JP6846490B1 - 蓄電素子及び蓄電素子の製造方法 - Google Patents

蓄電素子及び蓄電素子の製造方法 Download PDF

Info

Publication number
JP6846490B1
JP6846490B1 JP2019174781A JP2019174781A JP6846490B1 JP 6846490 B1 JP6846490 B1 JP 6846490B1 JP 2019174781 A JP2019174781 A JP 2019174781A JP 2019174781 A JP2019174781 A JP 2019174781A JP 6846490 B1 JP6846490 B1 JP 6846490B1
Authority
JP
Japan
Prior art keywords
positive electrode
power storage
storage element
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019174781A
Other languages
English (en)
Other versions
JP2021051942A (ja
Inventor
友章 西野
友章 西野
瀬川 健
健 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74878936&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6846490(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019174781A priority Critical patent/JP6846490B1/ja
Priority to CN202080038811.4A priority patent/CN113906608A/zh
Priority to PCT/JP2020/036120 priority patent/WO2021060405A1/ja
Application granted granted Critical
Publication of JP6846490B1 publication Critical patent/JP6846490B1/ja
Publication of JP2021051942A publication Critical patent/JP2021051942A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】高容量の蓄電素子の薄型化を目的とする。【解決手段】蓄電素子1は、第1外装材40及び第2外装材50を含む外装体7と、第1外装材40と第2外装材50との間に形成される収容空間7aに収容された電極体5と、を有し、電極体5は第1方向d1に交互に積層された負極20Y及び正極10Xを含んでいる。そして、電極体5の第1方向d1に沿った厚みT〔mm〕の2乗に対する正極活物質層12Xの平均面積A〔mm2〕の比の値(A/T2)を、100以上20000以下としている。【選択図】図1

Description

本発明は、蓄電素子及び蓄電素子の製造方法に関する。
例えば特許文献1や特許文献2に開示されているように、正極と負極とを交互に積層してなる電極体を有する積層型の蓄電素子が知られている。このような蓄電素子では、正極と負極の積層枚数を増やすことで高容量化を図ることができる。
WO2013/137285A JP2018−534737A
ただし、特許文献1に開示された蓄電素子に含まれる電極の一辺の長さは100〜150mm程度であり、特許文献2に開示された蓄電素子に含まれる電極は90mm×260mm程度の大きさを有している。このような大きさの電極を含む蓄電素子において高容量化を図るには、電極の積層枚数を増大させる必要がある。一方、蓄電素子に含まれる電極枚数が増大すると、元々偏平形状を有していた蓄電素子の厚みを増大させることになる。積層型の蓄電素子の用途は、近年、車載用途や定置住宅用途等の種々の用途に展開されつつあるが、厚みが増大することで蓄電素子は設置場所の制約を受けることになる。
本発明は、このような点を考慮してなされたものであり、高容量の蓄電素子の薄型化を目的とする。
本発明による蓄電素子は、
第1外装材および第2外装材を含む外装体と、
前記第1外装材と前記第2外装材との間に形成される収容空間に収容され、第1方向に交互に積層された負極及び正極を含む電極体と、を備え、
前記負極は、負極集電箔と、負極集電箔の少なくとも一方の面上に設けられた負極活物質を含む負極活物質層と、を有し、
前記正極は、正極集電箔と、正極集電箔の少なくとも一方の面上に設けられた正極活物質を含む正極活物質層と、を有し、
前記電極体の前記第1方向に沿った厚みT〔mm〕の2乗に対する前記正極活物質層の平均面積A〔mm〕の比の値(A/T)は、100以上20000以下であり、
前記負極と前記正極との合計枚数は10枚以上である。
本発明による蓄電素子において、前記正極活物質層の平均面積Aは8400mm以上756000mm以下であるようにしてもよい。
本発明による蓄電素子において、平面視における前記電極体の面積は9000mm以上810000mm以下であるようにしてもよい。
平面視における前記外装体の面積は12000mm以上900000mm以下であるようにしてもよい。
本発明による蓄電素子において、前記電極体の前記第1方向に沿った厚さは0.25mm以上9.5mm以下であるようにしてもよい。
本発明による蓄電素子において、前記蓄電素子の前記第1方向に沿った厚さは0.3mm以上10mm以下であるようにしてもよい。
本発明による蓄電素子において、
前記正極活物質層は平面視において矩形状を有し、
平面視における前記正極活物質層の長辺の長さ〔mm〕の前記正極活物質層の短辺の長さ〔mm〕に対する比の値は1.50以上5.00以下であるようにしてもよい。
本発明による蓄電素子において、
前記外装体は平面視において矩形状を有し、
平面視における前記外装体の長辺の長さ〔mm〕の前記外装体の短辺の長さ〔mm〕に対する比の値は1.50以上5.00以下であるようにしてもよい。
本発明による蓄電素子において、密充電時における電圧が4.0〔V〕以下であるようにしてもよい。
本発明による蓄電素子において、密充電時における前記正極の平均反応電位は4.0〔V vs Li/Li〕以下であるようにしてもよい。
本発明による蓄電素子において、前記正極活物質層はリン酸鉄リチウムを前記正極活物質として含むようにしてもよい。
本発明による蓄電素子において、密充電時における前記負極の平均反応電位は1.5〔V vs Li/Li〕以上であるようにしてもよい。
本発明による蓄電素子において、前記負極活物質層はチタン酸リチウムを前記負極活物質として含むようにしてもよい。
本発明による蓄電素子において、前記電極体は、前記正極および前記負極の間に設けられ前記正極および前記負極に粘着した絶縁シートを更に有するようにしてもよい。
本発明による蓄電素子において、前記第1外装材及び前記第2外装材は、縁部に位置する接合部において接合していてもよい。
本発明による蓄電素子の製造方法は、
上述した本発明による蓄電素子のいずれかの製造方法であって、
前記正極および前記負極の間に絶縁シートを介在させるようにして前記電極体を作製する工程と、
前記電極体を前記外装体内に収容して前記外装体を封止する工程と、を備え、
前記電極体を作製する工程において、粘着性を有する前記絶縁シートによって、当該絶縁シートに隣接する前記正極および前記負極を当該絶縁シートに仮留めする。
本発明による蓄電素子の製造方法の前記電極体を作製する工程において、前記正極及び前記負極に積層する前記絶縁シートに電解液が含浸していてもよい。
本発明によれば、高容量の蓄電素子を十分に薄型化することができる。
図1は、本発明の一実施の形態を説明するための図であって、蓄電素子を示す斜視図である。 図2は、図1の蓄電素子を示す平面図である。 図3は、図2のIII−III線に沿った断面図である。 図4は、図1の蓄電素子に含まれる電極体を示す斜視図である。 図5は、図3の電極体を示す平面図である。 図6は、絶縁シートを除いた状態で図3の電極体を示す平面図である。
以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。
なお、本明細書において用いる、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
図1乃至図6は、本発明による蓄電素子の一実施の形態を説明するための図である。図1は、蓄電素子の一具体例を示す斜視図である。図2は、平面視における蓄電素子を示している。図3は、図2におけるIII−III線に沿った断面において、蓄電素子1を示す断面図である。なお、図示された具体例での平面視とは、対象となる部材を第1方向d1から観察することを意味している。図1〜図3に示すように、蓄電素子1は、外装体7と、外装体7によって形成された収容空間7aに収容された電極体5及び電解液と、電極体5に接続されて外装体7の内部から外部へと延び出したタブ6と、を有している。図3及び図4に示すように、電極体5は、第1方向d1に積層された複数の第1電極10及び複数の第2電極20を有している。
図示された蓄電素子1は、全体的に厚さ方向である第1方向d1に薄い偏平形状を有しており、長手方向となる第2方向d2と短手方向となる第3方向d3に広がっている。第1方向d1、第2方向d2及び第3方向d3は、互いに非平行であり、図示された例では、互いに直交している。図2に示された蓄電素子1の平面視とは、後に参照する図5及び図6における電極体5における平面視と同様に、第1方向d1に沿った方向からの観察を意味している。
このように大型で偏平形状となっている蓄電素子1は、厚みに制限のある狭い隙間にも設置することができる。また、偏平形状の蓄電素子1を撓ませて湾曲させることもできる。さらに、大型で偏平形状となっている蓄電素子1は、容易に積層させることができる。複数の蓄電素子1を積層させてユニットとすることで、容易に大容量の蓄電素子ユニットを形成することもできる。
以下において、蓄電素子1が積層型のリチウムイオン二次電池である例について説明する。この例において、第1電極10は正極10Xを構成し、第2電極20は負極20Yを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、ここで説明する一実施の形態は、リチウムイオン二次電池に限定されることなく、第1電極10及び第2電極20を第1方向d1に交互に積層してなる蓄電素子1に広く適用され得る。
以下、蓄電素子1の各構成要素について説明する。
まず、電極体5について説明する。図3及び図4に示すように、電極体5は、第1方向d1に交互に積層された正極10X(第1電極10)及び負極20Y(第2電極20)と、正極10Xと負極20Yとの間に配置された絶縁シート30と、を有している。電極体5は、例えば板状の正極10X及び負極20Yを合計で20枚以上含んでいる。なお、図4は電極体5を示す斜視図であるが、図4において、絶縁シート30の図示は省略されている。図3に示された例において、絶縁シート30は、第1方向d1に直交する方向に広がる枚葉シート状に形成されている。そして、複数の絶縁シート30が、電極10X,20Yと第1方向d1に交互に配置されている。絶縁シート30は、電極体5の最も一側及び最も他側にも、言い換えると電極体5と外装体7との間にも、配置されている。この例に限られず、一枚の長尺の絶縁シート30が九十九折り状に折り曲げられて、第1方向d1に隣り合う正極10X及び負極20Yの間に位置するようにしてもよい。すなわち、この例においては、長尺の絶縁シート30の一方の面が正極10Xに対面し、絶縁シート30の他方の面が負極20Yに対面するようになる。
電極体5は、全体的に偏平形状を有し、第1方向d1への厚さが薄く、第1方向d1に非平行な第2方向d2及び第3方向d3に広がっている。図5は、電極体5の平面図である。図6は、絶縁シート30を除いた状態で、図5に示された電極体5を示す平面図である。図5及び図6に示された非限定的な例において、正極10X及び負極20Yは、略長方形形状の外輪郭を有している板状の電極である。第1方向d1に非平行な第2方向d2が、正極10X及び負極20Yの長手方向であり、第1方向d1及び第2方向d2の両方に非平行な第3方向d3が、正極10X及び負極20Yの短手方向(幅方向)である。図4に示されているように、正極10X及び負極20Yは、第2方向d2にずらして配置されている。より具体的には、複数の正極10Xは、第2方向d2における一側に寄って配置され、複数の負極20Yは、第2方向d2における他側に寄って配置されている。図5及び図6に示すように、正極10X及び負極20Yは、第2方向d2における中央において、第1方向d1に重なり合っている。
図5及び図6に示された例では、負極20Yは、正極10Xより、第3方向d3の一側及び他側に延び出ている。正極10X及び負極20Yの厚さ、すなわち第1方向d1に沿った正極10X及び負極20Yの長さを、例えば25μm以上500μm以下とすることができる。
次に、正極10X(第1電極10)について説明する。図3に示されているように、正極10X(第1電極10)は、正極集電体11X(第1電極集電体11)と、正極集電体11X上に設けられた正極活物質層12X(第1電極活物質層12)と、を有している。リチウムイオン二次電池において、正極10Xは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。
図3に示すように、正極集電体11Xは、互いに対向する第1面11a及び第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11a及び第2面11bの両側の面上に形成されている。具体的には、正極集電体11Xの第1面11a又は第2面11bが、電極体5に含まれる電極10X,20Yのうちの積層方向d1における最外方に位置する場合、正極集電体11Xの最外方側となる面には正極活物質層12Xが設けられない。このような正極集電体11Xの位置に依存した正極活物質層12Xの有無を除き、電極体5に含まれる複数の正極10Xは、正極集電体11Xの両側に正極活物質層12Xを有し、互いに同一に構成され得る。
正極集電体11X及び正極活物質層12Xは、蓄電素子1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、バインダーとなる結着剤を含んでいる。正極活物質層12Xは、正極活物質、導電助剤及び結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiM(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。または、正極活物質として、一般式LiMPO4(ただし、Mは金属である)で表されるリン酸金属リチウム化合物が用いられてもよい。リン酸金属リチウム化合物の具体例として、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸コバルトリチウム等が例示され得る。とりわけ、正極活物質層12Xが含む正極活物質がリン酸鉄リチウムである場合、充電電位が4V以下であるため、高容量という利点に加えてサイクル特性と安全性に優れた蓄電素子とすることができる。すなわち、蓄電素子1を長期間にわたって安全に使用することができる。導電助剤としては、アセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。
図6に示すように、正極集電体11X(第1電極集電体11)は、第1接続領域a1及び第1電極領域b1を有している。正極活物質層12X(第1電極活物質層12)は、正極集電体11Xの第1電極領域b1のみに積層されている。このため、第1接続領域a1は、電極体5の正極集電体11Xにおいて電力の供給に寄与しない部分となっている。第1接続領域a1及び第1電極領域b1は、第2方向d2に配列されている。第1接続領域a1は、第1電極領域b1よりも第2方向d2における一側(図6における下側)に位置している。すなわち、第1接続領域a1は、第2方向d2の端部に位置している。複数の正極集電体11Xは、図4に示すように、第1接続領域a1において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって互いに接合され、互いに電気的に接続している。
図示された例では、一つのタブ6が、第1接続領域a1において正極集電体11Xに電気的に接続している。タブ6は、電極体5から第2方向d2に延び出している。一方、図4及び図6に示すように、第1電極領域b1は、負極20Yの後述する負極活物質層22Yに対面する領域の内側に位置している。そして、第3方向d3に沿った正極10Xの幅は、第3方向d3に沿った負極20Yの幅よりも狭くなっている。このような第1電極領域b1の配置により、負極活物質層22Yからのリチウムの析出を防止することができる。
次に、負極20Y(第2電極20)について説明する。負極20Y(第2電極20)は、負極集電体21Y(第2電極集電体21)と、負極集電体21Y上に設けられた負極活物質層22Y(第2電極活物質層22)と、を有している。リチウムイオン二次電池において、負極20Yは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。
図3に示すように、負極集電体21Yは、互いに対向する第1面21a及び第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21a及び第2面21bの少なくとも一方の面上に形成される。具体的には、負極集電体21Yの第1面21a又は第2面21bが、電極体5に含まれる電極10X,20Yのうちの積層方向d1における最外方に位置する場合、負極集電体21Yの最外方側となる面には負極活物質層22Yが設けられない。このような負極集電体21Yの位置に依存した負極活物質層22Yの有無を除き、電極体5に含まれる複数の負極20Yは、負極集電体21Yの両側に設けられた一対の負極活物質層22Yを有し、互いに同一に構成され得る。
負極集電体21Y及び負極活物質層22Yは、蓄電素子1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、炭素材料からなる負極活物質、及び、バインダーとして機能する結着剤を含んでいる。負極活物質層22Yは、例えば、炭素粉末や黒鉛粉末等からなる負極活物質とポリフッ化ビニリデンやスチレン−ブタジエンゴムのような結着剤と必要に応じてカルボキシメチルセルロースのような増粘剤とを溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工して固化することで、作製され得る。
図6に示すように、負極集電体21Y(第2電極集電体21)は、第2接続領域a2及び第2電極領域b2を有している。負極活物質層22Y(第2電極活物質層22)は、負極集電体21Yの第2電極領域b2のみに積層されている。このため、第2接続領域a2は、電極体5の負極集電体21Yにおいて電力の供給に寄与しない部分となっている。第2接続領域a2及び第2電極領域b2は、第2方向d2に配列されている。第2接続領域a2は、第2電極領域b2よりも第2方向d2における他側(図6における上側)に位置している。すなわち、第2接続領域a2は、第2方向d2の端部に位置している。複数の負極集電体21Yは、第2接続領域a2において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって互いに接合され、互いに電気的に接続している。図示された例では、正極集電体11Xに接続したタブとは別のタブ6が、第2接続領域a2において負極集電体21Yに電気的に接続している。タブ6は、電極体5から第2方向d2の他側に延び出している。
既に説明したように、正極10Xの第1電極領域b1は、負極20Yの第2電極領域b2に対面する領域の内側に位置している(図6参照)。すなわち、第2電極領域b2は、正極10Xの正極活物質層12Xに対面する領域を内包する領域に広がっている。第3方向d3に沿った負極20Yの幅は、第3方向d3に沿った正極10Xの幅よりも広くなっている。とりわけ、負極20Yの第3方向d3における一側(図6の左側)に位置する一側端部20aは、正極10Xの第3方向d3における一側端部10aよりも、第3方向d3における一側に位置し、且つ、負極20Yの第3方向d3における他側(図6の右側)に位置する他側端部20bは、正極10Xの第3方向d3における他側端部10bよりも、第3方向d3における他側に位置している。
次に、絶縁シート30について説明する。絶縁シート30は、例えば第1方向d1に隣り合う任意の二つの電極10X,20Yの間に位置している。正極10X(第1電極10)及び負極20Y(第2電極20)の間に位置する絶縁シート30は、正極10X及び負極20Yが接触しないように離間させている。電極体5の第1方向d1の最も一側及び最も他側に配置されている絶縁シート30は、電極体5の表面の一部を形成しており、電極体5に含まれる電極10X,20Yが外部の部材と接触しないように離間させている。絶縁シート30は、絶縁性を有しており、正極10X及び負極20Yの接触による短絡を防止する。
図5及び図6に示されている例では、絶縁シート30は、平面視において第2方向d2及び第3方向d3に広がる矩形形状である。また、絶縁シート30は、平面視において、正極10Xの正極活物質層12Xの全領域及び負極20Yの負極活物質層22Yの全領域を覆うように広がっている。
絶縁シート30は、大きなイオン透過度(透気度)、所定の機械的強度、および、電解液、正極活物質、負極活物質等に対する耐久性を有していることが好ましい。このような絶縁シート30として、例えば、絶縁性の材料によって形成された多孔質体や不織布等を用いることができる。より具体的には、絶縁シート30として、融点が80〜140℃程度の熱可塑性樹脂からなる多孔フィルムを用いることができる。熱可塑性樹脂として、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィン系ポリマー、またはポリエチレンテレフタレートを採用することができる。外装体7の収容空間7aには、電極体5とともに電解液が封入される。電解液が、多孔質体や不織布からなる絶縁シート30に含浸することで、絶縁シート30を間に配置した電極10X,20Yの電極活物質層12X,22Yが電解液に接触した状態に維持される。
次に、タブ6について説明する。タブ6は、蓄電素子1における端子として機能する。図4〜図6に示すように、電極体5の正極10X(第1電極10)に一方(第2方向d2の一側)のタブ6が電気的に接続している。同様に、電極体5の負極20Y(第2電極20)に他方(第2方向d2の他側)のタブ6が電気的に接続している。図1及び図3に示すように、一対のタブ6は、外装体7の内部である収容空間7aから、外装体7の外部へと第2方向d2に延び出している。より具体的には、一方のタブ6の第2方向d2における他側に位置する部分が正極10X(第1電極10)に電気的に接続し、一方のタブ6の第2方向d2における一側に位置する部分が外装体7の外部に延び出している。他方のタブ6の第2方向d2における一側に位置する部分が負極20Y(第2電極20)に電気的に接続し、他方のタブ6の第2方向d2における他側に位置する部分が外装体7の外部に延び出している。タブ6の外装体7の外部に延びている部分の第2方向d2に沿った長さは、例えば10mm以上25mm以下である。
