WO2015056734A1 - 光学フィルター、固体撮像装置およびカメラモジュール - Google Patents

光学フィルター、固体撮像装置およびカメラモジュール Download PDF

Info

Publication number
WO2015056734A1
WO2015056734A1 PCT/JP2014/077523 JP2014077523W WO2015056734A1 WO 2015056734 A1 WO2015056734 A1 WO 2015056734A1 JP 2014077523 W JP2014077523 W JP 2014077523W WO 2015056734 A1 WO2015056734 A1 WO 2015056734A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical filter
compound
resin
wavelength
Prior art date
Application number
PCT/JP2014/077523
Other languages
English (en)
French (fr)
Inventor
勝也 長屋
幸恵 田中
大月 敏敬
坪内 孝史
大介 重岡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52828175&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015056734(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2015542650A priority Critical patent/JP5884953B2/ja
Priority to CN201480043450.7A priority patent/CN105452911B/zh
Priority to KR1020167003593A priority patent/KR101661088B1/ko
Publication of WO2015056734A1 publication Critical patent/WO2015056734A1/ja
Priority to US15/050,093 priority patent/US9606275B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter (two-wavelength bandpass filter) that selectively transmits visible light including a compound having specific absorption and a part of near infrared rays, and a solid-state imaging device and a camera module using the optical filter.
  • an optical filter two-wavelength bandpass filter
  • a solid-state imaging device such as a video camera, a digital still camera, a mobile phone with a camera function, or a smartphone uses a CCD or CMOS image sensor, which is a solid-state imaging device for color images.
  • CCD or CMOS image sensor which is a solid-state imaging device for color images.
  • silicon photodiodes having sensitivity to near infrared rays that cannot be detected by human eyes are used.
  • These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye.
  • Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
  • Patent Document 1 describes a near-infrared cut filter using a substrate made of a transparent resin and containing a near-infrared absorber in the transparent resin
  • Patent Document 2 describes a glass substrate containing copper ions. A near-infrared cut filter using is described.
  • the spectral characteristics of an optical filter that is commercially available as an optical filter that selectively transmits visible light and a portion of near infrared rays change greatly when light enters the filter obliquely.
  • the incident angle dependence of the optical filter is large on the long wavelength side of the visible light transmission band or the short wavelength side of the near infrared selective transmission band, the near infrared rays used for the sensing function when the light beam is incident from an oblique direction of the filter.
  • S / N ratio signal-to-noise ratio
  • An object of the present invention is to provide an optical filter having a function of selectively transmitting visible light and part of near-infrared light and having little incident angle dependence, and an apparatus using the optical filter.
  • the inventors have obtained a specific light transmittance characteristic in which a dielectric multilayer film is provided on a substrate having a transparent resin layer containing a compound having a specific optical characteristic.
  • the present inventors have found that an optical filter having excellent transmission characteristics of visible light and some near infrared rays and having little incident angle dependency can be obtained by satisfying the optical filter, and the present invention has been completed. Examples of embodiments of the present invention are shown below.
  • the substrate (i) has a transparent resin layer containing a compound (Z) having an absorption maximum at a wavelength of 600 to 850 nm; An optical filter that selectively transmits visible light and some near infrared rays.
  • Z a compound having an absorption maximum at a wavelength of 600 to 850 nm
  • An optical filter that selectively transmits visible light and some near infrared rays.
  • A In the region of wavelength 430 to 580 nm, the average value of the transmittance when measured from the vertical direction of the optical filter is 75% or more.
  • the center wavelength of each band is Za ⁇ Zb ⁇ Zc, and the minimum transmittance when measured from the vertical direction of the optical filter at Za and Zc is 15% or less, respectively.
  • the maximum transmittance when measured from the vertical direction of the optical filter is 55% or more.
  • the shortest wavelength (Xc) at which the transmittance measured from the vertical direction of the base material (i) is more than 50% to 50% is 610 to 670 nm.
  • the optical filter according to any one of [3] to [3].
  • the shortest wavelength (Xf) at which the transmittance measured from the vertical direction of the base material (i) in the region of the wavelength of 750 nm or more is less than 50% to 50% or more is 770 to 900 nm, [1] to The optical filter according to any one of [4].
  • Dielectric multilayer films having different spectral characteristics are formed on both surfaces of the base material (i), and the average reflectivity in the wavelength range of Y-10 nm to Y + 10 nm measured from at least one surface of the optical filter is The optical filter according to any one of [2] to [5], which is 20% or less.
  • the compound (Z) is at least one compound selected from the group consisting of squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, croconium compounds, hexaphyrin compounds, and cyanine compounds.
  • the optical filter according to any one of [6] to [6].
  • the compound (Z) is at least one compound selected from the group consisting of a compound (A) having an absorption maximum at a wavelength of 600 to 750 nm and a compound (S) having an absorption maximum at a wavelength of 750 to 850 nm. , [1] to [7].
  • R a , R b and Y satisfy the following condition (i) or (ii).
  • Plural R a s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR e R f group (R e and R f independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e ),
  • a plurality of R b s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group (R g and R)
  • L 1 is L a, L b, L c , L d, L e, L f, L g or L h, L a to L h represent the following groups.
  • X independently represents O, S, Se, N—R c or C (R d R d );
  • Each R c is the plurality of independently represent a hydrogen atom, L a, L b, L c, L d or L e,
  • a plurality of R d s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, a —L 1 or —NR e R f group, and adjacent R d May be linked to each other to form a ring which may have a substituent, L a to L e , L 1 , R e and R f have the same meanings as L a to L e , L 1 , R e and R f defined in the formula (I). ]
  • X independently represents an oxygen atom, a sulfur atom, a selenium atom or —NH—
  • R 1 to R 7 each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, —L 1 or —NR g R h group
  • R g and R h is independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group
  • R i is -L a , -L b , -L c , -L d or -L e ).
  • L 1 is, L a, L b, L c, L d, L e, L f, is L g or L h, L a ⁇ L h is as defined in Formula (I) L a ⁇ L h It is synonymous with. ]
  • the transparent resin is a cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester resin Any one of [1] to [10], which is at least one resin selected from the group consisting of a curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin An optical filter according to the above.
  • optical filter according to any one of [1] to [12] which is for a solid-state imaging device.
  • a solid-state imaging device comprising the optical filter according to any one of [1] to [12].
  • a camera module comprising the optical filter according to any one of [1] to [12].
  • an optical filter that is excellent in transmission characteristics of visible light and part of near-infrared light and has little incident angle dependency.
  • FIG. 1A is a schematic view showing a method for measuring the transmittance when measured from the vertical direction of the substrate (i) or the optical filter.
  • FIG. 1B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
  • FIG. 1C is a schematic diagram illustrating a method for measuring the reflectance of the optical filter.
  • FIG. 2 is a spectral transmission spectrum of the substrate obtained in Example 1.
  • FIG. 3 is a spectral transmission spectrum of the optical filter obtained in Example 1.
  • FIG. 4 is a spectral reflection spectrum of the optical filter obtained in Example 1.
  • FIG. 5 is a spectral transmission spectrum of the substrate obtained in Example 2.
  • FIG. 1A is a schematic view showing a method for measuring the transmittance when measured from the vertical direction of the substrate (i) or the optical filter.
  • FIG. 1B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30
  • FIG. 6 is a spectral transmission spectrum of the optical filter obtained in Example 2.
  • FIG. 7 is a spectral reflection spectrum of the optical filter obtained in Example 2.
  • FIG. 8 is a spectral transmission spectrum of the optical filter obtained in Example 3.
  • FIG. 9 is a spectral reflection spectrum of the optical filter obtained in Example 3.
  • FIG. 10 is a spectral transmission spectrum of the optical filter obtained in Comparative Example 1.
  • FIG. 11 is a spectral reflection spectrum of the optical filter obtained in Comparative Example 1.
  • FIG. 12 is a spectral transmission spectrum of the optical filter obtained in Comparative Example 2.
  • FIG. 13 is a spectral reflection spectrum of the optical filter obtained in Comparative Example 2.
  • the optical filter of the present invention comprises a base material (i) having a transparent resin layer containing a compound (Z) having an absorption maximum at a wavelength of 600 to 850 nm, a dielectric multilayer film, and a portion close to visible light.
  • a filter that selectively transmits infrared rays since the optical filter of the present invention uses the transparent resin layer containing the compound (Z) and the dielectric multilayer film in combination, it has excellent transmittance characteristics and is less dependent on the incident angle in the visible range and near-infrared transmission band. It is an optical filter.
  • the visible light transmittance is higher.
  • the average transmittance when measured from the vertical direction of the optical filter is 75% or more, preferably 80% or more, more preferably 83% or more, and particularly preferably 85% or more. It is.
  • the average transmittance is within the above range in this wavelength range, excellent imaging sensitivity can be achieved when the optical filter of the present invention is used as a solid-state imaging device.
  • the optical filter of the present invention has a light blocking band Za, a light transmitting band Zb, and a light blocking band Zc in a region having a wavelength of 650 nm or more.
  • the wavelength of each band is Za ⁇ Zb ⁇ Zc.
  • Za has a wavelength of 650 nm or more and 900 nm or less, and the transmittance when measured from the vertical direction of the optical filter is from the shortest wavelength Za1 that is more than 20% to 20% or less, and the longest wavelength that is less than 20% to 20% or more.
  • Zb is the longest wavelength from 40% or less to 40% or less, and the longest wavelength from 40% or less to 40% or less when measured from the vertical direction of the optical filter at wavelengths of 750 nm or more and 1050 nm or less.
  • Zc refers to a wavelength band from the shortest wavelength Zc1 at which the transmittance when measured from the vertical direction of the optical filter is greater than 20% to 20% or less at a wavelength of 820 nm or more, to a wavelength Zc2 that is Zc1 + 200 nm.
  • the optical filter of the present invention is used for a solid-state imaging device having a near-infrared sensing function
  • the maximum transmittance of the light ray (near-infrared) transmission band Zb is preferably higher, and the minimum transmission of the light-rejection bands Za and Zc.
  • a lower rate is preferred. In such a case, it is possible to achieve excellent near-infrared sensing performance, and it is possible to effectively cut off light beams having unnecessary wavelengths, and to improve the color reproducibility of the camera image.
  • the maximum transmittance when measured from the vertical direction of the optical filter in the light transmission band Zb is 55% or more, preferably 57% or more, more preferably 60% or more, and particularly preferably 63% or more.
  • the minimum transmittance when measured from the vertical direction of the optical filter in the light blocking zones Za and Zc is 15% or less, preferably 10% or less, more preferably 8% or less, still more preferably 6% or less, particularly preferably 5 % Or less.
  • the difference Xb ⁇ Xa between the wavelength value (Xa) on the shortest wavelength side and the wavelength value (Xb) on the longest wavelength side at which the transmittance is 50% is preferably 5 to 150 nm. More preferably, the thickness is 10 to 140 nm, and particularly preferably 15 to 130 nm.
  • the average transmittance when measured from the vertical direction of the optical filter in the wavelength range of Y-10 nm to Y + 10 nm is preferably 60% or more, more preferably 65% or more, and particularly preferably Is 70% or more.
  • a filter having such transmission characteristics can achieve high light transmission characteristics in the visible region and the target near-infrared region, and can achieve both a camera function and a near-infrared sensing function at a good level.
  • the optical filter of the present invention has the shortest wavelength value (Xd) at which the transmittance when measured from the vertical direction of the optical filter is 50% in the wavelength range of 560 to 800 nm and the vertical direction of the optical filter.
  • An optical filter having a wide viewing angle and a small absolute value of the difference from the shortest wavelength value (Xe) at which the transmittance when measured from an angle of 30 ° is 50% is small.
  • the absolute value of the difference between (Xd) and (Xe) is preferably less than 25 nm, more preferably less than 15 nm, and particularly preferably less than 10 nm.
  • the compound (Z) in particular, the following compound (A), such an optical filter, specifically, the substrate (i) so as to selectively transmit visible light and some near infrared rays.
  • the substrate (i) so as to selectively transmit visible light and some near infrared rays.
  • the optical filter of the present invention has the shortest wavelength wavelength at which the transmittance is 50% in the band corresponding to Zb in the transmittance curve measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
  • of the difference between the value (Xa ′) and the Xa is preferably less than 25 nm, more preferably less than 23 nm, and particularly preferably less than 20 nm.
  • is within this range, it is possible to obtain an optical filter having a small incident angle dependency of spectral characteristics, and when the optical filter is used for a camera module having a sensing function.
  • the compound (Z) in particular, the following compound (S), such an optical filter, specifically, the substrate (i) so as to selectively transmit visible light and some near infrared rays.
  • the substrate (i) so as to selectively transmit visible light and some near infrared rays.
  • the thickness of the optical filter of the present invention may be appropriately selected according to the desired application. However, according to the recent trend of thinning and weight reduction of solid-state imaging devices, the thickness of the optical filter of the present invention is also thin. Is preferred. Since the optical filter of the present invention includes the substrate (i), it can be thinned.
  • the thickness of the optical filter of the present invention is, for example, preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less, further preferably 150 ⁇ m or less, particularly preferably 120 ⁇ m or less, and the lower limit is not particularly limited, but for example, 20 ⁇ m. desirable.
  • the substrate (i) may be a single layer or a multilayer, and may have a transparent resin layer containing at least one compound (Z) having an absorption maximum at a wavelength of 600 to 850 nm.
  • a transparent resin substrate (ii) containing the compound (Z) can be mentioned, and this transparent resin substrate (ii) is the transparent resin layer. It becomes.
  • a transparent resin such as an overcoat layer containing a compound (Z) and a curable resin on a support such as a glass support or a base resin support or a transparent resin substrate (ii).
  • Examples include a base material on which a layer is laminated, and a base material on which a resin layer such as an overcoat layer containing a curable resin is laminated on a transparent resin substrate (ii) containing the compound (Z). From the standpoints of manufacturing cost and ease of adjusting optical properties, further achieving the scratch-removing effect of the resin support and the transparent resin substrate (ii), and improving the scratch resistance of the substrate (i), the compound (Z A substrate in which a resin layer such as an overcoat layer made of a curable resin is laminated on a transparent resin substrate (ii) containing) is particularly preferable.
  • the layer containing the compound (Z) and the transparent resin is also referred to as “transparent resin layer”, and the other resin layers are also simply referred to as “resin layers”.
  • the substrate (i) preferably satisfies at least one of the following conditions (i-1) and (i-2).
  • the lowest transmittance (Ta) measured from the vertical direction of the substrate (i) is preferably 40% or less, more preferably 25% or less, and particularly preferably Is 10% or less.
  • the shortest wavelength (Xc) at which the transmittance measured from the vertical direction of the base material (i) in the wavelength region of 600 nm or more is more than 50% to 50% or less is preferably 610 to 670 nm, more preferably 620 to 665 nm, Particularly preferred is 630 to 660 nm.
  • the lowest transmittance (Tb) measured from the vertical direction of the substrate (i) is preferably 40% or less, more preferably 25% or less, and particularly preferably 10%. % Or less.
  • the shortest wavelength (Xf) at which the transmittance measured from the vertical direction of the substrate (i) in the region of a wavelength of 750 nm or more is less than 50% to 50% or more is preferably 770 to 900 nm, more preferably 775 to 890 nm. Particularly preferred is 780 to 880 nm.
  • the average transmittance of the substrate (i) at a wavelength of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more.
  • a substrate having such transmission characteristics high light transmission characteristics can be achieved in the visible range and the target near-infrared range, and both the camera function and the near-infrared sensing function can be achieved at a good level.
  • the thickness of the substrate (i) can be appropriately selected according to a desired application, and is not particularly limited. However, it is preferable to select appropriately so as to reduce the incident angle dependency of the obtained optical filter, preferably Is 10 to 200 ⁇ m, more preferably 20 to 180 ⁇ m, and particularly preferably 30 to 150 ⁇ m.
  • the optical filter using the substrate (i) can be thinned and reduced in weight, and can be suitably used for various applications such as a solid-state imaging device. it can.
  • the base material (i) made of the transparent resin substrate (ii) is used in a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
  • the compound (Z) is not particularly limited as long as it is a compound having an absorption maximum at a wavelength of 600 to 850 nm, but the compound (A) having an absorption maximum at a wavelength of 600 to 750 nm and a compound having an absorption maximum at a wavelength of 750 to 850 nm (S It is preferably at least one compound selected from the group consisting of: a solvent-soluble dye compound, a squarylium compound, a phthalocyanine compound, a naphthalocyanine compound, a croconium compound, hexaphyrin It is more preferable that it is at least one selected from the group consisting of a series compound and a cyanine series compound. In the present invention, among these, it is more preferable to use a squarylium compound because it has excellent visible light transmission characteristics, steep absorption characteristics, and a high molar extinction coefficient.
  • the absorption maximum wavelength of a compound may be measured using a spectrophotometer after dissolving the compound in an appropriate solvent such as dichloromethane.
  • the compound (A) and the compound (S) are used in combination, these compounds may be contained in the same layer or in different layers. When they are contained in the same layer, for example, the compound (A) and the compound (S) are both contained in the same transparent resin substrate (ii) and on a support such as a glass support. (A) and the base material with which the transparent resin layer containing compound (S) is laminated
  • stacked can be mentioned, When it is contained in a separate layer, for example, the substrate made of transparent resin containing compound (A) (Ii) A base material on which a transparent resin layer containing the compound (S) is laminated, or a transparent resin layer containing the compound (A) on the transparent resin substrate (ii) containing the compound (S) Can be mentioned.
  • the compound (A) and the compound (S) are more preferably contained in the same layer. In such a case, the compound (A) and the compound (S) are more contained than in the case where they are contained in separate layers. It becomes easier to control the content ratio
  • the content of the compound (Z) is, for example, a substrate made of a transparent resin substrate (ii) containing the compound (Z) or a transparent resin substrate containing the compound (Z) as the substrate (i).
  • a substrate on which a resin layer such as an overcoat layer made of a curable resin or the like is laminated preferably 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the transparent resin More preferably 0.02 to 1.5 parts by weight, particularly preferably 0.03 to 1.0 parts by weight.
  • a compound is added to a glass support or a resin support as a base.
  • the absorption maximum wavelength of the compound (A) is preferably 620 to 750 nm, more preferably 650 to 745 nm, and particularly preferably 660 to 740 nm. More preferably, the compound (A) includes at least one squarylium compound and another compound (A). When the squarylium compound and the other compound (A) are used, the squarylium compound may be other compounds ( It is particularly preferred to have an absorption maximum on the shorter wavelength side than A), and the difference in absorption maximum wavelength between the squarylium-based compound and at least one of the other compounds (A) is preferably 5 to 50 nm.
  • the content ratio of the squarylium compound is preferably 10 to 95% by weight when the total amount of the compound (A) used is 100% by weight. More preferably, it is 15 to 85% by weight, particularly preferably 20 to 80% by weight.
  • the squarylium-based compound may generate fluorescence that causes scattered light upon absorption of light depending on the structure, but when the squarylium-based compound and the other compound (A) are used as the compound (A), there is a difference in absorption maximum wavelength.
  • the compound (A) preferably contains at least one selected from the group consisting of a squarylium compound represented by formula (I) and a squarylium compound represented by formula (II). Hereinafter, they are also referred to as “compound (I)” and “compound (II)”, respectively.
  • R a , R b and Y satisfy the following condition (i) or (ii).
  • a plurality of R a each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR e R f group.
  • R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
  • a plurality of R b s each independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group.
  • R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
  • a plurality of Y's independently represent a —NR j R k group.
  • R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
  • L 1 is L a , L b , L c , L d , Le , L f , L g or L h .
  • L a to L h represent the following groups.
  • Substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, or an aromatic carbon group having 6 to 14 carbon atoms. It is at least one selected from the group consisting of a hydrogen group, a heterocyclic group having 3 to 14 carbon atoms, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an amino group.
  • the total number of carbon atoms including the substituents of L a to L h is preferably 50 or less, more preferably 40 or less, and particularly preferably 30 or less. When the number of carbon atoms exceeds this range, the synthesis of the compound may be difficult, and the light absorption intensity per unit weight tends to be small.
  • At least one of two R a on one benzene ring is bonded to Y on the same benzene ring to form a 5 or 6-membered heterocycle containing at least one nitrogen atom.
  • the heterocyclic ring may have a substituent, and R b and R a that is not involved in the formation of the heterocyclic ring are independently synonymous with R b and R a in the condition (i).
  • Examples of the aliphatic hydrocarbon group of 1 to 12 carbon atoms in the specific example the L a and L of each group for example, a methyl group (Me), ethyl (Et), n-propyl group (n-Pr), isopropyl Group (i-Pr), n-butyl group (n-Bu), sec-butyl group (s-Bu), tert-butyl group (t-Bu), pentyl group, hexyl group, octyl group, nonyl group, decyl And alkyl groups such as dodecyl group; vinyl group, 1-propenyl group, 2-propenyl group, butenyl group, 1,3-butadienyl group, 2-methyl-1-propenyl group, 2-pentenyl group, hexenyl group and octenyl And alkynyl groups such as ethynyl, propynyl, butynyl, 2-methyl-1
  • Examples of the halogen-substituted alkyl group having 1 to 12 carbon atoms in L b and L include, for example, a trichloromethyl group, a trifluoromethyl group, a 1,1-dichloroethyl group, a pentachloroethyl group, a pentafluoroethyl group, a heptachloro group. Mention may be made of propyl and heptafluoropropyl groups.
  • Examples of the alicyclic hydrocarbon group having 3 to 14 carbon atoms in L c and L include, for example, a cycloalkyl group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group; a norbornane group and an adamantane group And polycyclic alicyclic groups such as
  • Examples of the aromatic hydrocarbon group having 6 to 14 carbon atoms in L d and L include, for example, phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, Mention may be made of phenanthryl, acenaphthyl, phenalenyl, tetrahydronaphthyl, indanyl and biphenylyl groups.
  • heterocyclic group having 3 to 14 carbon atoms in Le and L examples include, for example, furan, thiophene, pyrrole, pyrazole, imidazole, triazole, oxazole, oxadiazole, thiazole, thiadiazole, indole, indoline, indolenine, and benzofuran.
  • Examples of the alkoxy group having 1 to 12 carbon atoms in L f include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and an octyloxy group. it can.
  • Examples of the acyl group having 1 to 9 carbon atoms in L g include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, and a benzoyl group.
  • alkoxycarbonyl group having 1 to 9 carbon atoms in L h examples include, for example, a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, a pentyloxycarbonyl group, a hexyloxycarbonyl group, and an octyl group.
  • An oxycarbonyl group can be mentioned.
  • L a preferably a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, sec- butyl group, tert- butyl group, a pentyl group, a hexyl group, an octyl group, 4-phenylbutyl 2-cyclohexylethyl, more preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
  • L b is preferably a trichloromethyl group, a pentachloroethyl group, a trifluoromethyl group, a pentafluoroethyl group, or a 5-cyclohexyl-2,2,3,3-tetrafluoropentyl group, more preferably a trichloromethyl group.
  • L c is preferably a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-ethylcyclohexyl group, a cyclooctyl group, or a 4-phenylcycloheptyl group, and more preferably a cyclopentyl group, a cyclohexyl group, or a 4-ethylcyclohexyl group. It is.
