次電池
JP2007026926A (ja) 2005-07-19 2007-02-01 Nec Corp 二次電池用負極およびこれを用いた二次電池
WO2007015508A1 (ja) 2005-08-02 2007-02-08 Showa Denko K.K. リチウム二次電池負極用合金
JPWO2007015508A1 (ja) 2005-08-02 2009-02-19 昭和電工株式会社 リチウム二次電池負極用合金
JP2007149604A (ja) 2005-11-30 2007-06-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2007305424A (ja) 2006-05-11 2007-11-22 Sony Corp 負極活物質およびそれを用いた電池
WO2007136046A1 (ja) 2006-05-23 2007-11-29 Sony Corporation 負極およびその製造方法、ならびに電池およびその製造方法
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP2008016446A (ja) 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
KR101375455B1 (ko) 2006-08-29 2014-03-26 강원대학교산학협력단 이차 전지용 전극 활물질
WO2008038798A1 (fr) * 2006-09-29 2008-04-03 Mitsui Mining & Smelting Co., Ltd. Batterie secondaire à électrolyte non aqueux
US10665892B2 (en) 2007-01-10 2020-05-26 Eocell Limited Lithium batteries with nano-composite positive electrode material
KR20090109570A (ko) 2007-02-06 2009-10-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 신규한 결합제를 포함하는 전극과, 그의 제조 방법 및 사용 방법
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US9070935B2 (en) 2007-06-06 2015-06-30 Asahi Kasei E-Materials Corporation Multilayer porous film
JP5343342B2 (ja) 2007-06-26 2013-11-13 大同特殊鋼株式会社 リチウム二次電池用負極活物質およびリチウム二次電池
KR101406013B1 (ko) 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 비수 전해질 2차 전지용 부극재 및 그것의 제조 방법, 및 비수 전해질 2차 전지용 부극 및 비수 전해질 2차 전지
JP2009224239A (ja) 2008-03-18 2009-10-01 Nissan Motor Co Ltd 電池用電極
JP5046302B2 (ja) * 2008-03-28 2012-10-10 日立マクセルエナジー株式会社 非水二次電池
JP5357565B2 (ja) 2008-05-27 2013-12-04 株式会社神戸製鋼所 リチウムイオン二次電池用負極材、および、その製造方法、ならびに、リチウムイオン二次電池
US9012073B2 (en) 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
JP2010205609A (ja) 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
JPWO2010110205A1 (ja) 2009-03-24 2012-09-27 古河電気工業株式会社 リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
EP2239803A1 (fr) 2009-04-10 2010-10-13 Saft Groupe Sa Composition de matiere active pour electrode negative d'accumulateur lithium-ion.
US20100288077A1 (en) 2009-05-14 2010-11-18 3M Innovative Properties Company Method of making an alloy
WO2010150513A1 (ja) 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
WO2011010421A1 (ja) 2009-07-21 2011-01-27 パナソニック株式会社 角形の非水電解質二次電池及びその製造方法
JP2011048969A (ja) 2009-08-26 2011-03-10 Toyobo Co Ltd リチウムイオン二次電池用負極及びこれを用いた二次電池
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP5673545B2 (ja) 2009-09-25 2015-02-18 日本ゼオン株式会社 リチウムイオン二次電池負極及びリチウムイオン二次電池
MX2012002805A (es) 2009-11-27 2012-04-02 Nissan Motor Material activo del electrodo negativo, de aleacion de si, para dispositivos electricos.
