JP2020140831A - 蓄電素子及び蓄電素子の製造方法 - Google Patents

蓄電素子及び蓄電素子の製造方法 Download PDF

Info

Publication number
JP2020140831A
JP2020140831A JP2019034824A JP2019034824A JP2020140831A JP 2020140831 A JP2020140831 A JP 2020140831A JP 2019034824 A JP2019034824 A JP 2019034824A JP 2019034824 A JP2019034824 A JP 2019034824A JP 2020140831 A JP2020140831 A JP 2020140831A
Authority
JP
Japan
Prior art keywords
electrode
metal layer
power storage
storage element
exterior material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019034824A
Other languages
English (en)
Inventor
博道 加茂
Hiromichi KAMO
博道 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019034824A priority Critical patent/JP2020140831A/ja
Publication of JP2020140831A publication Critical patent/JP2020140831A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】蓄電素子の体積エネルギー密度を向上させる。【解決手段】蓄電素子1は、外装体7と、電極体5と、タブ6と、を備える。外装体7は、第1外装材40及び第2外装材50を有する。電極体5は、第1外装材40及び第2外装材50の間に形成される収容空間7aに収容される。電極体5、第1方向d1に積層された複数の第1電極10及び複数の第2電極20を有する。タブ6は、電極体5と電気的に接続し且つ第1外装材40及び第2外装材50の間を通過して外装体7の外部へ延び出す。第1外装材40は、第1金属層41と、第1絶縁層42と、を含む。第1絶縁層42は、第1金属層41の周縁41aの一部のみであって少なくともタブ6に対面する領域に設けられる。第2外装材50は、第2金属層51と、第2絶縁層52と、を含む。第2絶縁層52は、少なくとも第2金属層51の周縁51aに設けられる。【選択図】図3