  • the L d is preferably a phenyl group, 1-naphthyl group, 2-naphthyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 3,5-di-tert-butylphenyl group, 4-cyclopentylphenyl group. 2,3,6-triphenylphenyl group, 2,3,4,5,6-pentaphenylphenyl group, more preferably phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 2,3 , 4,5,6-pentaphenylphenyl group.
  • L e preferably furan, thiophene, pyrrole, indole, indoline, indolenine, benzofuran, benzothiophene, consisting morpholine group, more preferably furan, thiophene, pyrrole, consisting morpholine group.
  • the L f is preferably methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, methoxymethyl group, methoxyethyl group, 2-phenylethoxy group, 3-cyclohexylpropoxy group, pentyloxy group, hexyloxy Group, octyloxy group, more preferably methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group.
  • L g is preferably an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a benzoyl group, a 4-propylbenzoyl group, or a trifluoromethylcarbonyl group, and more preferably an acetyl group, a propionyl group, or a benzoyl group.
  • the L h is preferably a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, a 2-trifluoromethylethoxycarbonyl group, or a 2-phenylethoxycarbonyl group, more preferably A methoxycarbonyl group and an ethoxycarbonyl group;
  • the L a to L h further have at least one atom or group selected from the group consisting of a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an amino group. May be. Examples include 4-sulfobutyl, 4-cyanobutyl, 5-carboxypentyl, 5-aminopentyl, 3-hydroxypropyl, 2-phosphorylethyl, 6-amino-2,2-dichloro.
  • R a in the above condition (i) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group Cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, nitro group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group. .
  • R b in the condition (i) is preferably a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
  • Cyclohexyl group phenyl group, hydroxyl group, amino group, dimethylamino group, cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group T-butanoylamino group, cyclohexinoylamino group, more preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, hydroxyl group, dimethylamino group, nitro group , Acetylamino group, propionylamino group, trifluoromethanoylamino group, Printer fluoro ethanoyl group, t-butanoyl group, a cyclohexylene Sino-yl-amino group.
  • Y is preferably an amino group, methylamino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di-t-butylamino group, N -Ethyl-N-methylamino group, N-cyclohexyl-N-methylamino group, more preferably dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group , A di-t-butylamino group.
  • At least one of two R a on one benzene ring is bonded to Y on the same benzene ring, and at least 1 nitrogen atom is formed.
  • the heterocyclic ring containing 5 or 6 atoms include pyrrolidine, pyrrole, imidazole, pyrazole, piperidine, pyridine, piperazine, pyridazine, pyrimidine and pyrazine.
  • a heterocyclic ring that constitutes the heterocyclic ring and in which one atom adjacent to the carbon atom constituting the benzene ring is a nitrogen atom is preferable, and pyrrolidine is more preferable.
  • X independently represents O, S, Se, N—R c or C (R d R d ); a plurality of R c s independently represent a hydrogen atom, L a , L b , L c, represents L d or L e; each independently plurality of R d, a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, -L 1 or -NR e R f group, and adjacent R d groups may be linked to form an optionally substituted ring; L a to L e , L 1 , R e and R f are It is synonymous with L a -L e , L 1 , R e and R f defined in formula (I).
  • R c in the formula (II) is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group.
  • R d in the formula (II) is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl.
  • n-pentyl group n-hexyl group, cyclohexyl group, phenyl group, methoxy group, trifluoromethyl group, pentafluoroethyl group, 4-aminocyclohexyl group, more preferably hydrogen atom, chlorine atom, fluorine atom Methyl group, ethyl group, n-propyl group, isopropyl group, trifluoromethyl group and pentafluoroethyl group.
  • X is preferably O, S, Se, N-Me, N-Et, CH 2 , C-Me 2 , C-Et 2 , and more preferably S, C-Me 2 , C-Et 2. It is.
  • adjacent R ds may be linked to form a ring.
  • rings include benzoindolenin ring, ⁇ -naphthimidazole ring, ⁇ -naphthimidazole ring, ⁇ -naphthoxazole ring, ⁇ -naphthoxazole ring, ⁇ -naphthothiazole ring, ⁇ -naphthothiazole ring. , ⁇ -naphthoselenazole ring and ⁇ -naphthoselenazole ring.
  • Compound (I) and Compound (II) are represented by the following formulas (I-2) and (II-2) in addition to the description methods such as the following formula (I-1) and the following formula (II-1).
  • the structure can also be expressed by a description method that takes a resonance structure. That is, the difference between the following formula (I-1) and the following formula (I-2), and the difference between the following formula (II-1) and the following formula (II-2) is only the structure description method. Represents the same compound.
  • the structure of the squarylium compound is represented by a description method such as the following formula (I-1) and the following formula (II-1).
  • a compound represented by the following formula (I-3) and a compound represented by the following formula (I-4) can be regarded as the same compound.
  • the structures of compound (I) and compound (II) are not particularly limited as long as they satisfy the requirements of formula (I) and formula (II), respectively.
  • the left and right substituents bonded to the central four-membered ring may be the same or different. However, it is preferable that they are the same because synthesis is easy.
  • Specific examples of the compound (I) and the compound (II) include compounds (a-1) described in Tables 1 to 3 having basic skeletons represented by the following (IA) to (IH): To (a-36).
  • Compound (I) and compound (II) may be synthesized by a generally known method.
  • JP-A-1-228960, JP-A-2001-40234, JP-A-3196383, etc. It can be synthesized with reference to the method described.
  • the phthalocyanine compound is preferably a compound represented by the following formula (III) (hereinafter also referred to as “compound (III)”).
  • M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom including a trivalent or tetravalent metal atom
  • R a , R b , R c and R d bonded to the same aromatic ring is not a hydrogen atom.
  • the amino group, amide group, imide group and silyl group may have the substituent L defined in the formula (I), L 1 has the same meaning as L 1 defined in Formula (I), L 2 represents one of L a ⁇ L e as defined in the hydrogen atom or the formula (I), the L 3 represents either a hydroxyl group or the L a ⁇ L e, L 4 represents represents any of the L a ⁇ L e.
  • R x and R y represent a carbon atom
  • the amino group, amide group, imide group and silyl group, the formula may have a substituent group L as defined in (I), L 1 ⁇ L 4 is L 1 ⁇ L as defined in the formula (III) Synonymous with 4 .
  • the amino group which may have a substituent L is an amino group, ethylamino group, dimethylamino group, methylethylamino group, dibutylamino group, diisopropylamino Group and the like.
  • R a to R d and R A to R L as an amide group which may have a substituent L, an amide group, a methylamide group, a dimethylamide group, a diethylamide group, a dipropylamide group, a diisopropylamide group, Examples thereof include a dibutylamide group, an ⁇ -lactam group, a ⁇ -lactam group, a ⁇ -lactam group, and a ⁇ -lactam group.
  • the imide group that may have a substituent L is an imide group, a methylimide group, an ethylimide group, a diethylimide group, a dipropylimide group, a diisopropylimide group, A dibutylimide group etc. are mentioned.
  • Examples of the silyl group that may have a substituent L in R a to R d and R A to R L include a trimethylsilyl group, a tert-butyldimethylsilyl group, a triphenylsilyl group, and a triethylsilyl group.
  • —SL 2 includes thiol group, methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, isobutyl sulfide group, sec-butyl sulfide group Tert-butyl sulfide group, phenyl sulfide group, 2,6-di-tert-butylphenyl sulfide group, 2,6-diphenylphenyl sulfide group, 4-cumylphenyl sulfide group and the like.
  • —SS-L 2 is a disulfide group, methyl disulfide group, ethyl disulfide group, propyl disulfide group, butyl disulfide group, isobutyl disulfide group, sec-butyl disulfide group Tert-butyl disulfide group, phenyl disulfide group, 2,6-di-tert-butylphenyl disulfide group, 2,6-diphenylphenyl disulfide group, 4-cumylphenyl disulfide group and the like.
  • examples of —SO 2 -L 3 include a sulfo group, a mesyl group, an ethylsulfonyl group, an n-butylsulfonyl group, a p-toluenesulfonyl group, and the like.
  • —N ⁇ N—L 4 includes a methylazo group, a phenylazo group, a p-methylphenylazo group, a p-dimethylaminophenylazo group, and the like.
  • examples of monovalent metal atoms include Li, Na, K, Rb, and Cs.
  • the divalent metal atoms include Be, Mg, Ca, Ba, Ti, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Zn, Cd, Hg, Sn, Pb etc. are mentioned.
  • the substituted metal atom containing a trivalent metal atom includes Al—F, Al—Cl, Al—Br, Al—I, Ga—F, Ga—Cl, Ga—Br, Ga—I, In -F, In-Cl, In-Br, In-I, Tl-F, Tl-Cl, Tl-Br, Tl-I, Fe-Cl, Ru-Cl, Mn-OH and the like.
  • the substituted metal atom containing a tetravalent metal atom includes TiF 2 , TiCl 2 , TiBr 2 , TiI 2 , ZrCl 2 , HfCl 2 , CrCl 2 , SiF 2 , SiCl 2 , SiBr 2 , SiI 2 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , SnF 2 , SnCl 2 , SnBr 2 , SnI 2 , Zr (OH) 2 , Hf (OH) 2 , Mn (OH) 2 , Si (OH) 2 , Ge ( OH) 2 , Sn (OH) 2 , TiR 2 , CrR 2 , SiR 2 , GeR 2 , SnR 2 , Ti (OR) 2 , Cr (OR) 2 , Si (OR) 2 , Ge (OR) 2 , Sn (OR) 2 (R represents an aliphatic group or an aromatic group),
  • the M is a divalent transition metal, trivalent or tetravalent metal halide or tetravalent metal oxide belonging to Groups 5 to 11 of the periodic table and belonging to the 4th to 5th periods.
  • Cu, Ni, Co, and VO are particularly preferable because high visible light transmittance and stability can be achieved.
  • a method of synthesizing the phthalocyanine-based compound by a cyclization reaction of a phthalonitrile derivative such as the following formula (V) is generally known.
  • the obtained phthalocyanine-based compounds are represented by the following formulas (VI-1) to (VI) It is a mixture of four isomers such as VI-4).
  • VI-1 a phthalonitrile derivative
  • VI-4 a phthalonitrile derivative
  • the compound (III) include the basic skeletons represented by the following formulas (III-A) to (III-J) and (b-1) to (b-61) shown in Tables 4 to 7 below. ) And the like.
  • Compound (III) may be synthesized by a generally known method. For example, a method described in Japanese Patent No. 4081149 or “phthalocyanine—chemistry and function” (IPC, 1997) is used. It can be synthesized by reference.
  • the cyanine compound is a compound represented by any of the following formulas (IV-1) to (IV-3) (hereinafter also referred to as “compounds (IV-1) to (IV-3)”). Is preferred.
  • X a - represents a monovalent anion
  • a plurality of D independently represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom
  • the hydrocarbon group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
  • R x and R y represent a carbon atom
  • the amino group, amide group, imide group and silyl group may have the substituent L.
  • Examples of the aromatic hydrocarbon group having 6 to 14 carbon atoms formed by bonding Z or Y in Z a to Z c and Y a to Y d include, for example, the substituent L
  • the compound illustrated by the aromatic hydrocarbon group is mentioned.
  • the alicyclic hydrocarbon group include compounds exemplified by the alicyclic hydrocarbon group and the heterocyclic ring in the substituent L (excluding the heteroaromatic hydrocarbon group).
  • heteroaromatic hydrocarbon group having 3 to 14 carbon atoms formed by bonding Z or Y in Z a to Z c and Y a to Y d include, for example, the substituent L And the compounds exemplified as the heterocyclic group (excluding alicyclic hydrocarbon groups containing at least one nitrogen atom, oxygen atom or sulfur atom).
  • (IV-1) to (IV-3) may have —SL 2 , —SS—L 2 , —SO 2 —L 3 , —N ⁇ N—L 4 , and a substituent L.
  • substituent L examples of the amino group, amide group, imide group, and silyl group include the same groups as those exemplified in the formula (III).
  • X a ⁇ is not particularly limited as long as it is a monovalent anion, but I ⁇ , Br ⁇ , PF 6 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , B (C 6 F 5 ) 4 ⁇ , nickel dithiolate. And the like, and copper dithiolate complex.
  • the compounds (IV-1) to (IV-3) may be synthesized by a generally known method, for example, by the method described in JP-A-2009-108267.
  • the absorption maximum wavelength of the compound (S) is preferably 755 to 845 nm, more preferably 760 to 840 nm, and particularly preferably 765 to 835 nm.
  • the absorption maximum wavelength of the compound (S) is in such a range, unnecessary near infrared rays in the vicinity of the near infrared selective transmission band can be selectively and efficiently cut.
  • the compound (S) is preferably a squarylium compound represented by the following formula (S1) (hereinafter also referred to as “compound (S1)”).
  • X independently represents an oxygen atom, a sulfur atom, a selenium atom or —NH—
  • R 1 to R 7 each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, A nitro group, a carboxy group, a phosphate group, -L 1 or -NR g R h group is represented.
  • R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
  • L 1 is L a , L b , L c , L d , Le , L f , L g or L h .
  • L a to L h are synonymous with L a to L h defined in the formula (I).
  • R 1 is preferably a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group.
  • R 2 to R 7 are preferably each independently a hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert- Butyl group, cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoyl An amino group, a t-butanoylamino group, and a cyclohexinoylamino group, more preferably a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group,
  • X is preferably an oxygen atom or a sulfur atom, and particularly preferably an oxygen atom.
  • the compound (S1) can have a structure represented by a description method such as the following formula (S1-1) and a description method having a resonance structure as the following formula (S1-2). That is, the difference between the following formula (S1-1) and the following formula (S1-2) is only the structure description method, and both represent the same compound.
  • the structure of the squarylium compound is represented by a description method such as the following formula (I-1).
  • a compound represented by the following formula (S1-3) and a compound represented by the following formula (S1-4) can be regarded as the same compound.
  • the structure of the compound (S1) is not particularly limited as long as the requirement of the formula (S1) is satisfied.
  • the left and right substituents bonded to the central four-membered ring may be the same or different. It is preferable because it is easy to synthesize.
  • Specific examples of the compound (S1) include compounds (s-1) to (s-20) shown in Table 9 below.
  • the compound (S) may be synthesized by a generally known method.
  • JP-A-1-228960, JP-A-2001-40234, JP-A-3094037, JP-A-3196383, etc. Can be synthesized with reference to the method described in the above.
  • the base material (i) may further contain other dye (X) not corresponding to the compound (Z).
  • Other dyes (X) are not particularly limited as long as the absorption maximum wavelength is less than 600 nm or more than 850 nm.
  • squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds And at least one compound selected from the group consisting of a porphyrin compound and a metal dithiolate compound.
  • the long wavelength of the near-infrared transmission band in addition to the visible wavelength range can be obtained by using the compound (Z) and the other dye (X) in combination. Also on the side, the dependency on the incident angle can be reduced, and good infrared sensing performance can be achieved.
  • the content of the other dye (X) is, for example, a base material made of a transparent resin substrate (ii) containing the other dye (X) or the other dye (X) as the base material (i).
  • a base material in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on the transparent resin substrate (ii) to be contained, it is preferably 0.01 to 100 parts by weight of the transparent resin. To 1.5 parts by weight, more preferably 0.02 to 1.0 parts by weight, and particularly preferably 0.03 to 0.7 parts by weight.
  • the substrate (i) serves as a glass support or base.
  • a transparent resin layer containing the other dye (X) Is preferably 0.1-4. Parts, more preferably 0.2 to 3.0 parts by weight, particularly preferably 0.3 to 2.0 parts by weight. When the content of the other dye (X) is within the above range, both good near-infrared absorption characteristics and high visible light transmittance can be achieved.
  • the transparent resin layer and the transparent resin substrate (ii) to be laminated on a resin support or glass support can be formed using a transparent resin.
  • transparent resin used for the said base material (i) 1 type may be individual and 2 or more types may be sufficient.
  • the transparent resin is not particularly limited as long as it does not impair the effects of the present invention.
  • it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher.
  • a resin having a glass transition temperature (Tg) of preferably 110 to 380 ° C., more preferably 110 to 370 ° C., and still more preferably 120 to 360 ° C. is used to form a substrate capable of forming a body multilayer film.
  • Tg glass transition temperature
  • the glass transition temperature of the resin is 140 ° C. or higher because a film (transparent resin layer and transparent resin substrate (ii)) on which the dielectric multilayer film can be deposited at a higher temperature can be obtained.
  • Tg can be measured by the method described in the Examples below.
  • the total light transmittance (JIS K7375) of the resin support is preferably 75% or more, more preferably Resins that can be 78% or more, particularly preferably 80% or more can be used. If a resin having a total light transmittance in such a range is used, the obtained base material (i) exhibits good transparency as an optical film.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by the gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000
  • the number average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
  • Mw and Mn can be measured by the methods described in the following examples.
  • transparent resins examples include cyclic (poly) olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, and polyarylate resins.
  • examples thereof include resins, allyl ester curable resins, silsesquioxane ultraviolet curable resins, acrylic ultraviolet curable resins, and vinyl ultraviolet curable resins.
  • the cyclic (poly) olefin resin is at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ) And a resin obtained by hydrogenating the resin are preferred.
  • R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
  • R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
  • Ix ′ A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
  • R y1 and R y2 each independently represent an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently, represent 0 or a positive integer.
  • the aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represents an integer of 0 to 4.
  • R 1 ⁇ R 4 and a ⁇ d independently has the same meaning as R 1 ⁇ R 4 and a ⁇ d of the formula (1)
  • Y represents a single bond
  • -SO 2 -Or> C O
  • R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group
  • g and h each independently represent 0 to 4
  • m represents 0 or 1.
  • R 7 is not a cyano group.
  • the aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
  • R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms
  • Z represents a single bond, —O—, —S—, —SO 2 —,> C ⁇ O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms
  • e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
  • R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).
  • the polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit.
  • the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.
  • the fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized, for example, by the method described in JP-A-2008-163194.
  • the fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety.
  • the fluorene polyester resin can be synthesized by the method described in JP 2010-285505 A or JP 2011-197450 A. Can do.
  • the fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond.
  • the polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
  • the acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned.
  • the acrylic ultraviolet curable resin is a base material in which a transparent resin layer containing a compound (Z) and a curable resin is laminated on a glass support or a base resin support as the base (i)
  • a substrate in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on a transparent resin substrate (ii) containing the compound (Z)
  • it is particularly preferably used as the curable resin. be able to.
  • ⁇ Commercial product ⁇ The following commercial products etc. can be mentioned as a commercial item of transparent resin.
  • Examples of commercially available cyclic (poly) olefin-based resins include Arton manufactured by JSR Co., Ltd., ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Co., Ltd. .
  • Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd.
  • Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited.
  • Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd.
  • Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER.
  • Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
  • the said base material (i) may contain additives, such as antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and a metal complex type compound further.
  • additives such as antioxidant, a near-ultraviolet absorber, a fluorescence quencher, and a metal complex type compound further.
  • manufacture of base material (i) can be made easy by adding a leveling agent and an antifoamer.
  • Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, triazine compounds, and the like.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane.
  • additives may be mixed with a resin or the like when the base material (i) is produced, or may be added when a resin is synthesized.
  • the addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.
  • the base material (i) is a base material including a transparent resin substrate (ii) containing the compound (Z)
  • the transparent resin substrate (ii) is formed by, for example, melt molding or cast molding.
  • a substrate on which an overcoat layer is laminated can be produced by coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent after molding. .
  • a transparent resin layer such as an overcoat layer in which the base material (i) is a glass support, a resin support as a base, or a curable resin containing the compound (Z) on the transparent resin substrate (ii) Is a laminated base material, for example, by melt molding or cast molding a resin solution containing the compound (Z) on a glass support, a base resin support or a transparent resin substrate (ii)
  • the solvent is dried and removed, and if necessary, further light irradiation or heating is performed, whereby a glass support or a resin support as a base is used.
  • the base material in which the transparent resin layer was formed on the transparent resin substrate (ii) can be manufactured.
  • the melt molding is a method of melt-molding pellets obtained by melt-kneading a resin and a compound (Z) or the like; melting a resin composition containing the resin and the compound (Z) A method of molding; or a method of melt-molding pellets obtained by removing the solvent from the resin composition containing the compound (Z), resin and solvent, and the like.
  • the melt molding method include injection molding, melt extrusion molding, and blow molding.
  • a method of removing a solvent by casting a resin composition containing the compound (Z), a resin and a solvent on an appropriate support; or the compound (Z) and a photocurable resin and / or It can also be produced by a method in which a curable composition containing a thermosetting resin is cast on an appropriate support to remove the solvent and then cured by an appropriate method such as ultraviolet irradiation or heating.
  • the base material (i) is a base material made of a transparent resin substrate (ii) containing the compound (Z)
  • the base material (i) is coated with a coating film from the support after cast molding. It can be obtained by peeling, and the base material (i) contains the compound (Z) on a support such as a glass support or a base resin support or a transparent resin substrate (ii).
  • the base material (i) can be obtained by not peeling the coating film after cast molding. .
  • the support examples include a glass plate, a steel belt, a steel drum, and a transparent resin support (for example, a film made of the transparent resin or the like (polyester film, cyclic olefin resin film, etc.)).
  • a transparent resin support for example, a film made of the transparent resin or the like (polyester film, cyclic olefin resin film, etc.)
  • the optical component such as glass plate, quartz or transparent plastic is coated with the resin composition and the solvent is dried, or the curable composition is coated and cured and dried.
  • a transparent resin layer can also be formed on the component.
  • the amount of residual solvent in the transparent resin layer (transparent resin substrate (ii)) obtained by the above method should be as small as possible.
  • the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.8% by weight with respect to the weight of the transparent resin layer (transparent resin substrate (ii)). 5% by weight or less.
  • the amount of residual solvent is in the above range, a transparent resin layer (transparent resin substrate (ii)) that can easily exhibit a desired function is obtained, in which deformation and characteristics are hardly changed.
  • the dielectric multilayer film constituting the optical filter of the present invention is a film having the ability to cut unnecessary near infrared rays by reflection and transmit the necessary near infrared rays.
  • the dielectric multilayer film may be provided on one side of the substrate (i) or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained.
  • the warp of the optical filter is smaller. Therefore, it is preferable to provide the dielectric multilayer film on both surfaces of the substrate (i).
  • the dielectric multilayer films may have the same or different spectral characteristics. When the spectral characteristics of the dielectric multilayer films provided on both surfaces are the same, the transmittance of the light blocking zones Za and Zc can be efficiently reduced in the near-infrared wavelength region, and the spectral characteristics of the dielectric multilayer films provided on both surfaces. When the values are different, there is a tendency that the light blocking band Zc can be easily extended to the longer wavelength side.
  • the dielectric multilayer film having different spectral characteristics is provided on both surfaces of the base material (i), preferably measured from at least one surface side (surface side having the dielectric multilayer film) of the optical filter, preferably both surfaces of the optical filter
  • the average reflectance in the wavelength range of wavelength Y-10 nm to Y + 10 nm, measured from (surface having the dielectric multilayer film) is preferably 20% or less, more preferably 18% or less, and particularly preferably 15% or less.
  • the reflectivity of the dielectric multilayer film in the wavelength range of Y-10 nm to Y + 10 nm is in the above range, the obtained optical filter has high sensitivity at a desired near infrared wavelength and achieves excellent near infrared sensing performance. be able to.
  • Examples of the dielectric multilayer film include those in which a high refractive index material layer and a low refractive index material layer are alternately laminated.
  • a material constituting the high refractive index material layer a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected.
  • Such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Alternatively, a material containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight based on the main component) can be used.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected.
  • examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
  • the method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed.
  • a high-refractive index material layer and a low-refractive index material layer are alternately laminated directly on the substrate (i) by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating.
  • a dielectric multilayer film can be formed.
  • the physical film thickness of each of the high refractive index material layer and the low refractive index material layer is preferably 5 to 500 nm, although it depends on the refractive index of each layer, and is the total physical film thickness of the dielectric multilayer film.
  • the value is preferably 1.0 to 8.0 ⁇ m for the entire optical filter.
  • the total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, more preferably 20 to 60 layers, as a whole. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.
  • the material type constituting the high-refractive index material layer and the low-refractive index material layer, the thickness of each layer of the high-refractive index material layer and the low-refractive index material layer, the order of stacking, and the number of stacks are appropriately selected.
  • an optical filter having a light blocking band and a light transmission band of a desired wavelength in the near infrared wavelength range while ensuring a sufficient transmittance in the visible range.
  • optical thin film design software for example, manufactured by Essential Macleod, manufactured by Thin Film Center
  • the parameter may be set so as to increase the transmittance in the wavelength region where light is to be transmitted.
  • the above-mentioned software is used, and the target transmittance at a wavelength of 720 to 760 nm of one dielectric multilayer film is 0%, 780 to 820 nm.
  • the target transmittance of each wavelength region is set to 100%, the Target Tolerance value of each wavelength region is set to 0.5 or less, and the target transmittance of the other dielectric multilayer film at a wavelength of 780 to 820 nm is set to 100%. And a parameter setting method in which the Target Tolerance value of each wavelength region is set to 0.5 or less after setting the target transmittance of 850 to 1100 nm to 0%.
  • the optical filter between the substrate (i) and the dielectric multilayer film is on the side opposite to the surface on which the dielectric multilayer film of the substrate (i) is provided.
  • the surface hardness of the substrate (i) or the dielectric multilayer film is improved, the chemical resistance is improved, the antistatic A functional film such as an antireflection film, a hard coat film, or an antistatic film can be appropriately provided for the purpose of scratch removal.
  • the optical filter of the present invention may include one layer made of the functional film or two or more layers.
  • the optical filter of the present invention may include two or more similar layers or two or more different layers.
  • the method of laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melted in the base material (i) or the dielectric multilayer film as described above.
  • a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melted in the base material (i) or the dielectric multilayer film as described above.
  • Examples of the method include molding or cast molding.
  • it can also be produced by applying a curable composition containing the coating agent or the like on the substrate (i) or the dielectric multilayer film with a bar coater or the like and then curing it by ultraviolet irradiation or the like.
  • the coating agent examples include ultraviolet (UV) / electron beam (EB) curable resins and thermosetting resins. Specifically, vinyl compounds, urethanes, urethane acrylates, acrylates, epoxy And epoxy acrylate resins. Examples of the curable composition containing these coating agents include vinyl, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate curable compositions.
  • UV ultraviolet
  • EB electron beam
  • the curable composition may contain a polymerization initiator.
  • a polymerization initiator a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination.
  • a polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the blending ratio of the polymerization initiator in the curable composition is preferably 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, when the total amount of the curable composition is 100% by weight. More preferably, it is 1 to 5% by weight.
  • a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.
  • organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used.
  • organic solvents include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone. These solvents may be used alone or in combination
  • the thickness of the functional film is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, and particularly preferably 0.7 to 5 ⁇ m.
  • the base material (i) and the functional film and / or the dielectric multilayer film may be applied to the surface of the multilayer film.
  • the optical filter of the present invention has a wide viewing angle and can selectively transmit visible light and some near infrared rays. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor having both a camera function and a near-infrared sensing function.
  • a solid-state imaging device such as a CCD or CMOS image sensor having both a camera function and a near-infrared sensing function.
  • digital still cameras smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, night vision cameras, motion capture, laser rangefinders, virtual fittings, license plates It is useful for recognition devices, televisions, car navigation systems, portable information terminals, video game machines, portable game machines, fingerprint authentication systems, digital music players, and the like.
  • the solid-state imaging device of the present invention includes the optical filter of the present invention.
  • the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor having both a camera function and a near-infrared sensing function.
  • a digital still camera a smartphone camera, a mobile phone It can be used for applications such as telephone cameras, wearable device cameras, and digital video cameras.
  • the camera module of the present invention includes the optical filter of the present invention.
  • Parts means “parts by weight” unless otherwise specified.
  • the measurement method of each physical property value and the evaluation method of the physical property are as follows.
  • the molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
  • A Weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by WATERS Average molecular weight (Mw) and number average molecular weight (Mn) were measured.
  • GPC gel permeation chromatography
  • the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the said method.
  • (C) A part of the polyimide resin solution was put into anhydrous methanol to precipitate a polyimide resin, and filtered to separate unreacted monomers.
  • 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity ( ⁇ ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
  • Tg Glass transition temperature
  • DSC6200 differential scanning calorimeter
  • the transmittance when measured from the vertical direction of the base material and the optical filter was measured as light transmitted perpendicularly to the base material or the filter as shown in FIG. Further, with respect to the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, light transmitted at an angle of 30 ° with respect to the vertical direction of the filter was measured as shown in FIG.
  • the reflectance of the optical filter was measured from an angle of 5 ° with respect to the vertical direction by installing the optical filter on a jig attached to the apparatus as shown in FIG.
  • the compound (A), the compound (S) and the other dye (X) used in the following examples can be synthesized by a generally known method, for example, Japanese Patent No. 3366697 and Japanese Patent No. 2846091.
  • the obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
  • the obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
  • Resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
  • the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr, held at 240 ° C. and 150 Torr for 10 minutes, adjusted to 120 Torr over 10 minutes, held at 240 ° C. and 120 Torr for 70 minutes, Further, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. Thereafter, the polymerization reaction was carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. over 1 Torr.
  • resin D polycarbonate resin
  • the precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”).
  • the obtained resin F had a number average molecular weight of 71,000 and a glass transition temperature (Tg) of 242 ° C.
  • 100 parts of resin A obtained in Synthesis Example 1 0.03 part of compound (a-16) described in Table 1 (absorption maximum wavelength 698 nm in dichloromethane) as compound (A) and Table 4 0.03 part of the compound (b-3) (absorption maximum wavelength 733 nm in dichloromethane) and methylene chloride were added to obtain a solution having a resin concentration of 20% by weight.
  • the obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate.
  • the peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a base material composed of a transparent resin substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
  • Dielectric multilayer film (I) is silica and (SiO 2) layer and a titania (TiO 2) layer formed by alternately stacked at a deposition temperature of 100 ° C. (a total of 30 layers).
  • the dielectric multilayer film (II) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers at a deposition temperature of 100 ° C. (20 layers in total).
  • the silica layer and the titania layer are in order of the titania layer, the silica layer, the titania layer,..., The silica layer, the titania layer, and the silica layer from the substrate side.
  • the outermost layer of the optical filter was a silica layer.
  • the dielectric multilayer films (I) and (II) were designed as follows. Regarding the thickness and number of layers, the wavelength dependence of the refractive index of the base material and the absorption characteristics of the compound (A) used so that the antireflection effect in the visible region and the selective transmission / reflection performance in the near infrared region can be achieved. was optimized using optical thin film design software (Essential Macleod, manufactured by Thin Film Center). When performing optimization, in Example 1, the input parameters (Target values) to the software are as shown in Table 10 below.
  • the dielectric multilayer film (I) was formed by alternately laminating a silica layer having a film thickness of 22 to 467 nm and a titania layer having a film thickness of 6 to 130 nm.
  • the dielectric multilayer film (II) is a multilayer deposited film having 20 layers, in which a silica layer having a thickness of 84 to 206 nm and a titania layer having a thickness of 8 to 109 nm are alternately stacked. It was. Table 11 shows an example of the optimized film configuration.
  • the spectral transmittance measured from an angle of 30 ° from the vertical direction and the vertical direction of this optical filter and the reflectance measured from an angle of 5 ° from the vertical direction were measured, and the optical characteristics in each wavelength region were evaluated.
  • the results are shown in FIGS. 3 and 4 and Table 15.
  • the average transmittance at a wavelength of 430 to 580 nm is 88%
  • Xa is 778 nm
  • Xb is 842 nm
  • Y is 810 nm
  • the average transmittance is 85% in the wavelength range of Y-10 nm to Y + 10 nm
  • the wavelength is Y-10 nm to Y + 10 nm.
  • the average reflectance was 8%, the absolute value
  • the average reflectance at wavelengths Y-10 nm to Y + 10 nm was measured from the dielectric multilayer film (I) side of the optical filter.
  • compound (a-17) described in Table 1 maximum absorption wavelength 703 nm in dichloromethane
  • Compound (A) was prepared in the same procedure and under the same conditions as in Example 1 except that 0.04 part and 0.04 part of compound (b-39) (absorption maximum wavelength 736 nm in dichloromethane) described in Table 6 were used.
  • a transparent resin substrate was obtained.
  • a resin composition (1) having the following composition was applied to one side of the obtained transparent resin substrate with a bar coater and heated in an oven at 70 ° C. for 2 minutes to volatilize and remove the solvent. At this time, the coating conditions of the bar coater were adjusted so that the thickness after drying was 2 ⁇ m.
  • the exposure exposure 500 mJ / cm 2, 200 mW
  • a conveyor-type exposure apparatus to cure the resin composition (1), to form a resin layer on the transparent resin substrate.
  • a resin layer made of the resin composition (1) was formed on the other surface of the transparent resin substrate, and a base material having a resin layer on both surfaces of the transparent resin substrate containing the compound (A) was obtained. .
  • Resin composition (1) 60 parts by weight of tricyclodecane dimethanol acrylate, 40 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent, solid content concentration (TSC): 30%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained base material (total 30 layers).
  • An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in FIGS.
  • Example 1 a dielectric multilayer film (V) was formed on one side of the obtained base material, and a dielectric multilayer film (VI) was further formed on the other side of the base material.
  • An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the design parameters shown in Table 12 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1.
  • the dielectric multilayer film (V) was formed by alternately laminating a silica layer having a film thickness of 15 to 222 nm and a titania layer having a film thickness of 9 to 179 nm.
  • the dielectric multilayer film (VI) is a multilayer deposited film having 20 layers, in which a silica layer having a thickness of 94 to 211 nm and a titania layer having a thickness of 7 to 115 nm are alternately stacked. It was. Table 13 shows an example of the optimized film configuration.
  • the resin support which has the resin layer which consists of resin composition (2) of the following composition similarly to Example 2 on both surfaces of the obtained resin support body, and has a compound (A) on both surfaces A substrate consisting of body was obtained.
  • Resin composition (2) 100 parts by weight of tricyclodecane dimethanol acrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.8 part by weight of compound (a-16) described in Table 1 above, listed in Table 4 above
  • Compound (b-3) 0.7 parts by weight, methyl ethyl ketone (solvent, TSC: 25%)
  • Example 2 a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained base material (total 30 layers). And a dielectric multilayer film (VIII) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other side of the substrate (20 layers in total). An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • a glass support “OA-10G (thickness: 200 ⁇ m)” manufactured by Nippon Electric Glass Co., Ltd.
  • a resin composition (3) having the following composition was applied by a spin coater. The solvent was volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes.
  • coating conditions of the spin coater were adjusted so that the thickness after drying might be set to 2 micrometers.
  • it exposes (exposure amount 500mJ / cm ⁇ 2 >, 200mW) using a conveyor type exposure machine, hardens the resin composition (3), and consists of a glass support body which has a transparent resin layer containing a compound (A). A substrate was obtained.
  • Resin composition (3) 20 parts by weight of tricyclodecane dimethanol acrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, compound (a-16) described in Table 1 above 4 parts by weight, 1.4 parts by weight of the compound (b-3) described in Table 4 above, methyl ethyl ketone (solvent, TSC: 35%)
  • a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained base material (a total of 30 layers).
  • a dielectric multilayer film (X) is formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the substrate (20 layers in total).
  • An optical filter having a thickness of about 0.210 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate as in Example 1. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 1 In Example 1, a substrate was prepared in the same manner as in Example 1 except that the compound (A) was not used. Subsequently, as in Example 1, a dielectric multilayer film (XI) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained base material (a total of 32 layers). ) is formed, further forming a silica on the other side of the substrate (and SiO 2) layer and a titania (TiO 2) layer are laminated alternately (total of 20 layers) dielectric multilayer film (XII) An optical filter having a thickness of about 0.106 mm was obtained.
  • XI dielectric multilayer film
  • the dielectric multilayer film was designed using the design parameters shown in Table 14 in consideration of the wavelength dependency of the base material refractive index.
  • the spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in FIGS. 10 and 11 and Table 15.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the base material refractive index. The spectral transmittance of this optical filter was measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in FIGS. 12 and 13 and Table 15.
  • Example 2 is the same as Example 2 except that 0.05 part of a cyanine compound (absorption maximum wavelength 996 nm in dichloromethane) represented by the following formula (x-1) was used instead of compound (A).
  • a substrate was prepared in the same manner. The spectral transmittance of the substrate was measured, and (Ta), (Tb), (Xc), and (Xf) were obtained. The results are shown in Table 15.
  • Example 1 a dielectric multilayer film (XV) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained substrate (a total of 30 layers). And a dielectric multilayer film (XVI) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on the other surface of the substrate (20 layers in total).
  • An optical filter having a thickness of about 0.106 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 1 was carried out in the same manner as in Example 1 except that 0.05 part of a compound represented by the following formula (x-2) (absorption maximum wavelength in dichloromethane) was used instead of compound (A). A substrate was prepared. The spectral transmittance of this substrate was measured, and (Ta), (Tb) and (Xc) were determined. The results are shown in Table 15.
  • Example 1 a dielectric multilayer film (XVII) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on one side of the obtained base material (a total of 30 layers). And a dielectric multilayer film (XVIII) in which a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are alternately laminated on the other surface of the substrate (total 20 layers).
  • An optical filter having a thickness of about 0.106 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the substrate. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 5 A silica (SiO 2 ) layer and titania (TiO 2 ) were formed on one side of the substrate in the same manner as in Example 1 except that a glass support “OA-10G (thickness: 200 ⁇ m)” (manufactured by Nippon Electric Glass Co., Ltd.) was used. ) Layers are alternately stacked (30 layers in total) to form a dielectric multilayer film (XIX), and a silica (SiO 2 ) layer and a titania (TiO 2 ) layer are formed on the other surface of the substrate.
  • OA-10G thickness: 200 ⁇ m
  • Dielectric multilayer films (XX) formed by alternately laminating (total 20 layers) were formed, and an optical filter having a thickness of about 0.206 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 1 in consideration of the wavelength dependence of the base material refractive index. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Examples 6 to 17 A substrate and an optical filter were prepared in the same manner as in Example 2 except that the drying conditions of the resin, compound (A), solvent, and transparent resin substrate were changed as shown in Table 15. Table 15 shows the optical characteristics of the obtained substrate and optical filter.
  • 0.03 part of the compound (s-5) shown in Table 9 (maximum absorption wavelength 770 nm in dichloromethane) was used instead of the compounds (a-16) and (b-3). Except for the above, a base material having resin layers on both surfaces of a transparent resin substrate containing the compound (S) was obtained in the same procedures and conditions as in Example 3.
  • Example 3 a dielectric multilayer film (XXI) was formed on one side of the obtained base material, and a dielectric multilayer film (XXII) was further formed on the other side of the base material.
  • An optical filter having a thickness of about 0.106 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 3 in consideration of the wavelength dependency of the base material refractive index. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 18 in addition to 0.03 part of compound (s-5), 0.02 part of compound (a-17) and 0.05 part of compound (b-39) were used as compound (A). Obtained a transparent resin substrate containing the compound (S) and the compound (A) under the same procedures and conditions as in Example 18.
  • Example 3 a dielectric multilayer film (XXIII) was formed on one side of the obtained base material, and a dielectric multilayer film (XXIV) was further formed on the other side of the base material.
  • An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 3 in consideration of the wavelength dependency of the base material refractive index. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 3 instead of compounds (a-16) and (b-3), 0.03 part of compound (s-8) in Table 9 (maximum absorption wavelength 776 nm in dichloromethane) as compound (S)
  • Compound (S) and Compound (S) were prepared in the same procedure and under the same conditions as in Example 3, except that 0.03 part of Compound (a-16) and 0.03 part of Compound (b-3) were used as Compound (A).
  • a transparent resin substrate containing A) was obtained.
  • Example 3 a dielectric multilayer film (XXV) was formed on one side of the obtained base material, and a dielectric multilayer film (XXVI) was further formed on the other side of the base material.
  • An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 3 in consideration of the wavelength dependency of the base material refractive index. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Example 3 in place of the compounds (a-16) and (b-3), 0.03 part of the compound (s-8) in Table 9 as the compound (S) and the compound (a) as the compound (A) ⁇ 22)
  • a transparent resin substrate containing compound (S) and compound (A) was obtained by the same procedure and conditions as in Example 3 except that 0.03 part and 0.04 part of compound (b-16) were used. It was.
  • Example 3 a dielectric multilayer film (XXVII) was formed on one side of the obtained base material, and a dielectric multilayer film (XXVIII) was further formed on the other side of the base material.
  • An optical filter having a thickness of about 0.110 mm was obtained.
  • the dielectric multilayer film was designed using the same design parameters as in Example 3 in consideration of the wavelength dependency of the base material refractive index. The spectral transmittance and reflectance of this optical filter were measured, and the optical characteristics in each wavelength region were evaluated. The results are shown in Table 15.
  • Form (5) containing compound (Z) No resin support (comparative example) -Form (6): Near-infrared absorbing glass support (comparative example)
  • Form (7) having resin layers on both sides of a resinous support containing other dye (X) (comparative example)
  • Resin A Cyclic olefin resin (resin synthesis example 1)
  • Resin B aromatic polyether resin (resin synthesis example 2)
  • Resin C Polyimide resin (resin synthesis example 3)
  • Resin D Fluorene polycarbonate resin (resin synthesis example 4)
  • Resin E Fluorene polyester resin (resin synthesis example 5)
  • Resin F fluorinated polyether ketone (resin synthesis example 6)
  • Resin G Cyclic olefin resin “Zeonor 1420R” (manufactured by Nippon Zeon Co., Ltd.)
  • Resin H Cyclic olefin resin “APEL # 6015” (manufactured by Mitsui Chemicals, Inc.)
  • Resin I Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
  • Resin J Polyethersulfone resin “Sumilite FS-1300” (manufactured by
  • Compound (A) >> Compound (a-16): Compound (a-16) described in Table 1 above (absorption maximum wavelength in dichloromethane of 698 nm) Compound (a-17): Compound (a-17) described in Table 1 above (maximum absorption wavelength 703 nm in dichloromethane) Compound (a-22): Compound (a-22) described in Table 2 (maximum absorption wavelength in dichloromethane: 670 nm) Compound (b-3): Compound (b-3) described in Table 4 (absorption maximum wavelength in dichloromethane: 733 nm) Compound (b-16): Compound (b-16) described in Table 4 above (absorption maximum wavelength in dichloromethane of 688 nm) Compound (b-39): Compound (b-39) described in Table 6 above (absorption maximum wavelength in dichloromethane 736 nm)
  • Compound (s-5) Compound (s-5) described in Table 9 (maximum absorption wavelength in dichloromethane: 770 nm)
  • Compound (s-8) Compound (s-8) described in Table 9 (absorption maximum wavelength in dichloromethane 776 nm)
  • Solvent (1) methylene chloride
  • Solvent (2) N, N-dimethylacetamide
  • Solvent (3) ethyl acetate / toluene (weight ratio: 5/5)
  • Solvent (4) cyclohexane / xylene (weight ratio: 7/3)
  • Solvent (5) cyclohexane / methylene chloride (weight ratio: 99/1)
  • Solvent (6) N-methyl-2-pyrrolidone
  • ⁇ Drying conditions for transparent resin substrate and resin support> In Table 15, the drying conditions of the transparent resin substrates and the resin supports of Examples and Comparative Examples are as follows. In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
  • ⁇ Condition (1) 20 ° C./8 hr (hour) ⁇ under reduced pressure 100 ° C./8 hr ⁇ Condition (2): 60 ° C./8 hr ⁇ 80 ° C./8 hr ⁇ under reduced pressure 140 ° C./8 hr Condition (3): 60 ° C./8 hr ⁇ 80 ° C./8 hr ⁇ under reduced pressure 100 ° C./24 hr Condition (4): 40 ° C./4 hr ⁇ 60 ° C./4 hr ⁇ under reduced pressure 100 ° C./8 hr
  • the resin composition for forming the resin layer in the examples of Table 15 is as follows.
  • Resin composition (1) 60 parts by weight of tricyclodecane dimethanol acrylate, 40 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent, TSC: 30%)
  • Resin composition (2) 100 parts by weight of tricyclodecane dimethanol acrylate, 4 parts by weight of 1-hydroxycyclohexyl phenyl ketone, 0.8 part by weight of the compound (a-16) described in Table 1 above, Described compound (b-3) 0.7 parts by weight, methyl ethyl ketone (solvent, TSC: 25%)
  • Resin composition (3) 20 parts by weight of tricyclodecane dimethanol acrylate, 80 parts by weight of dipentaerythritol hexaacrylate, 4 parts by weight of 1-hydroxy
  • the optical filter of the present invention includes a digital still camera, a smartphone camera, a mobile phone camera, a digital video camera, a wearable device camera, a PC camera, a surveillance camera, an automobile camera, a night vision camera, a motion capture, a laser rangefinder, It can be suitably used for virtual try-on, license plate recognition device, television, car navigation, portable information terminal, personal computer, video game machine, portable game machine, fingerprint authentication system, digital music player, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 本発明は、光学フィルター、固体撮像装置およびカメラモジュールに関し、該光学フィルターは、特定の光線透過率特性を満たし、基材と該基材の少なくとも一方の面に誘電体多層膜を有し、前記基材が波長600~850nmに吸収極大を有する化合物(Z)を含む透明樹脂層を有する、可視光線と一部の近赤外線を選択的に透過させる光学フィルターである。