KR101399685B1 (ko) 2009-11-27 2014-05-27 닛산 지도우샤 가부시키가이샤 전기 디바이스용 Si 합금 부극 활물질
US9876221B2 (en) 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
CN102576901A (zh) * 2010-05-18 2012-07-11 松下电器产业株式会社 锂二次电池
JP5128695B2 (ja) 2010-06-28 2013-01-23 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池
CA2800929C (en) 2010-06-29 2014-09-16 Umicore Submicron sized silicon powder with low oxygen content
WO2012000854A1 (en) 2010-06-29 2012-01-05 Umicore Negative electrode material for lithium-ion batteries
JP5472041B2 (ja) 2010-10-28 2014-04-16 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
JP5850611B2 (ja) 2010-11-17 2016-02-03 三井金属鉱業株式会社 リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。
JP5652161B2 (ja) 2010-11-26 2015-01-14 日産自動車株式会社 電気デバイス用Si合金負極活物質
JP5276158B2 (ja) 2010-12-27 2013-08-28 古河電気工業株式会社 リチウムイオン二次電池、該電池用負極電極、該電池負極集電体用電解銅箔
KR20120090594A (ko) 2011-02-08 2012-08-17 삼성전자주식회사 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기
JP5614729B2 (ja) 2011-03-03 2014-10-29 日産自動車株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5768968B2 (ja) 2011-03-08 2015-08-26 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5741908B2 (ja) 2011-03-09 2015-07-01 日産自動車株式会社 リチウムイオン二次電池用正極活物質
WO2012132153A1 (ja) * 2011-03-28 2012-10-04 日本電気株式会社 二次電池
JP2012238581A (ja) 2011-04-28 2012-12-06 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP5751449B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5776931B2 (ja) 2011-05-25 2015-09-09 日産自動車株式会社 リチウムイオン二次電池用負極活物質
JP5776888B2 (ja) * 2011-05-25 2015-09-09 日産自動車株式会社 電気デバイス用負極活物質
JP5970978B2 (ja) * 2011-07-04 2016-08-17 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
KR20130037091A (ko) 2011-10-05 2013-04-15 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
CN103843177A (zh) 2011-10-10 2014-06-04 3M创新有限公司 用于锂离子电化学电池的非晶态合金负极组合物
JP5945903B2 (ja) 2011-12-16 2016-07-05 日産自動車株式会社 電気デバイス用負極活物質
JP5903556B2 (ja) 2011-12-22 2016-04-13 パナソニックIpマネジメント株式会社 非水電解液二次電池
JP5904364B2 (ja) 2011-12-27 2016-04-13 日産自動車株式会社 電気デバイス用負極活物質
JP5904363B2 (ja) 2011-12-27 2016-04-13 日産自動車株式会社 電気デバイス用負極活物質
KR101649808B1 (ko) 2012-02-01 2016-08-19 닛산 지도우샤 가부시키가이샤 고용체 리튬 함유 전이 금속 산화물, 비수전해질 이차 전지용 정극 및 비수전해질 이차 전지
US20130202967A1 (en) 2012-02-07 2013-08-08 Jae-Hyuk Kim Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP5830419B2 (ja) * 2012-03-21 2015-12-09 古河電気工業株式会社 多孔質シリコン粒子及び多孔質シリコン複合体粒子並びにこれらの製造方法
JP6268729B2 (ja) 2012-03-23 2018-01-31 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
CN104205434B (zh) 2012-03-26 2017-01-18 索尼公司 正极活性材料、正极、二次电池、电池组、电动车辆、电力存储系统、电动工具、以及电子设备
JP5999968B2 (ja) 2012-05-02 2016-09-28 セイコーインスツル株式会社 扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法
WO2014080893A1 (ja) 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
US20150295228A1 (en) 2012-11-22 2015-10-15 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
KR101709027B1 (ko) 2012-11-22 2017-02-21 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
JP6052299B2 (ja) 2012-11-22 2016-12-27 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JP6040994B2 (ja) 2012-11-22 2016-12-07 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6040997B2 (ja) 2012-11-22 2016-12-07 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
JP6040996B2 (ja) 2012-11-22 2016-12-07 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
CN104813516B (zh) 2012-11-22 2017-12-01 日产自动车株式会社 电气设备用负极、及使用其的电气设备
WO2014080895A1 (ja) 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
WO2014080891A1 (ja) 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