Description

本発明は、蓄電素子及び蓄電素子の製造方法に関する。
蓄電素子として、例えば特許文献1で提案されているように、正極と負極とを交互に積層してなる積層型電池や巻回型電池が広く普及している。このような積層型電池の一例として、リチウムイオン二次電池が挙げられる。リチウムイオン二次電池は、他の形式の積層型電池と比較して大容量であることを特徴の一つとしている。このような特徴を有するリチウムイオン二次電池は、今般、車載用途や定置住宅用途等の種々の用途での更なる普及を期待されている。
リチウムイオン二次電池に代表される積層型電池では、正極及び負極を有する電極体から電力を取り出すため、正極及び負極のうち電極活物質層が設けられていない領域において正極及び負極がそれぞれ別個に集電しており、集電されたそれぞれの電極の電極集電体にタブが取り付けられている。電極体は、それぞれの電極に取り付けられたタブが外部に延び出た状態で、外装体に収容される。このような外装体は、2つの外装材の周縁を接合することで作製される。
特開2012−028055号公報
ところで、このような蓄電素子において、蓄電素子が占める体積あたりの当該蓄電素子が供給可能な電力量、いわゆる体積エネルギー密度を向上させることが求められている。体積エネルギー密度を向上させるためには、電極体が供給可能な電力量を大きくするだけでなく、蓄電素子の体積を小さくすることが考えられる。蓄電素子の体積を小さくするために、外装体の体積を小さくすること、言い換えると外装材を薄くすることが検討され得る。
本発明は、このような点を考慮してなされたものであり、蓄電素子の体積エネルギー密度を向上させることを目的とする。
本発明の蓄電素子は、
第1外装材及び第2外装材を有する外装体と、
前記第1外装材及び前記第2外装材の間に形成される収容空間に収容され、第1方向に積層された複数の第1電極及び複数の第2電極を有する電極体と、
前記電極体と電気的に接続し且つ前記第1外装材及び前記第2外装材の間を通過して前記外装体の外部へ延び出したタブと、を備え、
前記第1外装材は、第1金属層と、前記第1金属層の周縁の一部のみであって少なくとも前記タブに対面する領域に設けられた第1絶縁層と、を含み、
前記第2外装材は、第2金属層と、少なくとも前記第2金属層の周縁に設けられた第2絶縁層と、を含む。
本発明の蓄電素子において、記第1絶縁層は、前記タブに対面する領域にのみ設けられていてもよい。
本発明の蓄電素子において、前記第2絶縁層は、前記第2金属層の周縁にのみ設けられていてもよい。
本発明の蓄電素子において、前記電極体の前記第1方向の最も他側に位置する前記第1電極は、前記第1金属層に接していてもよい。
本発明の蓄電素子において、前記第1外装材は、前記第1金属層に積層された第1金属層活物質層をさらに含み、
前記第1金属層は、前記第1電極に接続した前記タブに接続していてもよい。
本発明の蓄電素子において、前記電極体の前記第1方向の最も他側に位置する前記第2電極は、前記第1金属層活物質層に対面していてもよい。
本発明の蓄電素子において、
前記第1金属層は、アルミニウムを含み、
前記第1電極は、正極であり、
前記第2電極は、負極であってもよい。
本発明の蓄電素子において、前記電極体の前記第1方向の最も一側に位置する前記第1電極は、前記第2金属層に接していてもよい。
本発明の蓄電素子において、前記第2外装材は、前記第2金属層に積層された第2金属層活物質層をさらに含み、
前記第2金属層は、前記第1電極に接続した前記タブに接続していてもよい。
本発明の蓄電素子において、前記電極体の前記第1方向の最も一側に位置する前記第2電極は、前記第2金属層活物質層に対面していてもよい。
本発明の蓄電素子において、
前記第2金属層は、アルミニウムを含み、
前記第1電極は、正極であり、
前記第2電極は、負極であってもよい。
本発明の蓄電素子において、
前記電極体は、前記第1電極と前記第2電極の間に配置されたセパレータをさらに有し、
前記第2電極は、第2接続領域と前記第2接続領域よりも前記第2方向における他側に位置する第2電極領域とを有する第2電極集電体と、前記第2電極集電体と前記第2電極領域において積層された第2電極活物質層と、を有し、
前記セパレータは、前記第2電極集電体と前記外装体との間を延びていてもよい。
本発明の蓄電素子において、
前記第2電極は、第2接続領域と前記第2接続領域よりも前記第1方向に非平行な第2方向における他側に位置する第2電極領域とを有する第2電極集電体と、前記第2電極集電体と前記第2電極領域において積層された第2電極活物質層と、を有し、
前記第2絶縁層は、前記第1方向において前記第2接続領域に重なる位置に設けられていてもよい。
本発明の蓄電素子の製造方法は、
第1金属層及び前記第1金属層の周縁の一部のみに設けられた第1絶縁層を含む第1外装材と、第2金属層及び少なくとも前記第2金属層の周縁に設けられた第2絶縁層とを含む第2外装材と、の間に、積層された複数の電極を含む電極体を配置する工程と、
前記第1外装材の周縁及び前記第2外装材の周縁を接合して外装体を形成する工程と、を備え、
前記電極体は、前記電極体と電気的に接続したタブの一部分が前記外装体の外部に露出するように、前記外装体に収容され、
前記第1絶縁層は、少なくとも前記タブに対面する領域に設けられている。
本発明の蓄電素子の製造方法において、前記第1絶縁層は、前記タブに対面する領域にのみ設けられていてもよい。
本発明の蓄電素子の製造方法において、前記第2絶縁層は、前記第2金属層の周縁にのみ設けられていてもよい。
本発明によれば、蓄電素子の体積エネルギー密度を向上させることができる。
本発明の一実施の形態を説明するための図であって、蓄電素子を示す斜視図である。 図2は、図1の蓄電素子の外装体の内部に収容された電極体を示す平面図である。 図3は、図2の電極体からセパレータを除いた平面図である。 図4は、図1のIV−IV線に沿った断面図である。 図5は、図1のV−V線に沿った蓄電素子の外装体の断面図である。 図6は、外装体の第1外装材の平面図である。 図7は、外装体の第2外装材の平面図である。 図8は、蓄電素子の一変形例を示す断面図である。
以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。
なお、本明細書において、「板」、「シート」、「フィルム」の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。
また、本明細書において用いる、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
図1乃至図7は、本発明による蓄電素子の一実施の形態を説明するための図である。図1は、蓄電素子の一具体例を示す斜視図である。図1に示すように、蓄電素子1は、外装体7と、外装体7によって形成された収容空間7aに収容された電極体5と、電極体5に接続されて外装体7の内部から外部へと延び出したタブ6と、を有している。また、図2及び図3は、蓄電素子1に含まれる電極体5を示す平面図であり、図4は、図1のIV−IV線に沿った断面図である。図2乃至図4に示すように、電極体5は、第1方向d1に積層された複数の第1電極10及び第2電極20を有している。図1に示された例において、蓄電素子1は、全体的に厚さ方向である第1方向d1が薄い偏平形状を有しており、長手方向となる第2方向d2と短手方向となる第3方向d3に広がっている。第1方向d1、第2方向d2及び第3方向d3は、互いに非平行であり、図示された例では、第1方向d1、第2方向d2及び第3方向d3は、互いに直交している。
以下において、蓄電素子1が積層型電池、具体的にはリチウムイオン二次電池である例について説明する。この例において、第1電極10は正極10Xを構成し、第2電極20は負極20Yを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、ここで説明する一実施の形態は、リチウムイオン二次電池に限定されることなく、第1電極10及び第2電極20を第1方向d1に交互に積層してなる蓄電素子1に広く適用され得る。また、蓄電素子1は積層型電池に限らず、例えば巻回型電池であってもよい。蓄電素子1が巻回型電池である場合でも、第1電極10及び第2電極20が第1方向d1に積層される。
以下、蓄電素子1の各構成要素について説明する。