Description

光学フィルター、固体撮像装置およびカメラモジュール
 本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、特定の吸収を有する化合物を含む可視光線と一部の近赤外線を選択的に透過させる光学フィルター(2波長バンドパスフィルター)、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話、スマートフォンなどの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されているが、これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。
 このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、特許文献1には、透明樹脂からなる基板を用い、透明樹脂中に近赤外線吸収剤を含有させた近赤外線カットフィルターが記載されており、特許文献2には銅イオンを含有するガラス基板を用いた近赤外カットフィルターが記載されている。
 一方、近年、近赤外線を利用したモーションキャプチャーや距離認識(空間認識)などのセンシング機能をカメラモジュールに付与する試みが行われている。このような用途では、可視光線と一部の近赤外線を選択的に透過させることが必要となるため、従来のような近赤外線を一律に遮蔽する近赤外線カットフィルターを用いることはできない。
 可視光線と一部の近赤外線を選択的に透過させる光学フィルターとして、(株)東亜理化学研究所やセラテックジャパン(株)などがガラス基板上に誘電体多層膜を製膜したフィルターを販売している。
特開平6-200113号公報 特許第5036229号公報
 前記可視光線と一部の近赤外線を選択的に透過させる光学フィルターとして市販されている光学フィルターは、光線が斜めから該フィルターに入射した際に分光特性が大きく変わってしまう。特に、可視光透過帯域の長波長側や、近赤外線選択透過帯域の短波長側で光学フィルターの入射角依存が大きいと、光線が該フィルターの斜めから入射した時に、センシング機能に用いる近赤外線のシグナルノイズ比(S/N比)が悪化するほか、カメラ画質や画像端部における色再現性に悪影響が出るなどといった問題がある。このため、可視光透過帯域の長波長側や、近赤外線選択透過帯域の短波長側の入射角依存性が少なく、良好な近赤外線S/N比、カメラ画質、可視光線および一部の近赤外線の選択的透過の全てを満足する光学フィルターの出現が望まれていた。
 本発明の目的は、可視光線と一部の近赤外線とを選択的に透過させる機能を有し、かつ、入射角依存の少ない光学フィルターおよび該光学フィルターを用いた装置を提供することにある。
 本発明者らは、前記課題を達成するために鋭意検討した結果、特定の光学特性を有する化合物を含む透明樹脂層を有する基材に誘電体多層膜を設けた、特定の光線透過率特性を満たす光学フィルターにより、可視光線と一部の近赤外線の透過特性に優れ、かつ、入射角依存の少ない光学フィルターが得られることを見出し、本発明を完成するに至った。本発明の態様例を以下に示す。
 [1] 下記(a)および(b)の要件を満たし、基材(i)と該基材(i)の少なくとも一方の面に誘電体多層膜を有し、
 前記基材(i)が波長600~850nmに吸収極大を有する化合物(Z)を含む透明樹脂層を有する、
可視光線と一部の近赤外線を選択的に透過させる光学フィルター。
 (a)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
 (b)波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ15%以下であり、前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である。
 [2] さらに下記(c)の要件を満たす、[1]に記載の光学フィルター。
 (c)前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb-Xaが5~150nmであり、Y=(Xa+Xb)/2で表されるYの値が750~950nmである。
 [3] 波長Y-10nm~Y+10nmの領域における、光学フィルターの垂直方向から測定した平均透過率が60%以上である、[2]に記載の光学フィルター。
 [4] 波長600nm以上の領域において、前記基材(i)の垂直方向から測定した透過率が50%超から50%以下となる最も短い波長(Xc)が610~670nmである、[1]~[3]のいずれかに記載の光学フィルター。
 [5] 波長750nm以上の領域において前記基材(i)の垂直方向から測定した透過率が50%未満から50%以上となる最も短い波長(Xf)が770~900nmである、[1]~[4]のいずれかに記載の光学フィルター。
 [6] 前記基材(i)の両面に分光特性が異なる誘電体多層膜が形成されており、光学フィルターの少なくとも一方の面から測定した、波長Y-10nm~Y+10nmの領域における平均反射率が20%以下である、[2]~[5]のいずれかに記載の光学フィルター。
 [7] 前記化合物(Z)がスクアリリウム系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ヘキサフィリン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物である、[1]~[6]のいずれかに記載の光学フィルター。
 [8] 前記化合物(Z)が、波長600~750nmに吸収極大を有する化合物(A)および波長750~850nmに吸収極大を有する化合物(S)からなる群より選ばれる少なくとも1種の化合物である、[1]~[7]のいずれかに記載の光学フィルター。
 [9] 前記化合物(A)が下記式(I)または(II)で表される化合物である、[8]に記載の光学フィルター。
Figure JPOXMLDOC01-appb-C000004
[式(I)中、Ra、RbおよびYは、下記(i)または(ii)の条件を満たす。
 条件(i):
 複数あるRaはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し(ReおよびRfはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す)、
 複数あるRbはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表し(RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す)、
 複数あるYはそれぞれ独立に、-NRjk基を表し(RjおよびRkはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す)、
 L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhであり、
 前記La~Lhは、以下の基を表す。
(La)置換基Lを有してもよい炭素数1~12の脂肪族炭化水素基
(Lb)置換基Lを有してもよい炭素数1~12のハロゲン置換アルキル基
(Lc)置換基Lを有してもよい炭素数3~14の脂環式炭化水素基
(Ld)置換基Lを有してもよい炭素数6~14の芳香族炭化水素基
(Le)置換基Lを有してもよい炭素数3~14の複素環基
(Lf)置換基Lを有してもよい炭素数1~9のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~9のアシル基
(Lh)置換基Lを有してもよい炭素数1~9のアルコキシカルボニル基
(但し、置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種である。)
 条件(ii):
 1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記条件(i)のRbおよびRaと同義である。]
Figure JPOXMLDOC01-appb-C000005
[式(II)中、Xは独立に、O、S、Se、N-RcまたはC(Rdd)を表し、
 複数あるRcはそれぞれ独立に、水素原子、La、Lb、Lc、LdまたはLeを表し、
 複数あるRdはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し、隣り合うRd同士は連結して置換基を有していてもよい環を形成してもよく、
 La~Le、L1、ReおよびRfは、前記式(I)において定義したLa~Le、L1、ReおよびRfと同義である。]
 [10] 前記化合物(S)が下記式(S1)で表される化合物である、[8]に記載の光学フィルター。
Figure JPOXMLDOC01-appb-C000006
[式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子または-NH-を表し、
 R1~R7はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表し(RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す)、
 L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhであり、La~Lhは、前記式(I)において定義したLa~Lhと同義である。]
 [11] 前記透明樹脂が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂である、[1]~[10]のいずれかに記載の光学フィルター。
 [12] 前記基材(i)が化合物(Z)を含む透明樹脂製基板(ii)を含有する、[1]~[11]のいずれかに記載の光学フィルター。
 [13] 固体撮像装置用である、[1]~[12]のいずれかに記載の光学フィルター。
 [14] [1]~[12]のいずれかに記載の光学フィルターを具備する固体撮像装置。
 [15] [1]~[12]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。
 本発明によれば、可視光線と一部の近赤外線の透過特性に優れ、かつ、入射角依存の少ない光学フィルターを提供することができる。
図1(a)は、基材(i)または光学フィルターの垂直方向から測定した場合の透過率を測定する方法を示す概略図である。図1(b)は、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率を測定する方法を示す概略図である。図1(c)は、光学フィルターの反射率を測定する方法を示す概略図である。 図2は、実施例1で得られた基材の分光透過スペクトルである。 図3は、実施例1で得られた光学フィルターの分光透過スペクトルである。 図4は、実施例1で得られた光学フィルターの分光反射スペクトルである。 図5は、実施例2で得られた基材の分光透過スペクトルである。 図6は、実施例2で得られた光学フィルターの分光透過スペクトルである。 図7は、実施例2で得られた光学フィルターの分光反射スペクトルである。 図8は、実施例3で得られた光学フィルターの分光透過スペクトルである。 図9は、実施例3で得られた光学フィルターの分光反射スペクトルである。 図10は、比較例1で得られた光学フィルターの分光透過スペクトルである。 図11は、比較例1で得られた光学フィルターの分光反射スペクトルである。 図12は、比較例2で得られた光学フィルターの分光透過スペクトルである。 図13は、比較例2で得られた光学フィルターの分光反射スペクトルである。
 以下、本発明について具体的に説明する。
 [光学フィルター]
 本発明の光学フィルターは、波長600~850nmに吸収極大を有する化合物(Z)を含む透明樹脂層を有する基材(i)と、誘電体多層膜とを有し、可視光線と一部の近赤外線を選択的に透過させるフィルターである。このように、本発明の光学フィルターは化合物(Z)を含む透明樹脂層と誘電体多層膜を併用するため、透過率特性に優れ、さらに可視域や近赤外線透過帯域の入射角依存性の少ない光学フィルターである。
 本発明の光学フィルターを固体撮像素子などに使用する場合、可視光透過率の高い方が好ましい。具体的には、波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の平均透過率が75%以上、好ましくは80%以上、より好ましくは83%以上、特に好ましくは85%以上である。この波長域において平均透過率が前記範囲にあると、本発明の光学フィルターを固体撮像素子用途として使用した場合、優れた撮像感度を達成することができる。
 本発明の光学フィルターは、波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有する。ただし、それぞれの帯域の波長はZa<Zb<Zcである。なお、前記「Za<Zb<Zc」は、各帯域の中心波長がこの式を満たす。
 Zaは波長650nm以上900nm以下において、光学フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Za1から、20%未満から20%以上となる最も長い波長Za2までの波長帯域を指す。
 Zbは波長750nm以上1050nm以下において、光学フィルターの垂直方向から測定した場合の透過率が、40%以下から40%超になる最も短い波長Zb1から、40%超から40%以下となる最も長い波長Zb2までの波長帯域を指す。
 Zcは波長820nm以上において、光学フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Zc1から、Zc1+200nmである波長Zc2までの波長帯域を指す。
 本発明の光学フィルターを、近赤外センシング機能を併せ持つ固体撮像素子などに使用する場合、光線(近赤外線)透過帯域Zbの最大透過率は高い方が好ましく、光線阻止帯域ZaおよびZcの最小透過率は低い方が好ましい。このような場合、優れた近赤外センシング性能を達成可能であるとともに、不要な波長の光線を効果的にカットすることができ、カメラ画像の色再現性を向上させることができる。
 光線透過帯域Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率は55%以上、好ましくは57%以上、より好ましくは60%以上、特に好ましくは63%以上である。光線阻止帯域ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率は、15%以下、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは6%以下、特に好ましくは5%以下である。Zbにおける最大透過率やZaおよびZcにおける最小透過率が前記範囲にあると、高い近赤外センシング性能を達成しつつノイズが少なく色再現性に優れたカメラ画像を得ることができる。
 前記Zbのうち、透過率50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb-Xaの値は、好ましくは5~150nm、さらに好ましくは10~140nm、特に好ましくは15~130nmである。また、Y=(Xa+Xb)/2で表されるYの値は、好ましくは750~950nm、より好ましくは760~940nm、特に好ましくは770~930nmである。Xb-XaやYの値がこの範囲にあると、近赤外センシング感度とカメラ画像の色再現性とにより優れる光学フィルターを得ることができる。
 本発明の光学フィルターは、前記Yに関し、Y-10nm~Y+10nmの波長域における光学フィルターの垂直方向から測定した場合の平均透過率は、好ましくは60%以上、より好ましくは65%以上、特に好ましくは70%以上である。
 このような透過特性を有するフィルターは、可視域と目的とする近赤外域において高い光線透過特性を達成でき、カメラ機能と近赤外センシング機能を良好なレベルで両立することができる。
 本発明の光学フィルターは、波長560~800nmの範囲において、光学フィルターの垂直方向から測定した時の透過率が50%となる最も短い波長の値(Xd)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が50%となる最も短い波長の値(Xe)との差の絶対値が小さくなり、分光特性の入射角依存性が小さく、視野角の広い光学フィルターを得ることができ、特にカメラモジュールなどの用途に使用した場合、良好なカメラ画質や画像端部における色再現性を達成できる。(Xd)と(Xe)との差の絶対値は、好ましくは25nm未満、より好ましくは15nm未満、特に好ましくは10nm未満である。このような光学フィルターは、化合物(Z)、特に下記化合物(A)を用いることで、具体的には、可視光線と一部の近赤外線を選択的に透過させるように、前記基材(i)上に誘電体多層膜を形成することで得ることができる。
 本発明の光学フィルターは、該光学フィルターの垂直方向に対して30°の角度から測定した透過率曲線のうち前記Zbに相当する帯域において、透過率が50%となる最も短波長側の波長の値(Xa')と、前記Xaの差の絶対値|Xa-Xa'|は、25nm未満であることが好ましく、さらに好ましくは23nm未満、特に好ましくは20nm未満である。|Xa-Xa'|の値がこの範囲にあると、分光特性の入射角依存性が小さい光学フィルターを得ることができ、該光学フィルターを特にセンシング機能を有するカメラモジュールなどの用途に使用した場合、光を該フィルターに斜めから入射させても良好な近赤外線S/N比とカメラ画質を同時に達成することができる。このような光学フィルターは、化合物(Z)、特に下記化合物(S)を用いることで、具体的には、可視光線と一部の近赤外線を選択的に透過させるように、前記基材(i)上に誘電体多層膜を形成することで得ることができる。
 本発明の光学フィルターの厚みは、所望の用途に応じて適宜選択すればよいが、近年の固体撮像装置の薄型化、軽量化等の流れによれば、本発明の光学フィルターの厚みも薄いことが好ましい。本発明の光学フィルターは、前記基材(i)を含むため、薄型化が可能である。
 本発明の光学フィルターの厚みは、例えば、好ましくは200μm以下、より好ましくは180μm以下、さらに好ましくは150μm以下、特に好ましくは120μm以下であり、下限は特に制限されないが、例えば、20μmであることが望ましい。
 [基材(i)]
 前記基材(i)は、単層であっても多層であってもよく、少なくとも波長600~850nmに吸収極大を有する化合物(Z)を1種以上含有する透明樹脂層を有すればよい。基材(i)が単層の場合は、例えば、化合物(Z)を含む透明樹脂製基板(ii)からなる基材を挙げることができ、この透明樹脂製基板(ii)が前記透明樹脂層となる。多層の場合は、例えば、ガラス支持体やベースとなる樹脂製支持体等の支持体または透明樹脂製基板(ii)上に化合物(Z)および硬化性樹脂を含有するオーバーコート層などの透明樹脂層が積層された基材や、化合物(Z)を含有する透明樹脂製基板(ii)上に硬化性樹脂を含むオーバーコート層などの樹脂層が積層された基材を挙げることができる。
 製造コストや光学特性調整の容易性、さらに、樹脂製支持体や透明樹脂製基板(ii)の傷消し効果を達成できることや基材(i)の耐傷つき性向上等の点から、化合物(Z)を含有する透明樹脂製基板(ii)上に硬化性樹脂からなるオーバーコート層などの樹脂層が積層された基材が特に好ましい。
 以下、化合物(Z)および透明樹脂を含有する層を「透明樹脂層」ともいい、それ以外の樹脂層を単に「樹脂層」ともいう。
 前記基材(i)は、下記条件(i-1)および条件(i-2)の少なくとも一方を満たすことが望ましい。
 (i-1)波長600nm以上750nm未満の領域において、前記基材(i)の垂直方向から測定した最も低い透過率(Ta)は、好ましくは40%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
 波長600nm以上の領域における基材(i)の垂直方向から測定した透過率が50%超から50%以下となる最も短い波長(Xc)は、好ましくは610~670nm、さらに好ましくは620~665nm、特に好ましくは630~660nmである。
 基材(i)の(Ta)および(Xc)がこのような範囲にあれば、不要な近赤外線を選択的に効率よくカットすることができるとともに、基材(i)上に誘電体多層膜を製膜した際、可視波長~近赤外波長域付近の光学特性の入射角依存性を低減することができる。
 (i-2)波長750nm以上の領域において、前記基材(i)の垂直方向から測定した最も低い透過率(Tb)は、好ましくは40%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
 波長750nm以上の領域において前記基材(i)の垂直方向から測定した透過率が50%未満から50%以上となる最も短い波長(Xf)は、好ましくは770~900nm、さらに好ましくは775~890nm、特に好ましくは780~880nmである。
 基材(i)の(Tb)および(Xf)がこのような範囲にあれば、近赤外線選択透過帯域付近の不要な近赤外線を選択的に効率よくカットすることができ、センシング用近赤外線S/N比を向上できるとともに、基材(i)上に誘電体多層膜を製膜した際、近赤外線選択透過帯域の短波長側の光学特性の入射角依存性を低減することができる。
 基材(i)の波長430~580nmにおける平均透過率は好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上である。このような透過特性を有する基材を用いると、可視域と目的とする近赤外域において高い光線透過特性を達成でき、カメラ機能と近赤外センシング機能を良好なレベルで両立することができる。
 前記基材(i)の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、得られる光学フィルターの入射角依存性を低減するように適宜選択することが好ましく、好ましくは10~200μm、さらに好ましくは20~180μm、特に好ましくは30~150μmである。
 基材(i)の厚みが前記範囲にあると、該基材(i)を用いた光学フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記透明樹脂製基板(ii)からなる基材(i)をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。
 <化合物(Z)>
 化合物(Z)は、波長600~850nmに吸収極大を有する化合物であれば特に制限されないが、波長600~750nmに吸収極大を有する化合物(A)および波長750~850nmに吸収極大を有する化合物(S)からなる群より選ばれる少なくとも1種の化合物であることが好ましく、溶剤可溶型の色素化合物であることが好ましく、スクアリリウム系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ヘキサフィリン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であることがより好ましい。本発明では、これらの中でも、優れた可視光透過特性、急峻な吸収特性および高いモル吸光係数を有することから、スクアリリウム系化合物を用いることがさらに好ましい。
 本発明において、化合物の吸収極大波長は、例えば、ジクロロメタンなどの適当な溶媒に化合物を溶解させた後、得られた溶液を分光光度計を用いて測定すればよい。
 前記化合物(A)と前記化合物(S)とを併用する場合、これらの化合物は、同一の層に含まれていても別々の層に含まれていてもよい。同一の層に含まれる場合は、例えば、化合物(A)と化合物(S)とがともに同一の透明樹脂製基板(ii)中に含まれる基材や、ガラス支持体等の支持体上に化合物(A)と化合物(S)とが含まれる透明樹脂層が積層されている基材を挙げることができ、別々の層に含まれる場合は、例えば、化合物(A)が含まれる透明樹脂製基板(ii)上に化合物(S)が含まれる透明樹脂層が積層されている基材や、化合物(S)が含まれる透明樹脂製基板(ii)上に化合物(A)が含まれる透明樹脂層が積層されている基材を挙げることができる。
 化合物(A)と化合物(S)とは、同一の層に含まれている方がより好ましく、このような場合、別々の層に含まれる場合よりも化合物(A)と化合物(S)との含有量比率を制御することがより容易となる。
 化合物(Z)の含有量は、前記基材(i)として、例えば、化合物(Z)を含有する透明樹脂製基板(ii)からなる基材や、化合物(Z)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01~2.0重量部、より好ましくは0.02~1.5重量部、特に好ましくは0.03~1.0重量部であり、前記基材(i)として、ガラス支持体やベースとなる樹脂製支持体に化合物(Z)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、化合物(Z)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1~5.0重量部、より好ましくは0.2~4.0重量部、特に好ましくは0.3~3.0重量部である。
 化合物(Z)の含有量が前記範囲内にあると、良好な近赤外線吸収、透過特性と高い可視光透過率とを両立した光学フィルターを得ることができる。
 《化合物(A)》
 化合物(A)の吸収極大波長は、好ましくは620~750nm、さらに好ましくは650~745nm、特に好ましくは660~740nmである。化合物(A)としては、スクアリリウム系化合物とその他の化合物(A)をそれぞれ一種以上含むことがさらに好ましく、スクアリリウム系化合物とその他の化合物(A)を用いる場合は、スクアリリウム系化合物がその他の化合物(A)よりも短波長側に吸収極大を有することが特に好ましく、スクアリリウム系化合物とその他の化合物(A)の少なくとも1種との吸収極大波長の差が5~50nmであることが好ましい。また、化合物(A)としてスクアリリウム系化合物とその他の化合物(A)を用いる場合、スクアリリウム系化合物の含有割合は、用いる化合物(A)全体を100重量%とした場合、好ましくは10~95重量%、より好ましくは15~85重量%、特に好ましくは20~80重量%である。スクアリリウム系化合物は構造によって光線吸収時に散乱光の原因となる蛍光を発生させる場合があるが、化合物(A)として、スクアリリウム系化合物とその他の化合物(A)を用いる場合、吸収極大波長の差が前記範囲にある化合物(A)を用いる場合、または、スクアリリウム系化合物を前記量で用いる場合、好ましくはこれらすべてを満たす場合、可視域~近赤外波長域において散乱光を含めた不要な光線を効率よくカットすることができ、優れた入射角依存改良性能と散乱光低減効果による良好なカメラ画質を達成することができる。
 化合物(A)としては、式(I)で表されるスクアリリウム系化合物および式(II)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。以下、それぞれ「化合物(I)」および「化合物(II)」ともいう。
Figure JPOXMLDOC01-appb-C000007
 式(I)中、Ra、RbおよびYは、下記(i)または(ii)の条件を満たす。
 条件(i)
 複数あるRaはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表す。ReおよびRfはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。
 複数あるRbはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表す。RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す。
 複数あるYはそれぞれ独立に、-NRjk基を表す。RjおよびRkはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。
 L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhである。
 前記La~Lhは、以下の基を表す。
(La)置換基Lを有してもよい炭素数1~12の脂肪族炭化水素基
(Lb)置換基Lを有してもよい炭素数1~12のハロゲン置換アルキル基
(Lc)置換基Lを有してもよい炭素数3~14の脂環式炭化水素基
(Ld)置換基Lを有してもよい炭素数6~14の芳香族炭化水素基
(Le)置換基Lを有してもよい炭素数3~14の複素環基
(Lf)置換基Lを有してもよい炭素数1~9のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1~9のアシル基
(Lh)置換基Lを有してもよい炭素数1~9のアルコキシカルボニル基
 置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種である。
 前記La~Lhは、置換基を含めた炭素数の合計が、それぞれ50以下であることが好ましく、炭素数40以下であることがさらに好ましく、炭素数30以下であることが特に好ましい。炭素数がこの範囲よりも多いと、化合物の合成が困難となる場合があるとともに、単位重量あたりの光の吸収強度が小さくなる傾向がある。
 条件(ii)
 1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成する。前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記条件(i)のRbおよびRaと同義である。
 各基の具体例
 前記LaおよびLにおける炭素数1~12の脂肪族炭化水素基としては、例えば、メチル基(Me)、エチル基(Et)、n-プロピル基(n-Pr)、イソプロピル基(i-Pr)、n-ブチル基(n-Bu)、sec-ブチル基(s-Bu)、tert-ブチル基(t-Bu)、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基およびドデシル基等のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、ブテニル基、1,3-ブタジエニル基、2-メチル-1-プロペニル基、2-ペンテニル基、ヘキセニル基およびオクテニル基等のアルケニル基;ならびに、エチニル基、プロピニル基、ブチニル基、2-メチル-1-プロピニル基、ヘキシニル基およびオクチニル基等のアルキニル基を挙げることができる。
 前記LbおよびLにおける炭素数1~12のハロゲン置換アルキル基としては、例えば、トリクロロメチル基、トリフルオロメチル基、1,1-ジクロロエチル基、ペンタクロロエチル基、ペンタフルオロエチル基、ヘプタクロロプロピル基およびヘプタフルオロプロピル基を挙げることができる。
 前記LcおよびLにおける炭素数3~14の脂環式炭化水素基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基等のシクロアルキル基;ノルボルナン基およびアダマンタン基等の多環脂環式基を挙げることができる。
 前記LdおよびLにおける炭素数6~14の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントリル基、アセナフチル基、フェナレニル基、テトラヒドロナフチル基、インダニル基およびビフェニリル基を挙げることができる。
 前記LeおよびLにおける炭素数3~14の複素環基としては、例えば、フラン、チオフェン、ピロール、ピラゾール、イミダゾール、トリアゾール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、インドール、インドリン、インドレニン、ベンゾフラン、ベンゾチオフェン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ピリジン、ピリミジン、ピラジン、ピリダジン、キノリン、イソキノリン、アクリジン、モルホリンおよびフェナジン等の複素環からなる基を挙げることができる。
 前記Lfにおける炭素数1~12のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基を挙げることができる。
 前記Lgにおける炭素数1~9のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基およびベンゾイル基を挙げることができる。
 前記Lhにおける炭素数1~9のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基およびオクチルオキシカルボニル基を挙げることができる。
 前記Laとしては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、4-フェニルブチル基、2-シクロヘキシルエチルであり、より好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基である。
 前記Lbとしては、好ましくはトリクロロメチル基、ペンタクロロエチル基、トリフルオロメチル基、ペンタフルオロエチル基、5-シクロヘキシル-2,2,3,3-テトラフルオロペンチル基であり、より好ましくはトリクロロメチル基、ペンタクロロエチル基、トリフルオロメチル基、ペンタフルオロエチル基である。
 前記Lcとしては、好ましくはシクロブチル基、シクロペンチル基、シクロヘキシル基、4-エチルシクロヘキシル基、シクロオクチル基、4-フェニルシクロヘプチル基であり、より好ましくはシクロペンチル基、シクロヘキシル基、4-エチルシクロヘキシル基である。
 前記Ldとしては、好ましくはフェニル基、1-ナフチル基、2-ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、3,5-ジ-tert-ブチルフェニル基、4-シクロペンチルフェニル基、2,3,6-トリフェニルフェニル基、2,3,4,5,6-ペンタフェニルフェニル基であり、より好ましくはフェニル基、トリル基、キシリル基、メシチル基、クメニル基、2,3,4,5,6-ペンタフェニルフェニル基である。
 前記Leとしては、好ましくはフラン、チオフェン、ピロール、インドール、インドリン、インドレニン、ベンゾフラン、ベンゾチオフェン、モルホリンからなる基であり、より好ましくはフラン、チオフェン、ピロール、モルホリンからなる基である。
 前記Lfとしては、好ましくはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、メトキシメチル基、メトキシエチル基、2-フェニルエトキシ基、3-シクロヘキシルプロポキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基であり、より好ましくはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基である。
 前記Lgとしては、好ましくはアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、4-プロピルベンゾイル基、トリフルオロメチルカルボニル基であり、より好ましくはアセチル基、プロピオニル基、ベンゾイル基である。
 前記Lhとしては、好ましくはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、2-トリフルオロメチルエトキシカルボニル基、2-フェニルエトキシカルボニル基であり、より好ましくはメトキシカルボニル基、エトキシカルボニル基である。
 前記La~Lhは、さらに、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種の原子または基を有していてもよい。このような例としては、4-スルホブチル基、4-シアノブチル基、5-カルボキシペンチル基、5-アミノペンチル基、3-ヒドロキシプロピル基、2-ホスホリルエチル基、6-アミノ-2,2-ジクロロヘキシル基、2-クロロ-4-ヒドロキシブチル基、2-シアノシクロブチル基、3-ヒドロキシシクロペンチル基、3-カルボキシシクロペンチル基、4-アミノシクロヘキシル基、4-ヒドロキシシクロヘキシル基、4-ヒドロキシフェニル基、ペンタフルオロフェニル基、2-ヒドロキシナフチル基、4-アミノフェニル基、4-ニトロフェニル基、3-メチルピロールからなる基、2-ヒドロキシエトキシ基、3-シアノプロポキシ基、4-フルオロベンゾイル基、2-ヒドロキシエトキシカルボニル基、4-シアノブトキシカルボニル基を挙げることができる。
 前記条件(i)におけるRaとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ニトロ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、水酸基である。
 前記条件(i)におけるRbとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、水酸基、ジメチルアミノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基である。
 前記Yとしては、好ましくはアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-t-ブチルアミノ基、N-エチル-N-メチルアミノ基、N-シクロヘキシル-N-メチルアミノ基であり、より好ましくはジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-t-ブチルアミノ基である。