US20150303466A1 (en) 2012-11-22 2015-10-22 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
EP2924774B1 (en) 2012-11-22 2018-04-25 Nissan Motor Co., Ltd Negative electrode for electric device and electric device using the same
KR101891014B1 (ko) 2014-01-24 2018-08-22 닛산 지도우샤 가부시키가이샤 전기 디바이스
JP6187602B2 (ja) 2014-01-24 2017-08-30 日産自動車株式会社 電気デバイス
KR20160102026A (ko) * 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
US9954252B2 (en) 2014-01-24 2018-04-24 Nissan Motor Co., Ltd. Electrical device
US9680150B2 (en) 2014-01-24 2017-06-13 Nissan Motor Co., Ltd. Electrical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011699A (ja) * 2003-06-19 2005-01-13 Canon Inc リチウム二次電池
JP2009517850A (ja) 2005-12-01 2009-04-30 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有量が高いアモルファス合金に基づく電極組成物
JP2008004535A (ja) * 2006-05-23 2008-01-10 Sony Corp 負極および電池
JP2009099328A (ja) * 2007-10-15 2009-05-07 Sony Corp 負極および電池
JP2009158415A (ja) * 2007-12-27 2009-07-16 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用正極活物質及びそれを有する非水電解液二次電池
JP2011060471A (ja) * 2009-09-08 2011-03-24 Nec Energy Devices Ltd 非水系電解質二次電池
JP2012142154A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、電動工具、電動車両および電力貯蔵システム
WO2013094465A1 (ja) * 2011-12-19 2013-06-27 日立マクセル株式会社 リチウム二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041407A (ja) * 2015-08-21 2017-02-23 日産自動車株式会社 リチウムイオン二次電池
CN109075377A (zh) * 2016-04-28 2018-12-21 日产自动车株式会社 非水电解质二次电池
EP3451430A4 (en) * 2016-04-28 2019-04-03 Nissan Motor Co., Ltd. NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
EP3451431A4 (en) * 2016-04-28 2019-04-03 Nissan Motor Co., Ltd. NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US20190157664A1 (en) * 2016-04-28 2019-05-23 Nissan Motor Co., Ltd. Non-Aqueous Electrolyte Secondary Battery
US10374225B2 (en) 2016-04-28 2019-08-06 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
CN109075377B (zh) * 2016-04-28 2020-08-25 远景Aesc日本有限公司 非水电解质二次电池
WO2018003843A1 (ja) * 2016-06-30 2018-01-04 三洋電機株式会社 二次電池及びその製造方法
JPWO2018003843A1 (ja) * 2016-06-30 2019-04-18 三洋電機株式会社 二次電池及びその製造方法
US10916760B2 (en) 2016-06-30 2021-02-09 Sanyo Electric Co., Ltd. Secondary battery and method of manufacturing same
JP7088008B2 (ja) 2016-06-30 2022-06-21 三洋電機株式会社 二次電池及びその製造方法
JP2018055901A (ja) * 2016-09-28 2018-04-05 日産自動車株式会社 非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
EP3098892A1 (en) 2016-11-30
JP6187602B2 (ja) 2017-08-30
EP3098892A4 (en) 2016-11-30
US10476101B2 (en) 2019-11-12
JPWO2015111187A1 (ja) 2017-03-23
CN105934847A (zh) 2016-09-07
EP3098892B1 (en) 2018-11-14
CN105934847B (zh) 2019-11-05
KR20160100348A (ko) 2016-08-23
US20170012316A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6252602B2 (ja) 電気デバイス
JP6187602B2 (ja) 電気デバイス
JP6202106B2 (ja) 電気デバイス
WO2016098212A1 (ja) 電気デバイス
JP6252600B2 (ja) 電気デバイス
JP6202107B2 (ja) 電気デバイス
JP6252604B2 (ja) 電気デバイス
JP6737091B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6380553B2 (ja) 電気デバイス
JP6380554B2 (ja) 電気デバイス
JP6252603B2 (ja) 電気デバイス
WO2015111195A1 (ja) 電気デバイス用負極およびこれを用いた電気デバイス
JP6252601B2 (ja) 電気デバイス
JP2018078052A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019128

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113250

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015558664

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014879986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879986

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE