WO2014181883A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2014181883A1
WO2014181883A1 PCT/JP2014/062535 JP2014062535W WO2014181883A1 WO 2014181883 A1 WO2014181883 A1 WO 2014181883A1 JP 2014062535 W JP2014062535 W JP 2014062535W WO 2014181883 A1 WO2014181883 A1 WO 2014181883A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
crystal
crystal part
solder joint
atom
Prior art date
Application number
PCT/JP2014/062535
Other languages
English (en)
French (fr)
Inventor
和優 木戸
齋藤 隆
恭平 福田
慎司 多田
文彦 百瀬
西村 芳孝
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015515915A priority Critical patent/JP6128211B2/ja
Priority to CN201480019763.9A priority patent/CN105103279B/zh
Priority to KR1020157026128A priority patent/KR102217782B1/ko
Priority to DE112014002345.0T priority patent/DE112014002345B4/de
Publication of WO2014181883A1 publication Critical patent/WO2014181883A1/ja
Priority to US14/878,903 priority patent/US10157877B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/2932Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • a semiconductor device having a package structure in which a semiconductor chip is bonded onto a circuit pattern provided on an insulating substrate is known, and a solder material that can be bonded at a relatively low temperature as a bonding material for bonding the semiconductor chip and the circuit pattern.
  • a solder material a solder mainly composed of tin (Sn), for example, a tin-silver (Sn-Ag) based solder material that can be bonded at a low melting point, a highly reliable tin-antimony (Sn-Sb) ) Series solder materials are used. The state of the Sn—Ag solder material after the solder joint and the Sn—Sb solder material after the solder joint will be described.
  • Solder containing Sn as a main component has a melting point of about 200 ° C to 300 ° C.
  • a solder joint layer using a solder containing Sn as a main component has a structure in which Sn crystal grains are dispersed.
  • Sn crystal grains become coarse at high temperatures, and stress due to a difference in linear expansion coefficient from the non-joint material is applied to the solder joint layer due to temperature change.
  • grain boundary cracks grain boundary cracks
  • Sn-Ag solder materials and Sn-Sb solder materials are known as solder materials that prevent the development of such grain boundary cracks.
  • FIG. 7 is an explanatory view schematically showing a state of a solder joint layer made of a conventional Sn—Ag solder material.
  • FIG. 7 (a) shows the initial state of a solder joint layer (hereinafter referred to as Sn—Ag solder joint layer) made of a conventional Sn—Ag solder material (before applying a thermal load due to a power cycle or the like).
  • the Sn—Ag solder material is a precipitation strengthened solder material.
  • Ag does not substantially dissolve in the Sn crystal grains, so that the fine granular hard Ag 3 Sn compound 122 is obtained.
  • FIG. 8 is an explanatory view schematically showing a state of a solder joint layer made of a conventional Sn—Sb solder material.
  • FIG. 8A shows an initial state of a solder joint layer made of a conventional Sn—Sb solder material (hereinafter referred to as “Sn—Sb solder joint layer”).
  • the Sn—Sb solder material is a solid solution strengthened solder material.
  • solder material containing Sn, Ag and Sb one or two of Ag: 1% to 30% and Sb: 0.5% to 25% are contained, and the remainder consists of Sn and inevitable impurities.
  • a solder material having an oxygen (O 2 ) content of 5 ppm or less as an inevitable impurity and an average crystal grain size of 3 ⁇ m or less has been proposed.
  • O 2 oxygen
  • a solder material is proposed (for example, see Patent Document 2 below).
  • solder material in a composite solder material containing powder in the solder material, the solder material contains 5% to 15% by weight of Sb, 2% to 15% by weight of Ag, and the balance contains inevitable impurities.
  • a solder material substantially composed of Sn has been proposed (see, for example, Patent Document 3 below).
  • solder material is a solder material made of an alloy containing 25 wt% to 40 wt% Ag, 24 wt% to 43 wt% Sb, and the balance Sn, and the melting temperature is at least 250 ° C.
  • a solder material as described above has been proposed (see, for example, Patent Document 4 below).
  • solder material in mass%, Ag: 0.9% to 10.0%, Al: 0.01% to 0.50%, Sb: 0.04% to 3.00%,
  • solder material that satisfies the relationship of Al / Sb of 0.25 or less (not including 0), and that consists of the remaining Sn and inevitable impurities, and joins a member having an oxide or oxide surface (for example, (See Patent Document 5 below.)
  • Ag is 0.05 mass% to 2.0 mass%
  • copper (Cu) is 1.0 mass% or less
  • Sb is 3.0 mass% or less
  • bismuth (Bi) is 2. 0 mass% or less
  • indium (In) is 4.0 mass% or less
  • nickel (Ni) is 0.2 mass% or less
  • germanium (Ge) is 0.1 mass% or less
  • cobalt (Co) is 0.5 mass%. % Or less (however, Cu, Sb, Bi, In, Ni, Ge, and Co are not 0 mass%), and a solder material whose balance is made of tin is proposed (for example, Patent Document 6 below) reference.).
  • solder material in a solder material mainly composed of SnSbAgCu, the composition of the solder material is 42% by weight ⁇ Sb / (Sn + Sb) ⁇ 48% by weight, and 5% by weight ⁇ Ag ⁇ 20% by weight. 3% by weight ⁇ Cu ⁇ 10% by weight, and 5% by weight ⁇ Ag + Cu ⁇ 25% by weight, and the remainder is composed of other inevitable impurity elements (for example, , See Patent Document 7 below).
  • solder material As another solder material, Sb is 12% by mass to 16% by mass, Ag is 0.01% by mass to 2% by mass, and Cu is 0.1% by mass to 1.5% by mass with respect to the entire high-temperature solder material. In addition, 0.001% by mass to 0.1% by mass of silicon (Si) and 0.001% by mass to 0.05% by mass of B are contained, and the balance is Sn and inevitable impurities.
  • Si silicon
  • Patent Document 8 A solder material has been proposed (see, for example, Patent Document 8 below).
  • the main component is SnSbAgCu based on a solid phase temperature of 225 ° C.
  • the composition ratio of the alloy is 10% to 35% by weight of Ag and Cu
  • the weight ratio of Sb / (Sn + Sb) is 0.
  • a solder material of .23 to 0.38 has been proposed (see, for example, Patent Document 9 below).
  • solder material Sn is 88 mass% to 98.5 mass%, In is 1 mass% to 10 mass%, Ag is 0.5 mass% to 3.5 mass%, Cu is 0 mass% to Solder materials based on Sn—In—Ag solder alloys have been proposed that contain 1% by weight and have a doping with a crystallization modifier that suppresses the growth of intermetallic phases in the solidified solder (eg, , See Patent Document 10 below).
  • solder material As another solder material, Ag: 2% by mass to 3% by mass, Cu: 0.3% by mass to 1.5% by mass, Bi: 0.05% by mass to 1.5% by mass, Sb: 0.0% by mass. Solder containing 2 mass% to 1.5 mass% and having a total content of Ag, Cu, Sb, Bi of 5 mass% or less, the balance being Sn and inevitable impurities, and smooth surface properties after reflow Materials have been proposed (see, for example, Patent Document 11 below).
  • reflow is a solder paste (a solder powder with flux added to an appropriate viscosity) layer formed on the bonding material, and after placing the components on top of it, heat is applied to melt the solder, It is a method of attaching.
  • solder material As another solder material, Ag is 1% by mass to 3% by mass, Cu is 0.5% by mass to 1.0% by mass, Bi is 0.5% by mass to 3.0% by mass, and In is 0.3% by mass.
  • Proposed solder material consisting of 5 mass% to 3.0 mass%, Ge 0.01 mass% to 0.03% by mass or Selenium (Se) 0.01 mass% to 0.1 mass%, with the balance being Sn (For example, refer to Patent Document 12 below).
  • Bi is contained in 15.0% to 30.0%
  • silver is contained in 1.0% to 3.0%
  • copper is contained in 0% to 2.0%
  • Sb a solder material which may contain 0% to 4.0% of incidental impurities and the rest is Sn has been proposed (see, for example, Patent Document 13 below).
  • solder material is a Sn—Sb—Ag—Cu quaternary alloy, in which Sb is 1.0 wt% to 3.0 wt% of the whole, Ag is 1.0 wt% or more, and 2.0 wt%.
  • a solder material is proposed in which Cu is contained in a proportion of 1.0% by weight or less and the remainder is made of Sn (for example, see Patent Document 14 below).
  • Sb is 3.0% by weight or less (not including the lower limit value of zero)
  • silver is 3.5% by weight or less (not including the lower limit value of zero)
  • Ni is 1. 0% by weight or less (excluding the lower limit of the range of zero)
  • phosphorus (P) of 0.2% by weight or less (excluding the lower limit of the range of zero)
  • the balance being Sn and inevitable impurities It has been proposed (for example, see Patent Document 15 below).
  • solder material As another solder material, Sb is 2.5% to 3.5% by weight, Ag is 1.0% to 3.5% by weight, Ni is 1.0% by weight or less (the lower limit of the range is zero).
  • a solder material containing Sn and inevitable impurities is proposed (for example, see Patent Document 16 below).
  • solder material is rod-shaped, linear, preformed, or cored solder, with Ag 0.5% to 3.5% by weight and Bi 3.0% to
  • a solder material composed of 5.0% by weight, Cu of 0.5% to 2.0% by weight, Sb of 0.5% to 2.0% by weight, and the balance of Sn (for example, the following) (See Patent Document 17).
  • solder material contains 0.8 wt% or more and 5 wt% or less of Ag, and both contain 0.1 wt% or more of In and Bi in a total of 17 wt% or less, with the balance being Sn.
  • a solder material composed of inevitable impurities and further containing 0.1 wt% or more and 10 wt% or less of Sb has been proposed (see, for example, Patent Document 18 below).
  • solder material As another solder material, a solder material containing 61 wt% to 69 wt% of Sn, 8 wt% to 11 wt% of Sb, and 23 wt% to 28 wt% of Ag has been proposed (for example, , See Patent Document 19 below).
  • solder material As another solder material, Sn is 93 wt% to 98 wt%, Ag is 1.5 wt% to 3.5 wt%, Cu is 0.2 wt% to 2.0 wt%, and Sb is 0 wt%.
  • a solder material containing 2 wt% to 2.0 wt% and having a melting point of 210 ° C. to 215 ° C. has been proposed (see, for example, Patent Document 20 below).
  • solder material Sn is 90.3% to 99.2% by weight, Ag is 0.5% to 3.5% by weight, Cu is 0.1% to 2.8% by weight,
  • a solder material containing 0.2 wt% to 2.0 wt% of Sb and having a melting point of 210 ° C. to 216 ° C. has been proposed (see, for example, Patent Document 21 below).
  • solder material a solder material containing at least 90% by weight of Sn and effective amounts of Ag and Bi, and optionally containing Sb or Sb and Cu has been proposed (for example, the following patents). Reference 22).
  • Sb is 0.5 wt% to 4.0 wt%
  • zinc (Zn) is 0.5 wt% to 4.0 wt%
  • Ag is 0.5 wt% to 2.0 wt%.
  • a solder material containing 9% by weight and 90.0% by weight to 98.5% by weight of Sn has been proposed (see, for example, Patent Document 23 below).
  • solder paste including a metal component composed of a first metal powder, a second metal powder having a melting point higher than that of the first metal powder, and a flux component, wherein the first metal is: Sn alone or Cu, Ni, Ag, gold (Au), Sb, Zn, Bi, In, Ge, Co, manganese (Mn), iron (Fe), chromium (Cr), magnesium (Mg), palladium (Pd ),
  • a solder material that is an alloy containing Sn and at least one selected from the group consisting of Si, strontium (Sr), tellurium (Te), and P has been proposed (for example, see Patent Document 24 below).
  • semiconductor devices are subjected to heat loads such as repeated heat generation and heat release (power cycle) during operation and heat cycle heat loads such as environmental temperature changes (heating / cooling).
  • heat loads such as repeated heat generation and heat release (power cycle) during operation
  • heat cycle heat loads such as environmental temperature changes (heating / cooling).
  • the semiconductor device has a problem that the solder joint layer deteriorates due to the thermal load caused by these power cycles and the like. Since the life of the solder joint layer is a factor that determines the life of the semiconductor device, it is necessary to improve the life of the solder joint layer.
  • the operation of the semiconductor device during high temperature heat generation for example, 175 ° C. or more
  • semiconductor devices mounted on automobiles and semiconductor devices for new energy applications need to have a long life.
  • the power cycle reliability is a characteristic of the semiconductor device when the semiconductor device is operated and a predetermined temperature cycle is loaded.
  • the Sn3.5Ag solder material (solder material containing 96.5 wt% Sn and 3.5 wt% Ag) generally used as the above-described conventional Sn—Ag solder material has a low melting point (for example, 220). Soldering at a temperature of about 0 ° C. is possible, but there is a problem that the reliability during high-temperature operation is low. Further, when the Ag content in the Sn—Ag solder joint layer is increased as in Patent Documents 1 to 5, the material cost increases (for example, the solder cost increases by about 20% for each 1% increase in Ag content).
  • a high melting point for example, the melting point of Sn10Ag solder material (solder material containing 90.0 wt% Sn and 10.0 wt% Ag) is about 300 ° C.). For this reason, it is not realistic to increase the Ag content in the Sn—Ag solder joint layer.
  • FIG. 7B shows a state of the conventional Sn-Ag solder joint layer in a power cycle reliability test (a state in which a thermal load is applied by the power cycle).
  • the Sn crystal grains 121 are coarsened by the thermal load due to the power cycle, and the Ag 3 Sn compound 122 has a grain size of about 5 ⁇ m. Aggregates and becomes coarse.
  • the Ag 3 Sn compound 122 no longer strengthens the grain boundary between the Sn crystal grains 121, so that a grain boundary crack 123 is generated at the crystal grain boundary between the Sn crystal grains 121, and this grain boundary crack 123 is adjacent to the Sn boundary grain 123. It progresses to the crystal grain boundary between the crystal grains 121.
  • the above-described conventional Sn—Sb solder material has higher reliability as the Sb content in the Sn—Sb solder material increases, but the melting point increases as the Sb content increases.
  • a Sn13Sb solder material generally used as a conventional Sn—Sb solder material (a solder material containing 87.0% by weight of Sn and 13.0% by weight of Sb) has a melting point of about 300 ° C.
  • the Sn—Sb solder material is improved in reliability by increasing the Sb content so that the melting point becomes 300 ° C., when the semiconductor device is operated in an environment of about 175 ° C., Depending on the intended use, higher reliability may be required.
  • FIG. 8B shows a state during a power cycle reliability test of a conventional Sn—Sb solder joint layer.
  • the crystal grain boundaries between the Sn crystal grains 131 are not strengthened.
  • a grain boundary crack 133 is generated at the crystal grain boundary, and this grain boundary crack 133 progresses to a crystal grain boundary between adjacent Sn crystal grains 131.
  • the reflow heat treatment of the solder paste is performed in a furnace in a nitrogen (N 2 ) atmosphere, but at a temperature of 300 ° C. or higher from the viewpoint of the heat resistance of the solder paste (the heat resistance of the resin of the solder paste is about 250 ° C.).
  • N 2 nitrogen
  • This heat treatment is difficult, and a solder material having a melting point of about 300 ° C. is difficult to use in the manufacturing process.
  • heat treatment at 300 ° C. or higher is possible, but the semiconductor chip may be damaged by heat treatment at a temperature of 350 ° C. or higher. There is.
  • An object of the present invention is to provide a semiconductor device having a highly reliable solder joint layer and a method for manufacturing the semiconductor device, which enables solder joining at a low melting point in order to eliminate the above-described problems caused by the prior art. To do.
  • a semiconductor device is a semiconductor device in which a set of components is bonded by a solder bonding layer, and has the following characteristics.
  • the average grain size of the second crystal part is smaller than the average grain size of the first crystal part.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the first crystal part is a tin crystal grain in which antimony is dissolved.
  • the first crystal part is a tin crystal grain in which antimony is dissolved
  • the third crystal part includes the first crystal part and the first crystal. It is a crystal grain formed by a reaction with antimony exceeding the solid solubility limit in the part.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the second crystal part is precipitated at a crystal grain boundary between the first crystal parts.
  • the average particle size of the first portion is 1 ⁇ m or less in the above-described invention.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the melting point of the solder joint layer is 260 ° C. or less.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which a set of constituent parts is bonded by a solder bonding layer. It has the following characteristics. First, a step of applying a solder paste including a mixture of an alloy powder containing antimony and an alloy powder not containing antimony on one of the components is performed. Next, the solder paste is solidified by heat treatment to form the solder joint layer, and the constituent parts are joined by the solder joint layer.
  • the solder joint layer includes a first crystal part and a second crystal part.
  • the average grain size of the second crystal part is smaller than the average grain size of the first crystal part.
  • the first crystal part (tin crystal grain) in which antimony is solid-solved which is substantially regularly arranged and has a uniform metal structure, and precipitated at the grain boundary between the first crystal parts.
  • a solder bonding layer is constituted and strengthened by a plurality of first parts (compound containing tin and silver) and / or second parts (compound containing tin and copper) or both.
  • first parts compound containing tin and silver
  • second parts compound containing tin and copper
  • the crystal grain boundary between the first crystal parts is strengthened by the second crystal part, and the crystal of the first crystal part is not easily deformed. As a result, the progress of intragranular cracks and intergranular cracks can be suppressed as compared with conventional tin-silver solder joint layers and tin-antimony solder joint layers.
  • the melting point of the solder joint layer can be set to a temperature lower than 300 ° C., for example, 260 ° C. or less, by the first and second crystal parts. As a result, power cycle reliability higher than that of the conventional tin-antimony solder joint layer, which required a soldering process at a temperature of 300 ° C.
  • the solder bonding layer is formed using a mixed paste formed by mixing the first powder containing antimony and the second powder not containing antimony, and thus the powder is made of one alloy. As compared with the case where the solder joint layer is formed using the uniform paste, the solder joint layer can be made to have a uniform metal structure in which the first to third crystal parts are arranged substantially regularly.
  • the semiconductor device and the manufacturing method of the semiconductor device according to the present invention it is possible to provide a semiconductor device and a method of manufacturing the semiconductor device that enable solder bonding with a low melting point and have a highly reliable solder bonding layer. There is an effect.
  • FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device according to the embodiment.
  • FIG. 2 is an explanatory view schematically showing the configuration of the solder joint layer of FIG.
  • FIG. 3A is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the first embodiment.
  • FIG. 3B is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the third example.
  • FIG. 4A is a cross-sectional view showing a state during a power cycle reliability test of the solder joint layer of Comparative Example 1.
  • FIG. 4B is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer of Comparative Example 2.
  • FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device according to the embodiment.
  • FIG. 2 is an explanatory view schematically showing the configuration of the solder joint layer of FIG.
  • FIG. 5 is a characteristic diagram showing the relationship between the Sb content of the semiconductor device and the power cycle reliability tolerance.
  • FIG. 6 is a characteristic diagram showing the relationship between the Ag content of the semiconductor device and the power cycle reliability tolerance.
  • FIG. 7 is an explanatory view schematically showing a state of a solder joint layer made of a conventional Sn—Ag solder material.
  • FIG. 8 is an explanatory view schematically showing the state of a solder joint layer made of a conventional Sn—Sb solder material.
  • FIG. 9 is an explanatory view schematically showing a state at the time of melting of the uniform paste for forming the solder joint layer of FIG.
  • FIG. 10 is an explanatory view schematically showing a state when the mixed paste for forming the solder joint layer of FIG. 1 is melted.
  • FIG. 11 is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the fifth example.
  • FIG. 13 is sectional drawing which shows another state at the time of the power cycle reliability test of the solder joint layer concerning Example 4.
  • FIG. 14 is a cross-sectional view illustrating another state during the power cycle reliability test of the solder joint layer according to the fifth example.
  • FIG. 15 is a cross-sectional view illustrating another state during the power cycle reliability test of the solder joint layer according to the first example.
  • FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device according to the embodiment.
  • the semiconductor device according to the embodiment includes a semiconductor chip 1, an insulating substrate 2 such as a ceramic insulating substrate (DCB (Direct Copper Bonding) substrate), and a copper (Cu) base 6.
  • a semiconductor device having a module structure For example, a semiconductor device having a module structure.
  • FIG. 1 illustration of a cooling body, a resin case, an external terminal, a bonding wire, and the like is omitted.
  • the insulating substrate 2 is provided with a circuit pattern (metal foil) 4 made of a conductor such as Cu on the front surface side of the insulating layer 3 and a metal foil such as a back copper foil 5 on the back surface side.
  • a circuit pattern (metal foil) 4 made of a conductor such as Cu on the front surface side of the insulating layer 3 and a metal foil such as a back copper foil 5 on the back surface side.
  • the back surface of the semiconductor chip 1 is bonded to a circuit pattern (metal foil) 4 via a solder bonding layer 11.
  • the front surface of the Cu base 6 is bonded to the back copper foil 5 via the solder bonding layer 12.
  • the back surface of the Cu base 6 is joined to the cooling body via a thermal compound.
  • a resin case provided with external terminals is bonded to the periphery of the Cu base 6.
  • An electrode (not shown) provided on the front surface of the semiconductor chip 1 and a circuit pattern (metal foil) 4 are electrically connected by wire bonding such as an aluminum wire (not shown).
  • solder paste As a method for joining the members to be joined by the solder joint layers 11 and 12, after bringing the members to be joined into contact with each other via a solder paste or the like, for example, at a temperature of about 250 ° C. to 350 ° C.
  • the heat treatment is performed for about 30 minutes or less, preferably for 1 minute to 5 minutes.
  • the solder paste is solidified by cooling at a predetermined temperature drop rate, and a solder joint layer is formed.
  • the temperature increase rate of this heat treatment is about 1 ° C./second, but the temperature decrease rate is preferably 5 ° C./second or more, more preferably 8 ° C./second or more and 15 ° C./second or less.
  • the temperature decrease rate of the heat treatment for forming the solder joint layer is 1 ° C./second, but it cannot be a solder joint layer having a predetermined configuration, and a crack occurs in the solder joint layer.
  • the power cycle reliability was degraded.
  • it can be set as the solder joint layers 11 and 12 of the metal structure as shown below by making temperature-fall rate into the said conditions.
  • the furnace environment at this time may be a nitrogen atmosphere or a hydrogen atmosphere.
  • the member to be joined is a constituent part of a semiconductor device such as a semiconductor chip, a circuit pattern (metal foil) 4, a metal foil (insulating substrate), a heat spreader (Cu base), or the like.
  • the components to be joined are the semiconductor chip 1 and the circuit pattern (metal foil) 4, the Cu base 6 and the back copper foil 5, the lead frame and the metal foil (insulating substrate), and the like.
  • the solder joint layers 11 and 12 are formed using, for example, a cream-like solder paste in which a powder of a solder material containing a predetermined material in a predetermined ratio and a flux (such as pine yani) are mixed.
  • the solder paste for forming the solder bonding layers 11 and 12 has an appropriate viscosity that spreads over a predetermined surface area and can be applied onto the member to be bonded by a dispenser or the like.
  • solder paste to be the solder joint layers 11 and 12 is applied on one member to be joined. Thereafter, the other member to be bonded is disposed on the solder paste, and the solder bonding layers 11 and 12 are formed by solidifying the solder paste by heat treatment, whereby the members to be bonded are bonded and integrated.
  • the powder of the solder material contained in the solder paste for forming the solder joint layers 11 and 12 a powder adjusted to a predetermined composition may be used.
  • the solder bonding layers 11 and 12 are formed using a 89Sn8Sb3Ag solder material (including Sn: 89.0% by weight, Sb: 8.0% by weight, and Ag: 3.0% by weight)
  • the 89Sn8Sb3Ag alloy Powders may be used (ie forming a uniform paste).
  • the powder of the solder material contained in the solder paste for forming the solder joint layers 11 and 12 may be a mixture of two or more kinds of alloy powders adjusted to different compositions (that is, a mixed paste). Forming).
  • a solder paste in which a first powder containing Sb and a second powder not containing Sb are mixed at a predetermined weight ratio may be used.
  • a first powder of an 81.5Sn16Sb2.5Ag alloy an alloy containing 81.5% by weight of Sn, 16.0% by weight of Sb, and 2.5% by weight of Ag
  • a second paste of 5Ag alloy is mixed at a weight ratio of 1: 1 to obtain a solder paste.
  • the solder bonding layers 11 and 12 of 89Sn8Sb3Ag alloy can be formed by heat-treating this solder paste.
  • FIG. 2 is an explanatory view schematically showing the configuration of the solder joint layer of FIG.
  • FIG. 2A shows an initial state of the solder joint layers 11 and 12 (before a thermal load is applied by a power cycle).
  • the solder joint layers 11 and 12 are formed by a general solder joint method using a solder material containing predetermined amounts of tin (Sn), antimony (Sb), and silver (Ag).
  • the solder joint layers 11 and 12 may further contain Cu at a predetermined ratio.
  • the solder joint layers 11 and 12 may be formed using a solder material containing a predetermined amount of Sn, Sb, Ag, and Cu. By including Ag in the solder bonding layers 11 and 12, solder wettability can be improved.
  • the solder bonding layers 11 and 12 are harder than the first crystal part 21 at the grain boundary between the first crystal parts 21 dispersed as a matrix and from the first crystal part 21.
  • a plurality of second crystal parts (crystal grains) 22 such as fine grains or columnar shapes having a small grain diameter (diameter) are deposited.
  • the entire crystal grains are solid-solution strengthened by Sb solid-solved in the first crystal portion 21, and the crystals of the first crystal portion 21 are not easily deformed.
  • the Sn atom: Sb atom is the ratio of the number of atoms of Sn and Sb.
  • the average grain size of the first crystal part 21 is preferably 0.2 ⁇ m or more and 100 ⁇ m or less from the viewpoint of reliability. This is because the first crystal part 21 has a particle size closer to 0.2 ⁇ m, which is more resistant to heat load, and when the average particle size exceeds 100 ⁇ m, voids are generated or the thermal and mechanical properties are not uniform. This is because the reliability may decrease. Further, when the average grain size of the first crystal part 21 is in the above range, the second crystal part 22 is easily formed at the crystal grain boundary between the first crystal parts 21.
  • the average particle diameter of most of the first intermetallic compounds 22-1 is preferably 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less. From the viewpoint of sex.
  • the Ag content in the second crystal part 22 varies depending on the content of Sb in the solder material, the presence of other atoms during solder bonding, and the like.
  • the second crystal part 22 exists at the crystal grain boundary between the first crystal parts 21, and the first crystal parts 21 have a part bonded via the second crystal part 22. There may also be a portion where the first crystal parts 21 directly form an interface.
  • the second crystal part 22 may be formed between the member to be joined and the first crystal part 21, and is formed between another second crystal part 22 and the first crystal part 21 having different compositions. May be. Further, the second crystal part 22 is formed between third crystal parts 23 to be described later, between the third crystal part 23 and the first crystal part 21, or between the third crystal part 23 and the bonded member. May be.
  • the formation of the second crystal part 22 makes it difficult for cracks to occur in the crystal grain boundaries of the first crystal part 21. This means that the crystal grain boundary of the first crystal part 21 is strengthened.
  • the ratio of the area of the first intermetallic compound 22-1 to the area of the first crystal part 21 (hereinafter referred to as the area ratio S1 of the first intermetallic compound 22-1) is, for example, greater than 0% and not more than 5%. (0% ⁇ S1 ⁇ 5%).
  • the area ratio S1 of the first intermetallic compound 22-1 is, for example, 2% or more and 5% or less (2% ⁇ S1 ⁇ 5%). The reason is as follows.
  • the area ratio S1 of the first intermetallic compound 22-1 By setting the area ratio S1 of the first intermetallic compound 22-1 to 2% or more, the first crystal part 21 can be almost completely covered by the first intermetallic compound 22-1. It is because the effect which prevents can be heightened. In addition, when the area ratio S1 of the first intermetallic compound 22-1 is larger than 5%, the grain size of the first intermetallic compound 22-1 (for example, Ag 3 Sn compound) becomes large, so that the development of intergranular cracks is caused. This is because the effect of preventing becomes low.
  • the area ratio and the average particle size can be determined by determining the particle size of about 1 ⁇ m of the first intermetallic compound 22-1, for example, from the SEM (Scanning Electron Microscope) image at a magnification of 1500 times, the particles of the first crystal part 21 It is calculated by image processing in an area sufficiently larger than the diameter, for example, an area of 30 ⁇ m ⁇ 30 ⁇ m. Specifically, the outline of the particle is clarified by image processing, and a predetermined particle is recognized. The area and particle size are obtained by approximating the particles with a circle or polygon.
  • the second crystal part 22 may be composed of a first intermetallic compound 22-1 and a second intermetallic compound 22-2.
  • the Cu 3 Sn compound in the second crystal part 22 reacts with the Sn (first crystal part 21 and the like) when the molten Cu in the solder joint layers 11 and 12 from the Cu member (circuit pattern 4 or the back copper foil 5). Formed.
  • the Cu 3 Sn compound is produced by, for example, heat treatment at a temperature of 250 ° C. or higher and 350 ° C. or lower and a reaction time of 0.5 minutes or longer and 30 minutes or shorter, preferably 1 minute or longer and 5 minutes or shorter. It exists in the vicinity of the Cu member in the bonding layers 11 and 12.
  • the rate of temperature decrease is preferably 5 ° C./second or more, and more preferably 8 ° C./second or more and less than 15 ° C./second.
  • the Cu 3 Sn compound can be used not only in the vicinity of the Cu member but also due to diffusion of Cu not only in the vicinity of the Cu member, but also in the solder joint layers 11 and 12 due to a heat load caused by a power cycle (temperature during one cycle changes from room temperature (for example, 25 ° C.) to 175 ° C.). It may be formed in the whole inside.
  • the second intermetallic compound 22-2 is also generated in a heat load caused by a power cycle in which the temperature during one cycle changes from room temperature to a temperature in the range of 150 ° C. to 250 ° C. The reason is estimated as follows.
  • the temperature decreasing rate of the semiconductor device when the ON / OFF operation is repeated is in the range of 5 ° C./second to 10 ° C./second. Therefore, the holding temperature and the rapid cooling condition in the power cycle test are suitable for the formation of the second intermetallic compound 22-2 (Cu—Sn compound) which is the second part of the second crystal part 22. it is conceivable that.
  • the second intermetallic compound 22-2 As the second intermetallic compound 22-2 is generated, Sn in the first crystal part 21 is consumed, so that the Sb concentration in the first crystal part 21 increases. As a result, the first crystal portion 21 is strengthened more than the case of the solder alone, and further, a third crystal portion 23 described later is newly generated (if the third crystal portion 23 already exists, the number thereof increases. ) Bring the reliability improvement effect.
  • a third crystal portion 23 described later is newly generated (if the third crystal portion 23 already exists, the number thereof increases. ) Bring the reliability improvement effect.
  • Ni nickel
  • Au gold
  • Ag Ag
  • Cu is used as the surface of the member to be joined by the solder joint layers 11 and 12. The same effect as when used is obtained.
  • the average particle size of the second intermetallic compound 22-2 is preferably 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less from the viewpoint of reliability.
  • the second intermetallic compound 22-2 by performing a heat treatment in advance after the solder bonding by the solder bonding layers 11 and 12 before actual use.
  • the heat load during the heat treatment repeats one cycle changing from room temperature to a temperature in the range of 150 ° C. to 250 ° C. at least once every several seconds to several minutes.
  • this heat processing may hold
  • the temperature lowering rate of this heat treatment is preferably 5 ° C./second or more, more preferably 8 ° C./second or more and less than 15 ° C./second.
  • thermo stress is generated between the other members and the members, which is not preferable.
  • a refrigerant may be used in addition to air cooling.
  • the ratio of the area of the second intermetallic compound 22-2 to the area of the first crystal part 21 (hereinafter referred to as the area ratio S2 of the second intermetallic compound 22-2) is, for example, greater than 0% and 50% or less. (0% ⁇ S2 ⁇ 50%).
  • the reason is as follows. This is because the larger the area ratio S2 of the second intermetallic compound 22-2, the higher the effect of preventing the development of grain boundary cracks.
  • the area ratio S2 of the second intermetallic compound 22-2 is larger than 50%, the second intermetallic compound 22-2 becomes an obstacle, and voids (bubbles) in the molten solder at the time of soldering are difficult to escape. This is because solderability deteriorates. Therefore, the area ratio between the first crystal part 21 and the second crystal part 22 is preferably greater than 2% and 55% or less.
  • the solder joint layers 11 and 12 may have a third crystal part 23 formed by a reaction between the first crystal part 21 and Sb exceeding the solid solution limit in the first crystal part 21.
  • the solid solution limit (saturation amount) of Sb with respect to Sn crystal grains varies depending on the heat treatment temperature and cooling temperature during solder bonding, the Sb content in the solder material, the presence of other atoms during solder bonding, and the like.
  • the average grain size of the third crystal part 23 is preferably 0.1 ⁇ m or more and 100 ⁇ m or less from the viewpoint of reliability. This is also considered to be due to the same reason as in the case of the first crystal part 21. Further, when the grain size of the third crystal part 23 is larger than 100 ⁇ m, the third crystal part 23 becomes an obstacle, and it becomes difficult to remove voids in the solder melted at the time of soldering. .
  • the ratio of the area of the third crystal part 23 to the area of the first crystal part 21 may be, for example, greater than 0% and 15% or less (0% ⁇ S3 ⁇ 15%).
  • the reason is as follows. This is because as the area ratio S3 of the third crystal part 23 is larger, the effect of preventing the progress of the grain boundary cracks can be enhanced. Further, when the area ratio S3 of the third crystal part 23 is larger than 15%, the third crystal part 23 becomes an obstacle, and voids in the solder melted at the time of soldering are difficult to be removed, so that the solderability is deteriorated. It is.
  • the actual first crystal part 21, the second crystal part 22, and the third crystal part 23 are subjected to composition analysis by EDX (Energy Dispersive X-ray spectroscopy), AES (Auger Electron Spectroscopy), etc. in a plurality of cross sections, A good composition was revealed.
  • EDX Energy Dispersive X-ray spectroscopy
  • AES Alger Electron Spectroscopy
  • FIG. 2 (b) shows the state of the solder joint layers 11 and 12 having such a configuration during a power cycle reliability test (a state subjected to a thermal load due to the power cycle).
  • a power cycle reliability test repeated energization with a current ON time of 0.5 seconds to 3 seconds and an OFF time of 0.5 seconds to 20 seconds is performed under the condition that the temperature during one cycle changes from room temperature to 175 ° C due to heat generation. (Test time: 50 hours)
  • the entire first crystal part 21 is solid-solution strengthened by the solid solution Sb, the first crystal part 21 does not become coarse even if it receives a heat load due to a power cycle.
  • the precipitation strengthening mechanism of the grain boundary between the first crystal parts 21 by the second crystal part 22 is not broken. For this reason, as shown in FIG. 2B, even if a grain boundary crack or an intragranular crack (hereinafter referred to as a crack 24) occurs in one first crystal portion 21, the first crystal in which the crack 24 is generated. Propagation of cracks 24 to the first crystal part 21 continuous with the part 21 and the crystal grain boundary between the first crystal parts 21 can be reduced.
  • a crack 24 an intragranular crack
  • FIG. 9 is an explanatory view schematically showing a state at the time of melting of the uniform paste for forming the solder joint layer of FIG.
  • FIG. 9A shows a state of the uniform paste before heat treatment
  • FIG. 9B shows a state of the uniform paste during heat treatment.
  • the uniform paste before the heat treatment is, for example, crystals of 92Sn8Sb crystal grains (crystal grains containing Sn of 92.0% by weight and Sb of 8.0% by weight) dispersed in a matrix.
  • a plurality of Ag 3 Sn compounds 62 having a grain size (diameter) smaller than that of the 92Sn8Sb crystal grain 61 are deposited at the grain boundary. Since the uniform paste is composed of only one kind of alloy powder, the above-described configuration composed of the 92Sn8Sb crystal grains 61 and the Ag 3 Sn compound 62 is uniformly distributed throughout the uniform paste.
  • the temperature of the heat treatment is melted Ag 3 Sn compound 62 reaches the melting point of Ag 3 Sn compound 62, then the whole is liquefied when it reaches the melting point of 92Sn8Sb grains 61.
  • voids may be generated when the heat treatment time is short.
  • the uniform paste wets and spreads by increasing the heat treatment time, it is preferable to set the heat treatment time so that no voids are generated. For example, when the temperature in the furnace is 260 ° C.
  • the temperature of the heating plate on which the semiconductor chip is placed is 235 ° C.
  • the heat treatment is performed for about 270 seconds or more in a nitrogen atmosphere, the solder bonding layer 11 using a uniform paste, It has been confirmed that almost no voids are generated in FIG.
  • FIG. 10 is an explanatory view schematically showing a state when the mixed paste for forming the solder joint layer of FIG. 1 is melted.
  • FIG. 10A shows the state of the mixed paste before heat treatment
  • FIG. 10B shows the state of the mixed paste during heat treatment.
  • the mixed paste contains the first powder 70-1 and the second powder 70-2 in a state of being separated at a predetermined weight ratio.
  • the first powder 70-1 is a powder containing Sb and has, for example, a configuration in which Sn crystal grains 71-1 in which Sb is dissolved are dispersed in a matrix.
  • Reference numeral 71-2 is a SnSb compound in which Sb exceeding the solid solution limit is precipitated together with a part of Sn in the Sn crystal grains 71-1.
  • the second powder 70-2 is a powder that does not contain Sb. For example, at the crystal grain boundary between the Sn crystal grains 72-1 dispersed in the matrix, the fine powder or columnar shape having a smaller particle diameter than the Sn crystal grains 72-1. And a plurality of Ag 3 Sn compounds 72-2 are deposited.
  • the Sb concentration is low when the heat treatment temperature reaches, for example, about 221 ° C.
  • a portion, that is, the second powder 70-2 not containing Sb having a high melting point is first melted and liquefied. That is, the entire second powder 70-2 is liquefied, and a part of the mixed paste is liquefied.
  • the previously melted second powder 70-2 diffuses into the first powder 70-1 (not shown), and the entire mixed paste is liquefied in a shorter time than the uniform paste.
  • the apparent melting point of the entire mixed paste is lowered by the second powder 70-2 having a low melting point because Sb is not contained.
  • the mixed paste since the wettability is improved by liquefying in a shorter time than in the case of using the uniform paste, the generation of voids can be suppressed as compared with the case of using the uniform paste.
  • the temperature in the furnace is 260 ° C. (the temperature of the heating plate on which the semiconductor chip is placed is 235 ° C.) and heat treatment is performed for about 110 seconds in a nitrogen atmosphere, the solder bonding layers 11 and 12 using a uniform paste are used. Although almost all voids are generated, it has been confirmed that almost no voids are generated in the solder joint layers 11 and 12 using the mixed paste.
  • solder joint layers 11 and 12 described above were verified by a power cycle reliability test.
  • the power cycle reliability test results when the solder joint layers 11 and 12 are formed using a uniform paste will be described.
  • a uniform paste made of 89Sn8Sb3Ag solder material (solder material containing 89.0% by weight of Sn, 8.0% by weight of Sb, and 3.0% by weight of Ag: melting point of about 253 ° C.) (ie, 89Sn8Sb3Ag alloy powder)
  • the solder bonding layers 11 and 12 having a thickness of 100 ⁇ m are formed by solder bonding using a uniform paste including a uniform paste including a solder material, and a power cycle reliability test of the solder bonding layers 11 and 12 is performed.
  • Example 3 The state of was observed. The results are shown in FIG. 3A (hereinafter referred to as Example 1).
  • the heat treatment temperature of Example 1 was 270 ° C.
  • the holding time was 5 minutes
  • the temperature lowering rate was 10 ° C./second.
  • soldering is performed by soldering using a uniform paste made of 84Sn13Sb3Ag solder material (solder material containing 84.0% by weight of Sn, 13.0% by weight of Sb, and 3.0% by weight of Ag: melting point of about 290 ° C.).
  • the bonding layers 11 and 12 were formed, and the state of the solder bonding layers 11 and 12 during the power cycle reliability test was observed.
  • FIG. 3B hereinafter referred to as Example 3).
  • the heat treatment temperature of Example 3 was 320 ° C., the holding time was 5 minutes, and the temperature drop rate was 10 ° C./second.
  • a solder joint layer is formed by solder joint using a uniform paste made of a conventional 87Sn13Sb solder material (solder material containing 87.0 wt% Sn and 13.0 wt% Sb: melting point of about 300 ° C.) The state of the solder joint layer during the power cycle reliability test was observed. The result is shown in FIG. 4A.
  • the heat treatment temperature of Comparative Example 1 was 320 ° C., the holding time was 5 minutes, and the temperature drop rate was 10 ° C./second.
  • 3A is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the first embodiment.
  • FIG. 3B is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer according to the third example.
  • FIG. 4A is a cross-sectional view showing a state during a power cycle reliability test of the solder joint layer of Comparative Example 1.
  • 3A, 3B, and 4A are SEM images observed from the front side of the semiconductor chip (the same applies to FIGS. 4B, 11, and 12).
  • a plurality of Sn crystal grains 31 in which Sb is dissolved are dispersed as a matrix, and crystals of the Sn crystal grains 31 (first crystal parts) are dispersed.
  • Fine grained hard Ag 3 Sn compound 32-1 (first intermetallic compound of the second crystal part) having a grain size of 0.5 ⁇ m or less so as to surround Sn crystal grains 31 (average grain size of about 30 ⁇ m) at the grain boundary ) was confirmed to precipitate.
  • one or more Sn crystal grains 31 react with Sb exceeding the solid solution limit to become SnSb compound 33 (third crystal part), and the bonding between solder bonding layer 30-1 and Cu member 30-2 It was confirmed that Cu 6 Sn 5 compound 32-2 (second intermetallic compound in the second crystal part) was precipitated in the vicinity of the interface. This is formed at the time of soldering (such as a heat treatment at a temperature of 270 ° C. for about 5 minutes), so that the first intermetallic compound and the second intermetallic compound in the second crystal part are one. Or to surround the plurality of first crystal parts.
  • a part of the second crystal part is formed by undergoing a heat load due to a power cycle (temperature during one cycle changes from room temperature to 175 ° C.). Further, even after being subjected to a thermal load due to power cycle, the grain size of the Sn crystal grains 31 does not become coarse, and the Sn 3 Sn compound 32-1, the Cu 6 Sn 5 compound 32-2, and the SnSb compound 33 Sn. It was confirmed that the precipitation strengthening mechanism of the crystal grain boundaries between the crystal grains 31 did not collapse and no cracks were generated. Note that the second intermetallic compound of the second crystal part is similarly generated even in a thermal load caused by a power cycle in which the temperature during one cycle changes from room temperature to a temperature in the range of 150 ° C.
  • Example 3 Sn crystal grains 31, Ag 3 Sn compound 32-1, and SnSb compound 33 were precipitated as in Example 1.
  • the solder bonding layer 40 of Comparative Example 1 since there is no second crystal part, it was confirmed that cracks 44 were generated at the crystal grain boundaries between the Sn crystal grains 41 due to distortion of the solder due to thermal stress (see FIG. 4A).
  • FIGS. 11 and 12 show Examples 4 and 5 when the heat treatment temperature is 260 ° C.
  • FIG. 13 is sectional drawing which shows another state at the time of the power cycle reliability test of the solder joint layer concerning Example 4.
  • FIG. 14 is a cross-sectional view illustrating another state during the power cycle reliability test of the solder joint layer according to the fifth example.
  • Example 4 includes a first powder of a 70Sn30Sb alloy (an alloy containing 70.0% by weight of Sn and 30.0% by weight of Sb) and a 96Sn4Ag alloy (96.0% by weight of Sn and 4.0% by weight of Ag).
  • the solder joint layer was formed by solder joint using a mixed paste formed by mixing the second powder of the alloy containing the second powder.
  • the weight ratio of the first powder to the second powder is 1: 2.8.
  • Example 5 includes a first powder of a 70Sn30Sb alloy (an alloy containing 70.0% by weight of Sn and 30.0% by weight of Sb) and a 96Sn4Ag alloy (96.0% by weight of Sn and 4.0% by weight of Ag).
  • the solder joint layer was formed by solder joint using a mixed paste formed by mixing the second powder of the alloy containing the second powder.
  • the weight ratio of the first powder to the second powder is 1: 1.
  • XPS X-ray Photoelectron Spectroscopy
  • the third crystal part SnSb compound
  • FIG. 15 shows Example 1 when the heat treatment temperature is 230 ° C. (maximum 232 ° C.) and the heat treatment is performed for about 300 seconds (5 minutes) in a nitrogen atmosphere.
  • FIG. 15 is a cross-sectional view illustrating another state during the power cycle reliability test of the solder joint layer according to the first example.
  • both the first crystal part (including the third crystal part) 81 and the second crystal part 82 can be further miniaturized and a more uniform metal structure can be obtained than in Example 1.
  • Example 1 Was confirmed. That is, by using the mixed paste, it is possible to suppress the third crystal part from agglomerating and the first and third crystal parts from becoming coarser than when the uniform paste is used. The reason is as follows.
  • Example 1 using the uniform paste it was confirmed that the heating plate on which the semiconductor chip is placed does not melt when the temperature is about 230 ° C.
  • Example 1 using the uniform paste it was confirmed that even if the temperature of the heating plate on which the semiconductor chip is placed is about 260 ° C., it does not melt completely and voids are generated. ing.
  • Examples 4 and 5 using the mixed paste are melted in a shorter time than Example 1 using the uniform paste because the second powder not containing Sb in the mixed paste is melted first, and Sb is It is estimated that it is because it spreads in the first powder containing.
  • the first crystal part (including the third crystal part) 81 and the second crystal part 82 become finer. Guessed.
  • FIG. 5 is a characteristic diagram showing the relationship between the Sb content of the semiconductor device and the power cycle reliability tolerance.
  • Example 1 (89Sn8Sb3Ag) for the solder joint layers 11 and 12 of (100-xy) SnxSbyAg solder material containing (100-xy) wt% Sn, x wt% Sb, and y wt% Ag
  • FIG. 1 solder joint layer made of a uniform paste made of 87Sn13Sb solder material
  • Example 3 solder joint layer made of a uniform paste made of 84Sn13Sb3Ag solder material
  • Example 5 shows the results obtained by preparing the samples of Example 2 and Comparative Example 2 and measuring the power cycle reliability tolerance.
  • a solder joint layer was formed by solder joint using a uniform paste made of a 97Sn3Ag solder material (a solder material containing 97.0% by weight of Sn and 3.0% by weight of Ag).
  • the heat treatment temperature of Comparative Example 2 was 280 ° C., the holding time was 5 minutes, and the temperature drop rate was 10 ° C./second.
  • a solder joint layer is formed by solder joint using a uniform paste made of 90Sn8Sb2Ag solder material (a solder material containing 90.0% by weight of Sn, 8.0% by weight of Sb, and 2.0% by weight of Ag). Formed.
  • the heat treatment temperature of Example 2 was 270 ° C., the holding time was 5 minutes, and the temperature drop rate was 10 ° C./second.
  • -Ag solder joint layer is shown (Comparative Example 2).
  • the power cycle reliability tolerance (%) shown on the vertical axis of FIG. 5 is calculated based on the comparative example 2.
  • the horizontal axis of FIG. 5 shows the Sb content (% by weight).
  • the reference line 51 in FIG. 5 indicates the vicinity of the melting point of the solder material of 260 ° C., and the lower the melting point, the lower the melting point, and the higher the melting point, the higher the melting point. Show.
  • FIG. 5 indicates the vicinity of the melting point of the solder material of 260 ° C.
  • FIG. 4B is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer of Comparative Example 2.
  • FIG. 4B is a cross-sectional view illustrating a state during a power cycle reliability test of the solder joint layer of Comparative Example 2.
  • the compositions of Examples 1 to 3 were as follows as a result of composition analysis.
  • the semiconductor device according to the present invention can be sufficiently applied to, for example, a semiconductor device mounted in an automobile or a semiconductor device for new energy, which is used in an environment of about 175 ° C. and requires high reliability.
  • a semiconductor device mounted in an automobile or a semiconductor device for new energy which is used in an environment of about 175 ° C. and requires high reliability.
  • the particle size of the AgSn compound 42 is coarsened to about 5 ⁇ m in the solder joint layer 40 as in the case of the conventional Sn—Ag solder material not containing Sb. It was confirmed that a crack 44 was generated. Due to this, it is considered that the power cycle reliability tolerance is inferior.
  • the Sb content is more than 15% by weight (when proceeding to the right side of the dotted line 52 shown in FIG.
  • Sb content in the solder joint layers 11 and 12 is more than 0 weight% and 15 weight% or less.
  • FIG. 6 is a characteristic diagram showing the relationship between the Ag content of the semiconductor device and the power cycle reliability tolerance. (100-xy) wt%, Sb x wt%, and Ag (y wt%) (100-xy) SnxSbyAg solder joint layers 11 and 12 made of solder material 11 and 12 with power cycle reliability tolerance The measurement results are shown in FIG.
  • the power cycle reliability tolerance (%) shown on the vertical axis of FIG. 6 is calculated based on the comparative example 2.
  • the horizontal axis of FIG. 6 shows the Ag content (% by weight).
  • a conventional Sn—Sb solder joint layer is shown (Comparative Example 1).
  • the power cycle reliability tolerance is improved more than Comparative Examples 1 and 2 by increasing the Sb content to more than 0 wt% and the Ag content to more than 0 wt%. It was confirmed that It was also confirmed that the power cycle reliability tolerance could be improved as the Ag content increased. Furthermore, when the Ag content is more than 3% by weight (when proceeding to the right side of the dotted line indicated by reference numeral 53), it has been confirmed that the solderability decreases and the material cost increases. For this reason, it is preferable that the Ag content in the solder bonding layers 11 and 12 is more than 0 wt% and 3 wt% or less.
  • the first crystal part (Sn crystal grains) in which Sb is solid-solved, which is substantially regularly arranged and forms a uniform metal structure A solder joint layer is constituted and strengthened by a plurality of second crystal parts precipitated at the crystal grain boundaries between the first crystal parts dispersed as a matrix.
  • the average grain size of the second crystal part was smaller than the average grain size of the first crystal part, the average grain size of the first crystal part was 30 ⁇ m, and the average grain size of the second crystal part was 0.8 ⁇ m. .
  • the entire first crystal part is solid-solution strengthened by Sb dissolved in the first crystal part, it is possible to suppress the coarsening of the first crystal part due to a heat load such as a power cycle.
  • the first intermetallic compound compound containing Sn and Ag
  • the first intermetallic compound which is a finer second crystal part harder than the first crystal part, strengthens the grain boundaries between the first crystal parts dispersed in a matrix.
  • the crystal of the first crystal part is not easily deformed. As a result, the progress of intragranular cracks and intergranular cracks can be suppressed as compared with conventional Sn—Ag solder joint layers and Sn—Sb solder joint layers, and the power cycle reliability can be improved.
  • the second crystal part has the second intermetallic compound (compound containing Sn and Cu) formed by joining the solder and the Cu member and by a thermal load due to the power cycle.
  • the crystal of the first crystal parts dispersed as a matrix can be obtained by further including the second intermetallic compound (second part). Grain boundaries are further strengthened. As a result, the development of grain boundary cracks can be further suppressed as compared with the conventional Sn—Ag solder joint layer and Sn—Sb solder joint layer. Therefore, the power cycle reliability tolerance can be further improved.
  • the melting point of the solder joint layer can be increased from 300 ° C. by forming the first, second and third crystal parts to have a predetermined grain size and composition without adding Ag at a high concentration.
  • the lower temperature for example, 260 ° C. or lower (for example, about 230 ° C.) can be used.
  • the soldering process at a temperature lower than 300 ° C. has a power cycle reliability tolerance higher than that of the conventional Sn—Sb solder joint layer, which required a soldering process at a temperature of 300 ° C. or higher.
  • the solder bonding layer is formed by using a mixed paste formed by mixing the first powder containing Sb and the second powder not containing Sb, and thus consists of one alloy powder.
  • the solder joint layer can be made to have a uniform metal structure in which the first to third crystal parts are arranged substantially regularly.
  • the power cycle reliability tolerance was 230 (%) in Example 4, and 240 (%) in Example 5. In this way, the first to third crystal parts have a uniform metal structure arranged substantially regularly, and the power cycle reliability can be improved by making the first and second crystal parts finer.
  • solder joint layers may have the same composition or different compositions as long as they are within the above-described configuration. .
  • the semiconductor device and the method for manufacturing the semiconductor device according to the present invention are useful for a semiconductor device having a package structure in which respective members such as a semiconductor chip and a circuit pattern are bonded via a solder bonding layer.
  • SYMBOLS 1 Semiconductor chip 2 Insulating substrate 3 Insulating layer 4 Circuit pattern (metal foil) 5 Back copper foil 6 Copper base 11, 12 Solder joint layer 21 First crystal part (Sn crystal grains in which Sb is solid solution) 22 Second crystal part 22-1 First intermetallic compound (compound containing Sn and Ag) 22-2 Second intermetallic compound (compound containing Sn and Cu) 23 3rd crystal part (Sn crystal grain formed by reaction of the first crystal part and Sb exceeding the solid solution limit in the first crystal part)