 前記式(I)の条件(ii)における、1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して形成される、窒素原子を少なくとも1つ含む構成原子数5または6の複素環としては、例えば、ピロリジン、ピロール、イミダゾール、ピラゾール、ピペリジン、ピリジン、ピペラジン、ピリダジン、ピリミジンおよびピラジン等を挙げることができる。これらの複素環のうち、当該複素環を構成し、かつ、前記ベンゼン環を構成する炭素原子の隣の1つの原子が窒素原子である複素環が好ましく、ピロリジンがさらに好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(II)中、Xは独立に、O、S、Se、N-RcまたはC(Rdd)を表し;複数あるRcはそれぞれ独立に、水素原子、La、Lb、Lc、LdまたはLeを表し;複数あるRdはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し、隣り合うRd同士は連結して置換基を有していてもよい環を形成してもよく;La~Le、L1、ReおよびRfは、前記式(I)において定義したLa~Le、L1、ReおよびRfと同義である。
 前記式(II)中のRcとしては、好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、トルフルオロメチル基、ペンタフルオロエチル基であり、より好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基である。
 前記式(II)中のRdとしては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、メトキシ基、トリフルオロメチル基、ペンタフルオロエチル基、4-アミノシクロヘキシル基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、トリフルオロメチル基、ペンタフルオロエチル基である。
 前記Xとしては、好ましくはO、S、Se、N-Me、N-Et、CH2、C-Me2、C-Et2であり、より好ましくはS、C-Me2、C-Et2である。
 前記式(II)において、隣り合うRd同士は連結して環を形成してもよい。このような環としては、例えば、ベンゾインドレニン環、α-ナフトイミダゾール環、β-ナフトイミダゾール環、α-ナフトオキサゾール環、β-ナフトオキサゾール環、α-ナフトチアゾール環、β-ナフトチアダゾール環、α-ナフトセレナゾール環、β-ナフトセレナゾール環を挙げることができる。
 化合物(I)および化合物(II)は、下記式(I-1)および下記式(II-1)のような記載方法に加え、下記式(I-2)および下記式(II-2)のように共鳴構造を取るような記載方法でも構造を表すことができる。つまり、下記式(I-1)と下記式(I-2)との違い、および下記式(II-1)と下記式(II-2)との違いは構造の記載方法のみであり、どちらも同一の化合物を表す。本発明中では特に断りのない限り、下記式(I-1)および下記式(II-1)のような記載方法にてスクアリリウム系化合物の構造を表すものとする。
Figure JPOXMLDOC01-appb-C000009
 さらに、例えば、下記式(I-3)で表される化合物と下記式(I-4)で表される化合物は、同一の化合物であると見なすことができる。
Figure JPOXMLDOC01-appb-C000010
 化合物(I)および化合物(II)は、それぞれ前記式(I)および前記式(II)の要件を満たせば特に構造は限定されない。例えば前記式(I-1)および前記式(II-1)のように構造を表した場合、中央の四員環に結合している左右の置換基は同一であっても異なっていてもよいが、同一であった方が合成上容易であるため好ましい。
 化合物(I)および化合物(II)の具体例としては、下記(I-A)~(I-H)で表される基本骨格を有する、下記表1~3に記載の化合物(a-1)~(a-36)を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 化合物(I)および化合物(II)は、一般的に知られている方法で合成すればよく、例えば、特開平1-228960号公報、特開2001-40234号公報、特許第3196383号公報等に記載されている方法などを参照して合成することができる。
 《フタロシアニン系化合物》
 前記フタロシアニン系化合物は、下記式(III)で表される化合物(以下「化合物(III)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(III)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、
 複数あるRa、Rb、RcおよびRdはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、アミノ基、アミド基、イミド基、シアノ基、シリル基、-L1、-S-L2、-SS-L2、-SO2-L3、-N=N-L4、または、RaとRb、RbとRcおよびRcとRdのうち少なくとも1つの組み合わせが結合した、下記式(A)~(H)で表される基からなる群より選ばれる少なくとも1種の基を表す。但し、同じ芳香環に結合したRa、Rb、RcおよびRdのうち少なくとも1つが水素原子ではない。
 前記アミノ基、アミド基、イミド基およびシリル基は、前記式(I)において定義した置換基Lを有してもよく、
 L1は前記式(I)において定義したL1と同義であり、
 L2は、水素原子または前記式(I)において定義したLa~Leのいずれかを表し、
 L3は、水酸基または前記La~Leのいずれかを表し、
 L4は、前記La~Leのいずれかを表す。
Figure JPOXMLDOC01-appb-C000017
 式(A)~(H)中、RxおよびRyは炭素原子を表し、
 複数あるRA~RLはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、ニトロ基、アミノ基、アミド基、イミド基、シアノ基、シリル基、-L1、-S-L2、-SS-L2、-SO2-L3、-N=N-L4を表し、
 前記アミノ基、アミド基、イミド基およびシリル基は、前記式(I)において定義した置換基Lを有してもよく、L1~L4は前記式(III)において定義したL1~L4と同義である。
 前記Ra~RdおよびRA~RLにおいて、置換基Lを有してもよいアミノ基としては、アミノ基、エチルアミノ基、ジメチルアミノ基、メチルエチルアミノ基、ジブチルアミノ基、ジイソプロピルアミノ基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、置換基Lを有してもよいアミド基としては、アミド基、メチルアミド基、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジイソプロピルアミド基、ジブチルアミド基、α-ラクタム基、β-ラクタム基、γ-ラクタム基、δ-ラクタム基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、置換基Lを有してもよいイミド基としては、イミド基、メチルイミド基、エチルイミド基、ジエチルイミド基、ジプロピルイミド基、ジイソプロピルイミド基、ジブチルイミド基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、置換基Lを有してもよいシリル基としては、トリメチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、トリエチルシリル基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、-S-L2としては、チオール基、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、イソブチルスルフィド基、sec-ブチルスルフィド基、tert-ブチルスルフィド基、フェニルスルフィド基、2,6-ジ-tert-ブチルフェニルスルフィド基、2,6-ジフェニルフェニルスルフィド基、4-クミルフェニルスルフィド基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、-SS-L2としては、ジスルフィド基、メチルジスルフィド基、エチルジスルフィド基、プロピルジスルフィド基、ブチルジスルフィド基、イソブチルジスルフィド基、sec-ブチルジスルフィド基、tert-ブチルジスルフィド基、フェニルジスルフィド基、2,6-ジ-tert-ブチルフェニルジスルフィド基、2,6-ジフェニルフェニルジスルフィド基、4-クミルフェニルジスルフィド基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、-SO2-L3としては、スルホ基、メシル基、エチルスルホニル基、n-ブチルスルホニル基、p-トルエンスルホニル基などが挙げられる。
 前記Ra~RdおよびRA~RLにおいて、-N=N-L4としては、メチルアゾ基、フェニルアゾ基、p-メチルフェニルアゾ基、p-ジメチルアミノフェニルアゾ基などが挙げられる。
 前記Mにおいて、1価の金属原子としては、Li、Na、K、Rb、Csなどが挙げられる。
 前記Mにおいて、2価の金属原子としては、Be、Mg、Ca、Ba、Ti、Cr、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Zn、Cd、Hg、Sn、Pbなどが挙げられる。
 前記Mにおいて、3価の金属原子を含む置換金属原子としては、Al-F、Al-Cl、Al-Br、Al-I、Ga-F、Ga-Cl、Ga-Br、Ga-I、In-F、In-Cl、In-Br、In-I、Tl-F、Tl-Cl、Tl-Br、Tl-I、Fe-Cl、Ru-Cl、Mn-OHなどが挙げられる。
 前記Mにおいて、4価の金属原子を含む置換金属原子としては、TiF2、TiCl2、TiBr2、TiI2、ZrCl2、HfCl2、CrCl2、SiF2、SiCl2、SiBr2、SiI2、GeF2、GeCl2、GeBr2、GeI2、SnF2、SnCl2、SnBr2、SnI2、Zr(OH)2、Hf(OH)2、Mn(OH)2、Si(OH)2、Ge(OH)2、Sn(OH)2、TiR2、CrR2、SiR2、GeR2、SnR2、Ti(OR)2、Cr(OR)2、Si(OR)2、Ge(OR)2、Sn(OR)2(Rは脂肪族基または芳香族基を表す。)、TiO、VO、MnOなどが挙げられる。
 前記Mとしては、周期表5族~11族、かつ、第4周期~第5周期に属する、2価の遷移金属、3価もしくは4価の金属ハロゲン化物または4価の金属酸化物であることが好ましく、その中でも、高い可視光透過率や安定性を達成することができることから、Cu、Ni、CoおよびVOが特に好ましい。
 前記フタロシアニン系化合物は、下記式(V)のようなフタロニトリル誘導体の環化反応により合成する方法が一般的に知られているが、得られるフタロシアニン系化合物は下記式(VI-1)~(VI-4)のような4種の異性体の混合物となっている。本発明では、特に断りのない限り、1種のフタロシアニン系化合物につき1種の異性体のみを例示しているが、他の3種の異性体についても同様に用いることができる。なお、これらの異性体は必要に応じて分離して用いることも可能であるが、本発明では異性体混合物を一括して取り扱っている。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 前記化合物(III)の具体例としては、下記式(III-A)~(III-J)で表わされる基本骨格を有する、下記表4~7に記載の(b-1)~(b-61)などを挙げることができる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 化合物(III)は、一般的に知られている方法で合成すればよく、たとえば、特許第4081149号公報や「フタロシアニン -化学と機能―」(アイピーシー、1997年)に記載されている方法を参照して合成することができる。
 《シアニン系化合物》
 前記シアニン系化合物は、下記式(IV-1)~(IV-3)のいずれかで表される化合物(以下「化合物(IV-1)~(IV-3)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(IV-1)~(IV-3)中、Xa -は1価の陰イオンを表し、
 複数あるDは独立に、炭素原子、窒素原子、酸素原子または硫黄原子を表し、
 複数あるRa、Rb、Rc、Rd、Re、Rf、Rg、RhおよびRiはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、アミノ基、アミド基、イミド基、シアノ基、シリル基、-L1、-S-L2、-SS-L2、-SO2-L3、-N=N-L4、または、RbとRc、RdとRe、ReとRf、RfとRg、RgとRhおよびRhとRiのうち少なくとも1つの組み合わせが結合した、下記式(A)~(H)で表される基からなる群より選ばれる少なくとも1種の基を表し、
 前記アミノ基、アミド基、イミド基およびシリル基は、前記式(I)において定義した置換基Lを有してもよく、
 L1は、前記式(I)において定義したL1と同義であり、
 L2は、水素原子または前記式(I)において定義したLa~Leのいずれかを表し、
 L3は、水素原子または前記La~Leのいずれかを表し、
 L4は、前記La~Leのいずれかを表し、
 Za~ZcおよびYa~Ydはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、アミノ基、アミド基、イミド基、シアノ基、シリル基、-L1、-S-L2、-SS-L2、-SO2-L3、-N=N-L4(L1~L4は、前記Ra~RiにおけるL1~L4と同義である。)、または、これらのうち隣接した二つから選ばれるZ同士もしくはY同士が相互に結合して形成される、炭素数6~14の芳香族炭化水素基;窒素原子、酸素原子もしくは硫黄原子を少なくとも1つ含んでもよい5乃至6員環の脂環式炭化水素基;もしくは、窒素原子、酸素原子もしくは硫黄原子を少なくとも1つ含む、炭素数3~14の複素芳香族炭化水素基;を表し、これらの芳香族炭化水素基、脂環式炭化水素基および複素芳香族炭化水素基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよい。
Figure JPOXMLDOC01-appb-C000026
 式(A)~(H)中、RxおよびRyは炭素原子を表し、
 複数あるRA~RLはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、アミノ基、アミド基、イミド基、シアノ基、シリル基、-L1、-S-L2、-SS-L2、-SO2-L3または-N=N-L4(L1~L4は、前記式(IV-1)~(IV-3)において定義したL1~L4と同義である。)を表し、前記アミノ基、アミド基、イミド基およびシリル基は、前記置換基Lを有してもよい。
 前記Za~ZcおよびYa~Ydにおける、Z同士もしくはY同士が相互に結合して形成される、炭素数6~14の芳香族炭化水素基としては、例えば、前記置換基Lにおける芳香族炭化水素基で例示した化合物が挙げられる。
 前記Za~ZcおよびYa~Ydにおける、Z同士もしくはY同士が相互に結合して形成される、窒素原子、酸素原子もしくは硫黄原子を少なくとも1つ含んでもよい5乃至6員環の脂環式炭化水素基としては、例えば、前記置換基Lにおける脂環式炭化水素基および複素環で例示した化合物(複素芳香族炭化水素基を除く。)が挙げられる。
 前記Za~ZcおよびYa~Ydにおける、Z同士もしくはY同士が相互に結合して形成される、炭素数3~14の複素芳香族炭化水素基としては、例えば、前記置換基Lにおける複素環基として例示した化合物(窒素原子、酸素原子もしくは硫黄原子を少なくとも1つ含む脂環式炭化水素基を除く。)が挙げられる。
 前記(IV-1)~(IV-3)において、-S-L2、-SS-L2、-SO2-L3、-N=N-L4、置換基Lを有してもよいアミノ基、アミド基、イミド基、シリル基としては、前記式(III)で例示した基と同様の基などが挙げられる。
 Xa -は1価の陰イオンであれば特に限定されないが、I-、Br-、PF6 -、N(SO2CF32 -、B(C654 -、ニッケルジチオラート系錯体、銅ジチオラート系錯体などが挙げられる。
 前記化合物(IV-1)~(IV-3)の具体例としては、下記表8に記載の(c-1)~(c-24)などを挙げることができる。
Figure JPOXMLDOC01-appb-T000027
 前記化合物(IV-1)~(IV-3)は、一般的に知られている方法で合成すればよく、たとえば特開2009-108267号公報に記載されている方法で合成することができる。
 《化合物(S)》
 化合物(S)の吸収極大波長は、好ましくは755~845nm、より好ましくは760~840nm、特に好ましくは765~835nmである。化合物(S)の吸収極大波長がこのような範囲にあると、近赤外線選択透過帯域付近の不要な近赤外線を選択的に効率よくカットすることができる。
 前記化合物(S)としては、下記式(S1)で表されるスクアリリウム系化合物(以下「化合物(S1)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子または-NH-を表し、R1~R7はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表す。RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す。
 L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhである。
 La~Lhは、前記式(I)において定義したLa~Lhと同義である。
 前記R1としては、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ニトロ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、水酸基である。
 前記R2~R7しては、好ましくはそれぞれ独立に水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基であり、より好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、水酸基、ジメチルアミノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、t-ブタノイルアミノ基、シクロヘキシノイルアミノ基である。
 前記Xとしては、好ましくは酸素原子、硫黄原子であり、特に好ましくは酸素原子である。
 化合物(S1)は、下記式(S1-1)のような記載方法に加え、下記式(S1-2)のように共鳴構造を取るような記載方法でも構造を表すことができる。つまり、下記式(S1-1)と下記式(S1-2)との違いは構造の記載方法のみであり、どちらも同一の化合物を表す。本発明中では特に断りのない限り、下記式(I-1)のような記載方法にてスクアリリウム系化合物の構造を表すものとする。
Figure JPOXMLDOC01-appb-C000029
 さらに、例えば、下記式(S1-3)で表される化合物と下記式(S1-4)で表される化合物は、同一の化合物であると見なすことができる。
Figure JPOXMLDOC01-appb-C000030
 化合物(S1)は、前記式(S1)の要件を満たせば特に構造は限定されない。例えば前記式(S1-1)のように構造を表した場合、中央の四員環に結合している左右の置換基は同一であっても異なっていてもよいが、同一であった方が合成上容易であるため好ましい。
 化合物(S1)の具体例としては、下記表9に記載の化合物(s-1)~(s-20)を挙げることができる。
Figure JPOXMLDOC01-appb-T000031
 化合物(S)は、一般的に知られている方法で合成すればよく、例えば、特開平1-228960号公報、特開2001-40234号公報、特許第3094037号公報、特許第3196383号公報等に記載されている方法などを参照して合成することができる。
 <その他の色素(X)>
 前記基材(i)には、さらに、化合物(Z)に該当しないその他の色素(X)が含まれていてもよい。
 その他の色素(X)としては、吸収極大波長が600nm未満もしくは850nm超のものであれば特に制限されないが、例えば、スクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ポルフィリン系化合物および金属ジチオラート系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。化合物(Z)の吸収特性や目的とする近赤外透過波長によっては、化合物(Z)とその他の色素(X)とを併用することで、可視波長域に加え近赤外透過帯域の長波長側においても入射角依存性を低減することができ、良好な赤外センシング性能を達成することができる。
 その他の色素(X)の含有量は、前記基材(i)として、例えば、その他の色素(X)を含有する透明樹脂製基板(ii)からなる基材や、その他の色素(X)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合には、透明樹脂100重量部に対して、好ましくは0.01~1.5重量部、より好ましくは0.02~1.0重量部、特に好ましくは0.03~0.7重量部であり、前記基材(i)として、ガラス支持体やベースとなる樹脂製支持体上にその他の色素(X)および硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材を用いる場合には、その他の色素(X)を含む透明樹脂層を形成する樹脂100重量部に対して、好ましくは0.1~4.0重量部、より好ましくは0.2~3.0重量部、特に好ましくは0.3~2.0重量部である。
 その他の色素(X)の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率とを両立させることができる。
 <透明樹脂>
 樹脂製支持体やガラス支持体などに積層する透明樹脂層および透明樹脂製基板(ii)は、透明樹脂を用いて形成することができる。
 前記基材(i)に用いる透明樹脂としては、1種単独でもよいし、2種以上でもよい。
 透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性やフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうる基材とするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成し得るフィルム(透明樹脂層および透明樹脂製基板(ii))が得られるため、特に好ましい。
 Tgは、具体的には、下記実施例に記載の方法で測定することができる。
 透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂製支持体を形成した場合に、この樹脂製支持体の全光線透過率(JIS K7375)が、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基材(i)は光学フィルムとして良好な透明性を示す。
 透明樹脂として、溶媒可溶性の樹脂を用いる場合、該透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり、数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。
 MwおよびMnは、具体的には、下記実施例に記載の方法で測定することができる。
 透明樹脂としては、例えば、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂を挙げることができる。
 ≪環状(ポリ)オレフィン系樹脂≫
 環状(ポリ)オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(X0)中、Rx1~Rx4はそれぞれ独立に、下記(i')~(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0または正の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
Figure JPOXMLDOC01-appb-C000033
 式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')~(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0または正の整数を表す。
 ≪芳香族ポリエーテル系樹脂≫
 芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(1)中、R1~R4はそれぞれ独立に、炭素数1~12の1価の有機基を示し、a~dはそれぞれ独立に、0~4の整数を示す。
Figure JPOXMLDOC01-appb-C000035
 式(2)中、R1~R4およびa~dはそれぞれ独立に、前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または>C=Oを示し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhはそれぞれ独立に、0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
 また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(3)中、R5およびR6はそれぞれ独立に、炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、>C=O、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfはそれぞれ独立に、0~4の整数を示し、nは0または1を示す。
Figure JPOXMLDOC01-appb-C000037
 式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
 ≪ポリイミド系樹脂≫
 ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。
 ≪フルオレンポリカーボネート系樹脂≫
 フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば、特開2008-163194号公報に記載されている方法で合成することができる。
 ≪フルオレンポリエステル系樹脂≫
 フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば、特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。
 ≪フッ素化芳香族ポリマー系樹脂≫
 フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば特開2008-181121号公報に記載されている方法で合成することができる。
 ≪アクリル系紫外線硬化型樹脂≫
 アクリル系紫外線硬化型樹脂としては、特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。アクリル系紫外線硬化型樹脂は、前記基材(i)として、ガラス支持体上やベースとなる樹脂製支持体上に化合物(Z)および硬化性樹脂を含む透明樹脂層が積層された基材や、化合物(Z)を含有する透明樹脂製基板(ii)上に硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された基材を用いる場合、該硬化性樹脂として特に好適に使用することができる。
 ≪市販品≫
 透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状(ポリ)オレフィン系樹脂の市販品としては、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学(株)製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学(株)製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人(株)製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学(株)製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル(株)製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、(株)日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、新日鐵化学(株)製シルプラスなどを挙げることができる。
 <その他成分>
 前記基材(i)は、本発明の効果を損なわない範囲において、さらに、酸化防止剤、近紫外線吸収剤、蛍光消光剤および金属錯体系化合物等の添加剤を含有してもよい。また、後述するキャスト成形により基材(i)を製造する場合には、レベリング剤や消泡剤を添加することで基材(i)の製造を容易にすることができる。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
 前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物などが挙げられる。
 前記酸化防止剤としては、例えば2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、およびテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが挙げられる。
 なお、これら添加剤は、基材(i)を製造する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100重量部に対して、通常0.01~5.0重量部、好ましくは0.05~2.0重量部である。
 <基材(i)の製造方法>
 前記基材(i)が化合物(Z)を含有する透明樹脂製基板(ii)を含む基材である場合は、該透明樹脂製基板(ii)は、例えば、溶融成形またはキャスト成形により形成することができ、さらに、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングすることで、オーバーコート層が積層された基材を製造することができる。
 前記基材(i)が、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)上に化合物(Z)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合は、例えば、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)に化合物(Z)を含む樹脂溶液を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、ガラス支持体やベースとなる樹脂製支持体または透明樹脂製基板(ii)上に透明樹脂層が形成された基材を製造することができる。
 ≪溶融成形≫
 前記溶融成形としては、具体的には、樹脂と化合物(Z)等とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と化合物(Z)とを含有する樹脂組成物を溶融成形する方法;または、化合物(Z)、樹脂および溶剤を含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
 ≪キャスト成形≫
 前記キャスト成形としては、化合物(Z)、樹脂および溶剤を含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;または化合物(Z)と、光硬化性樹脂および/または熱硬化性樹脂とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などにより製造することもできる。
 前記基材(i)が、化合物(Z)を含有する透明樹脂製基板(ii)からなる基材である場合には、該基材(i)は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材(i)が、ガラス支持体やベースとなる樹脂製支持体等の支持体または透明樹脂製基板(ii)上に化合物(Z)を含有する硬化性樹脂等からなるオーバーコート層などの透明樹脂層が積層された基材である場合には、該基材(i)は、キャスト成形後、塗膜を剥離しないことで得ることができる。
 前記支持体としては、例えば、ガラス板、スチールベルト、スチールドラムおよび透明樹脂製支持体(例えば、前記透明樹脂等からなるフィルム(ポリエステルフィルム、環状オレフィン系樹脂フィルムなど))が挙げられる。
 さらに、ガラス板、石英または透明プラスチック製等の光学部品に、前記樹脂組成物をコーティングして溶剤を乾燥させる方法、または、前記硬化性組成物をコーティングして硬化および乾燥させる方法などにより、光学部品上に透明樹脂層を形成することもできる。
 前記方法で得られた透明樹脂層(透明樹脂製基板(ii))中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、透明樹脂層(透明樹脂製基板(ii))の重さに対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる透明樹脂層(透明樹脂製基板(ii))が得られる。
 [誘電体多層膜]
 本発明の光学フィルターを構成する誘電体多層膜は、不要な近赤外線を反射によりカットするとともに必要となる近赤外線を透過させる能力を有する膜である。本発明では、誘電体多層膜は基材(i)の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。
 本発明の光学フィルターを固体撮像素子などの用途に適用する場合、光学フィルターの反りが小さい方が好ましいことから、誘電体多層膜を基材(i)の両面に設けることが好ましく、両面に設けた誘電体多層膜は分光特性が同じでも異なっていてもよい。両面に設けた誘電体多層膜の分光特性が同じ場合では近赤外波長域において光線阻止帯域ZaおよびZcの透過率を効率よく低減することができ、両面に設けた誘電体多層膜の分光特性が異なる場合では光線阻止帯域Zcをより長波長側まで広げることが容易になる傾向がある。
 また、基材(i)の両面に分光特性が異なる誘電体多層膜を有する場合、光学フィルターの少なくとも一方の面側(誘電体多層膜を有する面側)から測定した、好ましくは光学フィルターの両面(誘電体多層膜を有する面)から測定した、波長Y-10nm~Y+10nmの波長域における平均反射率が、好ましくは20%以下、より好ましくは18%以下、特に好ましくは15%以下である。波長Y-10nm~Y+10nmの波長域における誘電体多層膜の反射率が前記範囲にあると、得られる光学フィルターは所望の近赤外波長における感度が高くなり優れた近赤外センシング性能を達成することができる。
 誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが挙げられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10重量%)含有させたものが挙げられる。
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。
 高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、基材(i)上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。
 高屈折率材料層および低屈折率材料層の各層の物理膜厚は、それぞれ層の屈折率にもよるが、通常、5~500nmであることが好ましく、誘電体多層膜の物理膜厚の合計値は光学フィルター全体として1.0~8.0μmであることが好ましい。
 誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として16~70層であることが好ましく、20~60層であることがより好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。
 本発明では、高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、可視域に十分な透過率を確保した上で近赤外波長域に所望の波長の光線阻止帯域や光線透過帯域を有する光学フィルターを得ることができる。
 ここで、前記条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、近赤外波長域において光線の透過を抑制したい波長域の透過率を低くするともに、光線を透過させたい波長域の透過率を高くするようにパラメーターを設定すればよい。例えば、両面に形成された誘電体多層膜によって800nm付近に光線透過帯域を設ける場合、前記ソフトを使用し、一方の誘電体多層膜の波長720~760nmの目標透過率を0%、780~820nmの目標透過率を100%とした上でそれぞれの波長域のTarget Toleranceの値を0.5以下などとし、もう一方の誘電体多層膜の波長780~820nmの目標透過率を100%とした上で850~1100nmの目標透過率を0%とした上でそれぞれの波長域のTarget Toleranceの値を0.5以下などとするパラメーター設定方法が挙げられる。
