WO2015085687A1 - Procédé de fixation de terre rare lourde pour aimant au néodyme ndfeb fritté - Google Patents

Procédé de fixation de terre rare lourde pour aimant au néodyme ndfeb fritté Download PDF

Info

Publication number
WO2015085687A1
WO2015085687A1 PCT/CN2014/074933 CN2014074933W WO2015085687A1 WO 2015085687 A1 WO2015085687 A1 WO 2015085687A1 CN 2014074933 W CN2014074933 W CN 2014074933W WO 2015085687 A1 WO2015085687 A1 WO 2015085687A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
heavy rare
sintered ndfeb
magnet
ndfeb magnet
Prior art date
Application number
PCT/CN2014/074933
Other languages
English (en)
Chinese (zh)
Inventor
孙爱芝
杨俊�
高学绪
吴深
包小倩
李成明
邹超
程川
路振文
杨金锡
Original Assignee
北京科技大学
北京盛磁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学, 北京盛磁科技有限公司 filed Critical 北京科技大学
Publication of WO2015085687A1 publication Critical patent/WO2015085687A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention belongs to the technical field of rare earth magnetic functional materials, and relates to a method for attaching heavy rare earths of sintered NdFeB magnets. Background technique
  • NdFeB has a very high magnetic energy product, and its high energy density makes it widely used in modern industrial and electronic technology.
  • the insufficiency of NdFeB magnetic materials is that the Curie temperature point is low and the temperature characteristics are poor.
  • higher requirements are imposed on the permanent magnet materials used, which not only have a high magnetic energy product, but also have a high coercive force.
  • the most common way to improve the coercivity is to directly add a certain amount of heavy Dy and Tb in the sintered NdFeB master alloy, and replace the Nd in the Nd 2 Fe 14 B grains of the sintered NdFeB main phase with heavy rare earth elements such as Dy/Tb.
  • formation of (Nd, Dy) 2 Fe 14 B phase will increase the anisotropy field of the main phase magnetocrystalline, so that the coercive force of the magnet is greatly increased, but the rare earth resources are scarce and expensive, and the coking force is improved by the traditional alloying method. It will greatly increase the production cost.
  • the force NdFeB preparation method, and the grain boundary diffusion method is an effective method.
  • the grain boundary diffusion method is a metal, alloy or compound with a heavy rare earth element such as Dy/Tb attached to the surface of the NdFeB sintered magnet, and after suitable heat treatment, Dy/Tb on the surface of the magnet passes through the grain boundary of the sintered body to enter the sintering. Inside the body, it diffuses from the grain boundary to the inside of the main phase Nd 2 Fe 14 B. This treatment causes a significant increase in the coercive force of the magnet and a decrease in the residual magnetization.
  • the object of the present invention is to electroplate a layer of heavy rare earth metal film on the surface of the pretreated sintered NdFeB magnet, and then heat-treat, and the heavy rare earth element diffuses into the inside of the magnet through the grain boundary, thereby effectively increasing the coercive force of the magnet.
  • the heavy rare earth salt organic solution is used as a plating solution, and the surface of the surface-pretreated sintered NdFeB magnet is electroplated, and a thin layer of a heavy rare earth metal having a predetermined thickness and a flat shape is obtained by controlling the electroplating process; high temperature diffusion treatment or high temperature diffusion and low temperature
  • the tempering two-stage heat treatment causes the heavy rare earth elements in the heavy rare earth metal film to diffuse into the inside of the magnet through the grain boundary to increase the coercive force, and the specific steps are as follows:
  • A. Preparation of electroplating solution Dissolving a certain amount of heavy rare earth salt and organic acid in an organic solvent to prepare a heavy rare earth salt organic plating solution;
  • Electroplating using smooth graphite as the anode, the surface pretreated NdFeB magnet as the cathode, placed in the heavy rare earth salt organic solution prepared in step A, and subjected to direct current electroplating, wherein the direct current density is 0.01 A / cm 2 -50 A / cm 2 , electrodeposition temperature is room temperature ⁇ 100 ° C;
  • the organic acid is at least one selected from the group consisting of amino acid, glycolic acid, citric acid, and ethylenediaminetetraacetic acid, and the concentration of the organic acid in the solution is 0.001 mol/L to 10.0 mol/L.
  • the organic solvent is at least one of decanoic acid amide, dichloro decane, dimethyl hydrazine amide, and dimethyl sulfoxide.
  • the invention electroplating a heavy rare earth metal film on the surface of the sintered NdFeB magnet and high-temperature diffusion treatment, thereby improving the coercive force of the magnet; ⁇ depositing a dense elemental germanium layer on the surface of the magnet by a new plating method, and then performing grain boundary diffusion treatment, the magnet
  • the coercivity is obviously improved.
  • the interface between the plated element and the magnet is dense and the element has a large diffusion coefficient of the magnet, the process is simple and controllable, and the efficiency is high, which provides an efficient and low-cost way for industrial production. .
  • Figure 1 is a schematic view of the process of the present invention
  • Fig. 2 is a SEM topographical view of the Dy metal film on the surface of the magnet obtained in Example 1. detailed description
  • a graphite with a smooth surface as an anode and a cathode with a NdFeB magnet as a cathode are placed in the above-mentioned organic salt solution of cerium salt, and a direct current is applied thereto, and the current density is 0.05 A/cm 2 . Duration is 10 min. The temperature is 30 °C.
  • the NdFeB magnet coated with a base metal layer is taken out from the solution; the air-dried magnet is placed in a vacuum heat treatment furnace, and tempered at a temperature of 850 ° C for 10 h in an Ar atmosphere, and at a temperature of 500 ° C. Tempered for 2 h.
  • Tb Take a certain amount of Tb (N0 3 ). 63 ⁇ 40 and anhydrous citric acid dissolved in phthalamide organic solution, after dissolution The concentrations were 0.08 mol/L and 0.09 mol/L, respectively.
  • a graphite with a smooth surface as an anode and a cathode with a NdFeB magnet as a cathode are placed in the above-mentioned organic salt solution of cerium salt, and a direct current is applied thereto, and the current density is 20 A/cm 2 .
  • the duration is 5 min.
  • the temperature is 30 °C.
  • the NdFeB magnet coated with a ruthenium metal film on the surface is taken out from the solution; the air-dried magnet is placed in a vacuum heat treatment furnace, and tempered at a temperature of 900 ° C for 3 h in an Ar atmosphere at a temperature of 500 ° C for two times. Fire 1 h.
  • the invention electroplating a heavy rare earth metal film on the surface of the sintered NdFeB magnet and high-temperature diffusion treatment, thereby improving the coercive force of the magnet; ⁇ depositing a dense elemental germanium layer on the surface of the magnet by a new plating method, and then performing grain boundary diffusion treatment, the magnet
  • the coercivity is obviously improved.
  • the interface between the plated element and the magnet is dense and the element has a large diffusion coefficient of the magnet, the process is simple and controllable, and the efficiency is high, which provides an efficient and low-cost way for industrial production. .