なお、図3に示すように、タブ6は、後述する外装体7が有する第1外装材40と第2外装材50との間、より詳しくは第1外装材40の第1シーラント層42と第2外装材50の第2シーラント層52との間を通過する。また、外装体7とタブ6との間は、タブ6が延び出す領域において、封止されている。外装体7とタブ6との間を封止するため、外装体7とタブ6との間にはシール部8が設けられている。シール部8は、タブ6の第2方向d2における中間部において、タブ6を周囲から取り囲んでいる。シール部8は、外装体7に溶着しており、タブ6と外装体7との間を封止している。シール部8は、タブ6と外装体7との間の接触、特にタブ6と外装体7における外装材40,50の後述する金属層41,51との接触を効果的に防止し、絶縁している。
タブ6は、アルミニウム、銅、ニッケル、ニッケルメッキ銅等を用いて板状または短冊状に形成され得る。タブ6の厚みを、例えば0.1mm以上1mm以下とすることができる。また、タブ6の幅、すなわち第3方向d3に沿ったタブ6の長さを、一定とすることができる。シール部8の材料としては、ポリプロピレン、変性ポリプロピレン、低密度ポリエチレン、アイオノマー、エチレン・酢酸ビニル共重合体等を挙げることができる。シール部8の厚みを、例えば0.05mm以上0.4mm以下とすることができる。
次に、外装体7について説明する。外装体7は、電極体5及び電解液を封止するための包装体である。図3に示すように、外装体7は、電極体5を収容するための収容空間7aを形成している。外装体7は、電極体5及び電解液をその内部の収容空間7aに収容して密閉する。
収容空間7aは、電極体5を収容することができるよう、電極体5の寸法以上の寸法となっている。一方、蓄電素子1の体積エネルギー密度を高くするため、収容空間7aは、小さくなっていることが好ましい。ここで、体積エネルギー密度とは、蓄電素子が占める体積あたりの当該蓄電素子が供給可能な電力量(容量)のことを意味する。このため、外装体7は、少なくとも第1方向d1においては収容している電極体5に接していることが好ましい。収容空間7aは、収容される電極体5の形状に合わせた形状となるよう、形成されている。図示された例では、収容空間7aは、略直方体形状となっている。
また、外装体7は、第1外装材40と、第2外装材50と、を有している。図1によく示されているように、第1外装材40と第2外装材50とがそれぞれの周縁の接合部35において接合されていることで、収容空間7aが形成されている。とりわけ、図2に示された例では、第1外装材40及び第2外装材50は、互いに対向して配置され、接合部35において接合されている。第1外装材40と第2外装材50とは、例えば接着性を有する接着層によって接合されていてもよいし、溶着されることによって接合されていてもよい。接着層によって接合される場合、接着層は、接着性に加え、絶縁性、耐薬品性、熱可塑性等を有していることが好ましく、例えば、ポリプロピレン、変性ポリプロピレン、低密度ポリエチレン、アイオノマー、エチレン・酢酸ビニル共重合体等を用いることができる。このような第1外装材40及び第2外装材50の厚さを、例えば0.1mm以上0.3mm以下とすることができる。
なお、第1外装材40と第2外装材50とは、それぞれ別の部材であってもよいが、一体化している部材であってもよい。すなわち、第1外装材40及び第2外装材50は、1つのシート状の部材の折り曲げ線を介して区分けされた二つの部分であってもよい。この場合、第1外装材40と第2外装材50とが接続されている部分(折り曲げ線の部分)以外の部分(縁部)において第1外装材40と第2外装材50とが接合されることで、収容空間7aが形成される。
図1及び図3によく示されているように、第1外装材40は、電極体5を収容可能な十分な大きさの収容空間7aを形成するため、第1外装材40の周縁から膨出した膨出部47を含んでいる。膨出部47は、第1外装材40の周縁によって取り囲まれて、第2外装材50から離間する向きに膨出している。膨出部47は、第1外装材40の中央部に位置している。一方、図示された例では、第2外装材50は、膨出部を含んでおらず、平坦になっている。
しかしながら、図示された例に限らず、第1外装材40は膨出部を含んでおらず、第2外装材50が収容空間7aを形成するための膨出部を含んでいてもよい。さらには、第1外装材40及び第2外装材50の両方が、収容空間7aを形成するための膨出部を含んでいてもよい。
図3に示された例において、第1外装材40は、第1金属層41及び第1金属層41に積層された第1シーラント層42を含んでいる。同様に、第2外装材50は、第2金属層51及び第2金属層51に積層された第2シーラント層52を含んでいる。第1シーラント層42は、第1外装材40において第2外装材50に対面する側に設けられている。第2シーラント層52は、第2外装材50において第1外装材40に対面する側に設けられている。すなわち、第1外装材40と第2外装材50とは、第1外装材40の第1シーラント層42と第2外装材50の第2シーラント層52とが向かい合うように配置されている。
また、図示された例では、第1外装材40は、第1金属層41の表面をなす面に設けられた、すなわち第1金属層41の第1シーラント層42が積層された面とは逆側の面に設けられた、絶縁性を有する第1絶縁層43をさらに含んでいる。さらに、図示された例では、第2外装材50は、第2金属層51の表面をなす面に設けられた、すなわち第2金属層51の第2シーラント層52が積層された面とは逆側の面に設けられた、絶縁性を有する第2絶縁層53をさらに含んでいる。図3に示すように、第2方向d2において、第1外装材40の第1シーラント層42と第2外装材50の第2シーラント層52との間を、タブ6が通過している。シール部8と第1シーラント層42及び第2シーラント層52が溶着等されることで、タブ6と外装体7との間が封止されている。
第1金属層41及び第2金属層51は、高ガスバリア性と成形加工性を有することが好ましく、例えばアルミニウム箔やステンレス箔等を用いることができる。第1シーラント層42及び第2シーラント層52は、収容空間7aに収容された電極体5と第1金属層41及び第2金属層51とが電気的に接続されることを防止する。第1シーラント層42及び第2シーラント層52は、熱可塑性を有する。熱可塑性を有する第1シーラント層42及び第2シーラント層52によって、第1外装材40と第2外装材50とを溶着によって接合することができる。第1シーラント層42及び第2シーラント層52としては、例えばポリプロピレン等を用いることができる。第1絶縁層43及び第2絶縁層53は、外部の導体と第1金属層41及び第2金属層51とが電気的に接続されることを防止する。第1絶縁層43及び第2絶縁層53は、例えば薄膜状のナイロンやポリエチレンテレフタレートからなる層である。
次に、上述した構成からなる蓄電素子1の製造方法の一例について、説明する。
まず、正極10X、絶縁シート30、負極20Y、絶縁シート30をこの順で繰り返し積層する。これにより、正極10X及び負極20Yが交互に積層され且つ正極10X及び負極20Yの間に絶縁シート30が配置された電極体5が作製される。電極体5が正極10X及び負極20Yを合計で20以上含むよう、正極10X、絶縁シート30及び負極20Yを積層するようにしてもよい。
次に、作製された電極体5の第2方向d2における一側において、第2方向d2に延びるタブ6を正極10Xと電気的に接続し、第2方向d2における他側において、第2方向d2に延びる別のタブ6を負極20Yと電気的に接続する。このとき、電極体5に含まれる複数の正極10Xを、第1接続領域a1において、互いに電気的に接続するようにしてもよい。また、電極体5に含まれる複数の負極20Yを、第2接続領域a2において、互いに電気的に接続するようにしてもよい。タブ6と電極10、20との電気的接続、及び、複数の電極10、20の間での電気的接続は、例えば、超音波接合による導電性材料の溶着によって、実現され得る。
なお、本実施の形態においては、後述する理由から、電極体5の第1方向d1に沿った厚みT〔mm〕の2乗に対する正極活物質層12Xの平均面積A〔mm〕の比の値(A/T)が、100以上20000以下となるよう、より好ましくは200以上10000以下となるよう、更に好ましくは500以上5000以下となるよう、電極体5を作製する。また、本実施の形態においては、負極と正極との合計枚数が10枚以上となるよう、より好ましくは20枚以上となるよう、更に好ましくは30枚以上となるよう、電極体5を作製する。
また、第1外装材40及び第2外装材50を用意(作製)する。外装材40,50は、例えばアルミニウム箔からなる金属層41,51に、例えばポリエチレン、ポリプロピレン、またはポリエチレンテレフタレートからなるシーラント層42,52、更には絶縁層43,53をラミネートすることで作製され得る。第1外装材40及び第2外装材50は、平板状に形成される。第1外装材40には、例えばエンボス加工によって、膨出部47が形成され得る。
その後、電極体5を第1外装材40及び第2外装材50の間に配置する。第1外装材40及び第2外装材50は、第1シーラント層42及び第2シーラント層52の側が向かい合うように配置される。このとき、一方のタブ6は、第2方向d2の一側において第1外装材40及び第2外装材50の間から外方に延び出しており、他方のタブ6は第2方向d2の他方において第1外装材40及び第2外装材50の間から外方に延び出している。その後、第1外装材40及び第2外装材50を周縁において接合する。第1シーラント層42及び第2シーラント層52の溶着によって、第1外装材40及び第2外装材50を接合することができる。第1シーラント層42及び第2シーラント層52の溶着は、例えば、第1外装材40及び第2外装材50を加熱加圧にすることによって、実現され得る。第1外装材40と第2外装材50とが縁部(周縁)の接合部35において接合されることで、収容空間7aが形成される。収容空間7aに電解液が注入される。
以上の工程により、膨出部47によって形成された収容空間7aに、電極体5及び電解液が収容されて、図1に示すような蓄電素子1が製造される。
ところで、各電極の電極活物質層の面積を大型化することで、蓄電素子の容量を増加させることができる。ただし、各電極の電極活物質層の面積を大型化するには、製造設備等の物理的な制約を解消する必要があるだけでなく、大型化することによって積層時の位置ずれ量が大きくなるといった問題にも対処する必要があった。上述したように、正極活物質層は積層方向への投影において負極活物質層が配置されている領域の内側に配置される必要がある。正極活物質層と対面する位置に負極活物質層が位置していない場合、負極活物質層にリチウムが析出してしまう。リチウムの析出は、単なる性能低下だけでなく、外装体の損傷や破裂といった種々の不具合の原因となり得る。