 [その他の機能膜]
 本発明の光学フィルターは、本発明の効果を損なわない範囲において、基材(i)と誘電体多層膜との間、基材(i)の誘電体多層膜が設けられた面と反対側の面、または誘電体多層膜の基材(i)が設けられた面と反対側の面に、基材(i)や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。
 本発明の光学フィルターは、前記機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが前記機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。
 機能膜を積層する方法としては、特に制限されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材(i)または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。
 また、前記コーティング剤などを含む硬化性組成物をバーコーター等で基材(i)または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。
 前記コーティング剤としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。
 また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100重量%とした場合、好ましくは0.1~10重量%、より好ましくは0.5~10重量%、さらに好ましくは1~5重量%である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。
 さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類を挙げることができる。
 これら溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 前記機能膜の厚さは、好ましくは0.1~20μm、さらに好ましくは0.5~10μm、特に好ましくは0.7~5μmである。
 また、基材(i)と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材(i)、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。
 [光学フィルターの用途]
 本発明の光学フィルターは、視野角が広く、可視光と一部の近赤外線を選択的に透過させることができる。したがって、カメラ機能と近赤外センシング機能を併せ持つCCDやCMOSイメージセンサーなどの固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、暗視カメラ、モーションキャプチャー、レーザー距離計、バーチャル試着、ナンバープレート認識装置、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に有用である。
 [固体撮像装置]
 本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、カメラ機能と近赤外センシング機能を併せ持つCCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等の用途に用いることができる。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備する。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。
 <分子量>
 樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
 (a)ウオターズ(WATERS)社製のゲルパーミエ-ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー(株)製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
 (b)東ソー(株)製GPC装置(HLC-8220型、カラム:TSKgelα-M、展開溶剤:テトラヒドロフラン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
 なお、後述する樹脂合成例3で合成した樹脂については、前記方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。
 (c)ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体を分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解し、キャノン-フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
 μ={ln(ts/t0)}/C
 t0:溶媒の流下時間
 ts:希薄高分子溶液の流下時間
 C:0.5g/dL
 <ガラス転移温度(Tg)>
 エスアイアイ・ナノテクノロジーズ(株)製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
 <分光透過率>
 基材の(Ta)、(Xc)、(Tb)および(Xf)、ならびに、光学フィルターの各波長領域における透過率および反射率、(Xa)、(Xb)、(Xd)、(Xe)および(Xa')は、(株)日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。
 ここで、基材および光学フィルターの垂直方向から測定した場合の透過率は、図1(a)のように基材またはフィルターに対して垂直に透過した光を測定した。また、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率では、図1(b)のようにフィルターの垂直方向に対して30°の角度で透過した光を測定した。
 なお、前記透過率のうち、(Xe)および(Xa')を測定する場合を除き、光が基材および光学フィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。(Xe)および(Xa')を測定する場合には、光が光学フィルターの垂直方向に対して30°の角度で入射する条件で該分光光度計を使用して測定したものである。
 また、光学フィルターの反射率は、図1(c)のような装置付属の治具に光学フィルターを設置し、垂直方向に対して5°の角度から測定を行った。
 [合成例]
 下記実施例で用いた化合物(A)、化合物(S)およびその他の色素(X)は、一般的に知られている方法で合成することができ、例えば、特許第3366697号、特許第2846091号、特許第2864475号、特許第3094037号、特許第3703869号、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号、特開昭63-124054号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開2007-169315号公報、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号、特許第4740631号などに記載されている方法を参照して合成することができる。
 <樹脂合成例1>
 下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン100部、1-ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(濃度0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、得られた溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。
Figure JPOXMLDOC01-appb-C000038
 このようにして得られた開環重合体溶液1,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。
 <樹脂合成例2>
 3Lの4つ口フラスコに2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。
 <樹脂合成例3>
 温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れて、γ-ブチロラクトン68.65gおよびN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら6時間還流させた。6時間の還流後、内温が100℃になるまで空冷し、DMAc143.6gを加えて希釈し、攪拌しながら冷却することで、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎ入れてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。
 得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。
 <樹脂合成例4>
 9,9-ビス(4-2-ヒドロキシエトキシ)フェニル)フルオレン9.167kg(20.90モル)、ビスフェノールA 4.585kg(20.084モル)、ジフェニルカーボネート9.000kg(42.01モル)、および炭酸水素ナトリウム0.02066kg(2.459×10-4モル)を、攪拌機および留出装置を備えた50L反応器に入れ、窒素雰囲気で760Torrの下、1時間かけて215℃に加熱・攪拌した。その後、15分かけて減圧度を150Torrに調整し、215℃、150Torrの条件下で20分間保持し、エステル交換反応を行った。次に、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した後、10分かけて120Torrに調整し、240℃、120Torrで70分間保持した後、さらに、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。その後、40分かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌して重合反応を行った。反応終了後、反応器内に窒素を導入して加圧状態にし、生成したポリカーボネート樹脂(以下「樹脂D」ともいう。)をペレット化しながら抜き出した。得られた樹脂Dは、重量平均分子量が41,000であり、ガラス転移温度(Tg)が152℃であった。
 <樹脂合成例5>
 反応器に、9,9-ビス{4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル}フルオレン0.8モル、エチレングリコール2.2モルおよびイソフタル酸ジメチル1.0モルを加え、攪拌しながら徐々に加熱溶融してエステル交換反応を行った。次いで、酸化ゲルマニウム20×10-4モルを加え、290℃、1Torr以下に到達するまで徐々に昇温および減圧を行いながらエチレングリコールを除去した。この後、内容物を反応器から取り出し、ポリエステル樹脂(以下「樹脂E」ともいう。)のペレットを得た。得られた樹脂Eは、数平均分子量が40,000であり、ガラス転移温度が145℃であった。
 <樹脂合成例6>
 温度計、冷却管、ガス導入管および攪拌機を備えた反応器に、4,4'-ビス(2,3,4,5,6-ペンタフルオロベンゾイル)ジフェニルエーテル(BPDE)16.74部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(HF)10.5部、炭酸カリウム4.34部およびDMAc90部を仕込んだ。この混合物を80℃に加温し、8時間反応させた。反応終了後、反応溶液をブレンダーで激しく攪拌しながら、1%酢酸水溶液中に添加した。析出した反応物を濾別し、蒸留水およびメタノールで洗浄した後、減圧乾燥して、フッ素化ポリエーテルケトン(以下「樹脂F」ともいう。)を得た。得られた樹脂Fは、数平均分子量が71000であり、ガラス転移温度(Tg)が242℃であった。
 [実施例1]
 実施例1では、透明樹脂製基板からなる基材を有し、波長790~830nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=810nm)を作成した。
 容器に、合成例1で得られた樹脂A 100部、化合物(A)として前記表1に記載の化合物(a-16)(ジクロロメタン中での吸収極大波長698nm)0.03部および前記表4に記載の化合物(b-3)(ジクロロメタン中での吸収極大波長733nm)0.03部、ならびに塩化メチレンを加えて樹脂濃度が20重量%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの透明樹脂製基板からなる基材を得た。
 この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を図2および表15に示す。
 続いて、得られた基材の片面に誘電体多層膜(I)を形成し、さらに基材のもう一方の面に誘電体多層膜(II)を形成し、厚さ約0.106mmの光学フィルターを得た。
 誘電体多層膜(I)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)。誘電体多層膜(II)は、蒸着温度100℃でシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)。誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層は、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順で交互に積層されており、光学フィルターの最外層をシリカ層とした。
 誘電体多層膜(I)および(II)の設計は、以下のようにして行った。
 各層の厚さと層数については、可視域の反射防止効果と近赤外域の選択的な透過・反射性能を達成できるよう基材屈折率の波長依存特性や、使用した化合物(A)の吸収特性に合わせて光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例1においてはソフトへの入力パラメーター(Target値)を下記表10の通りとした。
Figure JPOXMLDOC01-appb-T000039
 膜構成最適化の結果、実施例1では、誘電体多層膜(I)は、膜厚22~467nmのシリカ層と膜厚6~130nmのチタニア層とが交互に積層されてなる、積層数30の多層蒸着膜となり、誘電体多層膜(II)は、膜厚84~206nmのシリカ層と膜厚8~109nmのチタニア層とが交互に積層されてなる、積層数20の多層蒸着膜となった。最適化を行った膜構成の一例を表11に示す。
Figure JPOXMLDOC01-appb-T000040
 この光学フィルターの垂直方向ならびに垂直方向から30°の角度から測定した分光透過率および垂直方向から5°の角度から測定した反射率を測定し、各波長領域における光学特性を評価した。結果を図3、図4および表15に示す。波長430~580nmにおける透過率の平均値は88%、Xaは778nm、Xbは842nm、Yは810nm、波長Y-10nm~Y+10nmの波長域における平均透過率は85%、波長Y-10nm~Y+10nmにおける平均反射率は8%、絶対値|Xd-Xe|は3nm、絶対値|Xa-Xa'|は23nmであった。なお、本実施例1においては、波長Y-10nm~Y+10nmにおける平均反射率は光学フィルターの誘電体多層膜(I)側から測定した。
 [実施例2]
 実施例2では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長790~830nm付近に近赤外線選択透過帯を有する光学フィルター(Y=811nm)を作成した。
 実施例1において、化合物(A)として、化合物(a-16)および(b-3)の代わりに、前記表1に記載の化合物(a-17)(ジクロロメタン中での吸収極大波長703nm)0.04部および前記表6に記載の化合物(b-39)(ジクロロメタン中での吸収極大波長736nm)0.04部を用いた以外は実施例1と同様の手順・条件で化合物(A)を含む透明樹脂製基板を得た。
 得られた透明樹脂製基板の片面に、下記組成の樹脂組成物(1)をバーコーターで塗布し、オーブン中70℃で2分間加熱し、溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、バーコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(1)を硬化させ、透明樹脂製基板上に樹脂層を形成した。同様に、透明樹脂製基板のもう一方の面にも樹脂組成物(1)からなる樹脂層を形成し、化合物(A)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。
 この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を図5および表15に示す。
 樹脂組成物(1):トリシクロデカンジメタノールアクリレート 60重量部、ジペンタエリスリトールヘキサアクリレート 40重量部、1-ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤、固形分濃度(TSC):30%)
 続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(III)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(IV)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を図6、7および表15に示す。
 [実施例3]
 実施例3では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長840~890nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=864nm)を作成した。
 実施例1と同様にして透明樹脂製基板を作成したのち、実施例2と同様に、得られた透明樹脂製基板の両面に樹脂組成物(1)からなる樹脂層を形成し、化合物(A)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。
 この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表15に示す。
 続いて、実施例1と同様に、得られた基材の片面に誘電体多層膜(V)を形成し、さらに基材のもう一方の面に誘電体多層膜(VI)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、表12に記載の設計パラメーターを用いて行った。
Figure JPOXMLDOC01-appb-T000041
 膜構成最適化の結果、実施例3では、誘電体多層膜(V)は、膜厚15~222nmのシリカ層と膜厚9~179nmのチタニア層とが交互に積層されてなる、積層数30の多層蒸着膜となり、誘電体多層膜(VI)は、膜厚94~211nmのシリカ層と膜厚7~115nmのチタニア層とが交互に積層されてなる、積層数20の多層蒸着膜となった。最適化を行った膜構成の一例を表13に示す。
Figure JPOXMLDOC01-appb-T000042
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を図8、図9および表15に示す。
 [実施例4]
 実施例4では、両面に化合物(A)を含む透明樹脂層を有する樹脂製支持体からなる基材を有し、波長790~830nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=810nm)を作成した。
 容器に、表15に示すように、合成例1で得られた樹脂Aおよび塩化メチレンを加えて樹脂濃度が20重量%の溶液を得た。それ以外は実施例1と同様にして樹脂製支持体を作成した。
 得られた樹脂製支持体の両面に、実施例2と同様に下記組成の樹脂組成物(2)からなる樹脂層を形成し、両面に化合物(A)を含む透明樹脂層を有する樹脂製支持体からなる基材を得た。
 この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表15に示す。
 樹脂組成物(2):トリシクロデカンジメタノールアクリレート 100重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、前記表1に記載の化合物(a-16) 0.8重量部、前記表4に記載の化合物(b-3) 0.7重量部、メチルエチルケトン(溶剤、TSC:25%)
 続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(VII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(VIII)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [実施例5]
 実施例5では、片面に化合物(A)を含む透明樹脂層を有するガラス支持体からなる基材を有し、波長790~830nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=811nm)を作成した。
 縦60mm、横60mmの大きさにカットしたガラス支持体「OA-10G(厚み200μm)」(日本電気硝子(株)製)上に下記組成の樹脂組成物(3)をスピンコーターで塗布し、ホットプレート上80℃で2分間加熱し溶剤を揮発除去した。この際、乾燥後の厚みが2μmとなるように、スピンコーターの塗布条件を調整した。次に、コンベア式露光機を用いて露光(露光量500mJ/cm2,200mW)を行い、樹脂組成物(3)を硬化させ、化合物(A)を含む透明樹脂層を有するガラス支持体からなる基材を得た。
この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表15に示す。
 樹脂組成物(3):トリシクロデカンジメタノールアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、前記表1に記載の化合物(a-16) 1.4重量部、前記表4に記載の化合物(b-3) 1.4重量部、メチルエチルケトン(溶剤、TSC:35%)
 続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(IX)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(X)を形成し、厚さ約0.210mmの光学フィルターを得た。誘電体多層膜の設計は、実施例1と同様に基材屈折率の波長依存性を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [比較例1]
 実施例1において、化合物(A)を用いなかったこと以外は実施例1と同様にして基材を作成した。続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計32層)誘電体多層膜(XI)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XII)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、表14に記載の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を図10、図11および表15に示す。
Figure JPOXMLDOC01-appb-T000043
 [比較例2]
 基材として近赤外線吸収ガラス支持体「BS-6(厚み210μm)」(松浪硝子工業(株)製)を用いた。この基材の分光透過率を測定し、(Ta)、(Tb)および(Xc)を求めた。結果を表15に示す。
 この基材を用いたこと以外は、実施例1と同様に基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(XIII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XIV)を形成し、厚さ約0.216mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。結果を図12、図13および表15に示す。
 [比較例3]
 実施例2において、化合物(A)の代わりに下記式(x-1)で表されるシアニン系化合物(ジクロロメタン中での吸収極大波長996nm)を0.05部用いたこと以外は実施例2と同様にして基材を作成した。この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表15に示す。
Figure JPOXMLDOC01-appb-C000044
 続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(XV)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XVI)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [比較例4]
 実施例1において、化合物(A)の代わりに下記式(x-2)で表される化合物(ジクロロメタン中での吸収極大波長550nm)を0.05部用いたこと以外は実施例1と同様にして基材を作成した。この基材の分光透過率を測定し、(Ta)、(Tb)および(Xc)を求めた。結果を表15に示す。
Figure JPOXMLDOC01-appb-C000045
 続いて、実施例1と同様に、得られた基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(XVII)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XVIII)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性等を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [比較例5]
 ガラス支持体「OA-10G(厚み200μm)」(日本電気硝子(株)製)を用いたこと以外は、実施例1と同様に基材の片面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計30層)誘電体多層膜(XIX)を形成し、さらに基材のもう一方の面にシリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる(合計20層)誘電体多層膜(XX)を形成し、厚さ約0.206mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例1と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [実施例6~17]
 樹脂、化合物(A)、溶媒および透明樹脂製基板の乾燥条件を表15に示すように変更した以外は、実施例2と同様にして、基材および光学フィルターを作成した。得られた基材および光学フィルターの光学特性を表15に示す。
 [実施例18]
 実施例18では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長830~880nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=858nm)を作成した。
 実施例3において、化合物(a-16)および(b-3)の代わりに、前記表9に記載の化合物(s-5)(ジクロロメタン中での吸収極大波長770nm)0.03部を用いた以外は、実施例3と同様の手順・条件で化合物(S)を含む透明樹脂製基板の両面に樹脂層を有する基材を得た。
 この基材の分光透過率を測定し、(Ta)、(Tb)、(Xc)および(Xf)を求めた。結果を表15に示す。
 続いて、実施例3と同様に、得られた基材の片面に誘電体多層膜(XXI)を形成し、さらに基材のもう一方の面に誘電体多層膜(XXII)を形成し、厚さ約0.106mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例3と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [実施例19]
 実施例19では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長830~880nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=859nm)を作成した。
 実施例18において、化合物(s-5)0.03部に加えて、化合物(A)として、化合物(a-17)0.02部、化合物(b-39)0.05部を用いた以外は実施例18と同様の手順・条件で化合物(S)および化合物(A)を含む透明樹脂製基板を得た。
 続いて、実施例3と同様に、得られた基材の片面に誘電体多層膜(XXIII)を形成し、さらに基材のもう一方の面に誘電体多層膜(XXIV)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例3と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [実施例20]
 実施例20では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長830~880nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=859nm)を作成した。
 実施例3において、化合物(a-16)および(b-3)の代わりに、化合物(S)として前記表9の化合物(s-8)(ジクロロメタン中での吸収極大波長776nm)0.03部、化合物(A)として、化合物(a-16)0.03部、化合物(b-3)0.03部を用いた以外は実施例3と同様の手順・条件で化合物(S)および化合物(A)を含む透明樹脂製基板を得た。
 続いて、実施例3と同様に、得られた基材の片面に誘電体多層膜(XXV)を形成し、さらに基材のもう一方の面に誘電体多層膜(XXVI)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例3と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 [実施例21]
 実施例21では、両面に樹脂層を有する透明樹脂製基板からなる基材を有し、波長830~880nm付近に近赤外線選択透過帯域を有する光学フィルター(Y=860nm)を作成した。
 実施例3において、化合物(a-16)および(b-3)の代わりに、化合物(S)として前記表9の化合物(s-8)0.03部、化合物(A)として、化合物(a-22)0.03部、化合物(b-16)0.04部を用いた以外は実施例3と同様の手順・条件で化合物(S)および化合物(A)を含む透明樹脂製基板を得た。
 続いて、実施例3と同様に、得られた基材の片面に誘電体多層膜(XXVII)を形成し、さらに基材のもう一方の面に誘電体多層膜(XXVIII)を形成し、厚さ約0.110mmの光学フィルターを得た。誘電体多層膜の設計は、基材屈折率の波長依存性を考慮した上で、実施例3と同様の設計パラメーターを用いて行った。
 この光学フィルターの分光透過率および反射率を測定し、各波長領域における光学特性を評価した。結果を表15に示す。
 実施例および比較例で適用した基材の構成、各種化合物などは下記の通りである。
 <基材の形態>
 ・形態(1):化合物(Z)を含む透明樹脂製基板
 ・形態(2):化合物(Z)を含む透明樹脂製基板の両面に樹脂層を有する
 ・形態(3):樹脂製支持体の両面に化合物(Z)を含む透明樹脂層を有する
 ・形態(4):ガラス支持体の片方の面に化合物(Z)を含む透明樹脂層を有する
 ・形態(5):化合物(Z)を含まない樹脂製支持体(比較例)
 ・形態(6):近赤外線吸収ガラス支持体(比較例)
 ・形態(7):その他の色素(X)を含む樹脂製支持体の両面に樹脂層を有する(比較例)
 ・形態(8):その他の色素(X)を含む樹脂製支持体(比較例)
 ・形態(9):ガラス支持体(比較例)
 <透明樹脂>
 ・樹脂A:環状オレフィン系樹脂(樹脂合成例1)
 ・樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
 ・樹脂C:ポリイミド系樹脂(樹脂合成例3)
 ・樹脂D:フルオレンポリカーボネート系樹脂(樹脂合成例4)
 ・樹脂E:フルオレンポリエステル系樹脂(樹脂合成例5)
 ・樹脂F:フッ素化ポリエーテルケトン(樹脂合成例6)
 ・樹脂G:環状オレフィン系樹脂「ゼオノア 1420R」(日本ゼオン(株)製)
 ・樹脂H:環状オレフィン系樹脂「APEL #6015」(三井化学(株)製)
 ・樹脂I:ポリカーボネート系樹脂「ピュアエース」(帝人(株)製)
 ・樹脂J:ポリエーテルサルホン系樹脂「スミライト FS-1300」(住友ベークライト(株)製)
 ・樹脂K:耐熱アクリル系樹脂「アクリビュア」((株)日本触媒製)
 <ガラス支持体>
 ・ガラス支持体(1): 縦60mm、横60mmの大きさにカットした透明ガラス支持体「OA-10G(厚み200μm)」(日本電気硝子(株)製)
 ・ガラス支持体(2): 縦60mm、横60mmの大きさにカットした近赤外線吸収ガラス支持体「BS-6(厚み210μm)」(松浪硝子工業(株)製)
 ≪化合物(A)≫
 ・化合物(a-16):前記表1に記載の化合物(a-16)(ジクロロメタン中での吸収極大波長698nm)
 ・化合物(a-17):前記表1に記載の化合物(a-17)(ジクロロメタン中での吸収極大波長703nm)
 ・化合物(a-22):前記表2に記載の化合物(a-22)(ジクロロメタン中での吸収極大波長670nm)
 ・化合物(b-3):前記表4に記載の化合物(b-3)(ジクロロメタン中での吸収極大波長733nm)
 ・化合物(b-16):前記表4に記載の化合物(b-16)(ジクロロメタン中での吸収極大波長688nm)
 ・化合物(b-39):前記表6に記載の化合物(b-39)(ジクロロメタン中での吸収極大波長736nm)
 ≪化合物(S)≫
 ・化合物(s-5):前記表9に記載の化合物(s-5)(ジクロロメタン中での吸収極大波長770nm)
 ・化合物(s-8):前記表9に記載の化合物(s-8)(ジクロロメタン中での吸収極大波長776nm)
 ≪その他の色素(X)≫
 ・その他の色素(x-1):前記式(x-1)で表されるシアニン系化合物(ジクロロメタン中での吸収極大波長996nm)
 ・その他色素(x-2):前記式(x-2)で表される化合物(ジクロロメタン中での吸収極大波長550nm)
 <溶媒>
 ・溶媒(1):塩化メチレン
 ・溶媒(2):N,N-ジメチルアセトアミド
 ・溶媒(3):酢酸エチル/トルエン(重量比:5/5)
 ・溶媒(4):シクロヘキサン/キシレン(重量比:7/3)
 ・溶媒(5):シクロヘキサン/塩化メチレン(重量比:99/1)
 ・溶媒(6):N-メチル-2-ピロリドン
 <透明樹脂製基板および樹脂製支持体の乾燥条件>
 表15における、実施例および比較例の透明樹脂製基板および樹脂製支持体の乾燥条件は以下の通りである。なお、減圧乾燥前に、塗膜をガラス板から剥離した。
 ・条件(1):20℃/8hr(時間)→減圧下 100℃/8hr
 ・条件(2):60℃/8hr→80℃/8hr→減圧下 140℃/8hr
 ・条件(3):60℃/8hr→80℃/8hr→減圧下 100℃/24hr
 ・条件(4):40℃/4hr→60℃/4hr→減圧下 100℃/8hr
 <樹脂層形成用組成物>
 表15の実施例における、樹脂層を形成する樹脂組成物は、以下の通りである。
 ・樹脂組成物(1):トリシクロデカンジメタノールアクリレート 60重量部、ジペンタエリスリトールヘキサアクリレート 40重量部、1-ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤、TSC:30%)
 ・樹脂組成物(2):トリシクロデカンジメタノールアクリレート 100重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、前記表1に記載の化合物(a-16) 0.8重量部、前記表4に記載の化合物(b-3) 0.7重量部、メチルエチルケトン(溶剤、TSC:25%)
 ・樹脂組成物(3):トリシクロデカンジメタノールアクリレート 20重量部、ジペンタエリスリトールヘキサアクリレート 80重量部、1-ヒドロキシシクロヘキシルフェニルケトン 4重量部、前記表1に記載の化合物(a-16) 1.4重量部、前記表4に記載の化合物(b-3) 1.4重量部、メチルエチルケトン(溶剤、TSC:35%)
Figure JPOXMLDOC01-appb-T000046
 本発明の光学フィルターは、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、暗視カメラ、モーションキャプチャー、レーザー距離計、バーチャル試着、ナンバープレート認識装置、テレビ、カーナビゲーション、携帯情報端末、パソコン、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に好適に用いることができる。
1:光学フィルターまたは基材(i)
2:分光光度計
3:光
4:反射ミラー