Abstract

L'invention concerne un procédé de fixation de terre rare lourde pour aimant au néodyme NdFeB fritté, qui relève du domaine des matériaux fonctionnels magnétiques en terre rare et de leurs technologies de préparation. Le procédé de préparation comprend en particulier les étapes suivantes : placement d'un aimant au néodyme NdFeB fritté après prétraitement de surface dans une solution organique de sel de terre rare; dépôt d'un élément de terre rare lourde sur une surface de l'aimant au néodyme NdFeB fritté sous l'action d'un courant, de façon à former une couche mince métallique de terre rare lourde dense; et, dans le processus de traitement de diffusion à haute température ou de traitement thermique à deux étapes comprenant la diffusion haute température et la trempe basse température, diffusion, dans l'aimant à travers une interface cristalline, de l'élément de terre rare lourde dans un film métallique de terre rare lourde. Le champ coercitif d'un matériau magnétique permanent en terre rare de NdFeB fritté est remarquablement amélioré, la rémanence n'est manifestement pas réduite, la consommation de terre rare lourde est faible, le traitement est simple et réglable, le rendement est élevé, et le procédé est approprié à une production industrielle.
PCT/CN2014/074933 2013-12-11 2014-04-08 Procédé de fixation de terre rare lourde pour aimant au néodyme ndfeb fritté WO2015085687A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310676521.4 2013-12-11
CN201310676521.4A CN103617884A (zh) 2013-12-11 2013-12-11 一种烧结NdFeB磁体的重稀土附着方法