まず、電極体5について説明する。図2乃至図4に示すように、電極体5は、正極10X(第1電極10)と、負極20Y(第2電極20)と、正極10Xと負極20Yとの間に配置されたセパレータ30と、を有している。図2は、収容空間7aに収容されている電極体5を示す平面図であり、図3は、図2に示された電極体5からセパレータ30を除いた平面図である。図4に示すように、正極10X及び負極20Yは、第1方向d1に沿って交互に積層されている。図4に示された例では、電極体5の第1方向d1における最も一側となる電極は正極10Xであり、最も他側となる電極も正極10Xである。電極体5は、例えば板状の正極10X及び負極20Yを合計で20枚以上含んでいる。電極体5は、全体的に偏平形状を有し、第1方向d1への厚さが薄く、第2方向d2及び第3方向d3に広がっている。電極体5の厚さ、すなわち第1方向d1に沿った長さは、例えば4mm以上20mm以下である。
図2及び図3に示された非限定的な例において、正極10X及び負極20Yは、略長方形形状の外輪郭を有している板状の電極である。第1方向d1に非平行な第2方向d2が、正極10X及び負極20Yの長手方向であり、第1方向d1及び第2方向d2の両方に非平行な第3方向d3が、正極10X及び負極20Yの短手方向(幅方向)である。図2及び図3に示されているように、正極10X及び負極20Yは、第2方向d2にずらして配置されている。より具体的には、複数の正極10Xは、第2方向d2における他側(図の右側)に寄って配置され、複数の負極20Yは、第2方向d2における一側(図の左側)に寄って配置されている。図2及び図3に示すように、正極10X及び負極20Yは、第2方向d2における中央において、第1方向d1に重なり合っている。
図2及び図3に示されているように、負極20Y(第2電極20)の第3方向d3(幅方向)に沿った長さは、正極10X(第1電極10)の第3方向d3に沿った長さよりも長くなっている。図示された例では、負極20Yは、正極10Xより、第3方向d3の一側及び他側に延び出ている。正極10X及び負極20Yの厚さ、すなわち第1方向d1の長さは、例えば80μm以上200μm以下であり、長手方向、すなわち第2方向d2に沿った長さは、例えば200mm以上950mm以下であり、短手方向、すなわち第3方向d3に沿った長さ(幅)は、例えば70mm以上350mm以下である。
図3に示されているように、正極10X(第1電極10)は、正極集電体11X(第1電極集電体11)と、正極集電体11X上に設けられた正極活物質層12X(第1電極活物質層12)と、を有している。リチウムイオン二次電池において、正極10Xは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。
図4に示すように、正極集電体11Xは、互いに対向する第1面11a及び第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11a及び第2面11bの両側の面上に形成されている。電極体5に含まれる複数の正極10Xは、正極集電体11Xの両側に設けられた一対の正極活物質層12Xを有し、互いに同一に構成され得る。
正極集電体11X及び正極活物質層12Xは、蓄電素子1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、バインダーとなる結着剤を含んでいる。正極活物質層12Xは、正極活物質、導電助剤及び結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiM(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。または、一般式LiMPO4(ただし、Mは金属である)で表されるリン酸金属リチウム化合物が用いられる。リン酸金属リチウム化合物の具体例として、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸コバルトリチウム等が例示され得る。導電助剤としては、アセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。
図3に示すように、正極集電体11X(第1電極集電体11)は、第1端部領域a1及び第1電極領域b1を有している。正極活物質層12X(第1電極活物質層12)は、正極集電体11Xの第1電極領域b1のみに配置されている。第1端部領域a1及び第1電極領域b1は、第2方向d2に配列されている。第1端部領域a1は、第1電極領域b1よりも第2方向d2における他側(図3における右側)に位置している。複数の正極集電体11Xは、第1端部領域a1において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。図示された例では、一つのタブ6が、第1端部領域a1において正極集電体11Xに電気的に接続している。このタブ6は、電極体5から第2方向d2の他側に延び出している。一方、図3に示すように、第1電極領域b1は、負極20Yの後述する負極活物質層22Yに対面する領域内に位置している。そして、第3方向d3に沿った正極10Xの幅は、第3方向d3に沿った負極20Yの幅よりも狭くなっている。このような第1電極領域b1の配置により、負極活物質層22Yからのリチウムの析出を防止することができる。
次に、負極20Y(第2電極20)について説明する。負極20Y(第2電極20)は、負極集電体21Y(第2電極集電体21)と、負極集電体21Y上に設けられた負極活物質層22Y(第2電極活物質層22)と、を有している。リチウムイオン二次電池において、負極20Yは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。
図4に示すように、負極集電体21Yは、互いに対向する第1面21a及び第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21a及び第2面21bの両側の面上に形成されている。電極体5に含まれる複数の負極20Yは、負極集電体21Yの両側に設けられた一対の負極活物質層22Yを有し、互いに同一に構成され得る。
負極集電体21Y及び負極活物質層22Yは、蓄電素子1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、炭素材料からなる負極活物質、及び、バインダーとして機能する結着剤を含んでいる。負極活物質層22Yは、例えば、炭素粉末や黒鉛粉末等からなる負極活物質とポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工して固化することで、作製され得る。
図3に示すように、負極集電体21Y(第2電極集電体21)は、第2接続領域a2及び第2電極領域b2を有している。負極活物質層22Y(第2電極活物質層22)は、第2電極領域b2のみにおいて負極集電体21Yに積層されている。第2接続領域a2及び第2電極領域b2は、第2方向d2に配列されている。第2電極領域b2は、第2接続領域a2よりも第2方向d2における他側(図3における右側)に位置している。複数の負極集電体21Yは、図3に示すように、第2接続領域a2において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。図示された例では、正極集電体11Xに接続したタブとは別のタブ6が、第2接続領域a2において負極集電体21Yに電気的に接続している。このタブ6は、電極体5から第2方向d2の一側に延び出している。
既に説明したように、正極10Xの第1電極領域b1は、負極20Yの第2電極領域b2に対面する領域の内側に位置している(図3参照)。すなわち、第2電極領域b2は、正極10Xの正極活物質層12Xに対面する領域を内包する領域に広がっている。第3方向d3に沿った負極20Yの幅は、第3方向d3に沿った正極10Xの幅よりも広くなっている。とりわけ、負極20Yの第3方向d3における一側端部20aは、正極10Xの第3方向d3における一側端部10aよりも、第3方向d3における一側に位置し、且つ、負極20Yの第3方向d3における他側端部20bは、正極10Xの第3方向d3における他側端部10bよりも、第3方向d3における他側に位置している。