Claims (15)

  1.  下記(a)および(b)の要件を満たし、基材(i)と該基材(i)の少なくとも一方の面に誘電体多層膜を有し、
     前記基材(i)が波長600~850nmに吸収極大を有する化合物(Z)を含む透明樹脂層を有する、
    可視光線と一部の近赤外線を選択的に透過させる光学フィルター。
     (a)波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
     (b)波長650nm以上の領域に光線阻止帯域Za、光線透過帯域Zb、光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ15%以下であり、前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である。
  2.  さらに下記(c)の要件を満たす、請求項1に記載の光学フィルター。
     (c)前記Zbのうち、光学フィルターの垂直方向から測定した場合に透過率50%となる、最も短波長側の波長の値(Xa)と最も長波長側の波長の値(Xb)との差Xb-Xaが5~150nmであり、Y=(Xa+Xb)/2で表されるYの値が750~950nmである
  3.  波長Y-10nm~Y+10nmの領域における、光学フィルターの垂直方向から測定した平均透過率が60%以上である、請求項2に記載の光学フィルター。
  4.  波長600nm以上の領域において、前記基材(i)の垂直方向から測定した透過率が50%超から50%以下となる最も短い波長(Xc)が610~670nmである、請求項1~3のいずれか1項に記載の光学フィルター。
  5.  波長750nm以上の領域において前記基材(i)の垂直方向から測定した透過率が50%未満から50%以上となる最も短い波長(Xf)が770~900nmである、請求項1~4のいずれか1項に記載の光学フィルター。
  6.  前記基材(i)の両面に分光特性が異なる誘電体多層膜が形成されており、光学フィルターの少なくとも一方の面から測定した、波長Y-10nm~Y+10nmの領域における平均反射率が20%以下である、請求項2~5のいずれか1項に記載の光学フィルター。
  7.  前記化合物(Z)がスクアリリウム系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、ヘキサフィリン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の化合物である、請求項1~6のいずれか1項に記載の光学フィルター。
  8.  前記化合物(Z)が、波長600~750nmに吸収極大を有する化合物(A)および波長750~850nmに吸収極大を有する化合物(S)からなる群より選ばれる少なくとも1種の化合物である、請求項1~7のいずれか1項に記載の光学フィルター。
  9.  前記化合物(A)が下記式(I)または(II)で表される化合物である、請求項8に記載の光学フィルター。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Ra、RbおよびYは、下記(i)または(ii)の条件を満たす。
     条件(i):
     複数あるRaはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し(ReおよびRfはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す)、
     複数あるRbはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表し(RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す)、
     複数あるYはそれぞれ独立に、-NRjk基を表し(RjおよびRkはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す)、
     L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhであり、
     前記La~Lhは、以下の基を表す。
    (La)置換基Lを有してもよい炭素数1~12の脂肪族炭化水素基
    (Lb)置換基Lを有してもよい炭素数1~12のハロゲン置換アルキル基
    (Lc)置換基Lを有してもよい炭素数3~14の脂環式炭化水素基
    (Ld)置換基Lを有してもよい炭素数6~14の芳香族炭化水素基
    (Le)置換基Lを有してもよい炭素数3~14の複素環基
    (Lf)置換基Lを有してもよい炭素数1~9のアルコキシ基
    (Lg)置換基Lを有してもよい炭素数1~9のアシル基
    (Lh)置換基Lを有してもよい炭素数1~9のアルコキシカルボニル基
    (但し、置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種である。)
     条件(ii):
     1つのベンゼン環上の2つのRaのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rbおよび前記複素環の形成に関与しないRaは、それぞれ独立に前記条件(i)のRbおよびRaと同義である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、Xは独立に、O、S、Se、N-RcまたはC(Rdd)を表し、
     複数あるRcはそれぞれ独立に、水素原子、La、Lb、Lc、LdまたはLeを表し、
     複数あるRdはそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し、隣り合うRd同士は連結して置換基を有していてもよい環を形成してもよく、
     La~Le、L1、ReおよびRfは、前記式(I)において定義したLa~Le、L1、ReおよびRfと同義である。]
  10.  前記化合物(S)が下記式(S1)で表される化合物である、請求項8に記載の光学フィルター。
    Figure JPOXMLDOC01-appb-C000003
    [式(S1)中、Xは独立に、酸素原子、硫黄原子、セレン原子または-NH-を表し、
     R1~R7はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表し(RgおよびRhはそれぞれ独立に、水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す)、
     L1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhであり、
     前記La~Lhは、以下の基を表す。
    (La)置換基Lを有してもよい炭素数1~12の脂肪族炭化水素基
    (Lb)置換基Lを有してもよい炭素数1~12のハロゲン置換アルキル基
    (Lc)置換基Lを有してもよい炭素数3~14の脂環式炭化水素基
    (Ld)置換基Lを有してもよい炭素数6~14の芳香族炭化水素基
    (Le)置換基Lを有してもよい炭素数3~14の複素環基
    (Lf)置換基Lを有してもよい炭素数1~9のアルコキシ基
    (Lg)置換基Lを有してもよい炭素数1~9のアシル基
    (Lh)置換基Lを有してもよい炭素数1~9のアルコキシカルボニル基
    (但し、置換基Lは、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種である。)]
  11.  前記透明樹脂が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項1~10のいずれか1項に記載の光学フィルター。
  12.  前記基材(i)が化合物(Z)を含む透明樹脂製基板(ii)を含有する、請求項1~11のいずれか1項に記載の光学フィルター。
  13.  固体撮像装置用である、請求項1~12のいずれか1項に記載の光学フィルター。
  14.  請求項1~12のいずれか1項に記載の光学フィルターを具備する固体撮像装置。
  15.  請求項1~12のいずれか1項に記載の光学フィルターを具備するカメラモジュール。
PCT/JP2014/077523 2013-10-17 2014-10-16 光学フィルター、固体撮像装置およびカメラモジュール WO2015056734A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015542650A JP5884953B2 (ja) 2013-10-17 2014-10-16 光学フィルター、固体撮像装置およびカメラモジュール
CN201480043450.7A CN105452911B (zh) 2013-10-17 2014-10-16 光学滤波器、固体摄像装置及照相机模块
KR1020167003593A KR101661088B1 (ko) 2013-10-17 2014-10-16 광학 필터, 고체 촬상 장치 및 카메라 모듈
US15/050,093 US9606275B2 (en) 2013-10-17 2016-02-22 Optical filter, solid-state image pickup device and camera module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013216164 2013-10-17
JP2013-216164 2013-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/050,093 Continuation US9606275B2 (en) 2013-10-17 2016-02-22 Optical filter, solid-state image pickup device and camera module

Publications (1)

Publication Number Publication Date
WO2015056734A1 true WO2015056734A1 (ja) 2015-04-23

Family

ID=52828175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077523 WO2015056734A1 (ja) 2013-10-17 2014-10-16 光学フィルター、固体撮像装置およびカメラモジュール

Country Status (6)