さらに、正極活物質層の負極活物質層からの位置ずれを回避するために、言い換えると、正極活物質層と負極活物質層との位置決め誤差を許容するために、負極活物質層の大きさを正極活物質層の大きさよりも大幅に広げることも考えられる。しかしながら、負極活物質層と正極活物質層との面積差が大きくなることは、リチウムイオンの放出および吸蔵が有効に実施され得ない領域の増加を意味する。結果として、蓄電素子が占める体積に対する蓄電素子の容量の比率を表す体積エネルギー密度が低下してしまう。すなわち、リチウムの析出に伴った不具合を回避することができても、蓄電素子の基本的な特性が劣化してしまう。
以上のことから、従来の蓄電素子では、各電極の電極活物質層の面積が大きくなり過ぎないように設定されてきた。
一方、昨今では車載用途や定置住宅用途等の種々の用途への展開にともない、蓄電素子1の高容量化の要望が高まっている。各電極の電極活物質層の面積が制限された従来の蓄電素子の容量を増大させるには、蓄電素子に含まれる電極の枚数を増やす必要が生じる。ただし、蓄電素子は、多数の電極を含むことで、その厚みを増大させしまうことになる。そして、厚みが増大した蓄電素子は、設置場所の制約を受けることになる。
これに対し本実施の形態の蓄電素子1では、当該蓄電素子1に含まれた正極活物質層12Xの平均面積A〔mm〕の電極体5の積層方向d1への厚みT〔mm〕の2乗に対する比の値(A/T)を、100以上20000以下としており、より好ましくは200以上10000以下としており、更に好ましくは500以上5000以下としている。また、本実施の形態の蓄電素子1では、負極と正極との合計枚数を10枚以上としており、より好ましくは20枚以上としており、更に好ましくは30枚以上としている。すなわち、正極活物質層12X及び負極活物質層22Yの積層方向d1に直交する方向d2,d3への過度な相対位置ずれを引き起こさず、かつ高容量を実現可能な程度に、正極活物質層12Xの平均面積A〔mm〕と電極枚数(負極と正極の合計枚数)を大きく設定しながら、様々な用途への適用に際して設置場所の制約を有効に軽減できる程度に電極体5の厚みT〔mm〕を薄くすることができる。したがって、正極活物質層12Xの平均面積A〔mm〕の電極体5の厚みT〔mm〕の2乗に対する比の値(A/T)が調節された本実施の形態によれば、リチウムの析出が生じてしまうことを効果的に回避することができるとともに、更に体積エネルギー密度を向上させることができる。併せて、蓄電素子1が十分に薄型化されるので、僅かな隙間等に高容量の蓄電素子1を配置することができる。また、蓄電素子1を或る程度撓ませることもできる。これにより、蓄電素子1を湾曲させることによって狭い経路を通じて所望の設置場所へ持ち込むことが可能になり、また、湾曲した状態に維持して蓄電素子1を設置することも可能となる。すなわち、高容量の蓄電素子1を十分に薄型化して、蓄電素子1の設置の自由度を効果的に改善することができる。
なお、「正極活物質層の平均面積A〔mm〕」とは、一つの正極10Xが正極集電体11Xの両面にそれぞれ正極活物質層を有している場合、各面上に設けられた正極活物質層の面積Aの平均値を意味している。つまり、一つの正極10Xが、二つの正極活物質層12Xを含んでいる場合には、当該二つの正極活物質層12Xの面積の合計を一つの面積の値として平均値を算出するのではなく、当該二つの正極活物質層12Xの面積をそれぞれ別々の正極活物質層の面積の値として平均値を算出することとする。
この蓄電素子1において、正極活物質層12Xの平均面積Aは、8400mm以上756000mm以下であることが好ましく、40000mm以上756000mm以下であることがより好ましく、60000mm以上756000mm以下であることが更に好ましい。この蓄電素子1によれば、偏平形状を有し設置の自由度を改善された蓄電素子1を十分に高容量化することができ、これにより、優れた体積エネルギー密度を確保することができる。また、このような蓄電素子1によれば、リチウムの析出が生じてしまうことをより効果的に回避することができるとともに、更に体積エネルギー密度の低下をより効果的に回避することができる。
このように正極活物質層12Xの平均面積A〔mm〕を調節して、高体積エネルギー密度の確保およびリチウムの析出回避を図る観点から、平面視における電極体5の面積は、9000mm以上810000mm以下であることが好ましく、27000mm以上810000mm以下であることがより好ましく、54000mm以上810000mm以下であることが更に好ましい。同様に、正極活物質層12Xの平均面積Aを調節して、高体積エネルギー密度の確保およびリチウムの析出回避を図る観点から、平面視における外装体7の面積は12000mm以上900000mm以下であることが好ましく、48000mm以上900000mm以下であることがより好ましく、96000mm以上900000mm以下であることが更に好ましい。
この蓄電素子1において、電極体5の第1方向d1に沿った厚さT〔mm〕は、0.25mm以上9.5mm以下であることが好ましく、0.9mm以上9.5mm以下であることがより好ましく、2.9mm以上9.5mm以下であることが更に好ましい。この蓄電素子1によれば、設置の自由度を有効に改善することができる。
このように電極体5の厚さT〔mm〕を調節して、薄型化による蓄電素子1の設置自由度の改善を図る観点から、蓄電素子1及び外装体7の第1方向d1に沿った厚さは、0.3mm以上10mm以下であることが好ましく、1mm以上10mm以下であることがより好ましく、3mm以上10mm以下であることが更に好ましい。
また、図示された具体例において、正極活物質層12Xは平面視において矩形状を有している。そして、平面視における正極活物質層12Xの長辺の長さ〔mm〕の正極活物質層12Xの短辺の長さ〔mm〕に対する比の値は、1.50以上5.00以下であることが好ましく、1.80以上5.00以下であることがより好ましく、2.00以上5.00以下であることが更に得好ましい。この蓄電素子1によれば、電極体5の厚さTが薄いだけでなく、正極活物質層12Xの短辺の長さ〔mm〕も十分に短くすることができる。したがって、蓄電素子1が挿入されるべき隙間(空間)の厚さ(幅)だけでなく、当該隙間の深さ又は当該隙間の長さが狭い場合にも、蓄電素子1を当該隙間に収容することが可能となる。これにより、蓄電素子1の配置や設置の自由度を更に改善することができる。
このように正極活物質層層12Xの長辺の長さ〔mm〕の短辺の長さ〔mm〕に対する比の値を調節して、蓄電素子1の設置自由度の改善を図る観点から、平面視において矩形状を有する電極体5の長辺の長さ〔mm〕の当該電極体5の短辺の長さ〔mm〕に対する比の値は、1.50以上5.00以下であることが好ましく、1.80以上5.00以下であることがより好ましく、2.00以上5.00以下であることが更に好ましい。同様に、正極活物質層層12Xの長辺の長さ〔mm〕の短辺の長さ〔mm〕に対する比の値を調節して、蓄電素子1の設置自由度の改善を図る観点から、平面視において矩形状を有する外装体7の長辺の長さ〔mm〕の当該外装体7の短辺の長さ〔mm〕に対する比の値は、1.50以上5.00以下であることが好ましく、1.80以上5.00以下であることがより好ましく、2.00以上5.00以下であることが更に好ましい。
なお、蓄電素子1に関するその他の寸法等は、以下のように設定することができる。蓄電素子1の重さは、例えば0.06kg以上4.00kg以下とすることができる。平面視において矩形形状を有する外装体7の長辺の長さ〔mm〕を100mm以上1000mm以下とすることができ、外装体7の短辺の長さ〔mm〕を100mm以上500mm以下とすることができる。平面視において矩形形状を有する電極体5の長辺の長さ〔mm〕を200mm以上950mm以下とすることができ、電極体5の短辺の長さ〔mm〕を70mm以上350mm以下とすることができる。平面視において矩形形状を有する正極活物質層12Xの長辺の長さ〔mm〕を100mm以上1000mm以下とすることができ、正極活物質層12Xの短辺の長さ〔mm〕を100mm以上500mm以下とすることができる。
さらに、以上に説明した蓄電素子1では、電極体5に含まれる電極10X,20Yの数量を低減しながら、体積エネルギー効率を維持することを意図されている。したがって、一対の正極10X及び負極20Yの間での容量は大きくなる傾向があり、リチウムの析出を回避することの重要性が増す。このような蓄電素子1においては、絶縁シート30を介して対向する一対の正極10X及び負極20Yの間における満充電時での電圧を、4.0V以下とすることが好ましく、3.8V以下とすることがより好ましく、3.7V以下とすることが更に好ましい。このような蓄電素子1によれば、高体積エネルギー密度を確保しながら、同時にサイクル特性と安全性を向上させることができる。
絶縁シート30を介して対向する一対の正極10X及び負極20Yの間における満充電時での電圧を調節して、リチウムの析出を効果的に回避する観点から、密充電時における正極10Xの平均反応電位を、4.0〔V vs Li/Li〕以下とすることが好ましく、3.8V以下とすることがより好ましく、3.7V以下とすることが更に好ましい。また同様に、絶縁シート30を介して対向する一対の正極10X及び負極20Yの間における満充電時での電圧を調節して、リチウムの析出を効果的に回避する観点から、正極活物質層12Xはリン酸鉄リチウムを正極活物質として含むことが好ましい。
なお、正極10Xの平均反応電位は、例えば、蓄電素子1から正極10X、負極20Yおよび電解液を取り出し、さらに別途用意した参照極用のリチウム箔と組み合わせてラミネート型の三極セルを作製し、参照極に対する正極10Xの電圧を測定することで求めることができる。
更に同様に、絶縁シート30を介して対向する一対の正極10X及び負極20Yの間における満充電時での電圧を調節して、リチウムの析出を効果的に回避する観点から、密充電時における負極20Yの平均反応電位を、1.5〔V vs Li/Li〕以上とすることが好ましく、1.8)V以上とすることがより好ましく、2.0)V以上とすることが更に好ましい。更に同様に、絶縁シート30を介して対向する一対の正極10X及び負極20Yの間における満充電時での電圧を調節して、リチウムの析出を効果的に回避する観点から、負極活物質層22Yはチタン酸リチウムを負極活物質として含むことが好ましい。