Publications (1)

Publication Number Publication Date
WO2015085687A1 true WO2015085687A1 (fr) 2015-06-18

Family

ID=50168587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074933 WO2015085687A1 (fr) 2013-12-11 2014-04-08 Procédé de fixation de terre rare lourde pour aimant au néodyme ndfeb fritté

Country Status (2)

Country Link
CN (1) CN103617884A (fr)
WO (1) WO2015085687A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908667A (zh) * 2020-06-29 2021-06-04 京磁材料科技股份有限公司 稀土永磁体的晶界扩散方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法
JP2015228431A (ja) * 2014-06-02 2015-12-17 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
DE102014215873A1 (de) * 2014-08-11 2016-02-11 Siemens Aktiengesellschaft Elektrochemische Abscheidung eines schweren Seltenerdmaterials zur Vergrößerung der Koerzitivfeldstärke von Seltenerddauermagneten
CN105648487A (zh) * 2014-12-03 2016-06-08 北京中科三环高技术股份有限公司 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
CN105839152A (zh) 2015-10-21 2016-08-10 北京中科三环高技术股份有限公司 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
KR102210971B1 (ko) * 2016-03-11 2021-02-01 어플라이드 머티어리얼스, 인코포레이티드 반도체 프로세싱 장비 상에 이트륨 산화물을 형성하기 위한 방법
CN106169346B (zh) * 2016-08-31 2018-08-03 浙江凯文磁业有限公司 一种钕铁硼电镀Dy薄膜工艺
CN106601464B (zh) * 2016-12-14 2017-12-26 安徽大地熊新材料股份有限公司 一种低重稀土、高矫顽力的永磁材料的制备方法
CN107068380B (zh) * 2017-01-23 2020-02-18 包头天和磁材科技股份有限公司 永磁材料的生产方法
CN107617737B (zh) * 2017-11-10 2019-11-26 湖南稀土金属材料研究院 烧结钕铁硼永磁材料用粉体及其制备方法和应用
CN109003799B (zh) * 2018-07-06 2021-02-12 杭州永磁集团振泽磁业有限公司 一种高矫顽力钕铁硼磁体的制备方法
CN111430142B (zh) * 2019-01-10 2021-12-07 中国科学院宁波材料技术与工程研究所 晶界扩散制备钕铁硼磁体的方法
CN115798908B (zh) * 2022-11-14 2023-11-10 中磁科技股份有限公司 一种超薄层稀土包覆钕铁硼合金粉末的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345092A1 (fr) * 1988-06-02 1989-12-06 Shin-Etsu Chemical Co., Ltd. Procédé pour fabriquer un aimant résistant à la corrosion et contenant des terres rares
JP2004200387A (ja) * 2002-12-18 2004-07-15 Sumitomo Special Metals Co Ltd 耐食性永久磁石およびその製造方法
CN101845637A (zh) * 2009-03-25 2010-09-29 罗阳 钕铁硼磁体晶界扩散工艺
CN102103916A (zh) * 2009-12-17 2011-06-22 北京有色金属研究总院 一种钕铁硼磁体的制备方法
CN102776547A (zh) * 2012-08-23 2012-11-14 安泰科技股份有限公司 稀土永磁材料的制备方法
CN102969110A (zh) * 2012-11-21 2013-03-13 烟台正海磁性材料股份有限公司 一种提高钕铁硼磁力矫顽力的装置及方法
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645913B2 (ja) * 1989-05-25 1994-06-15 石原薬品株式会社 希土類金属のめっき液
CN1217035C (zh) * 2002-09-27 2005-08-31 长沙高新技术产业开发区英才科技有限公司 水溶液电沉积法制备稀土与过渡金属合金材料的工艺
CN1206391C (zh) * 2003-07-18 2005-06-15 中山大学 扫描电位沉积法制备稀土合金的方法
JP4765747B2 (ja) * 2006-04-19 2011-09-07 日立金属株式会社 R−Fe−B系希土類焼結磁石の製造方法
CN102400191B (zh) * 2011-11-22 2014-04-09 沈阳理工大学 强磁场下制备Sm-Fe合金磁性薄膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345092A1 (fr) * 1988-06-02 1989-12-06 Shin-Etsu Chemical Co., Ltd. Procédé pour fabriquer un aimant résistant à la corrosion et contenant des terres rares
JP2004200387A (ja) * 2002-12-18 2004-07-15 Sumitomo Special Metals Co Ltd 耐食性永久磁石およびその製造方法
CN101845637A (zh) * 2009-03-25 2010-09-29 罗阳 钕铁硼磁体晶界扩散工艺
CN102103916A (zh) * 2009-12-17 2011-06-22 北京有色金属研究总院 一种钕铁硼磁体的制备方法
CN102776547A (zh) * 2012-08-23 2012-11-14 安泰科技股份有限公司 稀土永磁材料的制备方法
CN102969110A (zh) * 2012-11-21 2013-03-13 烟台正海磁性材料股份有限公司 一种提高钕铁硼磁力矫顽力的装置及方法
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908667A (zh) * 2020-06-29 2021-06-04 京磁材料科技股份有限公司 稀土永磁体的晶界扩散方法
CN112908667B (zh) * 2020-06-29 2022-07-15 京磁材料科技股份有限公司 稀土永磁体的晶界扩散方法