次に、セパレータ30について説明する。図4に示されているように、セパレータ30は、正極10X(第1電極10)及び負極20Y(第2電極20)の間に位置し、正極10X及び負極20Yが接触しないように離間させている。セパレータ30は、絶縁性を有しており、正極10X及び負極20Yの接触や、負極20Y及び外装体7の接触による短絡を防止する。セパレータ30は、大きなイオン透過度(透気度)、所定の機械的強度、および、電解液、正極活物質、負極活物質等に対する耐久性を有していることが好ましい。このようなセパレータ30として、例えば、絶縁性の材料によって形成された多孔質体や不織布等を用いることができる。より具体的には、セパレータ30として、融点が80〜140℃程度の熱可塑性樹脂からなる多孔フィルムを用いることができる。熱可塑性樹脂として、ポリプロピレン、ポリエチレンなどのポリオレフィン系ポリマー、またはポリエチレンテレフタレートを採用することができる。外装体7の収容空間7aには、電極体5とともに電解液が封入される。電解液が、多孔質体や不織布からなるセパレータ30に含浸することで、電極10,20の電極活物質層12,22に電解液が接触した状態に維持される。
セパレータ30は、例えば第1方向d1に隣り合う任意の二つの電極10,20の間に位置している。また、セパレータ30は、図2に示すように、平面視において、正極10Xの正極活物質層12Xの全領域を覆うように広がっている。同様に、セパレータ30は、平面視において、負極20Yの負極活物質層22Yの全領域を覆うように広がっている。さらに、セパレータ30は、図2に示すように、平面視において、負極20Yの負極集電体21Yの全領域を覆うように広がっている。より詳しくは、図4に示すように、第1方向d1における最も一側のセパレータ30及び最も他側のセパレータ30が、第2接続領域a2における負極集電体21Y(第2電極集電体21)を覆うように、第2方向d2の一側の第2接続領域a2に重なる位置まで延びている。言い換えると、セパレータ30は、負極集電体21Yと外装体7との間を延びている。これにより、セパレータ30によって、負極集電体21Yと外装体7との接触が抑制される。
次に、タブ6について説明する。タブ6は、蓄電素子1における端子として機能する。図2乃至図4に示すように、電極体5の正極10X(第1電極10)に一方(第2方向d2の他側)のタブ6が電気的に接続している。同様に、電極体5の負極20Y(第2電極20)に他方(第2方向d2の一側)のタブ6が電気的に接続している。図示されているように、一対のタブ6は、外装体7の内部である収容空間7aから、外装体7の外部へと延び出している。タブ6の外装体7の外部に延びている長さは、例えば10mm以上25mm以下である。なお、図4に示すように、タブ6は、後述する外装体7が有する第1外装材40と第2外装材50との間、より詳しくは第1外装材40の第1絶縁層42と第2外装材50の第2絶縁層52との間を通過する。また、外装体7とタブ6との間は、タブ6が延び出す領域において、封止されている。
タブ6は、導電性を有するタブ本体部6aと、タブ本体部6a上に設けられたシール部6bと、を有している。一方のタブ6のタブ本体部6aの第2方向d2における他側に位置する部分が、外装体7の外部に延び出ており、タブ本体部6aの第2方向d2における一側に位置する部分が、正極10X(第1電極10)に接続している。他方のタブ6のタブ本体部6aの第2方向d2における一側に位置する部分が、外装体7の外部に延び出ており、タブ本体部6aの第2方向d2における他側に位置する部分が、負極20Y(第2電極20)に接続している。シール部6bは、タブ本体部6aの第2方向d2における中央部において、タブ本体部6aを取り囲んでいる。シール部6bは、外装体7に溶着しており、タブ本体部6aと外装体7との間を封止している。シール部6bは、タブ本体部6aと外装体7との間の接触、特にタブ本体部6aと外装体7における第1外装材40の金属層41との接触を効果的に防止する。
タブ本体部6aは、アルミニウム、銅、ニッケル、ニッケルメッキ銅等を用いて形成され得る。タブ本体部6aの厚みは、例えば0.1mm以上1mm以下である。シール部6bの材料としては、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等を挙げることができる。シール部6bの厚みは、例えば0.05mm以上0.4mm以下である。
次に、外装体7について、図4乃至図7を参照しながら、説明する。図5は、図1のV−V線に沿った蓄電素子1の断面図から、図示の簡略化のために電極体5を除いた図となっている。すなわち、図5には、図1の外装体7の断面図が示されている。図6は、外装体7に含まれる第1外装材40の平面図であり、図7は、外装体7に含まれる第2外装材50の平面図である。
外装体7は、電極体5を封止するための包装体である。外装体7は、電極体5を収容するための収容空間7aを形成している。外装体7は、電極体5及び電解液をその内部の収容空間7aに密閉する。
収容空間7aは、電極体5を収容することができるよう、電極体5の寸法以上の寸法となっている。一方、蓄電素子1の体積エネルギー密度を高くするため、収容空間7aは、小さくなっていることが好ましい。ここで、体積エネルギー密度とは、蓄電素子が占める体積あたりの当該蓄電素子が供給可能な電力量のことを意味する。したがって、収容空間7aの寸法は、電極体5の寸法と同一となっていることが好ましい。言い換えると、外装体7は、収容している電極体5に接していることが好ましい。収容空間7aは、収容される電極体5の形状に合わせた形状となるよう形成されている。図示された例では、収容空間7aは、略直方体形状となっている。収容空間7aは、例えば、第1方向d1に沿った長さが5mm以上25mm以下であり、第2方向d2に沿った長さが200mm以上1000mm以下であり、第3方向d3に沿った長さが70mm以上400mm以下である。
また、外装体7は、第1外装材40と、第2外装材50と、を有している。第1外装材40と第2外装材50とが、それぞれの周縁の一部において接合されることで、収容空間7aが形成される。第1外装材40と第2外装材50とは、例えば接着性を有する接着層によって接合されていてもよいし、溶着されることによって接合されていてもよい。接着層によって接合される場合、接着層は、接着性に加え、絶縁性、耐薬品性、熱可塑性等を有していることが好ましく、例えば、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等を用いることができる。
図5によく示されているように、第2外装材50は、電極体5を収容可能な十分な大きさの収容空間7aを形成するため、第2外装材50の周縁から膨出した膨出部57を含んでいる。膨出部57は、第2外装材50の周縁によって取り囲まれて、第1外装材40から離間する向きに膨出している。膨出部57は、第2外装材50の中央部に位置している。一方、図示された例では、第1外装材40は、膨出部を含んでおらず、平坦になっている。
しかしながら、図示された例に限らず、第2外装材50は膨出部を含んでおらず、第1外装材40が収容空間7aを形成するための膨出部を含んでいてもよい。さらには、第2外装材50及び第1外装材40の両方が、収容空間7aを形成するための膨出部を含んでいてもよい。
図4乃至図6に示されているように、第1外装材40は、第1金属層41と、第1金属層41の周縁41aの一部のみに設けられた第1絶縁層42と、を含んでいる。図示された例では、第1絶縁層42は、第1金属層41上の少なくともタブ6に対面する領域に設けられている。好ましくは、第1絶縁層42は、第1金属層41上のタブ6に対面する領域にのみ設けられている。言い換えると、第1絶縁層42は、第1金属層41の中央部には設けられていない。すなわち、第1金属層41は、収容空間7aにおいて露出している。また、図示された例では、第1外装材40は、外装体7の表面、すなわち第1金属層41の第1絶縁層42が積層された面とは逆側の面に設けられた、絶縁性を有する第1被覆層43をさらに含んでいる。
また、図4,図5及び図7に示されているように、第2外装材50は、第2金属層51と、少なくとも第2金属層51の周縁51aに設けられた第2絶縁層52と、を含んでいる。好ましくは、第2絶縁層52は、第2金属層51の周縁にのみ設けられている。図示された例では、第2絶縁層52は、第2金属層51上のタブ6に対面する領域、第1外装材40と第2外装材50とを接合する領域、及び、第1方向d1において第2接続領域b2に重なる位置に設けられている。言い換えると、第2絶縁層52は、第2金属層51の中央部には設けられていない。すなわち、第2金属層51は、収容空間7aにおいて露出している。また、図示された例では、第2外装材50は、外装体7の表面、すなわち第2金属層51の第2絶縁層52が積層された面とは逆側の面に設けられた、絶縁性を有する第2被覆層53をさらに含んでいる。