なお、負極20Yの平均反応電位は、例えば、蓄電素子1から正極10X、負極20Yおよび電解液を取り出し、さらに別途用意した参照極用のリチウム箔と組み合わせてラミネート型の三極セルを作製し、参照極に対する負極20Yの電圧を測定することで求めることができる。
さらに、上述した蓄電素子1において、正極10X及び負極20Yの間に設けられた絶縁シート30が、正極10X及び負極20Yに粘着するようにしてもよい。このような蓄電素子1の電極体5において、正極10X及び負極20Yが隣接する絶縁シート30に対して相対移動することを効果的に抑制することができる。より具体的には、用いられる電解液の種類を調節したり、絶縁シート30の表面に粘着性樹脂を設けたりすることで、絶縁シート30にいくらかの粘着性を付与することができる。例えば、エチレンカーボネートやプロピレンカーボネートなどの環状炭酸エステルの含有率を増やすと、電解液の粘度が上昇するため、絶縁シート30と正極10X及び20Yとの間にいくらかの粘着性が生じる。あるいは、アクリル系、シリコーン系、ゴム系などの粘着剤を溶剤に分散させて絶縁シート30の表面に塗布した後に溶剤を乾燥させることで、絶縁シート30の表面に粘着剤樹脂を設けることによっても、絶縁シート30と正極10X及び20Yとの間に粘着性が生じる。絶縁シート30が正極10X及び負極20Yに粘着することで、蓄電素子1及び電極体5に含まれる電極間の相対位置を安定して維持することができる。これにより、リチウムの析出を効果的に抑制することができる。
また、上述した蓄電素子1の製造方法における電極体5の作製段階において、絶縁シート30が粘着性を有していることが有効である。すなわち、電極10X,20Yを積層して電極体5を作製する際に、絶縁シート30に電解液を含浸させておく。この例によれば、電極体5を作製する工程において、粘着性を有する絶縁シート30によって、当該絶縁シート30に隣接する正極10X及び負極20Yを当該絶縁シート30に仮留めすることができる。すなわち、粘着性を有した絶縁シート30と積層された電極10X,20Yを、絶縁シート30に対して位置決めした位置に維持することができる。結果として、絶縁シート30を介して対向する一対の電極10X,20Yの相対位置を、蓄電素子1の作製中や作製された蓄電素子1の使用中に維持することができる。これにより、蓄電素子1における意図しないリチウムの析出を効果的に抑制することができる。
以上に説明してきた一実施の形態において、蓄電素子1は、第1外装材40及び第2外装材50を含む外装体7と、第1外装材40と第2外装材50との間に形成される収容空間7aに収容された電極体5と、を有し、電極体5は第1方向d1に交互に積層された負極20Y及び正極10Xを含んでいる。そして、電極体5の第1方向d1に沿った厚みT〔mm〕の2乗に対する正極活物質層12Xの平均面積A〔mm〕の比の値(A/T)を、100以上20000以下としている。さらに、負極と正極との合計枚数を10枚以上としている。このような本実施の形態では、正極活物質層12Xの面積A〔mm〕の大きさに対して電極体5の厚みT〔mm〕が十分薄く設定されている。したがって、蓄電素子1の体積エネルギー密度を十分大きく確保しながら、蓄電素子1の厚みを十分に薄くすることができる。これにより、例えば偏平形状の蓄電素子1を僅かな隙間に設置することや湾曲した状態で設置することも可能となり、蓄電素子1の設置の自由度を大幅に改善することができる。
また、以上に説明してきた一実施の形態において、蓄電素子の製造方法は、正極10X及び負極20Yの間に絶縁シート30を介在させるようにして電極体5を作製する工程と、電極体5を外装体7内に収容して外装体7を封止する工程と、を含んでいる。電極体5を作製する工程において、粘着性を有する絶縁シート30によって、当該絶縁シート30に隣接する正極10X及び負極20Yを当該絶縁シート30に仮留めする。このような一実施の形態によれば、絶縁シート30によって正極10X及び負極20Yを位置決めした位置に仮留めしながら積層していくことができる。したがって、正極10X及び負極20Yの位置ずれ量を効果的に抑制することが可能となり、大型偏平形状を有する蓄電素子1を安定して製造することが可能となる。
一実施の形態を複数の具体例により説明してきたが、これらの具体例が一実施の形態を限定することを意図していない。上述した一実施の形態は、その他の様々な具体例で実施されることが可能であり、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。
以下、実施例を用いて本発明をより詳細に説明するが、本発明はこの実施例に限定されるものではない。
<蓄電素子の作製>
負極活物質として黒鉛を98重量部、バインダーとしてスチレンブタジエンゴムを1重量部、増粘剤としてカルボキシメチルセルロースを1重量部、溶剤として水を含む負極スラリーを作製した。これを、465mm×175mmの負極集電体(材質はCu)上にバーコーターにて塗布し、加熱乾燥により溶剤の水を揮発させ、大きさ440mm×175mmの負極活物質層を形成した。同様にして負極集電体の反対面にも負極活物質層を形成し、負極集電体の両面に負極活物質層が形成された負極を得た。なお、負極活物質層が形成された領域は、積層方向d1への投影においてちょうど重なりあっていた。これを繰り返し、合計17枚の負極を得た。
正極活物質としてリン酸鉄リチウムを90重量部、バインダーとしてポリフッ化ビニリデンを4重量部、導電助剤としてカーボンブラックを6重量部、溶剤としてN−メチルピロリドン(NMP)を含む正極スラリーを作製した。これを、465mm×170mmの正極集電体(材質はAl)上にバーコーターにて塗布し、加熱乾燥により溶剤のNMPを揮発させ、大きさ430mm×170mmの正極活物質層を形成した。したがって、正極活物質層の平均面積は73100mmとなった。同様にして正極集電体の版対面にも正極活物質層を形成し、正極集電体の両面に正極活物質層が形成された正極を得た。なお、正極活物質層が形成された領域は、正極の平面視にてちょうど重なり合っていた。これを繰り返し、合計16枚の正極を得た。
これとは別に、大きさ450mm×180mmの絶縁シート(材質はポリプロピレン)を32枚、大きさ510mm×210mmの外装体(材質はAl、熱溶着層としてポリプロピレン層あり)を2枚用意した。
負極17枚、正極16枚、絶縁シート32枚を、負極、絶縁シート、正極、絶縁シート、負極・・・の順に積層し、電極体7を得た。電極体7の平面視による第2方向においては、絶縁シートの一端から15mm離れたところに17枚の負極集電体の第2方向端部が、絶縁シートの他端から15mm離れたところに16枚の正極集電体の第2方向端部が存在していた。なお、第1方向への投影において、負極活物質層が正極活物質層を内包するように負極および正極を積層した。
17枚の負極集電体(正極活物質未塗布部分)の第3方向中央に、第1方向長さ0.2mm、第2方向長さ25mm、第3方向長さ10mmの負極用タブ(材質はCu)を載せ、負極用タブと17枚の負極集電体とを超音波溶着にて溶着した。また、16枚の正極集電体(正極活物質未塗布部分)の第3方向中央に、第1方向長さ0.2mm、第2方向長さ25mm、第3方向長さ10mmの正極用タブ(材質はAl)を載せ、正極用タブと16枚の正極集電体とを超音波溶着にて溶着した。
以上のようにして作製された電極体を第1方向から観察した場合における、第2方向に沿った長さは460mmとなり、第3方向に沿った長さは180mmとなった。また、電極体の第1方向に沿った厚みは4.6mmとなった。
2枚の外装材のうち1枚(第1外装材)のみに、エンボス加工により、第1方向長さ(深さ)4.7mm、第2方向長さ480mm、第3方向長さ190mmの収容空間を設けた。
エンボス加工を施さなかった外装材(第2外装材)を平面上に裁置し、外装体の長辺が電極体の第2方向と、外装材の短辺が電極体の第3方向と、外装材の中心が電極体の中心と、それぞれ一致するよう、電極体を外装材の上に裁置した。その上から、エンボス加工により設けた空間部分が電極体を収容するよう、エンボス加工を施した外装材(第1外装材)を裁置した。このとき、負極用タブと正極用タブは、2枚の外装材の間を通過して第2方向に延びていた。
2枚の外装材の第2方向両端から各々15mmを、第3方向に平行に、熱溶着により溶着した。このとき、負極用タブと正極用タブは、各々2枚の外装材の間に固定された。次に、2枚の外装材の第3方向の一端から10mmを、熱溶着により溶着した。
2枚の外装材の第3方向他端から、電解液(エチレンカーボネート:ジエチルカーボネート=3;7、LiPF濃度1mol/L)160mLを注入した。次に、2枚の外装体の第3方向他端を熱溶着により溶着し、電極体と電解液を外装体の収容空間内に封止した。
以上のようにして作製された蓄電素子を第1方向から観察した場合における、外装体の第2方向に沿った長さは510mmとなり、外装体及び蓄電素子の第3方向に沿った長さは210mmとなった。そして、外装体及び蓄電素子の第1方向に沿った厚みは5mmとなり、電極体の第1方向に沿った厚みT〔mm〕の2乗に対する正極活物質層の平均面積A〔mm〕の比の値(A/T)は、2924となった。この蓄電素子は、十分に大きな体積エネルギー密度(234Wh/L)を有する一方で、厚みが5mmと十分に薄型化されて湾曲させることもできた。
1 蓄電素子
5 電極体
6 タブ
7 外装体
7a 収容空間
8 シール部
10 第1電極
10X 正極
11 第1電極集電体
11X 正極集電体
12 第1電極活物質層
12X 正極活物質層
20 第2電極
20Y 負極
21 第2電極集電体
21Y 負極集電体
22 第2電極活物質層
22Y 負極活物質層
30 絶縁シート
35 接合部
40 第1外装材
41 第1金属層
42 第1シーラント層
43 第1絶縁層
47 膨出部
50 第2外装材
51 第2金属層
52 第2シーラント層
53 第2絶縁層
d1 第1方向
d2 第2方向
d3 第3方向
a1 第1接続領域
b1 第1電極領域
a2 第2接続領域
b2 第2電極領域