Country Link
US (1) US9606275B2 (ja)
JP (1) JP5884953B2 (ja)
KR (1) KR101661088B1 (ja)
CN (1) CN105452911B (ja)
TW (1) TWI557445B (ja)
WO (1) WO2015056734A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088644A1 (ja) * 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
WO2016088645A1 (ja) * 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
JP2016109809A (ja) * 2014-12-04 2016-06-20 旭硝子株式会社 光学フィルタ
WO2016186050A1 (ja) * 2015-05-20 2016-11-24 富士フイルム株式会社 赤外線吸収組成物、赤外線カットフィルタ、積層体、パターン形成方法、および固体撮像素子
JP2017031397A (ja) * 2015-07-31 2017-02-09 山本化成株式会社 リンフタロシアニン化合物
WO2017030174A1 (ja) * 2015-08-20 2017-02-23 旭硝子株式会社 光学フィルタおよび撮像装置
WO2017051867A1 (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 光学フィルタおよび撮像装置
WO2017134864A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 撮像素子、及び、カメラシステム
WO2017213047A1 (ja) * 2016-06-08 2017-12-14 Jsr株式会社 光学フィルターおよび光学センサー装置
JP2018040932A (ja) * 2016-09-07 2018-03-15 株式会社日本触媒 光学フィルター
JP2018109734A (ja) * 2016-12-28 2018-07-12 住友ベークライト株式会社 光学性層
JP2018172635A (ja) * 2017-02-27 2018-11-08 三菱ケミカル株式会社 非対称スクアリリウム化合物、着色組成物、ディスプレイ用フィルター及びディスプレイ
WO2019022169A1 (ja) * 2017-07-26 2019-01-31 Jsr株式会社 赤外線透過膜形成用組成物、赤外線透過膜の形成方法、表示装置用保護板、及び表示装置
JP2019028433A (ja) * 2018-01-24 2019-02-21 日本板硝子株式会社 光学フィルタ
WO2019049471A1 (ja) * 2017-09-06 2019-03-14 日本電産株式会社 レンズ
JP2020038369A (ja) * 2018-08-30 2020-03-12 Jsr株式会社 光学フィルター、その製造方法およびその用途
WO2020054786A1 (ja) * 2018-09-12 2020-03-19 Agc株式会社 光学フィルタおよび撮像装置
JP2020076990A (ja) * 2018-11-06 2020-05-21 Jsr株式会社 光学フィルターおよびその用途
WO2020138050A1 (ja) 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 熱可塑性樹脂組成物及びそれを用いた光学部材
JP2020177147A (ja) * 2019-04-18 2020-10-29 Jsr株式会社 赤外線カットフィルム、光学フィルタ、生体認証装置及び撮像装置
KR20210001993A (ko) 2019-06-27 2021-01-06 제이에스알 가부시끼가이샤 광학 필터 및 그의 용도
WO2021070694A1 (ja) * 2019-10-07 2021-04-15 住友化学株式会社 着色樹脂組成物
JP2022033118A (ja) * 2016-05-27 2022-02-28 パナソニックIpマネジメント株式会社 撮像システム
WO2022075291A1 (ja) * 2020-10-09 2022-04-14 Agc株式会社 光学フィルタ
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
WO2023210474A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2023210476A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207193B2 (en) * 2014-05-21 2019-02-19 Universal City Studios Llc Optical tracking system for automation of amusement park elements
JP6578718B2 (ja) * 2015-04-14 2019-09-25 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
CN107924005B (zh) * 2015-06-15 2022-06-17 人眼安全公司 用于电子设备的发光减少化合物
KR102388249B1 (ko) * 2015-11-27 2022-04-20 엘지이노텍 주식회사 일반 촬영 및 적외선 촬영 겸용 카메라 모듈
JPWO2017164024A1 (ja) * 2016-03-22 2019-01-31 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
CN108885288B (zh) * 2016-03-31 2020-10-16 柯尼卡美能达株式会社 光学反射膜
JP2017208612A (ja) * 2016-05-16 2017-11-24 三星ダイヤモンド工業株式会社 撮像装置および画像管理システム
KR102129747B1 (ko) * 2016-08-18 2020-07-03 후지필름 가부시키가이샤 조성물, 경화막, 적외선 투과 필터, 고체 촬상 소자 및 적외선 센서
WO2018043564A1 (ja) * 2016-08-31 2018-03-08 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
CN106324738B (zh) * 2016-11-04 2019-02-01 天津津航技术物理研究所 一种长波红外滤光片及其制备方法
CN106474631B (zh) * 2016-11-15 2018-09-18 石家庄德度光电科技有限公司 关节康复器及其控制方法
KR101842495B1 (ko) 2017-03-13 2018-03-27 한국화학연구원 스쿠아릴륨 화합물, 이를 포함하는 근적외선 흡수용 수지 조성물 및 이를 이용하여 제조된 근적외선 차단필터
WO2018184597A1 (zh) * 2017-04-07 2018-10-11 宁波舜宇光电信息有限公司 基于红外吸收结构的摄像模组及其应用
CN108693683A (zh) * 2017-04-07 2018-10-23 宁波舜宇光电信息有限公司 基于红外吸收镜头结构的摄像模组及其应用
CN108696672A (zh) * 2017-04-07 2018-10-23 宁波舜宇光电信息有限公司 基于红外吸收结构的摄像模组及其应用
KR101907970B1 (ko) * 2017-04-10 2018-10-16 주식회사 엘엠에스 광학물품 및 이를 포함하는 광학필터
US10609309B1 (en) * 2017-06-12 2020-03-31 Omnivision Technologies, Inc. Combined visible and infrared image sensor incorporating selective infrared optical filter
WO2019026848A1 (ja) * 2017-07-31 2019-02-07 Jsr株式会社 光電変換装置
CN111095046B (zh) 2017-09-15 2022-07-22 富士胶片株式会社 组合物、膜、层叠体、红外线透射滤波器、固体摄像元件及红外线传感器
CN108171858A (zh) * 2018-02-13 2018-06-15 南京东屋电气有限公司 一种带有分离式红外图像采集装置的汽车门锁
KR102158811B1 (ko) * 2018-07-03 2020-09-22 주식회사 엘엠에스 지문인식센서용 광학원판 및 이를 포함하는 광학필터
EP3825742A4 (en) * 2018-07-17 2022-05-04 Agc Inc. OPTICAL ELEMENT
CN110824599B (zh) 2018-08-14 2021-09-03 白金科技股份有限公司 一种红外带通滤波器
CN112601763B (zh) 2018-09-20 2024-03-19 富士胶片株式会社 固化性组合物、固化膜、红外线透射滤波器、层叠体、固体摄像元件、传感器及图案形成方法
JP6693585B2 (ja) * 2019-02-18 2020-05-13 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
KR20200121579A (ko) 2019-04-16 2020-10-26 삼성전자주식회사 근적외선 흡수 조성물, 광학 구조체, 및 이를 포함하는 카메라 모듈 및 전자 장치
CN110493495B (zh) * 2019-05-31 2022-03-08 杭州海康威视数字技术股份有限公司 图像采集装置和图像采集的方法
KR20220002432A (ko) 2019-05-31 2022-01-06 후지필름 가부시키가이샤 광 센서 및 센싱 장치
KR20220035458A (ko) 2019-08-30 2022-03-22 후지필름 가부시키가이샤 조성물, 막, 광학 필터 및 그 제조 방법, 고체 촬상 소자, 적외선 센서, 및, 센서 모듈
WO2022131191A1 (ja) 2020-12-16 2022-06-23 富士フイルム株式会社 組成物、膜、光学フィルタ、固体撮像素子、画像表示装置および赤外線センサ
WO2022130773A1 (ja) 2020-12-17 2022-06-23 富士フイルム株式会社 組成物、膜、光学フィルタ、固体撮像素子、画像表示装置および赤外線センサ
JP2022167805A (ja) 2021-04-23 2022-11-04 Jsr株式会社 基材、光学フィルター、固体撮像装置およびカメラモジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228448A (ja) * 1984-04-27 1985-11-13 Mitsubishi Chem Ind Ltd スクアリリウム化合物
JPH01228960A (ja) * 1988-03-09 1989-09-12 Konica Corp スクアリリウムの化合物
JP3094037B2 (ja) * 1990-11-21 2000-10-03 ポラロイド コーポレーシヨン スクエアリリウムおよびクロコニリウム染料
JP2001040234A (ja) * 1999-08-03 2001-02-13 Fuji Photo Film Co Ltd 新規色素化合物
JP2012019113A (ja) * 2010-07-08 2012-01-26 Panasonic Corp 固体撮像装置
JP2012185468A (ja) * 2010-12-17 2012-09-27 Nippon Shokubai Co Ltd 光選択透過フィルター、樹脂シート及び固体撮像素子

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654394B2 (ja) 1986-11-14 1994-07-20 富士写真フイルム株式会社 光導電性組成物
JPH07107030B2 (ja) 1987-12-04 1995-11-15 富士ゼロックス株式会社 新規なスクアリリウム化合物及びその製造方法
JP2864475B2 (ja) 1989-04-14 1999-03-03 ケミプロ化成株式会社 2―フェニルベンゾトリアゾール類の製造法
JP2846091B2 (ja) 1990-09-25 1999-01-13 オリヱント化学工業株式会社 インドール系化合物およびその用途
US5977351A (en) 1990-11-21 1999-11-02 Polaroid Corporation Benzpyrylium squarylium and croconylium dyes, and processes for their preparation and use
US5405976A (en) 1990-11-21 1995-04-11 Polaroid Corporation Benzpyrylium squarylium and croconylium dyes, and processes for their preparation and use
JPH0536229A (ja) 1991-07-31 1993-02-12 Sony Corp テープカセツト
JP3196383B2 (ja) 1992-12-16 2001-08-06 三菱化学株式会社 スクアリリウム系化合物
JP3163813B2 (ja) 1992-12-28 2001-05-08 日本ゼオン株式会社 近赤外線吸収樹脂組成物、および成形品
CH695281A5 (de) * 1993-04-02 2006-02-28 Balzers Hochvakuum Verfahren zur Herstellung eines Filters, danach hergestellte optische Schicht, optisches Bauelement mit einer derartigen Schicht und Braeunungsanlage mit einem solchen Element.
US5360659A (en) * 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JP3366697B2 (ja) 1993-08-27 2003-01-14 オリヱント化学工業株式会社 長波長紫外線吸収剤およびその製造方法
TW254936B (ja) 1993-10-22 1995-08-21 Ciba Geigy
US5398133A (en) * 1993-10-27 1995-03-14 Industrial Technology Research Institute High endurance near-infrared optical window
JP4081149B2 (ja) 1996-01-12 2008-04-23 山本化成株式会社 フタロシアニン化合物を用いる湿式太陽電池
JPH09325211A (ja) * 1996-04-01 1997-12-16 Toray Ind Inc 光学フィルター
US6207260B1 (en) * 1998-01-13 2001-03-27 3M Innovative Properties Company Multicomponent optical body
US6531230B1 (en) * 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
JP2000028826A (ja) 1998-07-08 2000-01-28 Toyobo Co Ltd 赤外線吸収フィルタ
JP3699464B2 (ja) 2001-07-04 2005-09-28 日本化薬株式会社 ジイモニウム塩化合物、それを用いる近赤外線吸収フィルター及び光情報記録媒体
US20050041292A1 (en) * 2002-05-21 2005-02-24 Wheatley John A. Visible wavelength detector systems and filters therefor
US7081991B2 (en) * 2003-03-14 2006-07-25 Rockwell Collins, Inc. Dye-based filter
JP2005234038A (ja) * 2004-02-17 2005-09-02 Seiko Epson Corp 誘電体多層膜フィルタ及びその製造方法並びに固体撮像デバイス
JP2006199945A (ja) 2004-12-24 2006-08-03 Mitsubishi Gas Chem Co Inc 低吸水性ポリイミド樹脂およびその製造方法
CN101084254B (zh) 2004-12-24 2010-12-08 三菱瓦斯化学株式会社 低吸水性聚酰亚胺及其制备方法
JP4740631B2 (ja) 2005-04-18 2011-08-03 日本カーリット株式会社 ジイモニウム塩化合物並びにこれを利用する近赤外線吸収色素および近赤外線遮断フィルター
JP5140923B2 (ja) 2005-12-19 2013-02-13 コニカミノルタホールディングス株式会社 クロコニウム化合物
JP5036229B2 (ja) 2006-06-21 2012-09-26 Agcテクノグラス株式会社 視感度補正フィルタガラス及び視感度補正フィルタ
JP2008163107A (ja) 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc 光学部材
JP2008163194A (ja) 2006-12-28 2008-07-17 Mitsubishi Gas Chem Co Inc 光学フィルム用ポリカーボネート樹脂
EP2103967A4 (en) 2006-12-28 2012-07-04 Nippon Catalytic Chem Ind SELECTIVE LIGHT-THRESHOLD FILTER
US7630128B2 (en) * 2007-02-02 2009-12-08 Sperian Eye & Face Protection Inc. a Delaware Corporation Optical filter panel having a narrow-width selective-wavelength attenuation and high visible light transmission
JP2009108267A (ja) 2007-10-31 2009-05-21 Fujifilm Corp シアニン化合物およびそれを含んでなる近赤外線吸収組成物
JP5431001B2 (ja) 2009-04-01 2014-03-05 株式会社Adeka シアニン化合物及び該シアニン化合物を含有する光学フィルター
JP5225209B2 (ja) 2009-06-10 2013-07-03 大阪瓦斯株式会社 フルオレン骨格を有するポリエステル樹脂
JP2011197450A (ja) 2010-03-19 2011-10-06 Osaka Gas Chem Kk プリズムシート及びその製造方法
JP5810604B2 (ja) * 2010-05-26 2015-11-11 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
GB201020023D0 (en) * 2010-11-25 2011-01-12 St Microelectronics Ltd Radiation sensor
CN103608705B (zh) 2011-06-06 2016-10-12 旭硝子株式会社 滤光片、固体摄像元件、摄像装置用透镜和摄像装置
US9726784B2 (en) 2011-09-15 2017-08-08 Jsr Corporation Near-infrared cut filter and device including near-infrared cut filter
JP6003895B2 (ja) * 2011-09-21 2016-10-05 旭硝子株式会社 近赤外線カットフィルター
KR102059198B1 (ko) * 2012-03-22 2019-12-24 가부시키가이샤 닛폰 쇼쿠바이 광 선택 투과 필터, 수지 시트 및 고체 촬상 소자
CN104204873B (zh) * 2012-06-04 2016-08-24 旭硝子株式会社 近红外线截止滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228448A (ja) * 1984-04-27 1985-11-13 Mitsubishi Chem Ind Ltd スクアリリウム化合物
JPH01228960A (ja) * 1988-03-09 1989-09-12 Konica Corp スクアリリウムの化合物
JP3094037B2 (ja) * 1990-11-21 2000-10-03 ポラロイド コーポレーシヨン スクエアリリウムおよびクロコニリウム染料
JP2001040234A (ja) * 1999-08-03 2001-02-13 Fuji Photo Film Co Ltd 新規色素化合物
JP2012019113A (ja) * 2010-07-08 2012-01-26 Panasonic Corp 固体撮像装置
JP2012185468A (ja) * 2010-12-17 2012-09-27 Nippon Shokubai Co Ltd 光選択透過フィルター、樹脂シート及び固体撮像素子

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088645A1 (ja) * 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
JP2016109809A (ja) * 2014-12-04 2016-06-20 旭硝子株式会社 光学フィルタ
WO2016088644A1 (ja) * 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
JPWO2016088644A1 (ja) * 2014-12-04 2017-11-02 Jsr株式会社 固体撮像装置
JPWO2016088645A1 (ja) * 2014-12-04 2017-11-02 Jsr株式会社 固体撮像装置
JPWO2016186050A1 (ja) * 2015-05-20 2018-04-19 富士フイルム株式会社 赤外線吸収組成物、赤外線カットフィルタ、積層体、パターン形成方法、および固体撮像素子
WO2016186050A1 (ja) * 2015-05-20 2016-11-24 富士フイルム株式会社 赤外線吸収組成物、赤外線カットフィルタ、積層体、パターン形成方法、および固体撮像素子
US10598835B2 (en) 2015-05-20 2020-03-24 Fujifilm Corporation Infrared absorbing composition, infrared cut filter, laminate, pattern forming method, solid image pickup element
EP3299422A4 (en) * 2015-05-20 2018-06-20 FUJIFILM Corporation Infrared absorbing composition, infrared cut filter, lamination, pattern forming method, and solid-state image capturing element
JP2017031397A (ja) * 2015-07-31 2017-02-09 山本化成株式会社 リンフタロシアニン化合物
WO2017030174A1 (ja) * 2015-08-20 2017-02-23 旭硝子株式会社 光学フィルタおよび撮像装置
JPWO2017030174A1 (ja) * 2015-08-20 2018-06-07 旭硝子株式会社 光学フィルタおよび撮像装置
JPWO2017051867A1 (ja) * 2015-09-25 2017-10-19 旭硝子株式会社 光学フィルタおよび撮像装置
US10746908B2 (en) 2015-09-25 2020-08-18 AGC Inc. Optical filter and imaging device
WO2017051867A1 (ja) * 2015-09-25 2017-03-30 旭硝子株式会社 光学フィルタおよび撮像装置
US10461106B2 (en) 2016-02-02 2019-10-29 Sony Corporation Imaging element and camera system
WO2017134864A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 撮像素子、及び、カメラシステム
JP2022033118A (ja) * 2016-05-27 2022-02-28 パナソニックIpマネジメント株式会社 撮像システム
JP7281681B2 (ja) 2016-05-27 2023-05-26 パナソニックIpマネジメント株式会社 撮像システム
US11163098B2 (en) 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device
JPWO2017213047A1 (ja) * 2016-06-08 2019-04-04 Jsr株式会社 光学フィルターおよび光学センサー装置
JP2020177253A (ja) * 2016-06-08 2020-10-29 Jsr株式会社 光学フィルターおよび光学センサー装置
WO2017213047A1 (ja) * 2016-06-08 2017-12-14 Jsr株式会社 光学フィルターおよび光学センサー装置
JP2018040932A (ja) * 2016-09-07 2018-03-15 株式会社日本触媒 光学フィルター
JP2018109742A (ja) * 2016-12-28 2018-07-12 住友ベークライト株式会社 光学性層
JP2018109734A (ja) * 2016-12-28 2018-07-12 住友ベークライト株式会社 光学性層
JP2018109743A (ja) * 2016-12-28 2018-07-12 住友ベークライト株式会社 光学性層
JP2018172635A (ja) * 2017-02-27 2018-11-08 三菱ケミカル株式会社 非対称スクアリリウム化合物、着色組成物、ディスプレイ用フィルター及びディスプレイ
JP7024488B2 (ja) 2017-02-27 2022-02-24 三菱ケミカル株式会社 非対称スクアリリウム化合物、着色組成物、ディスプレイ用フィルター及びディスプレイ
JPWO2019022169A1 (ja) * 2017-07-26 2020-05-28 Jsr株式会社 赤外線透過膜形成用組成物、赤外線透過膜の形成方法、表示装置用保護板、及び表示装置
JP7071662B2 (ja) 2017-07-26 2022-05-19 Jsr株式会社 赤外線透過膜形成用組成物、赤外線透過膜の形成方法、表示装置用保護板、及び表示装置
WO2019022169A1 (ja) * 2017-07-26 2019-01-31 Jsr株式会社 赤外線透過膜形成用組成物、赤外線透過膜の形成方法、表示装置用保護板、及び表示装置
US11885993B2 (en) 2017-07-27 2024-01-30 Nippon Sheet Glass Company, Limited Optical filter and method of manufacturing
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
WO2019049471A1 (ja) * 2017-09-06 2019-03-14 日本電産株式会社 レンズ
JP2019028433A (ja) * 2018-01-24 2019-02-21 日本板硝子株式会社 光学フィルタ
JP7326993B2 (ja) 2018-08-30 2023-08-16 Jsr株式会社 光学フィルター、その製造方法およびその用途
JP2020038369A (ja) * 2018-08-30 2020-03-12 Jsr株式会社 光学フィルター、その製造方法およびその用途
JPWO2020054786A1 (ja) * 2018-09-12 2021-08-30 Agc株式会社 光学フィルタおよび撮像装置
JP7298072B2 (ja) 2018-09-12 2023-06-27 Agc株式会社 光学フィルタおよび撮像装置
WO2020054786A1 (ja) * 2018-09-12 2020-03-19 Agc株式会社 光学フィルタおよび撮像装置
JP2020076990A (ja) * 2018-11-06 2020-05-21 Jsr株式会社 光学フィルターおよびその用途
JP7331635B2 (ja) 2018-11-06 2023-08-23 Jsr株式会社 光学フィルターおよびその用途
KR20210110564A (ko) 2018-12-27 2021-09-08 미츠비시 가스 가가쿠 가부시키가이샤 열가소성 수지 조성물 및 그것을 사용한 광학 부재
WO2020138050A1 (ja) 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 熱可塑性樹脂組成物及びそれを用いた光学部材
JP2020177147A (ja) * 2019-04-18 2020-10-29 Jsr株式会社 赤外線カットフィルム、光学フィルタ、生体認証装置及び撮像装置
KR20210001993A (ko) 2019-06-27 2021-01-06 제이에스알 가부시끼가이샤 광학 필터 및 그의 용도
WO2021070694A1 (ja) * 2019-10-07 2021-04-15 住友化学株式会社 着色樹脂組成物
WO2022075291A1 (ja) * 2020-10-09 2022-04-14 Agc株式会社 光学フィルタ
WO2023210474A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2023210476A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ

Also Published As

Publication number Publication date
TWI557445B (zh) 2016-11-11
CN105452911B (zh) 2017-06-09
TW201520609A (zh) 2015-06-01
KR20160027201A (ko) 2016-03-09
CN105452911A (zh) 2016-03-30
US20160170105A1 (en) 2016-06-16
JPWO2015056734A1 (ja) 2017-03-09
KR101661088B1 (ko) 2016-09-28
JP5884953B2 (ja) 2016-03-15
US9606275B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
JP5884953B2 (ja) 光学フィルター、固体撮像装置およびカメラモジュール
JP6508247B2 (ja) 光学フィルターならびに該光学フィルターを用いた固体撮像装置およびカメラモジュール
JP7405228B2 (ja) 光学フィルター用樹脂組成物、光学フィルター、カメラモジュールおよび電子機器
KR101983742B1 (ko) 고체 촬상 소자용 광학 필터, 고체 촬상 장치 및 카메라 모듈
JP6627864B2 (ja) 光学フィルターおよび光学フィルターを用いた装置
JP6358114B2 (ja) 光学フィルターおよび光学フィルターを用いた装置
WO2017164024A1 (ja) 光学フィルターおよび光学フィルターを用いた装置
JP6398980B2 (ja) 光学フィルターおよび光学フィルターを用いた装置
JP6578718B2 (ja) 光学フィルターおよび光学フィルターを用いた装置
JP2015040895A (ja) 光学フィルターおよび光学フィルターを用いた装置
WO2015022892A1 (ja) 光学フィルターおよび前記フィルターを用いた装置
CN106397300B (zh) 花青化合物、滤光片、使用滤光片的装置及树脂组合物
JPWO2019022069A1 (ja) 近赤外線カットフィルターおよび該近赤外線カットフィルターを用いた装置
JP6693585B2 (ja) 光学フィルターおよび光学フィルターを用いた装置
JP2015004838A (ja) 固体撮像装置用近赤外線カットフィルターならびに前記フィルターを用いた固体撮像装置およびカメラモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043450.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853915

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015542650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003593

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853915

Country of ref document: EP

Kind code of ref document: A1