Abstract

 はんだ接合層は、マトリクスに分散した第1結晶部(21)同士の結晶粒界に微細粒状の複数の第2結晶部(22)が析出した構造を有する。第1結晶部(21)は、錫とアンチモンとを所定の割合で含む複数のSn結晶粒である。第2結晶部(22)は、Sn原子に対してAg原子を所定の割合で含む第1部分、または、Sn原子に対してCu原子を所定の割合で含む第2部分、もしくはその両方で構成される。また、はんだ接合層は、Sn原子に対してSb原子を所定の割合で含む結晶粒である第3結晶部(23)を有しても良い。これにより、低融点でのはんだ接合を可能とし、実質的に均一な金属組織を有し、信頼性の高いはんだ接合層を形成することができる。

Description

半導体装置および半導体装置の製造方法
 この発明は、半導体装置および半導体装置の製造方法に関する。
 従来、絶縁基板に設けられた回路パターン上に半導体チップを接合したパッケージ構造の半導体装置が公知であり、半導体チップと回路パターンとを接合する接合材として比較的低い温度で接合が可能なはんだ材が用いられている。このようなはんだ材として、主に錫(Sn)を主成分とするはんだ、例えば低融点で接合可能な錫-銀(Sn-Ag)系はんだ材、高信頼性の錫-アンチモン(Sn-Sb)系はんだ材等が用いられている。はんだ接合後のSn-Ag系はんだ材、および、はんだ接合後のSn-Sb系はんだ材の状態について説明する。
 Snを主成分とするはんだは、融点200℃~300℃程度である。Snを主成分とするはんだを用いたはんだ接合層は、Sn結晶粒が分散した構造を有する。Sn100%のはんだ材を用いた場合のはんだ接合層では、高温でSn結晶粒が粗大化し、さらに温度変化によって非接合材との線膨張係数差による応力がはんだ接合層にかかるため、Sn結晶粒同士の結晶粒界に粒界クラック(粒界割れ)が発生し、この粒界クラックが隣接するSn結晶粒同士の結晶粒界へと進展するという問題がある。このような粒界クラックの進展を防止したはんだ材として、Sn-Ag系はんだ材やSn-Sb系はんだ材が公知である。
 図7は、従来のSn-Ag系はんだ材によるはんだ接合層の状態を模式的に示す説明図である。従来のSn-Ag系はんだ材によるはんだ接合層(以下、Sn-Ag系はんだ接合層とする)の初期(パワーサイクル等による熱負荷がかかる前)の状態を図7(a)に示す。Sn-Ag系はんだ材は、析出強化型のはんだ材である。図7(a)に示すように、従来のSn-Ag系はんだ材を用いたはんだ接合層では、AgはSn結晶粒中にほぼ固溶しないため、微細粒状の硬いAg3Sn化合物122となり、マトリクスとして分散したSn結晶粒121同士の結晶粒界に析出する。これによって、Sn結晶粒121同士の結晶粒界が強化されて結晶が変形しにくくなるため、Sn結晶粒単体のはんだ接合層と比べて粒界クラックが進展しにくい。
 図8は、従来のSn-Sb系はんだ材によるはんだ接合層の状態を模式的に示す説明図である。従来のSn-Sb系はんだ材によるはんだ接合層(以下、Sn-Sb系はんだ接合層とする)の初期の状態を図8(a)に示す。Sn-Sb系はんだ材は、固溶強化型のはんだ材である。図8(a)に示すように、従来のSn-Sb系はんだ材を用いたはんだ接合層では、Sn結晶粒131中に8.5重量%(=8.3原子パーセント(at%))程度までSbが固溶し、Sn結晶粒131全体が強化される。
 固溶したSbによってSn結晶粒131全体が強化されることにより、半導体装置の動作中における発熱および放熱の繰り返しサイクルによる熱負荷によって生じるSn結晶粒131の粗大化を抑制することができる。また、固溶限界を超えたSbは、Sn結晶粒131中のSnの一部とともに固いSnSb化合物132となって部分的に析出する。これによって、結晶が変形しにくくなり、粒内クラック(粒内割れ)が進展しにくくなる。
 このようなSn、AgおよびSbを含むはんだ材として、Ag:1%~30%およびSb:0.5%~25%のうち1種または2種を含有し、残りがSnと不可避不純物からなる組成を有するSn合金はんだにおいて、接合部の熱疲労特性を向上させるために、不可避不純物として酸素(O2)含有量を5ppm以下とし、かつ平均結晶粒径を3μm以下としたはんだ材が提案されている(例えば、下記特許文献1参照。)。
 また、別のはんだ材として、Sbを5重量%~15重量%、Agを2重量%~15重量%含み、残部が不可避不純物を除いて実質的にSnからなり、表面粗度Ra=10μm以下であるはんだ材が提案されている(例えば、下記特許文献2参照。)。
 また、別のはんだ材として、はんだ材中に粉末を含有した複合はんだ材において、はんだ材がSbを5重量%~15重量%、Agを2重量%~15重量%含み、残部が不可避不純物を除いて実質的にSnからなるはんだ材が提案されている(例えば、下記特許文献3参照。)。
 また、別のはんだ材として、25重量%~40重量%のAgと、24重量%~43重量%のSbと、残部としてSnとを含む合金からなるはんだ材において、その溶融温度を少なくとも250℃以上とするはんだ材が提案されている(例えば、下記特許文献4参照。)。
 また、別のはんだ材として、質量%で、Ag:0.9%~10.0%、Al:0.01%~0.50%、Sb:0.04%~3.00%を含み、Al/Sbの比が0.25以下の関係(0を含まない)を満たし、残部Snおよび不可避不純物からなり、酸化物または酸化表面を有する部材を接合するはんだ材が提案されている(例えば、下記特許文献5参照。)。
 また、別のはんだ材として、Agが0.05質量%~2.0質量%、銅(Cu)が1.0質量%以下、Sbが3.0質量%以下、ビスマス(Bi)が2.0質量%以下、インジウム(In)が4.0質量%以下、ニッケル(Ni)が0.2質量%以下、ゲルマニウム(Ge)が0.1質量%以下、コバルト(Co)が0.5質量%以下(但し、Cu、Sb、Bi、In、Ni、Ge、およびCoは、いずれも0質量%ではない)、および残部が錫からなるはんだ材が提案されている(例えば、下記特許文献6参照。)。
 また、別のはんだ材として、SnSbAgCu系を主成分としたはんだ材において、はんだ材の組成が、42重量%<Sb/(Sn+Sb)≦48重量%であって、5重量%≦Ag<20重量%であり、3重量%≦Cu<10重量%であって、かつ5重量%≦Ag+Cu≦25重量%であり、残りが他の不可避不純物元素から構成されるはんだ材が提案されている(例えば、下記特許文献7参照。)。
 また、別のはんだ材として、高温はんだ材料全体に対して、それぞれSbが12質量%~16質量%、Agが0.01質量%~2質量%、Cuが0.1質量%~1.5質量%含まれ、さらに珪素(Si)が0.001質量%~0.1質量%含まれかつ、Bが0.001質量%~0.05質量%含まれ、残部がSnおよび不可避不純物であるはんだ材が提案されている(例えば、下記特許文献8参照。)。
 また、別のはんだ材として、固相温度225℃のSnSbAgCu系を主成分とし、合金の構成比率がAg、Cuで10重量%~35重量%で、かつSb/(Sn+Sb)の重量比率が0.23~0.38であるはんだ材が提案されている(例えば、下記特許文献9参照。)。
 また、別のはんだ材として、Snを88質量%~98.5質量%、Inを1質量%~10質量%、Agを0.5質量%~3.5質量%、Cuを0質量%~1質量%含み、凝固されたはんだ中の金属間相の成長を抑制する結晶化改質剤でのドープを有する、Sn-In-Agはんだ合金をベースとするはんだ材が提案されている(例えば、下記特許文献10参照。)。
 また、別のはんだ材として、Ag:2質量%~3質量%、Cu:0.3質量%~1.5質量%、Bi:0.05質量%~1.5質量%、Sb:0.2質量%~1.5質量%を含み、かつAg、Cu、Sb、Biの合計含有量が5質量%以下であり、残部Snおよび不可避不純物からなり、リフロー後の表面性状が滑らかであるはんだ材が提案されている(例えば、下記特許文献11参照。)。なお、リフローとは、接合材にはんだペースト(はんだの粉末にフラックスを加えて、適当な粘度にしたもの)層を形成し、その上に部品を載せてから熱を加えてはんだを溶かし、はんだ付けをおこなう方法である。
 また、別のはんだ材として、Agが1質量%~3質量%、Cuが0.5質量%~1.0質量%、Biが0.5質量%~3.0質量%、Inが0.5質量%~3.0質量%、Geが0.01質量%~0.03重量%あるいはセレン(Se)が0.01質量%~0.1質量%、残部がSnからなるはんだ材が提案されている(例えば、下記特許文献12参照。)。
 また、別のはんだ材として、Biを15.0%~30.0%、銀を1.0%~3.0%、含み、そして場合により、銅を0%~2.0%、そしてSbおよび付随的不純物を0%~4.0%、含んでいてもよく、残りがSnであるはんだ材が提案されている(例えば、下記特許文献13参照。)。
 また、別のはんだ材として、Sn-Sb-Ag-Cu4元合金であって、Sbが全体の1.0重量%~3.0重量%、Agが1.0重量%以上、2.0重量%未満、Cuが1.0重量%以下の割合で含有されており、残部がSnよりなるはんだ材が提案されている(例えば、下記特許文献14参照。)。
 また、別のはんだ材として、Sbを3.0重量%以下(範囲下限値の零を含まず)、銀を3.5重量%以下(範囲下限値の零を含まず)、Niを1.0重量%以下(範囲下限値の零を含まず)、リン(P)を0.2重量%以下(範囲下限値の零を含まず)含有し、残部はSnおよび不可避不純物からなるはんだ材が提案されている(例えば、下記特許文献15参照。)。
 また、別のはんだ材として、Sbを2.5重量%~3.5重量%、Agを1.0重量%~3.5重量%、Niを1.0重量%以下(範囲下限値の零を含まず)含有し、残部はSnおよび不可避不純物からなるはんだ材が提案されている(例えば、下記特許文献16参照。)。
 また、別のはんだ材として、棒状、線状、プリフォ-ム状、やに入りはんだのいずれかであり、Agが0.5重量%~3.5重量%、Biが3.0重量%~5.0重量%、Cuが0.5重量%~2.0重量%、Sbが0.5重量%~2.0重量%、残部がSnからなるはんだ材が提案されている(例えば、下記特許文献17参照。)。
 また、別のはんだ材として、0.8重量%以上5重量%以下のAgと、いずれも0.1重量%以上で両者の合計が17重量%以下のInおよびBiを含み、残部がSnと不可避不純物とからなり、0.1重量%以上10重量%以下のSbをさらに添加したはんだ材が提案されている(例えば、下記特許文献18参照。)。
 また、別のはんだ材として、Snを61重量%~69重量%と、Sbを8重量%~11重量%と、Agを23重量%~28重量%含有するはんだ材が提案されている(例えば、下記特許文献19参照。)。
 また、別のはんだ材として、Snを93重量%~98重量%、Agを1.5重量%~3.5重量%、Cuを0.2重量%~2.0重量%、およびSbを0.2重量%~2.0重量%含み、210℃~215℃の融点を有するはんだ材が提案されている(例えば、下記特許文献20参照。)。
 また、別のはんだ材として、Snを90.3重量%~99.2重量%、Agを0.5重量%~3.5重量%、Cuを0.1重量%~2.8重量%、およびSbを0.2重量%~2.0重量%含み、210℃~216℃の融点を有するはんだ材が提案されている(例えば、下記特許文献21参照。)。
 また、別のはんだ材として、少なくとも90重量%のSnと、有効量のAgとBiとを含み、また任意選択としてSb、またはSbとCuを含むはんだ材が提案されている(例えば、下記特許文献22参照。)。
 また、別のはんだ材として、Sbを0.5重量%~4.0重量%、亜鉛(Zn)を0.5重量%~4.0重量%、Agを0.5重量%~2.0重量%、およびSnを90.0重量%~98.5重量%含むはんだ材が提案されている(例えば、下記特許文献23参照。)。
 また、別のはんだ材として、第1金属粉末と、第1金属粉末よりも融点の高い第2金属粉末とからなる金属成分と、フラックス成分とを含むソルダペーストであって、第1金属は、Sn単体、またはCu、Ni、Ag、金(Au)、Sb、Zn、Bi、In、Ge、Co、マンガン(Mn)、鉄(Fe)、クロム(Cr)、マグネシウム(Mg)、パラジウム(Pd)、Si、ストロンチウム(Sr)、テルル(Te)、Pからなる群より選ばれる少なくとも1種と、Snとを含む合金であるはんだ材が提案されている(例えば、下記特許文献24参照。)。
特開昭61-269998号公報 特開平7-284983号公報 特開平8-001372号公報 特開2003-290975号公報 特開2011-005545号公報 特許第4787384号公報 特許第4609296号公報 特許第4471825号公報 特開2005-340268号公報 特表2010-505625号公報 特開2002-018590号公報 特開2001-334385号公報 特表2001-520585号公報 特開平11-291083号公報 特許第3353662号公報 特許第3353640号公報 特許第3673021号公報 特開平9-070687号公報 米国特許第4170472号明細書 米国特許第5352407号明細書 米国特許第5405577号明細書 米国特許第5393489号明細書 米国特許第4670217号明細書 国際公開第2011/027659号
 半導体装置は、動作中における発熱および放熱の繰り返し(パワーサイクル)の熱負荷や環境温度変化(加熱・冷却)などのヒートサイクルの熱負荷を受ける。しかしながら、従来より、半導体装置は、これらのパワーサイクル等による熱負荷によりはんだ接合層が劣化するという問題がある。はんだ接合層の寿命は半導体装置の寿命を決定する要因となるため、はんだ接合層の寿命を向上することが必要である。また、半導体装置全体および冷却体を小型化するためには、半導体装置の高温発熱時(例えば175℃以上)における動作を実現し、かつ、特にパワー半導体においてはこの温度でのパワーサイクル信頼性を確保する必要がある。また、自動車に搭載される半導体装置や新エネルギー用途の半導体装置は長寿命である必要がある。このため、低融点でのはんだ接合を可能とし、かつパワーサイクル等に対する高信頼性を有するはんだ接合層を形成可能なはんだ材が求められる。なお、パワーサイクル信頼性とは、半導体装置を動作させて所定の温度サイクルを負荷した際の、半導体装置の諸特性である。
 例えば、上述した従来のSn-Ag系はんだ材として一般的に用いられるSn3.5Agはんだ材(Snを96.5重量%およびAgを3.5重量%含むはんだ材)は、低融点(例えば220℃程度)でのはんだ接合が可能であるが、高温動作時の信頼性が低いという問題がある。また、上記特許文献1~5のようにSn-Ag系はんだ接合層中のAg含有量を増加させる場合、材料コストが増大したり(例えばAg含有量1%増につき約20%のはんだコスト増)、高融点(例えばSn10Agはんだ材(Snを90.0重量%およびAgを10.0重量%含むはんだ材)の融点は300℃程度)となる。このため、Sn-Ag系はんだ接合層中のAg含有量を増加させることは現実的でない。
 また、従来のSn-Ag系はんだ接合層は、パワーサイクルの熱負荷により次の問題が生じる。従来のSn-Ag系はんだ接合層のパワーサイクル信頼性試験時の状態(パワーサイクルによる熱負荷を受けた状態)を図7(b)に示す。図7(b)に示すように、従来のSn-Ag系はんだ接合層では、パワーサイクルによる熱負荷によってSn結晶粒121が粗大化し、Ag3Sn化合物122は5μm程度の大きさの粒径に凝集・粗大化してしまう。これによって、Ag3Sn化合物122によるSn結晶粒121同士の結晶粒界の強化がなくなるため、Sn結晶粒121同士の結晶粒界に粒界クラック123が生じ、この粒界クラック123が隣接するSn結晶粒121同士の結晶粒界へと進展する。
 また、上述した従来のSn-Sb系はんだ材は、Sn-Sb系はんだ材に含まれるSbの含有量が多いほど信頼性が高くなるが、Sbの含有量が多いほど融点が高くなるという問題がある。例えば、従来のSn-Sb系はんだ材として一般的に用いられるSn13Sbはんだ材(Snを87.0重量%およびSbを13.0重量%含むはんだ材)は融点300℃程度である。また、融点が300℃となる程度にSbの含有量を増やして信頼性を向上させたSn-Sb系はんだ材であっても、175℃程度の環境下で半導体装置を動作させる場合において装置の使用用途等によってはさらに高い信頼性が必要となる場合がある。