第1外装材40と第2外装材50とは、第1外装材40の第1絶縁層42が設けられた側が第2外装材50の第2絶縁層52が設けられた側と向かい合うように配置されている。図4に示すように、第2方向d2において、第1外装材40の絶縁層42と第2外装材50との間を、タブ6が通過している。
図6に示すように、第1絶縁層42が第1金属層41上のタブ6に対面する領域にのみ設けられている場合、図5に示す外装体7の断面においては、第1外装材40の第1金属層41と第2外装材50の第2金属層51との間には、第1絶縁層42は配置されておらず、第2絶縁層52のみが配置されている。すなわち、第1金属層41と第2金属層51とは、タブ6に対面する領域を除いて、第2絶縁層52のみによって離間している。
第1金属層41及び第2金属層51は、高ガスバリア性と成形加工性を有することが好ましく、例えばアルミニウム箔やステンレス箔等を用いることができる。とりわけ、第1金属層41及び第2金属層51は、アルミニウムを含んでいることが好ましい。第1金属層41及び第2金属層51がアルミニウムを含んでいることで、第1外装材40及び第2外装材50に高ガスバリア性と成形加工性を付与するとともに、第1金属層41及び第2金属層51を電極として機能させることができる。第1絶縁層42及び第2絶縁層52は、第1金属層41及び第2金属層51とタブ6とが電気的に接続されることを防止する。第1絶縁層42及び第2絶縁層52としては、例えばポリプロピレン等を用いることができる。第1被覆層43及び第2被覆層53は、例えば薄膜状のナイロン層である。
第1方向d1の最も他側に位置する正極10X(第1電極10)は、第1外装材40の第1金属層41に接している。同様に、電極体5の第1方向d1の最も一側に位置する正極10X(第1電極10)は、第2外装材50の第2金属層51に接している。
第1外装材40の厚さ及び第2外装材50の厚さは、例えば100μm以上300μm以下であることが好ましい。このような第1外装材40及び第2外装材50の各構成要素は、同一の材料で同一に構成されていてもよいし、或いは、材料および構成の少なくとも一方において互いに異なるようにしてもよい。
次に、本実施の形態の蓄電素子1の製造方法の一例について、説明する。
まず、複数の第1電極10及び第2電極20が第1方向d1に交互に積層され、第1電極10及び第2電極20の間にセパレータ30が配置された電極体5を用意する。電極体5の第2方向d2における他側において、タブ6を第1電極10と電気的に接続し、第2方向d2における一側において、別のタブ6を第2電極20と電気的に接続する。電極体5では、第1方向d1の最も一側となる電極が第1電極10となっており、第1方向d1の最も他側となる電極も第1電極10となっている。また、第1方向d1における最も一側のセパレータ30及び最も他側のセパレータ30は、第2接続領域a2における第2電極20の第2電極集電体21を覆うように、第2方向d2の一側の第2接続領域a2に重なる位置まで延びている。
次に、電極体5を、第1外装材40と第2外装材50との間に配置する。第1外装材40及び第2外装材50は、第1絶縁層42と第2絶縁層52とが向かい合うように配置される。第1絶縁層42は、第1金属層41の周縁41aの一部のみであって、少なくともタブ6に対面するようになる領域に設けられている。第2絶縁層52は、少なくとも第2金属層51の周縁51aに設けられている。好ましくは、第1絶縁層42は、タブ6に対面するようになる領域にのみ設けられ、第2絶縁層52は、第2金属層51の周縁51aにのみ設けられている。この場合、第1絶縁層42と第2絶縁層52とは、タブ6に対面するようになる領域のみにおいて重なり、第1外装材40の周縁と第2外装材50の周縁との間にのみ第2絶縁層52が設けられるようになる。
その後、第1外装材40の周縁と第2外装材50の周縁とを接合する。第1外装材40と第2外装材50との接合は、例えば第1外装材40及び第2外装材50の周縁を加熱・加圧することで溶着により接合する。第1外装材40の周縁と第2外装材50の周縁とが加熱・加圧されることで、第2絶縁層52を介して第1外装材40及び第2外装材50が溶着される。また、タブ6が設けられた領域においては、第1絶縁層42及びシール部6bを介して第1外装材40及びタブ6が溶着され、第2絶縁層52及びシール部6bを介して第2外装材50及びタブ6が溶着される。この加熱・加圧は、例えば第1外装材40及び第2外装材50を120℃以上200℃以下に加熱しながら、0.2MPa以上0.8MPa以下に加圧した状態を、1秒以上8秒以下維持することで行われる。
以上の工程により、図1に示すような蓄電素子1が製造される。
ところで、貯蔵及び供給する電力量をより効率よくするため、蓄電素子の体積エネルギー密度を向上させることが求められている。すなわち、蓄電素子が供給可能な電力量を維持あるいは多くしながら、蓄電素子の体積を小さくすることが求められている。蓄電素子が供給可能な電力量は、電極体の体積に大きく依存するため、蓄電素子の体積エネルギー密度を向上させるために電極体の体積を小さくすることは困難である。そこで、本件発明者らは、外装体の体積を小さくすることを検討した。以下、従来の蓄電素子と比較しながら、本実施の形態における蓄電素子1の外装体の体積を小さくする本件発明者らの工夫について説明する。
従来の蓄電素子では、外装体を形成する第1外装材に含まれる第1絶縁層は、第1金属層上の全領域に設けられている。また、外装体を形成する第2外装材に含まれる第2絶縁層も、第2金属層上の全領域に設けられている。したがって、従来の蓄電素子では、電極体は、第1方向の他側において第1外装材の第1絶縁層に接しており、第1方向の一側において第2外装材の第2絶縁層に接している。このため、特に蓄電素子の電極体が収容された部分において、第1絶縁層及び第2絶縁層が存在することで、第1絶縁層の厚さ及び第2絶縁層の厚さの分だけ、蓄電素子が厚くなってしまう。
一方、本実施の形態の蓄電素子1では、外装体7を形成する第1外装材40に含まれる第1絶縁層42は、第1金属層41の周縁41aの一部のみに設けられており、第1金属層41の中央部には設けられていない。したがって、本実施の形態の蓄電素子1では、電極体5は、第1方向d1の他側において第1外装材40の第1金属層41に接している。従来の蓄電素子と比較して、蓄電素子1の電極体5が収容された部分において、第1絶縁層42の厚さの分だけ、蓄電素子1を薄くすることができる。したがって、蓄電素子1の体積エネルギー密度を向上させることができる。
なお、本実施の形態において、第1絶縁層42は、少なくともタブ6に対面する領域に設けられている。このため、タブ6に対面する領域においては、第1絶縁層42がタブ6と溶着され、タブ6と第1金属層41とが短絡してしまう可能性は、低減される。
とりわけ、本実施の形態では、第1絶縁層42は、タブ6に対面する領域にのみ設けられている。このため、第1絶縁層42がタブ6と溶着されることを可能にしながら、その他の第1金属層41の周縁41aでは、第1絶縁層42の厚さの分だけ、第1外装材40を薄くすることができる。すなわち、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
また、第2絶縁層52は、第2金属層51の周縁51aにのみ設けられており、第2金属層51の中央部には設けられていない。したがって、電極体5は、第1方向d1の一側において第2外装材50の第2金属層51に接している。このため、蓄電素子1の電極体5が収容された部分において、第2絶縁層52の厚さの分だけ第2外装材50を薄くすることができる。すなわち、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
さらに、電極体5の第1方向d1の最も他側に位置する第1電極10は、第1金属層41に接している。言い換えると、電極体5の第1方向d1の最も他側に位置する第1電極10と第1金属層41との間には、第1絶縁層42だけでなく電極体5に含まれるセパレータ30も設けられていない。したがって、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