Claims (12)

  1. 第1外装材および第2外装材を含む外装体と、
    前記第1外装材と前記第2外装材との間に形成される収容空間に収容され、第1方向に交互に積層された負極及び正極を含む電極体と、を備え、
    前記負極は、負極集電箔と、負極集電箔の少なくとも一方の面上に設けられた負極活物質を含む負極活物質層と、を有し、
    前記正極は、正極集電箔と、正極集電箔の少なくとも一方の面上に設けられた正極活物質を含む正極活物質層と、を有し、
    前記電極体の前記第1方向に沿った厚みT〔mm〕の2乗に対する前記正極活物質層の平均面積A〔mm〕の比の値(A/T)は、100以上20000以下であり、
    前記負極と前記正極との合計枚数は10枚以上である、蓄電素子。
  2. 前記正極活物質層の平均面積Aは8400mm以上756000mm以下である、請求項1に記載の蓄電素子。
  3. 前記電極体の前記第1方向に沿った厚さは0.3mm以上10mm以下である、請求項1又は2に記載の蓄電素子。
  4. 前記正極活物質層は平面視において矩形状を有し、
    平面視における前記正極活物質層の長辺の長さ〔mm〕の前記正極活物質層の短辺の長さ〔mm〕に対する比の値は1.50以上5.00以下である、請求項1〜3のいずれか一項に記載の蓄電素子。
  5. 密充電時における電圧が4.0〔V〕以下である、請求項1〜4のいずれか一項に記載の蓄電素子。
  6. 密充電時における前記正極の平均反応電位は4.0〔V vs Li/Li〕以下である、請求項1〜5のいずれか一項に記載の蓄電素子。
  7. 前記正極活物質層はリン酸鉄リチウムを前記正極活物質として含む、請求項1〜6のいずれか一項に記載の蓄電素子。
  8. 密充電時における前記負極の平均反応電位は1.5〔V vs Li/Li〕以上である、請求項1〜7のいずれか一項に記載の蓄電素子。
  9. 前記負極活物質層はチタン酸リチウムを前記負極活物質として含む、請求項1〜8のいずれか一項に記載の蓄電素子。
  10. 前記第1外装材及び前記第2外装材は、縁部に位置する接合部において接合している、請求項1〜9のいずれか一項に記載の蓄電素子。
  11. 請求項1〜10のいずれか一項に記載の蓄電素子の製造方法であって、
    前記正極および前記負極の間に絶縁シートを介在させるようにして前記電極体を作製する工程と、
    前記電極体を前記外装体内に収容して前記外装体を封止する工程と、を備え、
    前記電極体を作製する工程において、粘着性を有する前記絶縁シートによって、当該絶縁シートに隣接する前記正極および前記負極を当該絶縁シートに仮留めする、蓄電素子の製造方法。
  12. 前記電極体を作製する工程において、前記正極及び前記負極に積層する前記絶縁シートに電解液が含浸している、請求項11に記載の蓄電素子の製造方法。
JP2019174781A 2019-09-25 2019-09-25 蓄電素子及び蓄電素子の製造方法 Active JP6846490B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019174781A JP6846490B1 (ja) 2019-09-25 2019-09-25 蓄電素子及び蓄電素子の製造方法
CN202080038811.4A CN113906608A (zh) 2019-09-25 2020-09-24 蓄电元件和蓄电元件的制造方法
PCT/JP2020/036120 WO2021060405A1 (ja) 2019-09-25 2020-09-24 蓄電素子及び蓄電素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174781A JP6846490B1 (ja) 2019-09-25 2019-09-25 蓄電素子及び蓄電素子の製造方法