 また、従来のSn-Sb系はんだ接合層は、パワーサイクル等の熱負荷により次の問題が生じる。従来のSn-Sb系はんだ接合層のパワーサイクル信頼性試験時の状態を図8(b)に示す。図8(b)に示すように、従来のSn-Sb系はんだ接合層では、Sn結晶粒131同士の結晶粒界が強化されていないため、応力によってはんだが歪んだ場合にSn結晶粒131同士の結晶粒界に粒界クラック133が生じ、この粒界クラック133が隣接するSn結晶粒131同士の結晶粒界へと進展するという問題がある。
 また、一般的に、はんだペーストのリフロー熱処理は窒素(N2)雰囲気の炉内で行われるが、はんだペーストの耐熱性(はんだペーストの樹脂の耐熱性 250℃程度)の点から300℃以上での熱処理は困難であり、融点が300℃程度のはんだ材は製造プロセス上使用しにくい。また、水素(H2)雰囲気の炉内ではんだペーストのリフロー熱処理を行う場合には、300℃以上での熱処理が可能であるが、350℃以上の温度の熱処理によって半導体チップにダメージが生じるおそれがある。また、300℃程度の温度で30分間程度の長時間の熱処理を行う場合、電極材料や構造材料として用いたアルミニウム(Al)や銅が軟化し、寿命低下や形状不良が発生するおそれがある。
 この発明は、上述した従来技術による問題点を解消するため、低融点でのはんだ接合を可能とし、信頼性の高いはんだ接合層を有する半導体装置および半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、はんだ接合層によって1組の構成部の間が接合された半導体装置であって、次の特徴を有する。前記はんだ接合層は、錫原子:アンチモン原子=1:p(0<p≦0.1)の比率で錫とアンチモンとを含む第1結晶部と、錫原子:銀原子=1:q(2≦q≦5)の比率で錫と銀とを含む第1部分、および、錫原子:銅原子=1:r(0.4≦r≦4)の比率で錫と銅とを含む第2部分の少なくとも一方を有する第2結晶部と、からなる。そして、前記第2結晶部の平均粒径は、前記第1結晶部の平均粒径よりも小さい。
 また、この発明にかかる半導体装置は、上述した発明において、前記はんだ接合層は、錫原子:アンチモン原子=1:s(0.8≦s≦1.6)の比率で錫とアンチモンとを含む第3結晶部を有することを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1結晶部は、アンチモンが固溶した錫結晶粒であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1結晶部は、アンチモンが固溶した錫結晶粒であり、前記第3結晶部は、前記第1結晶部と当該第1結晶部への固溶限界を超えたアンチモンとが反応してなる結晶粒であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2結晶部は、前記第1結晶部間の結晶粒界に析出していることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1部分の平均粒径は1μm以下であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記はんだ接合層の融点は260℃以下であることを特徴とする。
 また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、はんだ接合層によって1組の構成部の間が接合された半導体装置の製造方法であって、次の特徴を有する。まず、アンチモンを含む合金粉末とアンチモンを含まない合金粉末との混合を含むはんだペーストを前記構成部の一方の上に塗布する工程を行う。次に、熱処理により前記はんだペーストを固化して前記はんだ接合層を形成し、前記はんだ接合層によって前記構成部同士を接合する工程を行う。この前記はんだ接合層は、第1結晶部と第2結晶部と、からなる。前記第1結晶部は、錫原子:アンチモン原子=1:p(0<p≦0.1)の比率で錫とアンチモンとを含む。前記第2結晶部は、錫原子:銀原子=1:q(2≦q≦5)の比率で錫と銀とを含む第1部分、および、錫原子:銅原子=1:r(0.4≦r≦4)の比率で錫と銅とを含む第2部分の少なくとも一方を有する。前記第2結晶部の平均粒径は、前記第1結晶部の平均粒径よりも小さい。
 上述した発明によれば、実質的に規則的に配列され均一な金属組織をなす、アンチモンが固溶した第1結晶部(錫結晶粒)と、第1結晶部同士の結晶粒界に析出した複数の第1部分(錫および銀を含む化合物)または第2部分(錫および銅を含む化合物)もしくはその両方からなる第2結晶部とによってはんだ接合層が構成され強化されている。具体的には、第1結晶部に固溶したアンチモンによって第1結晶部全体が固溶強化されているため、パワーサイクル等の熱負荷による第1結晶部の粗大化を抑制することができる。また、第1結晶部同士の結晶粒界が第2結晶部によって強化され、第1結晶部の結晶が変形しにくい。これによって、従来の錫-銀系はんだ接合層や錫-アンチモン系はんだ接合層よりも粒内クラックおよび粒界クラックの進展を抑制することができる。
 また、上述した発明によれば、第1結晶部の一部が固溶限界を超えたアンチモンと反応して第3結晶部を構成していることにより、はんだ接合層に応力によるひずみが生じにくいため、第1結晶部の結晶をさらに変形しにくくすることができる。また、上述した発明によれば、第1,2結晶部によってはんだ接合層の融点を300℃よりも低い温度、例えば260℃以下の温度とすることができる。これにより、300℃以上の温度でのはんだ付けプロセスが必要であった従来の錫-アンチモン系はんだ接合層以上のパワーサイクル信頼性を、300℃よりも低い温度でのはんだ付けプロセスによって得ることができる。300℃よりも低い温度でのはんだ付けプロセスが可能であるため、半導体装置にかかる熱負荷を低減することができ、従来よりも熱負荷による悪影響の少ない半導体装置を提供することができる。なお、パワーサイクル信頼性耐量とは、半導体装置への断続的な繰返し通電に対して、発生する繰り返し発熱とそれに伴う応力によって半導体装置として必要な所定の特性が得られなくなるまでの繰り返し回数である。また、実施の形態によれば、アンチモンを含む第1粉末とアンチモンを含まない第2粉末とを混合してなる混合ペーストを用いてはんだ接合層を形成することで、1つの合金の粉末からなる均一ペーストを用いてはんだ接合層を形成する場合よりも、はんだ接合層をさらに第1~3結晶部が実質的に規則的に配列された均一な金属組織とすることができる。
 本発明にかかる半導体装置および半導体装置の製造方法によれば、低融点でのはんだ接合を可能とし、信頼性の高いはんだ接合層を有する半導体装置および半導体装置の製造方法を提供することができるという効果を奏する。
図1は、実施の形態にかかる半導体装置の構造を示す断面図である。 図2は、図1のはんだ接合層の構成を模式的に示す説明図である。 図3Aは、実施例1にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図3Bは、実施例3にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図4Aは、比較例1のはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図4Bは、比較例2のはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図5は、半導体装置のSb含有量とパワーサイクル信頼性耐量との関係を示す特性図である。 図6は、半導体装置のAg含有量とパワーサイクル信頼性耐量との関係を示す特性図である。 図7は、従来のSn-Ag系はんだ材によるはんだ接合層の状態を模式的に示す説明図である。 図8は、従来のSn-Sb系はんだ材によるはんだ接合層の状態を模式的に示す説明図である。 図9は、図1のはんだ接合層を形成するための均一ペーストの溶融時の状態を模式的に示す説明図である。 図10は、図1のはんだ接合層を形成するための混合ペーストの溶融時の状態を模式的に示す説明図である。 図11は、実施例4にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図12は、実施例5にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。 図13は、実施例4にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。 図14は、実施例5にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。 図15は、実施例1にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
 実施の形態にかかる半導体装置の構造について説明する。図1は、実施の形態にかかる半導体装置の構造を示す断面図である。図1に示すように、実施の形態にかかる半導体装置は、半導体チップ1と、セラミクス絶縁基板(DCB(Direct Copper Bonding)基板)などの絶縁基板2と、銅(Cu)ベース6と、を備えた、例えばモジュール構造の半導体装置である。なお、図1においては、冷却体、樹脂ケース、外部端子、ボンディングワイヤなどの図示を省略している。絶縁基板2は、絶縁層3のおもて面側に例えばCuなどの導体からなる回路パターン(金属箔)4が設けられ、裏面側に裏銅箔5などの金属箔が設けられている。
 半導体チップ1の裏面は、はんだ接合層11を介して回路パターン(金属箔)4と接合している。Cuベース6のおもて面は、はんだ接合層12を介して裏銅箔5と接合している。図示はしないが、Cuベース6の裏面は、サーマルコンパウンドを介して冷却体と接合している。また、Cuベース6の周縁には、外部端子の設けられた樹脂ケースが接着されている。半導体チップ1のおもて面に設けられた図示省略した電極と回路パターン(金属箔)4とは図示省略したアルミワイヤなどのワイヤボンディングによって電気的に接続されている。
 はんだ接合層11,12による被接合部材同士の接合方法としては、被接合部材同士をはんだペースト等を介して接触させた後、例えば250℃以上350℃以下程度の温度で、0.5分間以上30分間以下程度、好ましくは1分間以上5分間以下程度保持して熱処理する。その後、所定の降温速度で冷却することにより、はんだペーストを固化させ、はんだ接合層を形成する。この熱処理の昇温速度は1℃/秒程度であるが、降温速度は5℃/秒以上であるのが好ましく、8℃/秒以上15℃/秒以下であるのがより好ましい。従来の接合方法では、はんだ接合層を形成するための熱処理の降温速度は1℃/秒であったが、所定の構成を有するはんだ接合層とすることはできず、はんだ接合層にクラックが生じてパワーサイクル信頼性が劣化していた。それに対して、本発明においては、降温速度を上記条件にすることにより、以下に示すような金属組織のはんだ接合層11,12とすることができる。なお、このときの炉内環境は窒素雰囲気でも水素雰囲気でもかまわない。なお、前記被接合部材は、半導体チップ、回路パターン(金属箔)4、金属箔(絶縁基板)、ヒートスプレッダ(Cuベース)などの半導体装置の構成部である。具体的には、接合する構成部は、半導体チップ1と回路パターン(金属箔)4、Cuベース6と裏銅箔5、リードフレームと金属箔(絶縁基板)などである。
 はんだ接合層11,12は、例えば、所定の材料を所定の割合で含むはんだ材料の粉末と、フラックス(松やに等)とを混合したクリーム状のはんだペーストを用いて形成する。はんだ接合層11,12を形成するためのはんだペーストは、所定の表面積に濡れ広がる適度な粘性を有し、かつディスペンサなどで被接合部材上に塗布することができればよく、1種類の合金の粉末を含むはんだペースト(以下、均一ペーストとする)であってもよいし、異なる組成に調整された2種類以上の合金の粉末を含むはんだペースト(以下、混合ペーストとする)であってもよい。はんだペーストを用いて被接合部材同士を接合するには、例えば、一方の被接合部材上に、はんだ接合層11,12となるはんだペーストを塗布する。その後、このはんだペースト上に、他方の被接合部材を配置し、熱処理によってはんだペーストを固化させてなるはんだ接合層11,12を形成することで、被接合部材同士を貼り合わせ、一体化させる。なお、はんだペーストに含まれるフラックスは、半導体等で通常用いられる材料を使用してもよい。
 また、はんだ接合層11,12を形成するためのはんだペーストに含まれるはんだ材料の粉末は、所定の組成に調整された粉末を用いてもよい。例えば、はんだ接合層11,12が89Sn8Sb3Ag(Snを89.0重量%、Sbを8.0重量%およびAgを3.0重量%含む)はんだ材を用いて形成されている場合、89Sn8Sb3Ag合金の粉末を使用してもよい(すなわち均一ペーストを形成)。また、はんだ接合層11,12を形成するためのはんだペーストに含まれるはんだ材料の粉末は、異なる組成に調整された2種類以上の合金の粉末を混合したものを用いてもよい(すなわち混合ペーストを形成)。2種類以上の合金の粉末を混合する場合、Sbを含む第1粉末と、Sbを含まない第2粉末とを所定の重量比で混合したはんだペーストを用いてもよい。具体的には、例えば、81.5Sn16Sb2.5Ag合金(Snを81.5重量%、Sbを16.0重量%およびAgを2.5重量%含む合金)の第1粉末と、96.5Sn3.5Ag合金(Snを96.5重量%およびAgを3.5重量%含む合金)の第2粉末とを重量比で1:1に混合してはんだペーストとする。このはんだペーストを熱処理することで89Sn8Sb3Ag合金のはんだ接合層11,12を形成することができる。
 次に、はんだ接合層11,12の構成について詳細に説明する。図2は、図1のはんだ接合層の構成を模式的に示す説明図である。はんだ接合層11,12の初期(パワーサイクルによる熱負荷がかかる前)の状態を図2(a)に示す。はんだ接合層11,12は、錫(Sn)、アンチモン(Sb)および銀(Ag)をそれぞれ所定量含むはんだ材を用いて一般的なはんだ接合方法により形成される。はんだ接合層11,12は、さらにCuを所定の割合で含有していてもよい。この場合、はんだ接合層11,12は、Sn、Sb、AgおよびCuをそれぞれ所定量含むはんだ材を用いて形成されてもよい。はんだ接合層11,12にAgが含まれていることにより、はんだ濡れ性を向上させることができる。
 図2(a)に示すように、はんだ接合層11,12は、マトリクスとして分散した第1結晶部21同士の結晶粒界に、第1結晶部21よりも硬く、かつ第1結晶部21よりも粒径(直径)の小さい微細粒状ないし柱状等の複数の第2結晶部(結晶粒)22が析出した構造となっている。第1結晶部21は、Sn原子に対してSb原子を0より多く固溶限界以下、例えばSn原子:Sb原子=1:p(0<p≦0.1)の比率でSnとSbとを含むSn結晶粒であり、第1結晶部21に固溶したSbによって結晶粒全体が固溶強化されており、第1結晶部21の結晶が変形しにくくなっている。
 また、第1結晶部21同士の結晶粒界に複数の第2結晶部22が析出していることにより、第1結晶部21同士の結晶粒界が強化されて結晶が変形しにくくなっている。なお、前記Sn原子:Sb原子とは、SnとSbとの原子数の比である。第1結晶部21の平均粒径は、0.2μm以上100μm以下であることが信頼性の点から好ましい。この理由は、第1結晶部21の粒径が0.2μmに近いほうが熱負荷に対して強く、平均粒径が100μmを超えるとボイドが発生したり、熱物性・機械物性等が不均一になったりして信頼性が落ちる可能性があるためである。また、第1結晶部21の平均粒径が上記範囲の粒径である場合、第2結晶部22が第1結晶部21同士の結晶粒界に形成されやすいからである。
 第2結晶部22は、例えば、Sn原子:Ag原子=1:q(2≦q≦5)の比率でSnとAgとを含む第1金属間化合物(第1部分)22-1である。複数の第1金属間化合物22-1のうち、大半の第1金属間化合物22-1の平均粒径は10μm以下であることが好ましく、さらに0.1μm以上1.0μm以下であることが信頼性の点から好ましい。1μm以下の粒径を有する第1金属間化合物22-1がはんだ接合層11,12に多く含まれるほど、第1結晶部21同士の結晶粒界の強化機構が向上するため好ましい。第2結晶部22中のAg含有量は、はんだ材中のSbの含有量や、はんだ接合時の他の原子の存在等によって変化する。第1金属間化合物22-1とは、AgとSnからなるAg3Sn(Sn原子:Ag原子=1:3)化合物やAg4Sn(Sn原子:Ag原子=1:4)化合物などである。