また、第1金属層41は、アルミニウムを含んでおり、第1金属層41に接している第1電極10は、正極10Xである。第1金属層41がアルミニウムを含んでいることで、第1金属層41が正極10Xに接していても、第1金属層41が正極10Xと反応しない。このため、電極体5が予期しない反応をすることを抑制しながら、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
さらに、電極体5の第1方向d1の最も一側に位置する第1電極10は、第2金属層51に接している。言い換えると、電極体5の第1方向d1の最も一側に位置する第1電極10と第2金属層51との間には、第2絶縁層52だけでなく電極体5に含まれるセパレータ30も設けられていない。したがって、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
なお、第1金属層41に接する電極と第2金属層51に接する電極とが同一の種類の電極であるため、本実施の形態では第1金属層41に接する電極と第2金属層51に接する電極とがともに正極10Xであるため、第1金属層41と第2金属層51とが外部において通電したとしても、電極体5が短絡してしまうことが回避される。
また、第2金属層51は、アルミニウムを含み、第2金属層51に接している第1電極10は、正極10Xである。第2金属層51がアルミニウムを含んでいることで、第2金属層51が正極10Xに接していても、第2金属層51が正極10Xと反応しない。このため、電極体5が予期しない反応をすることを抑制しながら、蓄電素子1を薄くして、蓄電素子1の体積エネルギー密度を向上させることができる。
とりわけ、第1外装材40の第1金属層41及び第2外装材50の第2金属層51は、収容空間7aにおいて露出している。さらに、第1金属層41及び第2金属層51は、第1電極に接している。このため、第2電極集電体21と外装体7の第1金属層41及び第2金属層51が接触すると、短絡してしまう。このような短絡を抑制するため、セパレータ30は、第2電極集電体21と外装体7との間を延びている。セパレータ30によって、負極集電体21Yと外装体7との接触が抑制され、したがって第2電極集電体21と外装体7の第1金属層41及び第2金属層51との短絡を抑制することができる。
また、第2絶縁層52は、第1方向d1において第2接続領域a2に重なる位置に設けられている。このため、第2接続領域a2において、第2電極集電体21と第2金属層51とが接触して短絡してしまうことを、効果的に抑制することができる。
以上のように、本実施の形態の蓄電素子1は、第1外装材40及び第2外装材50を有する外装体7と、第1外装材40及び第2外装材50の間に形成される収容空間7aに収容され、第1方向d1に積層された複数の第1電極10及び複数の第2電極20を有する電極体5と、電極体5と電気的に接続し且つ第1外装材40及び第2外装材50の間を通過して外装体7の外部へ延び出したタブ6と、を備え、第1外装材40は、第1金属層41と、第1金属層41の周縁41aの一部のみであって少なくともタブ6に対面する領域に設けられた第1絶縁層42と、を含み、第2外装材50は、第2金属層51と、少なくとも第2金属層51の周縁51aに設けられた第2絶縁層52と、を含む。このような蓄電素子1によれば、第1金属層41の中央部には設けられておらず、電極体5が第1方向d1の他側において第1外装材40の第1金属層41に接している。このため、第1絶縁層42の厚さの分だけ、蓄電素子1を薄くすることができる。したがって、蓄電素子1の体積エネルギー密度を向上させることができる。
なお、上述した実施の形態に対して様々な変更を加えることが可能である。
図8には、蓄電素子1の一変形例が示されている。図8は、蓄電素子1の第2方向d2の他側におけるタブ6を含む部分の断面図である。図8に示された例では、図4に示された例とは異なり、電極体5の第1方向d1における最も一側となる電極は負極20Yであり、最も他側となる電極も負極20Yとなっている。また、第1金属層41は、第1金属層41から延び出す第1延出部41eによって、正極10X(第1電極10)に接続したタブ6のタブ本体部6aに接続している。同様に、第2金属層51は、第2金属層51から延び出す第2延出部51eによって、正極10X(第1電極10)に接続したタブ6のタブ本体部6aに接続している。
図8に示された例において、第1外装材40は、第1金属層41に積層された第1金属層活物質層45をさらに含んでいる。電極体5の第1方向d1の最も他側に位置する負極20Y(第2電極20)は、第1金属層活物質層45に対面している。同様に、第2外装材50は、第2金属層51に積層された第2金属層活物質層55をさらに含んでいる。電極体5の第1方向d1の最も一側に位置する負極20Y(第2電極20)は、第2金属層活物質層55に対面している。第1金属層活物質層45及び第2金属層活物質層55は、例えば、正極活物質、導電助剤及び結着剤を溶媒に分散させてなる正極用スラリーを、第1金属層41をなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiM(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。または、一般式LiMPO(ただし、Mは金属である)で表されるリン酸金属リチウム化合物が用いられる。リン酸金属リチウム化合物の具体例として、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸コバルトリチウム等が例示され得る。導電助剤としては、アセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。
このように、第1外装材40が第1金属層41に積層された第1金属層活物質層45を含み、第1金属層41が第1電極10に接続したタブ6に接続していることで、第1金属層活物質層45によって第1金属層41にリチウムイオンを供給することができる。このため、第1電極10に接している第1金属層41及び第1金属層活物質層45が、正極として機能することができる。蓄電素子1が有する電極が増加することになるため、蓄電素子1が供給可能な電力量を増大させることができる。すなわち、蓄電素子1の体積エネルギー密度を向上させることができる。
同様に、第2外装材50が第2金属層51に積層された第2金属層活物質層55を含み、第2金属層51が第1電極10に接続したタブ6に接続していることで、第2金属層活物質層55によって第2金属層51にリチウムイオンを供給することができる。このため、第1電極10に接している第2金属層51及び第2金属層活物質層55が、正極として機能することができる。蓄電素子1が有する電極が増加することになるため、蓄電素子1が供給可能な電力量を増大させることができる。すなわち、蓄電素子1の体積エネルギー密度を向上させることができる。
また、第1金属層活物質層45は、電極体5の第1方向d1の最も他側に位置する第2電極20に対面している。同様に、第2金属層活物質層55は、電極体5の第1方向d1の最も一側に位置する第2電極20に対面している。このため、電極体5の第1方向d1の最も一側及び最も他側に位置する第2電極20において、負極活物質層22Yからのリチウムの析出を防止することができる。
さらに、上述した実施の形態と同じく、第1金属層41は、アルミニウムを含み、第2電極20は、負極20Yである。このため、第1金属層41及び第1金属層活物質層45が、負極20Yに積層された正極として機能することができる。加えて、第2金属層51も、アルミニウムを含む。このため、第2金属層51及び第2金属層活物質層55が、負極20Yに積層された正極として機能することができる。第1金属層41及び第2金属層51が負極20Yに積層されているため、第1金属層41及び第2金属層51が正極として効率よく機能することができる。したがって、蓄電素子1が供給可能な電力量を増大させることができる。すなわち、蓄電素子1の体積エネルギー密度を向上させることができる。
1 蓄電素子
5 電極体
6 タブ
7 外装体
7a 収容空間
10 第1電極
20 第2電極
30 セパレータ
40 第1外装材
41 第1金属層
41a 周縁
42 第1絶縁層
43 第1被覆層
45 第1金属層活物質層
50 第2外装材
51 第2金属層
51a 周縁
52 第2絶縁層
53 第2被覆層
55 第2金属層活物質層