Publications (2)

Publication Number Publication Date
JP6846490B1 true JP6846490B1 (ja) 2021-03-24
JP2021051942A JP2021051942A (ja) 2021-04-01

Family

ID=74878936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174781A Active JP6846490B1 (ja) 2019-09-25 2019-09-25 蓄電素子及び蓄電素子の製造方法

Country Status (3)

Country Link
JP (1) JP6846490B1 (ja)
CN (1) CN113906608A (ja)
WO (1) WO2021060405A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182685B2 (ja) * 2007-11-09 2013-04-17 Necエナジーデバイス株式会社 積層型二次電池及びその製造方法
JP5272494B2 (ja) * 2008-04-23 2013-08-28 日産自動車株式会社 双極型二次電池
JP6731157B2 (ja) * 2017-02-03 2020-07-29 トヨタ自動車株式会社 角型二次電池
JP6697685B2 (ja) * 2017-02-06 2020-05-27 トヨタ自動車株式会社 密閉型電池および組電池

Also Published As

Publication number Publication date
CN113906608A (zh) 2022-01-07
WO2021060405A1 (ja) 2021-04-01
JP2021051942A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6494596B2 (ja) シート積層型リチウムイオン二次電池及びシート積層型リチウムイオン二次電池の製造方法
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
CN107851852B (zh) 蓄电装置
US10468638B2 (en) Method for forming a pouch for a secondary battery
WO2020066520A1 (ja) 蓄電素子、蓄電素子の製造方法
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
KR20140013177A (ko) 이차전지 및 이를 포함하는 전기화학소자
CN113966559A (zh) 叠层型电池和叠层型电池的输送方法
JP6619594B2 (ja) リチウムイオン二次電池及びその製造方法
JP5664068B2 (ja) 積層型電池、および積層型電池の製造方法
JP6846490B1 (ja) 蓄電素子及び蓄電素子の製造方法
JP7201482B2 (ja) 蓄電素子および蓄電素子の製造方法
CN113950766A (zh) 叠层型电池
JP2020140831A (ja) 蓄電素子及び蓄電素子の製造方法
JP2020144998A (ja) 蓄電素子
JP7193363B2 (ja) 蓄電素子、蓄電素子の製造方法
JP6889222B2 (ja) 積層型電池および積層型電池の製造方法
JP7010904B2 (ja) 蓄電素子の製造方法
WO2021060409A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP6835766B2 (ja) 積層型電池
JP2021039833A (ja) 蓄電素子及び蓄電素子の製造方法
JP2020144997A (ja) 蓄電素子および蓄電素子の製造方法
JP2020053238A (ja) 蓄電素子、蓄電素子の製造方法
JP2021012892A (ja) 積層型電池
JP2020149798A (ja) 積層型電池および積層型電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201102

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6846490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250