Also Published As

Publication number Publication date
CN103617884A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2015085687A1 (fr) Procédé de fixation de terre rare lourde pour aimant au néodyme ndfeb fritté
WO2017067251A1 (fr) Procédé d'électrodéposition, bain et procédé de préparation de matériaux d'aimant permanent des terres rares l'utilisant
CN104388952B (zh) 一种加速烧结钕铁硼磁体表面Dy/Tb附着层扩渗的方法
JP4765747B2 (ja) R−Fe−B系希土類焼結磁石の製造方法
KR102240453B1 (ko) 희토류 영구자석 재료의 제조방법
CN106128672A (zh) 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
CN106887323A (zh) 一种晶界扩散制备高矫顽力钕铁硼磁体的方法
EP3432322A1 (fr) Procédé d'amélioration de la coercitivité d'aimants ndfeb
JP2014236221A (ja) R−Fe−B系焼結磁石の調製方法
JP2017130645A (ja) ネオジム鉄ホウ素磁石およびその調製法
CN104599829A (zh) 一种提高烧结钕铁硼磁体磁性能的方法
CN109898063A (zh) 一种提升烧结钕铁硼磁体磁性能的方法
CN107653440A (zh) 一种烧结钕铁硼永磁体表面制备铝或铝锡合金镀层的方法
JP6470816B2 (ja) 高保磁力Nd−Fe−B希土類永久磁石及びその製造プロセス
CN105957706A (zh) 一种压力浸渗Dy3+/Tb3+制备高性能钕铁硼磁体的方法
CN104795228A (zh) 一种晶界扩散Dy-Cu合金制备高性能钕铁硼磁体的方法
CN109616310A (zh) 一种高矫顽力烧结钕铁硼永磁材料及其制造方法
CN104505247A (zh) 一种改善钕铁硼磁体性能的固体扩散工艺
CN105938757B (zh) 一种提高高丰度稀土永磁材料磁性能的制备方法
CN110211797A (zh) 一种提升烧结钕铁硼磁体磁性能的方法
CN108766703A (zh) 一种耐高温多主相高丰度稀土永磁材料及其制备方法
CN105648487A (zh) 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
CN108231394B (zh) 一种高矫顽力钕铁硼磁体的低温制备方法
CN104103415B (zh) 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法
CN109903944B (zh) 一种NdFeB磁体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869521

Country of ref document: EP

Kind code of ref document: A1