Claims (16)

  1. 第1外装材及び第2外装材を有する外装体と、
    前記第1外装材及び前記第2外装材の間に形成される収容空間に収容され、第1方向に積層された複数の第1電極及び複数の第2電極を有する電極体と、
    前記電極体と電気的に接続し且つ前記第1外装材及び前記第2外装材の間を通過して前記外装体の外部へ延び出したタブと、を備え、
    前記第1外装材は、第1金属層と、前記第1金属層の周縁の一部のみであって少なくとも前記タブに対面する領域に設けられた第1絶縁層と、を含み、
    前記第2外装材は、第2金属層と、少なくとも前記第2金属層の周縁に設けられた第2絶縁層と、を含む、蓄電素子。
  2. 前記第1絶縁層は、前記タブに対面する領域にのみ設けられている、請求項1に記載の蓄電素子。
  3. 前記第2絶縁層は、前記第2金属層の周縁にのみ設けられている、請求項1または2に記載の蓄電素子。
  4. 前記電極体の前記第1方向の最も他側に位置する前記第1電極は、前記第1金属層に接している、請求項1乃至3のいずれか一項に記載の蓄電素子。
  5. 前記第1外装材は、前記第1金属層に積層された第1金属層活物質層をさらに含み、
    前記第1金属層は、前記第1電極に接続した前記タブに接続している、請求項1乃至3のいずれか一項に記載の蓄電素子。
  6. 前記第1金属層活物質層は、前記電極体の前記第1方向の最も他側に位置する前記第2電極に対面している、請求項5に記載の蓄電素子。
  7. 前記第1金属層は、アルミニウムを含み、
    前記第1電極は、正極であり、
    前記第2電極は、負極である、請求項4乃至6のいずれか一項に記載の蓄電素子。
  8. 前記電極体の前記第1方向の最も一側に位置する前記第1電極は、前記第2金属層に接している、請求項1乃至7のいずれか一項に記載の蓄電素子。
  9. 前記第2外装材は、前記第2金属層に積層された第2金属層活物質層をさらに含み、
    前記第2金属層は、前記第1電極に接続した前記タブに接続している、請求項1乃至7のいずれか一項に記載の蓄電素子。
  10. 前記第2金属層活物質層は、前記電極体の前記第1方向の最も一側に位置する前記第2電極に対面している、請求項9に記載の蓄電素子。
  11. 前記第2金属層は、アルミニウムを含み、
    前記第1電極は、正極であり、
    前記第2電極は、負極である、請求項8乃至10のいずれか一項に記載の蓄電素子。
  12. 前記電極体は、前記第1電極と前記第2電極の間に配置されたセパレータをさらに有し、
    前記第2電極は、第2接続領域と前記第2接続領域よりも前記第1方向に非平行な第2方向における他側に位置する第2電極領域とを有する第2電極集電体と、前記第2電極集電体と前記第2電極領域において積層された第2電極活物質層と、を有し、
    前記セパレータは、前記第2電極集電体と前記外装体との間を延びている、請求項1乃至11のいずれか一項に記載の蓄電素子。
  13. 前記第2電極は、第2接続領域と前記第2接続領域よりも前記第1方向に非平行な第2方向における他側に位置する第2電極領域とを有する第2電極集電体と、前記第2電極集電体と前記第2電極領域において積層された第2電極活物質層と、を有し、
    前記第2絶縁層は、前記第1方向において前記第2接続領域に重なる位置に設けられている、請求項1乃至12のいずれか一項に記載の蓄電素子。
  14. 第1金属層及び前記第1金属層の周縁の一部のみに設けられた第1絶縁層を含む第1外装材と、第2金属層及び少なくとも前記第2金属層の周縁に設けられた第2絶縁層とを含む第2外装材と、の間に、積層された複数の電極を含む電極体を配置する工程と、
    前記第1外装材の周縁及び前記第2外装材の周縁を接合して外装体を形成する工程と、を備え、
    前記電極体は、前記電極体と電気的に接続したタブの一部分が前記外装体の外部に露出するように、前記外装体に収容され、
    前記第1絶縁層は、少なくとも前記タブに対面する領域に設けられている、蓄電素子の製造方法。
  15. 前記第1絶縁層は、前記タブに対面する領域にのみ設けられている、請求項14に記載の蓄電素子の製造方法。
  16. 前記第2絶縁層は、前記第2金属層の周縁にのみ設けられている、請求項14または15に記載の蓄電素子の製造方法。
JP2019034824A 2019-02-27 2019-02-27 蓄電素子及び蓄電素子の製造方法 Pending JP2020140831A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034824A JP2020140831A (ja) 2019-02-27 2019-02-27 蓄電素子及び蓄電素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034824A JP2020140831A (ja) 2019-02-27 2019-02-27 蓄電素子及び蓄電素子の製造方法