 第2結晶部22は第1結晶部21同士の結晶粒界に存在し、第1結晶部21同士は第2結晶部22を介して結合している部分を有している。また、第1結晶部21同士が直接界面をなしている部分も存在しても良い。また、第2結晶部22は、被接合部材と第1結晶部21との間に形成されてもよく、組成の異なる他の第2結晶部22と第1結晶部21との間に形成されてもよい。さらに、第2結晶部22は、後述する第3結晶部23同士、第3結晶部23と第1結晶部21との間、または、第3結晶部23と被接合部材との間に形成されてもよい。このように、第2結晶部22が形成されることにより、第1結晶部21の結晶粒界にクラックが生じにくくなる。このことは第1結晶部21の結晶粒界が強化されたことを意味する。
 第1結晶部21の面積に対する第1金属間化合物22-1の面積の割合(以下、第1金属間化合物22-1の面積比率S1とする)は、例えば0%より大きく5%以下であるのがよい(0%<S1≦5%)。第1金属間化合物22-1の面積比率S1を0%より大きくすることにより、粒界クラックの進展を防止する効果が得られる。好ましくは、第1金属間化合物22-1の面積比率S1は、例えば2%以上5%以下であるのがよい(2%≦S1≦5%)。その理由は、次の通りである。第1金属間化合物22-1の面積比率S1を2%以上とすることにより、第1金属間化合物22-1によって第1結晶部21をほぼ完全に覆うことができるため、粒界クラックの進展を防止する効果を高めることができるからである。また、第1金属間化合物22-1の面積比率S1が5%より大きい場合、第1金属間化合物22-1(例えばAg3Sn化合物)の粒径が大きくなるため、粒界クラックの進展を防止する効果が低くなるからである。面積比率および平均粒径は、第1金属間化合物22-1の1μm程度の粒径を判別することができる、例えば倍率1500倍のSEM(Scanning Electron Microscope)画像から、第1結晶部21の粒径よりも十分大きな領域、例えば30μm×30μmの領域において画像処理により算出したものである。具体的には、画像処理により粒子の輪郭を明確にし、所定の粒子を認定する。その粒子を円または多角形等で近似して面積や粒径を求める。
 また、第2結晶部22は、例えば、Sn原子:Cu原子=1:r(0.4≦r≦4)の比率でSnとCuとを含む第2金属間化合物(第2部分)22-2であってもよい。また、第2結晶部22は、第1金属間化合物22-1と第2金属間化合物22-2とで構成されていてもよい。第2金属間化合物22-2とは、Cu6Sn5(Sn原子:Cu原子=5:6)化合物やCu3Sn(Sn原子:Cu原子=1:3)化合物などである。第2結晶部22中のCu3Sn化合物は、Cu部材(回路パターン4や裏銅箔5)からはんだ接合層11,12中に溶融したCuがSn(第1結晶部21等)と反応して形成される。Cu3Sn化合物は、例えば250℃以上350℃以下の温度で、0.5分間以上30分間以下、好ましくは1分間以上5分間以下程度の反応時間での熱処理によって生成されたものであり、はんだ接合層11,12中のCu部材付近に存在する。Cu3Sn化合物が生成されるときの熱処理では、降温速度は5℃/秒以上が好ましく、8℃/秒以上15℃/秒未満がより好ましい。
 また、Cu3Sn化合物は、パワーサイクルによる熱負荷(1サイクル中の温度が室温(例えば25℃)から175℃まで変化)によってもCu部材付近のみならずCuの拡散によりはんだ接合層11,12中の全体に形成される場合もある。また、第2金属間化合物22-2は、1サイクル中の温度が室温から、150℃以上250℃以下の範囲内の温度まで変化するパワーサイクルによる熱負荷においても同様に生成される。この理由は、次のように推測される。オン・オフを繰り返した際の半導体装置の降温速度が5℃/秒以上10℃/秒以下の範囲内である。このことから、パワーサイクル試験における保持温度と急冷する条件とが第2結晶部22の第2部分である第2金属間化合物22-2(Cu-Sn化合物)の生成に適していることによるものと考えられる。
 第2金属間化合物22-2が生成されるにつれ、第1結晶部21内のSnが消費されるため、第1結晶部21内のSb濃度が上昇する。これによって、第1結晶部21ははんだ単体の場合よりも強化され、さらに後述する第3結晶部23が新たに生成されて(第3結晶部23が既に存在する場合はその数が増加して)信頼性向上効果をもたらす。はんだ接合層11,12によって接合される被接合部材表面として、Cuの他、ニッケル(Ni)や金(Au)、AgなどSnとの化合物を形成する他の材料を用いることによっても、Cuを用いた場合と同様な効果が得られる。そして、第2金属間化合物22-2の平均粒径は10μm以下が好ましく、さらに0.1μm以上1.0μm以下であることが信頼性の点から好ましい。
 このため、はんだ接合層11,12によるはんだ接合後に、実際に使用される前に予め熱処理を施すことにより第2金属間化合物22-2を生成しておくのも好ましい。この熱処理の際の熱負荷は、室温から、150℃以上250℃以下の範囲内の温度まで変化する1サイクルを数秒間から数分間毎に1回以上繰り返すものである。また、この熱処理は、150℃以上250℃以下の範囲内の温度で数分間保持するものであってもよい。また、この熱処理の降温速度は5℃/秒以上が好ましく、8℃/秒以上15℃/秒未満であるのがより好ましい。この熱処理の降温速度を15℃/秒以上にした場合、他の部材および部材間で熱応力が生じるため好ましくない。このような急冷処理を行うためには、空冷の他に冷媒を用いてもよい。
 第1結晶部21の面積に対する第2金属間化合物22-2の面積の割合(以下、第2金属間化合物22-2の面積比率S2とする)は、例えば0%より大きく50%以下であるのがよい(0%<S2≦50%)。その理由は、次の通りである。第2金属間化合物22-2の面積比率S2が大きいほど粒界クラックの進展を防止する効果を高めることができるからである。また、第2金属間化合物22-2の面積比率S2が50%よりも大きい場合、第2金属間化合物22-2が障害となり、はんだ接合時に溶融したはんだ中のボイド(気泡)が抜けにくくなるため、はんだ付け性が劣化するからである。したがって、第1結晶部21と第2結晶部22との面積比率は2%より大きく55%以下であることが好ましい。
 また、はんだ接合層11,12は、第1結晶部21と第1結晶部21への固溶限界を超えたSbとが反応してなる第3結晶部23を有していてもよい。第3結晶部23は、例えば、Sn原子:Sb原子=1:s(0.8≦s≦1.6)の比率でSnとSbとを含む結晶粒である。具体的には、第3結晶部23は、SnSb(Sn原子:Sb原子=1:1)化合物やSb2Sn3(Sn原子:Sb原子=3:2)化合物などの金属間化合物であり、第1結晶部21よりも硬い。Sn結晶粒に対するSbの固溶限界(飽和量)は、はんだ接合時の熱処理温度や冷却温度、はんだ材中のSbの含有量、はんだ接合時の他の原子の存在等によって変化する。なお、第3結晶部23の平均粒径は、0.1μm以上100μm以下が信頼性の点から好ましい。これも前記第1結晶部21の場合と同じ理由によると考えられる。また、第3結晶部23の粒径が100μmよりも大きい場合、第3結晶部23が障害となり、はんだ接合時に溶融したはんだ中のボイドが抜けにくくなるため、はんだ付け性が劣化するため好ましくない。
 第1結晶部21の面積に対する第3結晶部23の面積の割合(以下、第3結晶部23の面積比率S3とする)は、例えば0%より大きく15%以下であるのがよい(0%<S3≦15%)。その理由は、次の通りである。第3結晶部23の面積比率S3が大きいほど粒界クラックの進展を防止する効果を高めることができるからである。また、第3結晶部23の面積比率S3が15%よりも大きい場合、第3結晶部23が障害となり、はんだ接合時に溶融したはんだ中のボイドが抜けにくくなるため、はんだ付け性が劣化するからである。なお、実際の第1結晶部21、第2結晶部22、および第3結晶部23は複数の断面においてEDX(Energy Dispersive X-ray spectrometry)やAES(Auger Electron Spectroscopy)等により組成分析をおこない、良好な組成を明らかにした。
 このような構成のはんだ接合層11,12のパワーサイクル信頼性試験時の状態(パワーサイクルによる熱負荷を受けた状態)を図2(b)に示す。なお、パワーサイクル信頼性試験は1サイクル中の温度が発熱により室温から175℃まで変化する条件で、電流ON時間0.5秒~3秒、OFF時間0.5秒~20秒の繰り返し通電を加えて行った(試験時間:50時間)。上述したように、固溶したSbによって第1結晶部21全体が固溶強化されているため、パワーサイクルによる熱負荷を受けたとしても第1結晶部21は粗大化しない。したがって、第2結晶部22による第1結晶部21同士の結晶粒界の析出強化機構は崩れない。このため、図2(b)に示すように、1つの第1結晶部21において粒界クラックや粒内クラック(以下、クラック24とする)が生じたとしても、クラック24が生じた第1結晶部21に連続する第1結晶部21や、第1結晶部21同士の結晶粒界へクラック24が進展することを低減することができる。
 次に、はんだ接合層11,12を形成するためのはんだペーストの溶融メカニズムについて、まず、均一ペーストの溶融メカニズムを説明する。図9は、図1のはんだ接合層を形成するための均一ペーストの溶融時の状態を模式的に示す説明図である。図9(a)には均一ペーストの熱処理前の状態を示し、図9(b)には均一ペーストの熱処理時の状態を示す。図9(a)に示すように、熱処理前の均一ペーストは、例えば、マトリクスに分散した92Sn8Sb結晶粒(Snを92.0重量%およびSbを8.0重量%含む結晶粒)61同士の結晶粒界に、92Sn8Sb結晶粒61よりも粒径(直径)の小さい微細粒状ないし柱状等の複数のAg3Sn化合物62が析出された構成を有する。均一ペーストは1種類の合金の粉末のみからなるため、上述した92Sn8Sb結晶粒61およびAg3Sn化合物62からなる構成は均一ペースト全体に一様分布されている。
 この均一ペーストにはんだ接合層11,12を形成するための熱処理を行った場合、図9(b)に示すように、熱処理の温度が例えば(221+α)℃程度の温度に達したときにSb濃度の低い部分、すなわち融点の高いSbを含まないAg3Sn化合物62が先に溶融される。Ag3Sn化合物62は均一ペースト全体に部分的に分散された状態で存在するため、Ag3Sn化合物62が92Sn8Sb結晶粒61よりも早く溶融したとしても、均一ペースト全体の見かけ上の融点は92Sn8Sb結晶粒61の融点とほぼ変わらない。したがって、均一ペーストの場合は、熱処理の温度がAg3Sn化合物62の融点に達しAg3Sn化合物62が溶融し、その後、92Sn8Sb結晶粒61の融点に達したときに全体が液化される。均一ペーストにおいては、熱処理時間が短い場合にボイドが発生する虞があるが、熱処理時間を長くすることで均一ペーストが濡れ広がるため、ボイドが発生しない程度に熱処理時間を設定することが好ましい。例えば、炉内の温度を260℃(半導体チップを載置する加熱板の温度を235℃)とし窒素雰囲気において270秒以上程度の熱処理を行った場合に、均一ペーストを用いたはんだ接合層11,12にボイドがほぼ発生しないことが確認されている。
 次に、混合ペーストの溶融メカニズムを説明する。図10は、図1のはんだ接合層を形成するための混合ペーストの溶融時の状態を模式的に示す説明図である。図10(a)には混合ペーストの熱処理前の状態を示し、図10(b)には混合ペーストの熱処理時の状態を示す。図10(a)に示すように、混合ペーストには、第1粉末70-1と第2粉末70-2が所定の重量比で分離した状態で含まれる。第1粉末70-1は、Sbを含む粉末であり、例えばSbが固溶したSn結晶粒71-1がマトリクスに分散した構成を有する。符号71-2は、固溶限界を超えたSbが、Sn結晶粒71-1中のSnの一部とともに析出したSnSb化合物である。第2粉末70-2は、Sbを含まない粉末であり、例えばマトリクスに分散したSn結晶粒72-1同士の結晶粒界に、Sn結晶粒72-1よりも粒径の小さい微細粒状ないし柱状等の複数のAg3Sn化合物72-2が析出された構成を有する。
 この混合ペーストにはんだ接合層11,12を形成するための熱処理を行った場合、図10(b)に示すように、熱処理の温度が例えば221℃程度の温度に達したときにSb濃度の低い部分、すなわち融点の高いSbを含まない第2粉末70-2が先に溶融され液化される。すなわち、第2粉末70-2全体が液化され、混合ペーストの一部が液化された状態となる。また、先に溶融された第2粉末70-2は第1粉末70-1中に拡散し(不図示)、混合ペースト全体が均一ペーストよりも短時間で液化される。このように、Sbを含まないことで融点が低い第2粉末70-2によって混合ペースト全体の見かけ上の融点が下がる。また、混合ペーストにおいては、均一ペーストを用いる場合よりも短時間で液化されることで濡れ性が向上するため、均一ペーストを用いる場合よりもボイドの発生を抑制することができる。例えば、炉内の温度を260℃(半導体チップを載置する加熱板の温度を235℃)とし窒素雰囲気において110秒程度の熱処理を行った場合、均一ペーストを用いたはんだ接合層11,12のほぼ全体にボイドが発生したが、混合ペーストを用いたはんだ接合層11,12にはボイドがほぼ発生しないことが確認されている。
 上述したはんだ接合層11,12をパワーサイクル信頼性試験によって検証した。まず、均一ペーストを用いてはんだ接合層11,12を形成した場合のパワーサイクル信頼性試験結果について説明する。例えば、89Sn8Sb3Agはんだ材(Snを89.0重量%、Sbを8.0重量%、およびAgを3.0重量%含むはんだ材:融点約253℃)からなる均一ペースト(すなわち89Sn8Sb3Ag合金の粉末を含む均一ペースト、以下、はんだ材からなる均一ペーストとする)を用いたはんだ接合によって、厚さ100μmのはんだ接合層11,12を形成し、このはんだ接合層11,12のパワーサイクル信頼性試験時の状態を観察した。この結果を図3Aに示す(以下、実施例1とする)。なお、実施例1の熱処理の温度は270℃で、保持時間は5分間、降温速度は10℃/秒とした。また、84Sn13Sb3Agはんだ材(Snを84.0重量%、Sbを13.0重量%、およびAgを3.0重量%含むはんだ材:融点約290℃)からなる均一ペーストを用いたはんだ接合によってはんだ接合層11,12を形成し、このはんだ接合層11,12のパワーサイクル信頼性試験時の状態を観察した。この結果を図3Bに示す(以下、実施例3とする)。実施例3の熱処理の温度は320℃で、保持時間は5分間、降温速度は10℃/秒とした。比較例1として、従来の87Sn13Sbはんだ材(Snを87.0重量%およびSbを13.0重量%含むはんだ材:融点約300℃)からなる均一ペーストを用いたはんだ接合によってはんだ接合層を形成し、このはんだ接合層のパワーサイクル信頼性試験時の状態を観察した。この結果を図4Aに示す。比較例1の熱処理の温度は320℃で、保持時間は5分間、降温速度は10℃/秒とした。図3Aは、実施例1にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。図3Bは、実施例3にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。図4Aは、比較例1のはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。図3A,3B,4Aは、半導体チップおもて面側から観察したSEM画像である(図4B,11,12も同様)。
 図3Aに示すように、実施例1のはんだ接合層30-1には、Sbが固溶した複数のSn結晶粒31がマトリクスとして分散し、Sn結晶粒31(第1結晶部)同士の結晶粒界にSn結晶粒31(平均粒径約30μm)を囲むように、0.5μm以下の粒径を有する微細粒状の硬いAg3Sn化合物32-1(第2結晶部の第1金属間化合物)が析出することが確認された。また、1つ以上のSn結晶粒31が固溶限界を超えたSbと反応してSnSb化合物33(第3結晶部)となり、また、はんだ接合層30-1とCu部材30-2との接合界面付近にCu6Sn5化合物32-2(第2結晶部の第2金属間化合物)が析出することが確認された。これは、はんだ接合時(270℃の温度で5分間程度の熱処理など)に形成されたものであり、これによって、第2結晶部の第1金属間化合物と第2金属間化合物とが一つ乃至複数の第1結晶部を囲むように形成される。また、第2結晶部の一部はパワーサイクルによる熱負荷(1サイクル中の温度が室温から175℃まで変化)を経ることによって形成されたものである。そして、さらにパワーサイクルによる熱負荷を受けた後も、Sn結晶粒31の粒径は粗大化せず、かつAg3Sn化合物32-1、Cu6Sn5化合物32-2およびSnSb化合物33によるSn結晶粒31同士の結晶粒界の析出強化機構は崩れず、クラックの発生がないことが確認された。なお、第2結晶部の第2金属間化合物は、1サイクル中の温度が室温から、150℃以上250℃以下の範囲内の温度まで変化するパワーサイクルによる熱負荷においても同様に発生する。また、図3Bに示すように、実施例3においても、実施例1と同様に、Sn結晶粒31、Ag3Sn化合物32-1およびSnSb化合物33が析出することが確認された。一方、比較例1のはんだ接合層40では、第2結晶部がないため、熱応力によってはんだが歪むことにより、Sn結晶粒41同士の結晶粒界にクラック44が生じることが確認された(図4A)。
 次に、混合ペーストを用いてはんだ接合層11,12を形成した場合のパワーサイクル信頼性試験結果について説明する。混合ペーストを用いたはんだ接合によってはんだ接合層11,12を形成し、このはんだ接合層11,12のパワーサイクル信頼性試験時の状態を観察した。この結果を図11,12に示す(以下、実施例4,5とする)。図11は、実施例4にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。図12は、実施例5にかかるはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。図11,12には、それぞれ、熱処理温度を260℃とし窒素雰囲気において300秒(5分)間程度の熱処理をおこなった場合の実施例4,5を示す。また、熱処理温度を230℃(最大232℃)とし、窒素雰囲気において300秒(5分)間程度の熱処理を行った場合の実施例4,5をそれぞれ図13,14に示す。なお、降温速度は10℃/秒でおこなった。図13は、実施例4にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。図14は、実施例5にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。
 実施例4は、70Sn30Sb合金(Snを70.0重量%およびSbを30.0重量%含む合金)の第1粉末と、96Sn4Ag合金(Snを96.0重量%およびAgを4.0重量%含む合金)の第2粉末とを混合してなる混合ペーストを用いたはんだ接合によってはんだ接合層を形成した。実施例4において、第1粉末と第2粉末との重量比は1:2.8である。実施例5は、70Sn30Sb合金(Snを70.0重量%およびSbを30.0重量%含む合金)の第1粉末と、96Sn4Ag合金(Snを96.0重量%およびAgを4.0重量%含む合金)の第2粉末とを混合してなる混合ペーストを用いたはんだ接合によってはんだ接合層を形成した。実施例5において、第1粉末と第2粉末との重量比は1:1である。また、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)により、実施例4,5においても、実施例1と同様に、第3結晶部(SnSb化合物)が形成されていることが確認された。図11,12には、第1,3結晶部をまとめて符号81で示す。また、比較として、熱処理温度を230℃(最大232℃)とし、窒素雰囲気において300秒(5分)間程度の熱処理を行った場合の実施例1を図15に示す。図15は、実施例1にかかるはんだ接合層のパワーサイクル信頼性試験時の別の状態を示す断面図である。
 図11,12に示す結果より、混合ペーストを用いたはんだ接合による実施例4,5においても、89Sn8Sb3Agはんだ材からなる均一ペーストを用いたはんだ接合による実施例1と同様に(図3A)、第1結晶部(第3結晶部を含む)81および第2結晶部82が形成されることが確認された。すなわち、混合ペーストを用いてはんだ接合層11,12を形成した場合においても、均一ペーストを用いてはんだ接合層11,12を形成した場合と同様に、はんだ接合層11,12を、第1結晶部(第3結晶部を含む)81および第2結晶部82が実質的に規則的に配列された均一な金属組織とすることができることが確認された。また、実施例4,5においては、実施例1よりも第1結晶部(第3結晶部を含む)81および第2結晶部82ともにさらに微細化され、さらに均一な金属組織とすることができることが確認された。すなわち、混合ペーストを用いることにより、均一ペーストを用いる場合よりも、第3結晶部が凝集して第1,3結晶部が粗大化することを抑制することができる。その理由は、次の通りである。
 図13,14に示すように、混合ペーストを用いた実施例4,5においては、230℃程度で溶融していることが確認された。一方、図15に示すように、均一ペーストを用いた実施例1においては、半導体チップを載置する加熱板の温度が230℃程度では溶融しないことが確認された。また、図示省略するが、均一ペーストを用いた実施例1においては、半導体チップを載置する加熱板の温度が260℃程度であっても完全に溶融せず、ボイドが発生することが確認されている。混合ペーストを用いた実施例4,5が均一ペーストを用いた実施例1よりも短時間に溶融されるのは、混合ペースト中の、Sbを含まない第2粉末が先に溶融し、Sbを含む第1粉末中に拡がるからであると推測される。そして、実施例4,5において、このように、混合ペーストの液化が短時間で進むことで、第1結晶部(第3結晶部を含む)81および第2結晶部82の微細化が進むと推測される。
 次に、はんだ接合層11,12中のSb含有量について説明する。図5は、半導体装置のSb含有量とパワーサイクル信頼性耐量との関係を示す特性図である。Snを(100-x-y)重量%、Sbをx重量%、およびAgをy重量%含む(100-x-y)SnxSbyAgはんだ材によるはんだ接合層11,12について、上記実施例1(89Sn8Sb3Agはんだ材からなる均一ペーストによるはんだ接合層)および上記比較例1(87Sn13Sbはんだ材からなる均一ペーストによるはんだ接合層)および上記実施例3(84Sn13Sb3Agはんだ材からなる均一ペーストによるはんだ接合層)の他に、実施例2および比較例2の試料を作製してパワーサイクル信頼性耐量を測定した結果を図5に示す。比較例2は、97Sn3Agはんだ材(Snを97.0重量%およびAgを3.0重量%含むはんだ材)からなる均一ペーストを用いたはんだ接合によってはんだ接合層を形成した。比較例2の熱処理の温度は280℃で、保持時間は5分間、降温速度は10℃/秒とした。実施例2は、90Sn8Sb2Agはんだ材(Snを90.0重量%、Sbを8.0重量%、およびAgを2.0重量%含むはんだ材)からなる均一ペーストを用いたはんだ接合によってはんだ接合層を形成した。実施例2の熱処理の温度は270℃で、保持時間は5分間、降温速度は10℃/秒とした。
 Snを97重量%およびAgを3重量%含む試料、すなわちSb含有量を0重量%とし、Ag含有量を3重量%とした■印(パワーサイクル信頼性耐量=100%)は、従来のSn-Ag系はんだ接合層を示している(比較例2)。この比較例2を基準として図5の縦軸に示すパワーサイクル信頼性耐量(%)が算出されている。図5の横軸にはSb含有量(重量%)を示す。また、図5の基準線51ははんだ材の融点260℃付近を示しており、基準線51よりも左側に進むほど低融点であり、基準線51よりも右側に進むほど高融点であることを示している。図4Bに、比較例2のはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図を示す。図4Bは、比較例2のはんだ接合層のパワーサイクル信頼性試験時の状態を示す断面図である。
 また、これら実施例1~3の組成は、組成分析の結果、次のとおりであった。第1結晶部は、Sn原子:Sb原子=1:p(0<p≦0.1)であり、第2結晶部の第1金属間化合物(第1部分)は、Ag3Sn(Sn原子:Ag原子=1:3)化合物やAg4Sn(Sn原子:Ag原子=1:4)化合物などであり、Sn原子:Ag原子=1:q(2≦q≦5)の範囲であった。また、第2結晶部の第2金属間化合物(第2部分)は、Cu6Sn5(Sn原子:Cu原子=5:6)化合物やCu3Sn(Sn原子:Cu原子=1:3)化合物などが主であり、Sn原子:Cu原子=1:r(0.4≦r≦4)の範囲であった。第3結晶部は、SnSb(Sn原子:Sb原子=1:1)化合物やSb2Sn3(Sn原子:Sb原子=3:2)化合物であり、Sn原子:Sb原子=1:s(0.8≦s≦1.6)の範囲であった。そして、第2結晶部の平均粒径は、第1結晶部の平均粒径よりも小さいことが断面SEM観察により観察された。
 図5に示す結果より、実施例1~3においては、Sb含有量を0重量%よりも多くすることにより比較例2よりもパワーサイクル信頼性耐量を向上させることができることが確認された。また、Sb含有量が増えるほどパワーサイクル信頼性耐量を向上させることができることが確認された。具体的には、250℃(実施例1,2を作製するためのはんだ材の融点)付近において比較例2の2倍程度のパワーサイクル信頼性耐量が得られ、290℃(実施例3を作製するためのはんだ材の融点)付近において比較例2の2倍より大きいパワーサイクル信頼性耐量が得られることが確認された。これらの実施例1~3においては、図3A,3Bに示すように、クラック等は確認されなかった。したがって、本願発明にかかる半導体装置は、175℃程度の環境下で使用され高信頼性が要求される例えば自動車に搭載される半導体装置や新エネルギー用途の半導体装置にも十分に対応可能であることが確認された。一方、比較例2の場合、図4Bに示すように、Sbの入っていない従来のSn-Ag系はんだ材料と同様に、はんだ接合層40においてAgSn化合物42の粒径が5μm程度に粗大化し、クラック44を生じることが確認された。このことが原因で、パワーサイクル信頼性耐量が劣っていると考えられる。また、Sb含有量が15重量%よりも多い場合(図5の符号52で示す点線よりも右側に進んだ場合)、はんだ材の融点が上昇し過ぎたり、はんだ濡れ性が低下することが確認された。このため、はんだ接合層11,12中のSb含有量は0重量%よりも多く15重量%以下であるのが好ましい。
 次に、はんだ接合層11,12中のAg含有量について説明する。図6は、半導体装置のAg含有量とパワーサイクル信頼性耐量との関係を示す特性図である。Snを(100-x-y)重量%、Sbをx重量%、およびAgをy重量%含む(100-x-y)SnxSbyAgはんだ材によるはんだ接合層11,12について、パワーサイクル信頼性耐量を測定した結果を図6に示す。
 Snを97重量%およびAgを3重量%含む試料、すなわちSb含有量を0重量%とし、Ag含有量を3重量%とした▲印(パワーサイクル信頼性耐量=100%)は、上述した比較例2である。この比較例2を基準として図6の縦軸に示すパワーサイクル信頼性耐量(%)が算出されている。図6の横軸にはAg含有量(重量%)を示す。また、Snを87重量%およびSbを13重量%含む試料、すなわちSb含有量を13重量%とし、Ag含有量を0重量%とした■印(パワーサイクル信頼性耐量=150%程度)は、従来のSn-Sb系はんだ接合層を示している(比較例1)。
 図6に示す結果より、Sb含有量が0重量%よりも多く、かつ、Ag含有量を0重量%よりも多くすることにより、比較例1,2よりもパワーサイクル信頼性耐量を向上させることができることが確認された。また、Ag含有量が増えるほどパワーサイクル信頼性耐量を向上させることができることが確認された。さらに、Ag含有量が3重量%よりも多い場合(符号53で示す点線よりも右側に進んだ場合)、はんだ付け性が低下したり、材料コストが上昇することが確認された。このため、はんだ接合層11,12中のAg含有量は0重量%よりも多く3重量%以下であるのが好ましい。
 以上、説明したように、実施の形態(実施例2)によれば、実質的に規則的に配列され均一な金属組織をなす、Sbが固溶した第1結晶部(Sn結晶粒)と、マトリクスとして分散した第1結晶部同士の結晶粒界に析出した複数の第2結晶部とによってはんだ接合層が構成され強化されている。第2結晶部の平均粒径は、第1結晶部の平均粒径よりも小さく、第1結晶部の平均粒径は30μmであり、第2結晶部の平均粒径は0.8μmであった。具体的には、第1結晶部に固溶したSbによって第1結晶部全体が固溶強化されているため、パワーサイクル等の熱負荷による第1結晶部の粗大化を抑制することができる。また、第1結晶部よりも硬い微細粒状の第2結晶部である第1金属間化合物(SnおよびAgを含む化合物)によって、マトリクス状に分散した第1結晶部同士の結晶粒界が強化され、第1結晶部の結晶が変形しにくい。これによって、従来のSn-Ag系はんだ接合層やSn-Sb系はんだ接合層よりも粒内クラックおよび粒界クラックの進展を抑制することができ、パワーサイクル信頼性を向上させることができる。
 また、実施の形態(実施例1,3)によれば、第1結晶部の一部が固溶限界を超えたSbと反応して第3結晶部を構成していることにより、はんだ接合層に応力によるひずみが生じにくいため、第1結晶部の結晶をさらに変形しにくくすることができる。かつ、第3結晶部は第1結晶部よりも硬いため、粒内クラックの進展をさらに抑制することができる。これによって、パワーサイクル信頼性耐量をさらに向上させることができる。また、実施の形態によれば、第2結晶部がはんだとCu部材との接合時およびパワーサイクルによる熱負荷によって形成される第2金属間化合物(SnおよびCuを含む化合物)を有するものであってもよく、第2結晶部として第1金属間化合物(第1部分)に加えて、さらに第2金属間化合物(第2部分)を含むことにより、マトリクスとして分散した第1結晶部同士の結晶粒界がさらに強化される。これによって、従来のSn-Ag系はんだ接合層やSn-Sb系はんだ接合層よりも粒界クラックの進展をさらに抑制することができる。したがって、パワーサイクル信頼性耐量をさらに向上させることができる。
 また、実施の形態によれば、Agを高濃度添加することなく、第1,2結晶部または第3結晶部を所定の粒径および組成に形成することによってはんだ接合層の融点を300℃よりも低い温度、例えば260℃以下(例えば230℃程度)の温度とすることができる。すなわち、これにより、300℃以上の温度でのはんだ付けプロセスが必要であった従来のSn-Sb系等はんだ接合層以上のパワーサイクル信頼性耐量を、300℃よりも低い温度でのはんだ付けプロセスによって得ることができる。300℃よりも低い温度でのはんだ付けプロセスが可能であるため、半導体装置にかかる熱負荷を低減することができ、従来よりも熱負荷による悪影響の少ない信頼性の高い半導体装置を提供することができる。また、実施の形態によれば、Sbを含む第1粉末とSbを含まない第2粉末とを混合してなる混合ペーストを用いてはんだ接合層を形成することで、1つの合金の粉末からなる均一ペーストを用いてはんだ接合層を形成する場合よりも、はんだ接合層をさらに第1~3結晶部が実質的に規則的に配列された均一な金属組織とすることができる。そして、パワーサイクル信頼性耐量は、実施例4は230(%)であり、実施例5は240(%)であった。このように、第1~3結晶部が実質的に規則的に配列された均一な金属組織となり、第1、第2結晶部が微細化することでパワーサイクル信頼性を向上させることができる。
 以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、半導体装置が複数のはんだ接合層を備える場合、これらのはんだ接合層は上述した構成の範囲内であればともに同一組成を有していてもよいし、異なる組成を有していてもよい。
 以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、はんだ接合層を介して半導体チップや回路パターンなどの各部材を接合したパッケージ構造の半導体装置に有用である。
 1 半導体チップ
 2 絶縁基板
 3 絶縁層
 4 回路パターン(金属箔)
 5 裏銅箔
 6 銅ベース
 11,12 はんだ接合層
 21 第1結晶部(Sbが固溶したSn結晶粒)
 22 第2結晶部
 22-1 第1金属間化合物(SnおよびAgを含む化合物)
 22-2 第2金属間化合物(SnおよびCuを含む化合物)
 23 第3結晶部(第1結晶部と第1結晶部への固溶限界を超えたSbとが反応してなるSn結晶粒)