Publications (1)

Publication Number Publication Date
JP2020140831A true JP2020140831A (ja) 2020-09-03

Family

ID=72265056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034824A Pending JP2020140831A (ja) 2019-02-27 2019-02-27 蓄電素子及び蓄電素子の製造方法

Country Status (1)

Country Link
JP (1) JP2020140831A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472778B2 (ja) 2020-12-22 2024-04-23 トヨタ自動車株式会社 電力システム、サーバおよび電力需給の調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472778B2 (ja) 2020-12-22 2024-04-23 トヨタ自動車株式会社 電力システム、サーバおよび電力需給の調整方法

Similar Documents

Publication Publication Date Title
KR101510518B1 (ko) 전극조립체의 제조방법
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
KR101375398B1 (ko) 전기절연성과 수분침투성이 개선된 파우치형 이차전지
US10468638B2 (en) Method for forming a pouch for a secondary battery
KR101487092B1 (ko) 이차전지용 파우치 및 이를 포함하는 이차전지
KR20140012601A (ko) 이차전지 및 이를 포함하는 전기화학소자
KR101484369B1 (ko) 이차전지 및 이를 포함하는 전기화학소자
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
JP2022002167A (ja) 蓄電素子、蓄電素子の製造方法
CN108335915B (zh) 电极组件的制造方法及包括该电极组件的电化学电池
JP2020140831A (ja) 蓄電素子及び蓄電素子の製造方法
JP7201482B2 (ja) 蓄電素子および蓄電素子の製造方法
JP7193363B2 (ja) 蓄電素子、蓄電素子の製造方法
JP2020144998A (ja) 蓄電素子
JP6846490B1 (ja) 蓄電素子及び蓄電素子の製造方法
JP6918882B2 (ja) 蓄電素子および蓄電素子の製造方法
JP7000599B2 (ja) 蓄電素子、蓄電素子の製造方法および蓄電素子の設計方法
JP7010904B2 (ja) 蓄電素子の製造方法
JP2021039833A (ja) 蓄電素子及び蓄電素子の製造方法
KR20140034340A (ko) 전극조립체 및 이를 포함하는 전기화학소자, 전지모듈
WO2021060409A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP6835766B2 (ja) 積層型電池
JP2020145162A (ja) 蓄電素子及び蓄電素子の製造方法
JP2020149798A (ja) 積層型電池および積層型電池の製造方法
JP2020145163A (ja) 蓄電素子及び蓄電素子の製造方法