Claims (8)

  1.  はんだ接合層によって1組の構成部の間が接合された半導体装置であって、
     前記はんだ接合層は、
     錫原子:アンチモン原子=1:p(0<p≦0.1)の比率で錫とアンチモンとを含む第1結晶部と、
     錫原子:銀原子=1:q(2≦q≦5)の比率で錫と銀とを含む第1部分、および、錫原子:銅原子=1:r(0.4≦r≦4)の比率で錫と銅とを含む第2部分の少なくとも一方を有する第2結晶部と、からなり、
     前記第2結晶部の平均粒径は、前記第1結晶部の平均粒径よりも小さいことを特徴とする半導体装置。
  2.  前記はんだ接合層は、錫原子:アンチモン原子=1:s(0.8≦s≦1.6)の比率で錫とアンチモンとを含む第3結晶部を有することを特徴とする請求項1に記載の半導体装置。
  3.  前記第1結晶部は、アンチモンが固溶した錫結晶粒であることを特徴とする請求項1に記載の半導体装置。
  4.  前記第1結晶部は、アンチモンが固溶した錫結晶粒であり、
     前記第3結晶部は、前記第1結晶部と当該第1結晶部への固溶限界を超えたアンチモンとが反応してなる結晶粒であることを特徴とする請求項2に記載の半導体装置。
  5.  前記第2結晶部は、前記第1結晶部間の結晶粒界に析出していることを特徴とする請求項1に記載の半導体装置。
  6.  前記第1部分の平均粒径は1μm以下であることを特徴とする請求項1に記載の半導体装置。
  7.  前記はんだ接合層の融点は260℃以下であることを特徴とする請求項1に記載の半導体装置。
  8.  はんだ接合層によって1組の構成部の間が接合された半導体装置の製造方法であって、
     アンチモンを含む合金粉末とアンチモンを含まない合金粉末との混合を含むはんだペーストを前記構成部の一方の上に塗布する工程と、
     熱処理により前記はんだペーストを固化して前記はんだ接合層を形成し、前記はんだ接合層によって前記構成部同士を接合する工程を含み、
     前記はんだ接合層は、
     錫原子:アンチモン原子=1:p(0<p≦0.1)の比率で錫とアンチモンとを含む第1結晶部と、
     錫原子:銀原子=1:q(2≦q≦5)の比率で錫と銀とを含む第1部分、および、錫原子:銅原子=1:r(0.4≦r≦4)の比率で錫と銅とを含む第2部分の少なくとも一方を有する第2結晶部と、からなり、
     前記第2結晶部の平均粒径は、前記第1結晶部の平均粒径よりも小さいことを特徴とする半導体装置の製造方法。
PCT/JP2014/062535 2013-05-10 2014-05-09 半導体装置および半導体装置の製造方法 WO2014181883A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015515915A JP6128211B2 (ja) 2013-05-10 2014-05-09 半導体装置および半導体装置の製造方法
CN201480019763.9A CN105103279B (zh) 2013-05-10 2014-05-09 半导体装置及半导体装置的制造方法
KR1020157026128A KR102217782B1 (ko) 2013-05-10 2014-05-09 반도체 장치 및 반도체 장치의 제조방법
DE112014002345.0T DE112014002345B4 (de) 2013-05-10 2014-05-09 Halbleitervorrichtung und Herstellungsverfahren für die Halbleitervorrichtung
US14/878,903 US10157877B2 (en) 2013-05-10 2015-10-08 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100651 2013-05-10
JP2013100651 2013-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/878,903 Continuation US10157877B2 (en) 2013-05-10 2015-10-08 Semiconductor device and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
WO2014181883A1 true WO2014181883A1 (ja) 2014-11-13

Family

ID=51867355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062535 WO2014181883A1 (ja) 2013-05-10 2014-05-09 半導体装置および半導体装置の製造方法

Country Status (6)

Country Link
US (1) US10157877B2 (ja)
JP (1) JP6128211B2 (ja)
KR (1) KR102217782B1 (ja)
CN (1) CN105103279B (ja)
DE (1) DE112014002345B4 (ja)
WO (1) WO2014181883A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047289A1 (ja) * 2015-09-17 2017-03-23 富士電機株式会社 半導体装置用はんだ材
JP2017126689A (ja) * 2016-01-15 2017-07-20 富士通株式会社 電子装置及び電子機器
JP2017157582A (ja) * 2016-02-29 2017-09-07 株式会社東芝 半導体装置
US10493567B2 (en) 2017-05-11 2019-12-03 Panasonic Intellectual Property Management Co., Ltd. Solder alloy and bonded structure using the same
KR20200073182A (ko) * 2018-10-11 2020-06-23 삼성전기주식회사 전자 부품

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002345B4 (de) * 2013-05-10 2021-02-11 Fuji Electric Co., Ltd. Halbleitervorrichtung und Herstellungsverfahren für die Halbleitervorrichtung
JP6288284B2 (ja) * 2014-09-10 2018-03-07 株式会社村田製作所 金属間化合物の生成方法
JP6355091B1 (ja) * 2017-03-07 2018-07-11 パナソニックIpマネジメント株式会社 はんだ合金およびそれを用いた接合構造体
JP6810915B2 (ja) 2017-03-17 2021-01-13 富士電機株式会社 はんだ材
WO2019088068A1 (ja) 2017-10-31 2019-05-09 千住金属工業株式会社 はんだ継手、およびはんだ継手の形成方法
CN115259220A (zh) * 2022-07-25 2022-11-01 云南锡业锡化工材料有限责任公司 一种三锡酸二锑的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154845A (ja) * 2002-11-08 2004-06-03 Hitachi Ltd 電子装置接続用はんだとはんだボール及びそれを用いた電子装置
WO2008004531A2 (fr) * 2006-07-05 2008-01-10 Fuji Electric Holdings Co., Ltd. Crème à braser et procédé de brasage d'un élément électronique

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS469296Y1 (ja) 1966-12-29 1971-04-02
US4170472A (en) 1977-04-19 1979-10-09 Motorola, Inc. Solder system
JPS61269998A (ja) 1985-05-24 1986-11-29 Mitsubishi Metal Corp Sn合金はんだ箔材の製造法
US4670217A (en) 1985-07-26 1987-06-02 J. W. Harris Company Solder composition
JP2807008B2 (ja) * 1989-12-29 1998-09-30 田中電子工業株式会社 熱疲労特性に優れたPb合金ろう
US5352407A (en) 1993-04-29 1994-10-04 Seelig Karl F Lead-free bismuth free tin alloy solder composition
US5405577A (en) 1993-04-29 1995-04-11 Seelig; Karl F. Lead-free and bismuth-free tin alloy solder composition
US5393489A (en) 1993-06-16 1995-02-28 International Business Machines Corporation High temperature, lead-free, tin based solder composition
JPH07284983A (ja) 1994-04-20 1995-10-31 Tanaka Denshi Kogyo Kk 半田材料及びその製造方法
JPH081372A (ja) 1994-06-10 1996-01-09 Tanaka Denshi Kogyo Kk 複合半田材料及びその製造方法
JPH0970687A (ja) 1995-07-04 1997-03-18 Toyota Central Res & Dev Lab Inc 無鉛はんだ合金
JP3673021B2 (ja) 1996-06-12 2005-07-20 内橋エステック株式会社 電子部品実装用無鉛はんだ
JP3353662B2 (ja) 1997-08-07 2002-12-03 富士電機株式会社 はんだ合金
JP3353640B2 (ja) 1997-04-16 2002-12-03 富士電機株式会社 はんだ合金
IL132555A0 (en) 1997-04-22 2001-03-19 Ecosolder Internat Pty Ltd Lead-free solder
JPH11291083A (ja) 1998-04-14 1999-10-26 Murata Mfg Co Ltd 半田合金
JP2002018590A (ja) 2000-07-06 2002-01-22 Nippon Steel Corp ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
JP2001284792A (ja) * 2000-03-30 2001-10-12 Tanaka Electronics Ind Co Ltd 半田材料及びそれを用いた半導体装置の製造方法
JP2001334385A (ja) 2000-05-22 2001-12-04 Hitachi Ltd 電子機器用Sn−Ag−Cu−Bi−In系はんだ
JP2002076029A (ja) * 2000-08-25 2002-03-15 Hitachi Ltd ろう材とそれを用いた半導体装置および電子装置
JP2003211283A (ja) * 2002-01-22 2003-07-29 Japan Science & Technology Corp 鉛フリーはんだ材料
JP3809806B2 (ja) * 2002-03-29 2006-08-16 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP2003290975A (ja) 2002-04-01 2003-10-14 Fuji Electric Co Ltd はんだ材料
JP2005340268A (ja) 2004-05-24 2005-12-08 Renesas Technology Corp トランジスタパッケージ
JP4471825B2 (ja) 2004-12-09 2010-06-02 日本電波工業株式会社 電子部品、及び電子部品の製造方法
JP4609296B2 (ja) 2005-12-05 2011-01-12 株式会社日立製作所 高温半田及び高温半田ペースト材、及びそれを用いたパワー半導体装置
DE102006047764A1 (de) 2006-10-06 2008-04-10 W.C. Heraeus Gmbh Bleifreies Weichlot mit verbesserten Eigenschaften bei Temperaturen >150°C
US20100068552A1 (en) * 2008-03-31 2010-03-18 Infineon Technologies Ag Module including a stable solder joint
JP2009283741A (ja) * 2008-05-23 2009-12-03 Fuji Electric Device Technology Co Ltd 半導体装置
JP2011005545A (ja) 2009-05-25 2011-01-13 Hitachi Metals Ltd はんだ合金およびこれを用いたはんだ接合体
CN101988165B (zh) * 2009-07-31 2014-06-18 中国科学院金属研究所 一种抗高温氧化的无铅搪锡合金
WO2011027659A1 (ja) 2009-09-03 2011-03-10 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造
JP5553181B2 (ja) * 2010-06-01 2014-07-16 千住金属工業株式会社 無洗浄鉛フリーソルダペースト
JP4787384B1 (ja) 2010-10-29 2011-10-05 ハリマ化成株式会社 低銀はんだ合金およびはんだペースト組成物
CN101992362A (zh) * 2010-11-30 2011-03-30 广州市铠特电子材料有限公司 一种适宜制粉的具有抗氧化能力的无铅焊料合金
CN102174676A (zh) * 2011-01-27 2011-09-07 天津大学 太阳能电池用锡铟锑系无铅焊料镀锡铜带的制备方法
JP2013033891A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 半導体装置及びその製造方法
DE112014002345B4 (de) * 2013-05-10 2021-02-11 Fuji Electric Co., Ltd. Halbleitervorrichtung und Herstellungsverfahren für die Halbleitervorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154845A (ja) * 2002-11-08 2004-06-03 Hitachi Ltd 電子装置接続用はんだとはんだボール及びそれを用いた電子装置
WO2008004531A2 (fr) * 2006-07-05 2008-01-10 Fuji Electric Holdings Co., Ltd. Crème à braser et procédé de brasage d'un élément électronique

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047289A1 (ja) * 2015-09-17 2017-03-23 富士電機株式会社 半導体装置用はんだ材
CN107427968A (zh) * 2015-09-17 2017-12-01 富士电机株式会社 半导体装置用软钎焊材料
JPWO2017047289A1 (ja) * 2015-09-17 2018-01-25 富士電機株式会社 半導体装置用はんだ材
US10727194B2 (en) 2015-09-17 2020-07-28 Fuji Electric Co., Ltd. Solder material for semiconductor device
JP2021142568A (ja) * 2015-09-17 2021-09-24 富士電機株式会社 半導体装置用はんだ材
US11145615B2 (en) 2015-09-17 2021-10-12 Fuji Electric Co., Ltd. Solder material for semiconductor device
JP7115591B2 (ja) 2015-09-17 2022-08-09 富士電機株式会社 半導体装置用はんだ材
JP2017126689A (ja) * 2016-01-15 2017-07-20 富士通株式会社 電子装置及び電子機器
JP2017157582A (ja) * 2016-02-29 2017-09-07 株式会社東芝 半導体装置
US10493567B2 (en) 2017-05-11 2019-12-03 Panasonic Intellectual Property Management Co., Ltd. Solder alloy and bonded structure using the same
KR20200073182A (ko) * 2018-10-11 2020-06-23 삼성전기주식회사 전자 부품
KR102442390B1 (ko) 2018-10-11 2022-09-14 삼성전기주식회사 전자 부품

Also Published As

Publication number Publication date
US20160035690A1 (en) 2016-02-04
JP6128211B2 (ja) 2017-05-17
KR20160006667A (ko) 2016-01-19
US10157877B2 (en) 2018-12-18
DE112014002345B4 (de) 2021-02-11
CN105103279A (zh) 2015-11-25
DE112014002345T5 (de) 2016-01-21
KR102217782B1 (ko) 2021-02-18
CN105103279B (zh) 2018-03-23
JPWO2014181883A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6128211B2 (ja) 半導体装置および半導体装置の製造方法
JP4770733B2 (ja) はんだ及びそれを使用した実装品
CN111683785B (zh) 焊料合金、焊膏、焊球、带芯焊料及焊接接头
TWI645047B (zh) 焊料合金、焊料球及焊接接頭
TW201509582A (zh) 焊球及電子構件
TWI737434B (zh) 無鉛且無銻之焊料合金、焊料球、球柵陣列,及焊接接頭
KR20150068505A (ko) 납 프리 땜납 합금
EP3192609A1 (en) Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
JP2018079480A (ja) 低温用のBi−In−Sn系はんだ合金、それを用いた電子部品実装基板及びその実装基板を搭載した装置
WO2018168858A1 (ja) はんだ材
JP2005503926A (ja) 高温無鉛はんだに適した改良された組成物、方法およびデバイス
KR20240013669A (ko) 땜납 합금, 땜납 볼, 땜납 페이스트 및 솔더 조인트
JP4147875B2 (ja) ろう材、これを用いた半導体装置の組み立て方法並びに半導体装置
WO2011036829A1 (ja) 半導体装置及びその製造方法
US10329642B2 (en) Solder alloy and joint thereof
JP7381980B1 (ja) はんだ合金、はんだボール、はんだプリフォーム、はんだ継手、および回路
KR102247498B1 (ko) 솔더 합금, 솔더볼 및 그 제조방법
JP2015139777A (ja) Au−Sb系はんだ合金
KR102460042B1 (ko) 무연 솔더 합금, 솔더볼, 솔더 페이스트, 및 반도체 부품
JP7291320B2 (ja) はんだ接合部の製造方法
JP2005334955A (ja) はんだ合金およびはんだボール
WO2023054630A1 (ja) はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
TWI423358B (zh) Solder balls and electronic components for semiconductor encapsulation
JP2017035708A (ja) Pbを含まないSb−Cu系はんだ合金
JP2005296983A (ja) はんだ合金およびはんだボール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019763.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14793983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157026128

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015515915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140023450

Country of ref document: DE

Ref document number: 112014002345

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14793983

Country of ref document: EP

Kind code of ref document: A1